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Abstract A new algorithm for solving large-scale convex optimizatiproblems with a
separable objective function is proposed. The basic idéa combine three techniques:
Lagrangian dual decomposition, excessive gap and smapthire main advantage of this
algorithm is that it dynamically updates the smoothnesarpaters which leads to numeri-
cally robust performance. The convergence of the algoritpnoved under weak conditions
imposed on the original problem. The rate of convergen@(%), wherek is the iteration
counter. In the second part of the paper, the algorithm ipleouwith a dual scheme to con-
struct a switching variant of the dual decomposition. Weuats implementation issues and
make a theoretical comparison. Numerical examples confientiteoretical results.

Keywords Excessive gap smoothing techniquelLagrangian decompositionproximal
mappings large-scale problemseparable convex optimizatiemistributed optimization.

1 Introduction

Large-scale convex optimization problems appear in maegsaof science such as graph
theory, networks, transportation, distributed model mtaae control, distributed estimation
and multistage stochastic optimization [8/17[21, 22, 243338, 39, 40,41]. Solving large-
scale optimization problems is still a challenge in manyliaptions [9]. Over the years,
thanks to the development of parallel and distributed cdempsystems, the chances for
solving large-scale problems have been increased. Hoyweethods and algorithms for
solving this type of problems are limited [2, 9].

Convex minimization problems with a separable objectivefion form a class of prob-
lems which is relevant in many applications. This class abfgms is also known as sep-
arable convex minimization problems, see, €.9. [2]. WitHoss of generality, a separable
convex optimization problem can be written in the form of a@x program with sepa-
rable objective function and coupled linear constrainls If2 addition, decoupling convex
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constraints may also be considered. Mathematically, tliblpm can be formulated in the
following form:
M
min ¢(x) := ;ca(xi)

s.t. xie)<i(i|:17-~-7M), @

M
i;AiXi =b,

whereq : R" — R is convex,X; € R" is a nonempty, closed convex sate R™" be R™
foralli=1,...,M, andn; +n2 +---+ny = n. The last constraint is callezbupling linear
constraint In principle, many convex problems can be written in thipasable form by
doubling the variables, i.e. introducing new variabteand imposing the constrairt = x.
Despite the increased number of variables, treating copraxems by doubling variables
may be useful in some situations, see, e.g/[[11,12].

In the literature, numerous approaches have been proposedl¥ing problem[{{L). For
example, (augmented) Lagrangian relaxation and subgradiethods of multipliers’ ]2,
13/33.39], Fenchel’s dual decomposition|[15], alterragatinearization[[6, 12, 23], proximal
point-type methodd [4][7,87], interior point methods![2/2B[36], mean value cross de-
composition[[18] and partial inverse method|[35] among matters have been proposed.
Our motivation in this paper is to develop a numerical aliponi for solving [[1) which can
be implemented in a parallel or distributed fashion. Not the approach presented in the
present paper is different from splitting methods and a#tng methods considered in the
literature, see, e.d.[6.10].

One of the classical approaches for solving (1) is Lagrandizal decomposition. The
main idea of this approach is to solve the dual problem by me&a subgradient method.
It has been recognized in practice that subgradient methmdssually slow and numeri-
cally sensitive to the step size parameters. In the speasal of a strongly convex objective
function, the dual function is differentiable. Conseqlergradient schemes can be applied
to solve the dual problem.

Recently, Nesterov [29] developed smoothing techniquesdlying nonsmooth convex
optimization problems based on the fast gradient schemehwirs introduced in his early
work [28]. The fast gradient schemes have been used in nusieqgplications including
image processing, compressed sensing, networks and sigsatification [1.5,14, 16,12,
26].

Exploiting Nesterov’s idea i [30], Necoara and Suykéng gplied a smoothing tech-
nique to the dual problem in the framework of Lagrangian diedomposition and then
used the fast gradient scheme to maximize the smoothedduoraftthe dual problem. This
resulted in a new variant of dual decomposition algoritharsblving separable convex op-
timization. The authors proved that the rate of convergefitieeir algorithm iso(%) which
is much better tha@(%) in the subgradient methods of multipliers, whkiie the iteration
counter. A main disadvantage of this scheme is that the dmee$ parameter requires to
be givena priori. Moreover, this parameter crucially depends on the giveirelé accuracy.
Since the Lipschitz constant of the gradient of the objectisnction in the dual problem
is inversely proportional to the smoothness parameteglt@ithm usually generates short
steps towards a solution of the problem although the ratemfargence i@(%).

To overcome this drawback, in this paper, we propose a newitiigh which combines
three techniques: smoothirig [30] 31], excessivelgap [31]lagrangian dual decomposition
[2] techniques. Instead of fixing the smoothness parametersipdate them dynamically



at every iteration. Even though the worst case complexi@(%), wheree is a given toler-
ance, the algorithms developed in this paper work better the one in[[2[7] and are more
numerically robust in practice. Note that the computati@osat of the proposed algorithms
remains almost the same as in the proximal-center-baseumesition algorithm proposed
in [27, Algorithm 3.2]. (Algorithm 3.2 in[[2]7] requires to ampute an additional dual step).
This algorithm is called dual decomposition with primal apal (Algorithm[1). Alterna-
tively, we apply the switching strategy of [31] to obtain acdmposition algorithm with
switching primal-dual update for solving probleld (1). Thigorithm differs from the one
in [31] at two points. First, the smoothness parameter isdyoally updated with an exact
formula and second the proximal-based mappings are usethtenthe nonsmoothness of
the objective function. The second point is more significginte, in practice, estimating
the Lipschitz constants is not an easy task even if the abgefiinction is differentiable.
The switching algorithm balances the disadvantage of therdposition methods using the
primal update (Algorithri]1) and the dual update (Algorithi [27]). Proximal-based map-
ping only plays a role of handling the nonsmoothness of theatise function. Therefore,
the algorithms developed in this paper do not belong to aayipral-point algorithm class
considered in the literature. Note also that all algorittdeseloped in this paper are first
order methods which can be highly distributed.

Contribution. The contribution of this paper is the following:

1. We apply the Lagrangian relaxation, smoothing and eke=ggsp techniques to large-
scale separable convex optimization problems which areectssarily smooth. Note
that the excessive gap condition that we use in this papefféesaht from the one in
[31], where not only the duality gap is measured but also ¢asibility gap is used in
the framework of constrained optimization, se€ (23).

2. We propose two algorithms for solving general separaime@ex optimization problems.
The first algorithm is new, while the second one is a new vaogéihe first algorithm
proposed in[[31, Algorithm 1] applied to Lagrangian dual ateposition. A special
case of the algorithms, where the objective is strongly errig considered. All the
algorithms are highly parallelizable and distributed.

3. The convergence of the algorithms is proved and the ratemfergence is estimated.
Implementation details are discussed and a theoreticalnanterical comparison is
made.

The rest of this paper is organized as follows. In the nexiaeove briefly describe the La-
grangian dual decomposition method [2] for separable coop¢imization, the smoothing
technique via prox-functions as well as excessive gap tquka [31]. We also provide sev-
eral technical lemmas which will be used in the sequel. 8e@ipresents a new algorithm
calleddecomposition algorithm with primal updadéed estimates its worst-case complexity.
Sectior % is a combination of the primal and the dual step tepsizhemes which is called
decomposition algorithm with primal-dual updatgectiorb is an application of the dual
schemel(55) to the strongly convex case of problem (2). Wedidsuss the implementation
issues of the proposed algorithms and a theoretical cosgranf Algorithmd 1l and]2 in
Sectior[ 6. Numerical examples are presented in Seltion Xamiee the performance of
the proposed algorithms and to compare different methods.

Notation. Throughout the paper, we shall consider the Euclidean sR8@ndowed with
an inner produck’y for x,y € R" and the norm|x|| := v'xTx. Associated with|| - ||, | -
||« :=max{(-)"x : ||| < 1} defines its dual norm. For simplicity of discussion, we use
the Euclidean norm in the whole paper. Henfte||. is equivalent to|| - ||. The notation



X=(X1,...,Xu) represents a column vectorlgf, wherex; is a subvector iR",i=1,...,M
andny+---+ny =n.

2 Lagrangian dual decomposition and excessive gap smootlgtechnique

A classical technique to address coupling constraints timigation is Lagrangian relax-
ation [2]. However, this technique often leads to a nonsimoptimization problem in the
dual form. To overcome this situation, we combine the Lagi@mdual decomposition and
smoothing technique in [80,31] to obtain a smoothly apprate dual problem.

For simplicity of discussion, we consider probldmh (1) with= 2. However, the methods
presented in the next sections can be directly applied toakeM > 2 (see Sectiof]6). The
problem[[1) can be rewritten as follows:

min  @(X) = @ (X1) + @ (%)

) X:=(X1,%2)
@ = sit. Aixi+Axxo=b )
XE Xy X Xp:=X,

whereq@ : R — R is convex,X; is a nonempty, closed, convex and bounded subset in
R", A e R™"N andb € R™ (i = 1,2). Problem[(R) is said to satisfy the Slater constraint
qualification condition if r{X) N {x = (x1,%2) | Aix1 + Aoxp = b} # 0, where r{X) is the
relative interior of the convex s&t. Let us denote byX* the solution set of this problem.
Throughout the paper, we assume that:

A.1 The solution set Xis nonempty and either the Slater qualification conditionpi@b-
lem (@) holds or X is polyhedral. The functioq is proper, lower semicontinuous and convex
inR",i=12

SinceX is convex and bounde&* is also convex and bounded. Note that the objective
function ¢ is not necessarily smooth. For exampgx) = [[x||l1 = S [X)|, which is is
nonsmooth and separable.

2.1 Decomposition via Lagrangian relaxation

Let us define the Lagrange function of the problEin (2) witipeesto the coupling constraint
Aix1+Aoxo = b as:

L(x,Y) := @1 (x1) + @(%2) + " (Arxs 4 Aoxa — b), (3)

wherey € R™M is the multiplier associated with the coupling constraing; + Aoxo = b. A
triplet (x;,x5,y") € X x RMis called a saddle point df if:

L(x*,y) < L(X",y") <L(xY"), ¥xe X, vy e R™ 4)
Next, we define the Lagrange dual functidof the problem[(R) as:

d(y) == min{L(x,y) == @u(x1) + @ (%) +y" (Arxe +Aoxo — b) }. (5)

xeX

and then write down the dual problem Df (2):

d* := maxd(y). (6)
yeRm



Let A= [A1,Ay]. Due to Assumption Alstrong dualityholds and we have:

. strong duality . _ s
d" = maxd(y) =" "min{(x) | Ax=b} = ¢ ™
Let us denote by'* the solution set of the dual probleifd (6). It is well-knownttNd is
bounded due to Assumption[A.1.

Now, let us consider the dual functi@hdefined by[(5). It is important to note that the
dual functiond(y) can be computed separately as:

d(y) = d(y) +d(y) —b"y, 8)

where
di(y) == min{@(x)+y Axi},i=12 )

We denote byc'(y) a solution of the minimization problem ifl(9) € 1,2) andx*(y) :=

(X5 (y),%5(y))- Sinceq is continuous and; is closed and bounded, this problem has a solu-
tion. Note that ifx" (y) is not uniques for a giveg thend; is not differentiable at the point

y (i = 1,2). Consequently is not differentiable ay. The representatiof](8)}4(9) is called a
dual decompositionf the dual functiord.

2.2 Smoothing the dual function via prox-functions

By assumption thak; is bounded, instead of considering the nonsmooth fundiowe
smooth the dual functiod by means of prox-functions. A functiop is called a proximity
function (prox-function) of a given nonempty, closed andixbed convex sef c R" if p;
is continuous, strongly convex with convexity parameter 0 andX; C dom(p;).

Suppose thap; is a prox-function ofX; andg; > 0 is its convexity parameter £ 1, 2).
Let us consider the following functions:

di(y; By) 1= min {@a(x)+y Axi+Bipi(x)}, =12, (10
d(y; B) = da(y; Br) +ca(y; B) —b'y. (11)

Here, 31 > 0 is a given parameter called smoothness parameter. Weedeywxit(y; 51) the
solution of [10), i.e.:

X (v: Br) = argmin{ @ () +y A+ Bupi(x) }, = 1,2 (12)

Note that it is possible to use different paramefgiréor (10) ( = 1,2).
Letx® be the prox-center of; which is defined as:

X = argminpi(x), i = 1,2. (13)

Without loss of generality, we can assume thdk®) = 0. SinceX; is bounded, the quantity

Di := maxpi (X (14)

X €X

is well-defined and & D; < +o for i = 1,2. The following lemma shows the main proper-
ties ofd(-; B1), whose proof can be found, e.g., in[27), 31].



Lemma 1 For anyf; > 0, the function ¢; 81) defined by{I0)is well-defined and contin-
uously differentiable oiR™. Moreover, this function is concave and its gradient w.iigy
given as:

Ddi (yx Bl) = AIX;’K (y, Bl)v i= 17 27 (15)

which is Lipschitz continuous with a Lipschitz constaﬁm;) = ”[fl‘(f (i =1,2). The fol-
lowing estimates hold:

di(y; 1) > di(y) > di(y; B1) — D, i = 1,2 (16)

Consequently, the functior(<if;) defined by{1)is concave and differentiable and its gra-
dient is given byld(y; B1) := AX*(y; B1) — b which is Lipschitz continuous with a Lipschitz

constant £(B) := 3574 % Moreover, it holds that:
d(y; B1) > d(y) = d(y; B1) — B(D1+ D2). 7)

The inequalities[{17) show thal(-; 31) is an approximation ofl. Moreover,d(-; 3;) con-
verges tal asf; tends to zero.

Remark 1Even without the assumption thxtis bounded, if the solution set* of (2) is
bounded then, in principle, we can bound the feasibleXsky a large compact set which
contains all the sampling points generated by the algost{see Sectidn 4 below). However,
in the following algorithms we do not us®, i = 1, 2 (defined by[(1I4)) in any computational
step. They only appear in the theoretical complexity edtina

Next, for a given3, > 0, we define a mapping/(-; 32) from X to R by:
i pa) = max{ (Ax-bTy - Z1yie}. (18)
yeRM 2

This function can be considered as an approximate versiap(®f := mﬂg%({(Ax— b)Ty}
ye

using the prox-functiorp(y) := %HyHZ. It is easy to show that the unique solution of the
maximization problem il (18) is given explicitly 35(x; 32) = é(Ax— b) andy(x; B2) =
2—[132 |Ax— b||?. Thereforey(-; B2) is well-defined and differentiable ok. Let

1
T Bo) 1= @0) + (% Bo) = () + 55| Ax— blf?. (19)
The next lemma summarizes the propertieg/6f, 3,).

Lemma 2 For any 3, > 0, the functiony(-; B;) defined by(I8) is continuously differen-
tiable on X and its gradient is given by:

DY (x B2) = (O (% Bo), D W(x: B2)) = (ALY (%: B2), AY' (i B2)),  (20)
which is Lipschitz continuous with a Lipschitz constatt(B) := 7z (|[Ac[|* + [|A2|%).
Moreover, the following estimate holds for alle X:

WxB2) < WK B)+O1W(%Be)" (1 — %) + D2P(% o) (X2 — Re)

2

where 1f'(B) := £ ||Adl|? and LY (B2) := 2 || Ae 1.

(21)

o LY .
+ X1*X1||2+¥HX2*X2H27



Proof Sincey(x; ) = ﬁ | Arx1 + Aoxz —b||? by the definition[(IB) ang(x; B2) = é (Arxy +
Axxz —b), itis easy to compute directlyiy(-; B2). Moreover, we have:

W% B2)— (& B2) —O(X B2) T (x—R) = 2—1132 1AL (X1 — %) + Aa(x2 — %) |2

1 2 o2, L 2 o 2(22)
< EHAlll (X2 =% [|* + EIIAzH X2 — %]
This inequality is indeed(21). O
From the definition off (-; 32), we obtain:
F5B2) 55 1Ax—bI% = 9% < F(Fo) (23)

Note thatf(-; B2) is an upper bound of(-) instead of a lower bound as in [31]. Note that
the Lipschitz constants if (P1) are roughly estimated. #mgsantities can be quantified
carefully by taking into account the problem structure sm&-off the computational effort

in each component subproblem.

2.3 Excessive gap technique

Since the primal-dual gap of the primal and dual probldrhs{@p)s measured bg(x,y) :=
@(x) —d(y), if the gapg is equal to zero for some feasible poirindy then this point is an
optimal solution of[(R){(B). In this section, we apply to thegrangian dual decomposition
framework a technique callezkcessive gaproposed by Nesterov in [31].

_ Letus consided(y; B1) :=d(y; B1) — B1(D1+ D). It follows from (I7) and[(2B) that
d(-;B1) is an underestimate af(-), while f(-;3;) is an overestimate of(-). Therefore,
0<g(xy) = @(x) —d(y) < f(xB2) —d(y; B1) + B1(D1+ D2). Let us recall the following
excessive gap condition introduced|in[31].

Definition 1 We say that a pointx,y) € X x R™ satisfies thexcessive gapondition with
respect to two smoothness paramefars- 0 andf3,; > 0 if:

f(XB2) <d(y;Bo), (24)
wheref (-; 32) andd(-; 31) are defined by[(23) anfl{lL1), respectively.

The following lemma provides an upper bound estimate fodtkedity gap and the feasibil-
ity gap of problem[(R).

Lemma 3 Suppose thatx;y) € X x R™ satisfies the excessive gap condit{@d). Then for
any y € Y*, we have:

—ly*[[|AX=bl| < ¢(x)—d(y) Sﬁl(Dl+D2)*2_;2 || AX=b]|? < B(D1+D3), (25)
and

[AX=b||  <p IIWII+\/IIWIIZ+ZB—%(D1+D2) - (26)




Proof Suppose that andy satisfy condition[(24). For a giveyt € Y*, one has:
d(y) <d(y") mln{qo + (Ax—b)Ty"} < @(X) + (AX—b)Ty*
< @(X) + [|AX—bl|[[y* |,
which implies the first inequality of {25). By using Lemia 1dgig) we have:

W) _ _
o(%) —d(5) (% Ba) <y;ﬁl>+ﬁl<D1+Dz>—2—}32||Ax—bu2.

Now, by substituting the conditioi (P4) into this inequglive obtain the second inequality

of (Z5). Letn := ||Ax—b). It follows from (28) thatn? — 20, |ly*||n — 2B182(D1 + D2) < 0
The estimatg (26) follows from this inequality after few pim calculations.

3 New decomposition algorithm

In this section, we derive an iterative decomposition atgor for solving [2) based on
the excessive gap technique. This method is calldda@mposition algorithm with primal
update The aim is to generate a poifky) € X x R™ at each iteration such that this point
maintains the excessive gap conditibnl (24) while the allgoridrives the parametefs and
B to zero.

3.1 Proximal mappings

As assumed earlier, the functignis convex but not necessarily differentiable. Therefore,
we can not use the gradient information of these functioresc@visider the following map-
pings { = 1,2):

v
R(%B2) = argxngixn{fn(m Y (B TAGG—R) + TP g ||2} @
wherey*(X; ) := é (AX—b). SinceLi"’(Bg) defined in LemmBl2 is positive,(-; ;) is well-
defined. This mapping is callgoximal operator]7]. Let P(-; B2) = (Pi(+; B2), P2(+; B2)).
First, we state that the excessive gap condifioh (24) isdefihed by showing that there
exists a pointx;y) that satisfied(24). This point will be used as a startingtgoiAlgorithm
[0 described below.

Lemma 4 Suppose that™= (x5;x5) is the prox-center of X. For a givef, > 0, let us
define:

yi= ;Z(AXC b) and x:= P(x%; 3,). (28)
If the parameteB; is chosen such that:
A >
e 2 15 @

then(x, y) satisfies the excessive gap condit{@d).

The proof of Lemmal4 can be found in the appendix.



3.2 Primal step

Suppose thafx,y) € X x R™ satisfies the excessive gap conditibnl (24). We generate a new
point (XT,y") € X x R™and by applying the following update scheme:

%:= (1 1)%+ TX (F: Bo),
(X,5) = dRZF BB ) == ¥ i=(A-Dy+1y'(RB),  (30)
X = P(%B5),
B = (1-1)BrandB; = (1-1)Bs, (31)

whereP(-; 35")

(Pi(5B5),Po(+;B5)) andT € (0,1) will be chosen appropriately.

Remark 21In the schemd(30), the poinks(y; B1) = (X (¥; B1),%5(Y; B1)), X = (%1, %) and
Xt = (x{,xJ) can be computeth parallel. To computex*(y; B1) andx™ we need to solve
the corresponding convex programsRft andRR"™, respectively.

The following theorem shows that the update rlild (30) maisttne excessive gap con-

dition (24).

Theorem 1 Suppose thatx y) € X x R™ satisfies24) with respect to two valueg; > 0
and 3, > 0. Then(x*,y") generated by schen{@0)(31) is in X x R™ and maintains the
excessive gap conditio@4) with respect to two smoothness parameter vagiesand 35
provided that:

BB > 20 o { IA? } . (32)

(1-1)21<i<2 | o

Proof The last line of [(3D) shows that" € X. Let us denote by = y*(X;3,). Then, by
using the definition ofi(-; 31), the second line of (30) an@}" = (1— 1)B1, we have:

A7 B7) = min{@() + (Ax=b)T* + By [pa () + Pa)]}

Iinei)mi)r(]{(,o(x) +(1—1)(Ax=b)Ty+1(Ax—b)Ty
Xe

+ (1=1)Ba[pa(x1) + P2(%2)] } (33)
- r)gi)r(]{(l— T) [@(X) + (Ax—b)Ty+ Ba[p1(x1) + P2(%2)]]

+ 7 [p(x)+ (Ax—b)Ty] }.
Now, we estimate the first term in the last line[ofl(33). Sifge= (1— 1), one has:

1

opy I BIP = (1-DW(kE). @34

WK By 2—}32||Ax‘— bl2 = (1-1)
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Moreover, if we denote by! = x*(y; B1) then, by the strong convexity gf; and p,, (34)
andf (X B2) < d(y; B1), we have:

T1 == @(X) + (Ax— b)Y+ Bu[p1(x1) + P2(%2)]
> QgiQ{GO(X) + (AX—b)TV+l31[P1(X1)+pz(Xz)]}+%ﬁl[alel—X%HZJrUzHX2—X%H2]
=d(y,B1) + %[31 [01||X1—X%H2+ 022 —X%HZ}
@ 1 (35)
> (X B) + 5P (01|31 — X1 ||? + 02| %2 — X5 ?]

def. f(-;82) _ 1
=" 00+ YK B2) + 5P [on]xa — X1 |2 + 02|x2 — x|

B

_ 1 _
= 0 +Y(XB;) + 5P [01]|x1 — x1[|* + 02| %2 — X5 ]1?] — TW(Z By)

I

O(X) + W% B) + DX By ) (X=X + %Bl [01]x —xq]|? + o2%2 — %5 %]

1 — . _
+%HA(X*X)||2* TY(X By ).

For the second term in the last line &f[33), we use the fadt yha B%(A)”(f b) and
2
Oyy(%; B2) = ATy to obtain:
T = @(X)+ (Ax—b)Ty
= () + Y AX—R) + (AX—b)Ty

def.y;m) (36)

Q(X) + 0% B )T (x— %) + %nAﬁfbuz
LY 0x) + W B+ W BT (x— %) + W% BS)-

Substituting[(36) and(36) intb (B3) and noting that- 7)(X—X) 4+ 1(x—X) = 1(x—x*) due
to the first line of [[3D), we obtain:

dy";B") =min{(1-1)Ta+ 1T}
E5)+E9) _
> min{ (1-1)[0(0 + W% B) + D% ;)T (X%
4381 (1] x>+ 02l 37

+7[000 + Wk B )+ 09 (% )T (<R |
(-1

ST DGRBS+ IR+ TRE) 37)
= min{ (1 1)@ + 70X + W% B ) + D% B )T [(1— ) (K= + (xR}

1
+5(1= 0B [oulba 2+ o2l =32 } + T
@p—convex

> min{@((L— 1%+ D)+ Y& B+ TP BT (x>

1
+5 (1= D)y [oulpa — X2+ a2lxe —]17] } +Ta,



11

whereT3z:= 2B+ ||A(>? )2+ 1Y% B) —T(1—1)Y(X B). Next, we note that the con-
dition (32) is equwalent to:

a-po> oo 2) IAI2> LY (B2 i =12 (38)

Moreover, if we denote by := X+ 1(X—X) then:
U—R=X+T(X—X) =R =X+ T(Xx—X) — (1 - 1)x— tx} = 1(x — x1). (39)

Now, by using LemmAl2, the condition {38) andl(39), the eiona37) becomes:

AT B -Ta = min x;{¢(U)+LIJ(>?:B§)+DW(>?i32)T(“_*)

T U= T(X—X)EXHT(X—
B]_(l—T)O']_ B]_(l—T)O'Z ” 2}
+ 212 212 luz =%
X+T(X=X)CX

> rugg{w@; By) + @(u) + 0% BT (u—%) (40)

B]_(l—T)O']_ ~ 112 B]_(l—T)O'Z ~ 112
+T||U1—X1H + =0 [luz — X2l }
@8

> Lr;i;]{(p(u) W& B )+ 0P B ) (u—x)

Ypr (B
+# 1||2+M”“2_22”2}

lJup — R [|? +

[lup =X
Iinei@)(p()j )+ WK BZ )+DQU(X Bz ) ( —X)

LY (B (/3 ) .
w1 )y g2 2B e g

D o) 1w B = (x+ B).

To complete the proof, we show thBg > 0. Indeed, let us defing:= AX—b andu:= Ax—Db,
thend— U= A(X—Xx). We have:

Ty S i SO b G a2
= 557 (11017 == D10+ (L) jo -1
= 557 (11017 = (= D10+ (L= )0+ (1)~ 21— 1)) (41)
- % [16]2+ (1— T2 —2(1— 1)
- gplo-a-na?>o

Substituting[(41L) into[{40) we obtain the inequalitgy™; ;") > f(x™; B5).
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Remark 3If @ is convex and differentiable and its gradient is Lipschitntinuous with a
Lipschitz constant® > 0 for somei = 1,2, then instead of using the proximal mapping
R(-; B2) in (30) we can use the gradient mapping which is defined as:

(Bz )

(% B5) _argnm{D(,q —R)+Y (% Bo) A (X —%)+— (% —ﬁiHZ}, (42)
wherel¥ (B;) := Lq + 2”A'” . Indeed, let us prove the conditiatiy™; B;") > f(X; 55 ),

whereG(x; B2) := (G1(x1; Bz) Ga(%; B2)) andx™ := G(X; B, ). First, by using the convexity
of @ and the Lipschitz continuity of its gradient, we have:

A®)+0aR) (U —%) < @(u) < @) +0a®)" (u —>?i)+L7m\|Ui —%[”. (43)

Next, by summing up the second inequality from 1 to 2 and adding td_(21) we have:

o)+ Y(uB) < (>;<)+LIJXBz) 0o <x;)+uw<xﬁz>] O A

B

LBy e 2B, g

Finally, from the second inequality df (40) we have:

_ (63}
Ay B —Ta = min{@)+Y(&B)+ 0w B;) (u-%

(1-1)B101
212

P min ] 003+ ()T (u— ) + (% By )+ D B )T (u—

fy
e ’u mﬁ%ﬁnuﬂznz}
@qo< ) B+ [D¢(>?)+DLIJ(>?:B{)]T (=%
2

R 1-1)B10 .
+ 1H2+¢Huz—xz\|2}

up — X
o 212

—220 % %l ?

@3 <o<x+>+w<x+ B) = F(%"55).

In this case, the conclusion of Theor€&in 1 is still valid fog Bubstitutiorx™ := G(X; B;)
provided that:

1- 2A 1
( TZT)Blo'iZL(n-F%, i=12 (45)

If X; is polytopic then probleni(42) becomes a convex quadratignamming problem.

Now, let us show how to update the paramatesuch that the conditiofi.(82) holds for

B;" andB,". From the update rulg(B1) we ha@g B,” = (1 1)?B13;. Suppose thg; and
B> satisfy the conditio(32), i.e.:

r? 1A 2
BB > ————L, whereL :=2 max{—}_

(1-1)2 1i<2 | G
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If we substitute; and B, by B;" and B, respectively, in this inequality then we have
2 — i . ) 2 —
1\ By > iy L However, sincy B, = (1- T)2B1 B, itimplies B1 B2 > <1_T)2T<7+1_T+)2L.
2
Therefore if 2 > —— then ;" and B, satisfy [32). This condition leads to

S (-2 = (1-0)%(1-1y)
(0,1), the last inequality implies & 7, < 5 and

T
o<1, <——<1 46
DT (46)
Hence, [(3D){(31) are well-defined.
Now, we define a rule to update the step size paranteter

Lemma5 Suppose thaty is arbitrarily chosen in(0, %). Then the sequenday k>0 gen-

erated by:
Tk

= 47
Tl = 277 (47)
satisfies the following equality:
To
=——  Vk>0. 48
Tk 1+ 1ok’ - (48)

Moreover, the sequendg }«k>o generated by 1 = (1— 1i) Bk for fixed p > O satisfies:

Bo
Tok+1’

B = vk > 0. (49)
Proof If we denote byt := = and consider the functiog(t) :=t+ 1 then the sequence
{tk}k>o generated by the rulml = & (tx) =tk + 1 satisfiedx = to+k for all k > 0. Hence
T«=: = = k 7 for k> 0. To prove[(4D), we observe thfi,1 = o |‘|I o(l—T1).

i +k
Hence by subsﬂtutm@S) into the last equality and dagyut a simple calculations, we

get [49). O

Remark 4Sincetp € (0,0.5), from Lemmdb we see that witly — 0.5~ (e.g., 7o = 0.499)
the right-hand side estimate 6f{49) is minimized.

3.3 The algorithm and its worst case complexity
Before presenting the algorithm, we assume that the protecg’® of X is given a priori

for (i = 1,2). Moreover, the parameter sequercg} is updated by[(47). The algorithm is
presented in detail as follows:

ALGORITHM 1 (Decomposition Algorithm with Primal Update)

Initialization:

1. Setrp :=0.499. Choosg? > 0 andB? > 0 as follows:

Bl=pY:= /2 max{ ||A,||2}

1<i<2 i
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2. Computed andy? from (29) as:
V= io A —b) andx? := P(x%; BY),
2

Iteration: For k=0,1,--- do

=

If a given stopping criterion is satisfied then terminate.
Update the smoothness paramﬁﬁr (1-1) Bz
3. Computed™? in parallel for i = 1,2 andy1r+l by the schemé(30):

()_(k+17>—,k+1): yk Bl? k+l

N

4. Update the smoothness parame@r’rl (1- rk)Bl

5. Update the step size parametgby: 1,1 := Tkil

End of For.

As mentioned in RemaiK 2, there are two steps of the schefat Step 3 of Algorithnf il
that can be parallelized. The first step is finditigy*; 81) and the second one is computing
x*+1 In general, both steps require solving two convex progrargrroblems in parallel.
The stopping criterion of Algorithia] 1 at Step 1 will be dissad in Sectiohl6.

The following theorem provides the worst-case complexityneate for AlgorithniL.

Theorem 2 Let {(x¥,y¥)} be a sequence generated by Algorifim 1. Then the following du
ality gap and feasibility gap hold:

d()_/k) < m

K) _
P0x) 049K+ 1 (50)
and Vs
K _ < ok |2
|A% bl < 5aeaTT [nwwmy [+2(D1+D2)|,  (51)

_ 2
wherelL := 2 max{ al } and y € Y*.
1<i<2 (o]

Proof By the choice ofﬁf = B2 = VL and Steps 1 in the initialization phase of Algorithm
@ we see thaﬁl = X for all k > 0. Moreover, sinceg = 0.499, by Lemmal5, we have

B =Bk = rok+l 045/;“ Now, by applying Lemm@l3 witf$; and 3, equal toB} and B&
respectively, we obtain the estimates|(50) and (51). O

Remark 5The worst case complexity of Algorithad 1 @(%). However, the constants in
the estimations{(30) anf{51) also depend on the choic@ aind 32, which satisfy the
condition [29). The values qﬁ‘f andeO will affect the accuracy of the duality and feasibility
gaps.

In Algorithm[d we can use a simple update rafe= 27, wherea > 0 is arbitrarily chosen

such that the condition, ; < T +1 holds. However, the rul€ (#7) is the tightest one.
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4 Switching decomposition algorithm

In this section, we apply the switching strategy to obtaiea mariant of the first algorithm
proposed in[[31, Algorithm 1] for solving problerq] (2). Thisheme alternately switches
between the primal and dual step depending on the iteratianterk being even or odd.
Apart from its application to Lagrangian dual decompositithis variant is still different
from the one in[[31] at two points. First, since we assume thatobjective function is
not necessarily smooth, instead of using the gradient magpipi the primal scheme, we
use the proximal mapping defined By 27) to construct the gristep. In contrast, since
the objective function in the dual scheme is Lipschitz cuntusly differentiable, we can
directly use the gradient mapping to compyte(see[(5b)). Second, we use the exact update
rule for T instead of the simplified one as [n[31].

4.1 The gradient mapping of the smoothed dual function

Since the smoothed dual functial{-; 81) is Lipschitz continuously differentiable cR™
(see Lemmall). We define the following mapping:

d
G(5ipy) = argman DB - 9) - g2 Iy-9f. (62

whereLd(By) := L9(By) + L(By) = AL 1 12l angrid(y; Br) = Acxi (§; Br) + Aok (F; Br) —

Bior ' Pios

b. This problem can explicitly be solved to get the unique Sofu

G Br) Wlﬁl)[my: BL) b+ (53)

The mappinds(-; B1) is called gradient mapping of the functidi-; 1) (seel[29]).

4.2 A decomposition scheme with primal-dual update

First, we adapt the schenie 130)(31) in the framework of gkiamd dual variant. Suppose
that the pair(x;y) € X x R™ satisfies the excessive gap conditibnl (24). The primal step i
computed as follows:

Ri=(1—1)X+1X*(¥; Bo),
()?+7)7+) = MP(Z%BLBLT) — y_+ = (17 T))T+ Ty*(f(, B2)7 (54)
X" = P(X B),

and then we updatg;” := (1— 1)B;, wheret € (0,1) andP(-; B;) is defined in[(2l7). The
difference between schemesh and.7P is that the parametgd; is fixed in.o7P.
Symmetrically, the dual step is computed as:

yi=1-1y+1y (X B2),
T = (1-DX+ IO WB),  (55)
)7+ = G(yv Bl)7

(X", y") == (XY Br, Bo. T) <=

x
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wheret € (0,1). The parameteB is kept unchanged, whilg; is updated by3," := (1—
T)Be.

The following result shows that™,y™) generated either by/P or by 79 maintains
the excessive gap conditidn {24).

Lemma 6 Suppose thatxy) € X x R™ satisfy(24) with respect to two value8; and f3.
Then(x™,y™) generated either by schemgP or by =79 is in X x R™ and maintains the
excessive gap conditicq@4) with respect to either two new valugg and3; or 3, and ;"
provided that the following condition holds:

Blﬁz>2—ﬂmw{ﬂ}. (56)

T l-T11ci<2 Oj
The proof of this lemma is quite similar to [31, Theorem 4tRdt we omit here.

Remark 6Given 3; > 0, we can choos@, > 0 such that the conditiori_(29) holds. Let
yc :=0€ R™ we compute a pointx®,y?) as:

1 () and Y= G Br) = oo (A 0)+ (57)

Then, similar to[(ZB), the poirt®,y°) satisfies[[24). Therefore, we can use this point as a
starting point for Algorithni R below.

In Algorithm[2 below we apply either the primal schem or the dual scheme’? by
using the following rule:
Rule A. If the iteration counter k is even then apptyP. Otherwise,«79 is used.

Now, we provide an update rule to generate a sequéngesuch that the condition (56)

_ 112

holds. LetL := 2{2%{@}' Suppose that at the iteratidrthe condition [(56) holds,
<I< i

ie.:

T

L. 58
i (58)

BEBs >

Since at the iteratiok + 1, we either updat@k or BX. Thus we haveB; s = (1 -
T) BXBs. However, as the conditiofi (58) holds, we haue- 1) BKBX > 12L. Now, we
suppose that the conditiol {56) is satisfied wafHi* andBs*, ie.:

2

T, —
kt+1gk+l k+1 L 59
e (59)

2

This condition holds i 2L > 11“{(11 L, which leads ta?, ; + 12Tk.1 — 12 < 0. Sincety, Ty 1 €

(0,1), we obtain:

T
0< rk+1§Ek { Tk2+4—rk} < Ty (60)

The tightest rule for updating is:

T
Tyl i= Ek { 2+4— rk} , (61)
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for all k > 0 andrp € (0,1) given. Associated wit 7y}, we generate two sequencf8}
and{pX} as:
_ K i i k T
Bl (1k wpl ifkiseven 1. B ) if kis even (62)
B; otherwise (1-1)B; otherwise

wherep? = B9 = B > 0 are fixed.

Lemma7 Let{tc}, {B} and{BX} be three sequences generated®) and (62), respec-
tively. Then:

(1-10)B .« 2BVI—To BVI—To . 2B
kel P T A T <P < (63)

forall k > 1.

The proof of this lemma can be found in the appendix.

Remark 7We can see that the right-hand sigig1o) := “f;(karg)o of (63) is decreasing in

(0,1) for k> 1. Therefore, we can choosgas large as possible to minimizg(-) in (0, 1).
For instance, we can choosg:= 0.998 in Algorithm[2.

Note that Lemmé&l7 shows that ~ O(%). Hence, in Algorithni 2, we can also use a simple
updating rule forty as1x = #ab, wherea € (%,2) andb > g%g‘ > 0. This update satisfies

(&8).
4.3 The algorithm and its worst-case complexity

Suppose that the initial poirtk®, y°) is computed by[{57). Then, we can chogie= B2 =

12
21@%{@} which satisfy[(29). The algorithm is now presented in detaifollows:
LS i

ALGORITHM 2 (Decomposition Algorithm with Primal-Dual Update)

Initialization:

1. Choosey :=0.998 and sef? = B9 := \/2 max<i<2 { ”é“i"z }
2. Compute@andy? as:

1

_07
L) B

0= X (1 9), andyP -

Iteration: For k=0,1,--- do

1. If a given stopping criterion is satisfied then terminate.
2. If kis even then:
2a) Computéx<t1 y*1) as:

(XL Y = a7 PR Y5 BE, BY, T).
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2b) Update the smoothness param@eeaspit? := (1 1) k.
3. Otherwise, i.e. ik is odd then:
3a) ComputéxX<t1 y*+1) as:

(XL ) = a9 (X, Y5 BE, B, T).

3b) Update the smoothness param@gaspi™ := (1 1) k.
4. Update the step size parametgBs: 1.1 := T—zk [ T|f+4— rk}.

End of For.

The main steps of Algorithi 2 are Steps 2a and 2b, which reguis to compute either
a primal step or a dual step. In the primal step, we need t@galg convex problem pairs
in parallel, while in the dual step, it only requires to sotwe convex problems in parallel.
The following theorem shows the convergence of this algorit

Theorem 3 Let the sequencé(X*, ¥¥) }k=0 be generated by Algorithid 2. Then the duality
and feasibility gaps satisfy:

2VL(D1+D
o(%) —d(y) < 2E0Lt D), (64)
and 0.99&
2VL
<K _ == ok || 2
|A% bl < soea {nwnﬁuy [2+2(D1+D2)| , (65)
_ 12
whereL :=2 max{M} and k> 1.
1<i<2 i

Proof The conclusion of this theorem follows directly from Lemr@and, the condition
To = 0.998, 0 = B9 = VL and the fact thaB} < k. O

Remark 8Note that the worst-case complexity of Algoritfih 2 is sﬂl@%). The constants

in the complexity estimate (50) aid[51) are similar to theia [64) and(65), respectively.
As we discuss in Sectidd 6 below, the rate of decreasg iof Algorithm[2 is smaller than

two times ofty in Algorithm[I. Consequently, the sequendg} and {85} generated by

Algorithm[1 approach zero faster than the ones generateddnyriam[2.

Remark 9Note that the role of the scheme&P and.2¢ in Algorithm[2 can be exchanged.
Therefore, Algorithn{2 can be modified at three steps to obsasymmetric variant as
follows:

1. At Step 2 of the initialization phas€,_{(28) to compxieandy? instead of[(BF).

2. At Steps 2ag7P is used if the iteration countdris odd. Otherwise, we use’d at Step
3a.

3. At Steps 2bpX is updated ik is odd. OtherwiseBf is updated at Step 3b.

5 Application to strongly convex programming problems

If @ (i=1,2)in (Q) is strongly convex then the convergence rate of the dcheme(35)
can be accelerated up@{%z).
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Suppose thap is strongly convex with a convexity parameteys> 0 (i = 1,2). Then the
functiond defined by[(b) is well-defined, concave and differentiablerébver, its gradient
is given by:

Od(y) = Auxi(y) +Axa(y) — b, (66)

A2

2 The excessive
2

+

which is Lipschitz continuous with a Lipschitz constaft:=
gap condition[(ZK) in this case becomes:

f(XB2) <d(y), (67)

for givenx e X, y e R™ and 3, > 0. From Lemma13 we conclude that if the poixty)
satisfies[(@l7) then, for a givesi € Y*, the following estimates hold:

OI—2l32||y*H2 < —=ly*lllAx=bl| < @(x) —d(y) <0, (68)
an
[[AX— b < 2By’ |- (69)

We now adapt the dual schenie](55) to this special case. Seippes € X x R™ satisfies
(€7), we generate a new pai',y") as

=A-Dy+Hy(XB),
(X"¥7) 1= (XY B2, T) = { X 1= (L= DX+ 1X(9), (70)
V' = 5 (AX(9) —b) +,

wherey*(x; 32) = B—12(A>Tf b), andx*(y) := (Xj(y),X5(y)) is the solution of the minimiza-
tion problem in[[(5). The paramet is updated byB,” := (1—1)B; and 1 € (0,1) will
appropriately be chosen.

The following lemma shows thdk™,y™) generated by (70) satisfids {67) whose proof
can be found in [31].

<

Lemma 8 Suppose that the poiiik,y) € X x R™ satisfies the excessive gap condit{6id)
with the valuef;. Then the new poinfxt,y™) computed by{70) is in X x R™ and also
satisfieg[67) with a new parameter valug,™ provided that

2
Ly

11 (71)

B>

Now, let us derive the rule to update the parameteBuppose thaB, satisfies[(7ll). Since

By = (1—1)By, the condition[(71) holds fo," if 12 > 11% . Therefore, similar to Algo-
rithm[2, we update the parameteby using the rule{47). The conclusion of Lema 7 still
holds for this case.

Before presenting the algorithm, it is necessary to find istapoint (X°,y°) which
satisfies[(6l7). Ley® = 0 € R™ andB, = L¥. We computgx?, y°) as

X :=x*(y°) and y?:= L—l(p(Af(e—b)+y°. (72)

It follows from Lemma 7.4[[31] thatx?, y°) satisfies the excessive gap conditionl (67).
Finally, the decomposition algorithm for solving the sgbnconvex programming prob-
lem of the form[(2) is described in detail as follows:
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ALGORITHM 3 (Decomposition algorithm for strongly convex objectivedtion)

Initialization:

1. Choosey := 0.5. Setp? =
2. Compute@andy? as:

X 1= x* (y°) andy® := L—lw(Aﬁ’fb) +y°.

Iteration: For k=0,1,--- do

1. If a given stopping criterion is satisfied then terminate.
2. Computgx**1,y**+1) using schemd (70):

(XYY = o (7 BS, ).
3. Update the smoothness paramete§s? := (1— 1) B¥.
4. Update the step size parametgBs:Tx.1 = T—2'< [, / T,f+4— Tk} .

End of For.

The convergence and the worst-case complexity of Algorighane stated as in Theorém 4
below.

Theorem 4 Let { (XX, ¥%) }x=0 be a sequence generated by Algorifiim 3. Then the following
duality and feasibility gaps are satisfied:

- < (%) —d(¥) <0, (73)
8Lolly"|
(k+4)2’

and

IAR< —b]| < (74)

o._ M2
where ¥ .= o o

2
Proof From the update rule af, we have(1— Ty, 1) = E. Moreover, sincgst? = (1—
k

1) BX, it implies thatBs™ = oM< (1 — 1) = [32(1 o) 2. By usmg the inequalitie$ (80)
4L,(1-10)

andp? = Ly, we haveBstt < ey - With 1o = 0.5, one hag¥ < —%. By substituting
ok+2) <k+4)
this inequality into[(6B) and (69), we obtaln{73) ahdl (74}spectively. O

Theoren# shows that the worst-case complexity of AlgoritBiis 0(%). Moreover, at
each iteration of this algorithm, only two convex problenegd to be solveth parallel.

6 Discussion on implementation and comparison
6.1 The choice of prox-functions and the Bregman distance
Algorithms[1 and[P require to build a prox-function for eaehdible seX; fori =1,2. For a

nonempty, closed and bounded convexX§gthe simplest prox-function igi(x) := % [Ixi —
Xi||?, for a givenx; € X and g > 0. This function is strongly convex with the parameter
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g; = p; and the prox-center ig, (i = 1,2). In implementation, it is worth to investigate the
structure of the feasible sktin order to choose an appropriate prox-function and itdisgal
factor p; for each feasible subs¥t (i = 1, 2).

In (Z4), we have used the Euclidean distance to construgirthémal terms. It is pos-
sible to use a generalized Bregman distance in these prebidrith is compatible to the
prox-functionp; and the feasible subs¥t (i = 1,2). Moreover, a proper choice of the norms
in the implementation may lead to a better performance oélfperithms, see [31] for more
details.

6.2 Extension to a multi-component separable objectivetfan

The algorithms developed in the previous sections can leettiirapplied to solve problem
(@) in the case > 2. First, we provide the following formulas to compute thegmaeters
of Algorithms[1E3.

— _ 112
1. The constarit in Theorem$§R arld 3 is replaced by = M 1@% {_HA'UH }
SIS i

2. The initial values of? andBY in Algorithms[2 andB ar@? = B = \/Lwu.
3. The Lipschitz constant? (B,) in Lemmal2 isL¥ (B) = WAL (i =1,...,m).

M A2
4. The Lipschitz constarty(f1) in Lemmal isLq(f1) := B_ll @.
i= i
i schi - ; - < Al
5. The Lipschitz constarit, in Algorithm[3isL? := ZT.
i= i

Note that these constants depend linearlyvband the structure of matri&; (i = 1,...,M).
Next, we rewrite the smoothed dual functid(y; 31) defined by[(IlL) for the cadé > 2
as follows:

M
d(y;B1) =y di(y;: Bu),
2
whereM function valuesd; (y; 1) can be computed in parallel as:
1 .
ai(y; Br) = *Mbi-ryJF;nE'Q {@00)+Y AX+Bipi(x)} -
Note that the ternﬂrﬁbiTy is also computed locally for each component subprobleneaust

of computing separately as in_{11). The quantisiesdy™ := G(y; £1) defined in[(B4) and
(B5) can respectively be expressed as:

. _ w1, _ 1
y::(17T)y+(1fr);E(Ameb),
M
andy’ 1=+ 5 | i (A )~ b

These formulas show that each component ahdy™ can be computed by only using the
local information and its neighborhood information. THere, both algorithms are highly
distributed.
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Finally, we note that if there exists a componenof the objective functiorp which is
Lipschitz continuously differentiable then the gradierdgjpction mappings; (X; B) defined
by (42) corresponding to the primal convex subproblem of totmponent can be used
instead of the proximity mapping (X; 32) defined by[(2l7). This modification can reduce the
computational cost of the algorithms. Note that the seqaiéng >0 generated by the rule
(432) still maintains the conditiof (#5) in Remark 3.

6.3 Stopping criterion

In practice, we do not often encounter a problem which resthe worst-case complexity
bound. Therefore, it is necessary to provide a stoppingraoit for the implementation of
Algorithms[1[2 anf3 to terminate earlier than using the woase bound. In principle, we
can use the KKT condition to terminate the algorithms. Havesvaluating the global KKT
tolerance in a distributed manner is impractical.

From TheoremEl2 arid 3 we see that the upper bound of the danalitfeasibility gaps
do not only depend on the iteration counkeut also on the constants D; andy* € Y*.
The constant can be explicitly computed based on mattixand the choice of the prox-
functions. We now discuss on the evaluation®pandy* in the caseX; is unbounded. Let
sequence (X,¥¥)} be generated by Algorithfd 1 (or Algorithim 2). Suppose @&k, y<)}
converges tax*,y*) € X* x Y*. Thus, fork sufficiently large, the sequendéx®,y*)} is
contained in a neighborhood X x Y*. Givenw > 0, let us define

DK := max pi(X) + w andy® := max ||y} || + w. 75
1= max pix) + Y= max [y + (75)
We can use these constants to construct a stopping criteriatlgorithms[d and 2. More
precisely, for a given toleran@> 0, we compute

e = (05 + D), andey i— pE [+ (2 +20L+05] . @0

at each iteration. We terminate Algoritffith Jeif < £ ande, < €. A similar strategy can also
be applied to AlgorithmE]2 arid 3.

6.4 Comparison.

Firstly, we compare Algorithmisl 1 afd 2. From Leminha 3 and tlefof Theorem§12 and
[3@ we see that the rate of convergence of both algorithms isme a5 ofﬁf and Bé‘. At
each iteration, Algorithril1 updates simultanemﬁb/and Bé‘ by using the same value of
Tk, while Algorithm[2 updates only one parameter. Therefaraygdate both parametq@%
andBé‘, Algorithm[2 needs two iterations. We analyze the update ofity in Algorithms[d
and2 to compare the rate of convergence of both algorithms.

Let us define .

T

. ! 24—

&a(1) 1= g and&(1) = [\/T 14 r} .
. . B . .

The functioné, can be rewritten a& (1) = NPT Therefore, we can easily show

that:

&1(1) < &(1) < 2&1(7).
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If we denote by{rkAl}kzo and{rlfz}kzo the two sequences generated by Algoritiiins 1 and
2, respectively then we haw'® < 1,2 < 21 for all k provided that 2 > 152. Since
Algorithm[1l updateg} and B simultaneously while Algorithrill2 updates each of them at
each iteration. If we choosg)* = 0.499 andr,2 = 0.998 in Algorithms[1 andl2, respec-
tively, then, by directly computing the value qfl and sz, we can see thatré1 > 21@2
for all k > 1. Consequently, the sequen({ﬁ(} and {Bé‘} in Algorithm[1] converge to zero
faster than in Algorithni]2. In other words, Algoritrh 1 isfaisthan Algorithni2.

Now, we compare Algorithrial1, Algorithid 2 and Algorithm 3.8.[27] (see alsd [38]).
Note that the smoothness paramgdgwhich is also denoted bhyis fixed in Algorithm 3.2
of [27]. Moreover, this parameter is proportional to theegivdesired accuracg, which is
often very small. Thus, the Lipschitz constafi 8;) is very large. Consequently, Algorithm
3.2. of [27] makes a slow progress at the very early iteratiém Algorithms1 and12, the
parameterg; and, are dynamically updated starting from given values. Besitle cost
per iteration of Algorithm 3.2[]27] is more expensive tharg@dithms[1 and12 since it
requires to solve two convex problem pairs in parallel and dwal steps.

7 Numerical Tests

In this section, we verify the performance of the proposg@r@ihms by applying them to
solve the following separable convex optimization prohlem

M
- anﬂinXM {qO(X) = qa(xi)},

li<x<u,i=0,...,M,

whereq : R™ — R is convexp, |; andy; € R™ are given foii = 1,..., M. The problem[{717)
arises in many applications including resource allocagimblems[[19] and DSL dynamic
spectrum management problems!|[38]. In the case of ineguadiipling constraints, we
can bring the probleni_{(T7) in to the form &f (1) by adding a lsleariablexy 1 as a new
component.

7.1 Implementation details

We implement AlgorithmE]1 arld 2 proposed in the previousigesto solve[(7l7). The im-
plementation is carried out in C++ running on a 16 cores watlm IntefR Xeron 27GHz
and 12 GB of RAM. To solve general convex programming sulpraob, we implement a
primal-dual predictor-corrector interior point methodl the algorithms are parallelized by
usingOpenMP.

The prox-functionst (x) := §||x —x¢||? are used, whené is the center of the boX; :=
[li,u] andp :=1foralli=1,...,M. We terminate AlgorithmS]1 afd 2ipfgap := ||AX —
bil2/bll2 < & and eithewasgap :— max{ 0, Bl 3 Dx; — 5 A%~ b|[2} < ea(| @()| +
1) or the value of the objective function does not significamffigange in 3 successive it-
erations, i.e|@(X¥) — @(x*~1)|/max{1.0,|p(XX)|} < &, for j = 1,2,3, whereg, = 1072,
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&g =10"1and Ep= 1075 are given tolerances. Note that the quantifgap is computed
in the worst-case complexity, see Leminha 3.

To compare the performance of the algorithms, we also imgierie proximal-center-
based decomposition algorithm proposed.in [27, Algoritheh]Znd an exact variant of the
proximal-based decomposition in| [7, Algorithm 1] for satg (77) which we nam@CBD

andEPBD, respectively. The prox-function of the dual problem isstagly (y) := §||y||2

with p := 1.0 and the smoothness parametef PCBD is set toc := MepDX , WwhereDy; is
i=1-X

defined by[(I#). We terminatecBD if the relative feasibility gappfgap < €, and either

the objective value reaches the one reported by Algorithn the@ maximum number of

iterationsmaxiter = 10,000 is reached.

7.2 Numerical results and comparison

We test the above algorithms for three examples. The twaefkatples are resource alloca-
tion problems and the last one is a DSL dynamic spectrum neanegt problem. The first
example was considered in_[20], while the problem formatatand the data of the third
example are obtained from [38].

7.2.1. Resource allocation problemket us consider a resource allocation problem in the
form of (Z7) where the coupling constraipi}! ; x; = b is tackled.

(a) Nonsmooth convex optimization problenis.the first numerical example, we choose
ny =1, M =5, the objective functiom (x;) :=i|x; —i| which is nonsmooth and= 10 as in
[20]. The lower bound; is set tol; = —5 and the upper bound isu; =7 fori=1,..., M.
With these choices, the optimal solution of this problem*is- (—4,2,3,4,5).

We use four different algorithms which consist of Algoritfiin Algorithm[2,PCBD in
[27] andpcBD in [[7, Algorithm 1] to solved problem[{47). The approximatelgions re-
ported by these algorithms after 100 iterationsxére (—3.978 2,3,4,5), (—3.8751.983
2.9903.9965), (—4.0552,3,4,5) and (—4.4232,3,4,5), respectively. The correspond-
ing objective values ar@(x¥) = 4.978, 4954, 5055 and 5423, respectively.

The convergence behaviour of four algorithms is shown i€, where the relative
error of the objective function ge= |@(xX¥) — ¢*|/|¢*| is plotted on the left and the relative
error of the solution rg:= ||x —x*||/[|x*|| is on the right. As we can see from these figures
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0 10 20 30 40 50 60 70 80 90 100
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Fig. 1 The relative error of the approximations to the optimal ealieft) and to the optimal solution (right).

that the relative errors in Algorithfd 2¢BD andEPBD oscillate with respect to the iteration
counter while they are decreasing monotonously in Algarithh The relative errors in Al-
gorithms1 and2 are approaching zero earlier than the oressinandEPBD. Note that in
this example a nonmonotone variant of #esD algorithm [27].38] is used.
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(b) Nonlinear resource allocation problenis.order to compare the efficiency of Algorithm
[, Algorithm[2 andpcBD, we build two performance profiles of these algorithms imeof
total iterations and total computational time.

In this case, the objective functiamis chosen ag (x;) = a,-Txi —wiln(1+ biTxi), where
the linear cost vectog;, vectorb; and the weighting vectow; are generated randomly in
the intervald0, 5], [0,10] and |0, 5], respectively. The lower bound and the upper bound are
settol; = (0,...,0)T anduy; = (1,...,1)7, respectively. Note that the objective functign
is linear ifw; = 0 and strictly convex ifv; > 0.

We carry out three algorithms for solving a collection of &@dom test problems with
the size varying frooM = 10 toM = 5,000 componentsn= 5 to 300 coupling constraints
andn = 50 to 500000 variables. The performance profiles are plotted in Eigwhich
include the total number of iterations (left) and total cartgpional time (right). The nu-
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Fig. 2 Performance profile of three algorithms in Jograle: Left-Number of iterations, Right-CPU time.

merical test on this collection of problems shows that Alldpon [1 solves all the problems
and Algorithn2 solve 480 problems, i.e. 96% of the collectioPcBD only solves 3150
problems, i.e. 62% of the collection. However, Algorithihis the most efficient. It solves
up to more than 81% problems with the best performaPcCeD is rather slow and exceeds
the maximum number of iterations in many of the test probléh@sproblems). Moreover,
it is rather sensitive to the smoothness parameter.

7.2.2. DSL dynamic spectrum management probleitiis example, we apply the proposed
algorithms to solve a separable convex programming problésing in DSL dynamic spec-
trum management. This problem is a convex relaxation of tiggnal DSL dynamic spec-
trum management formulation considered.in [38].

Since the formulation given in [38] has an inequality couglbonstraintzi"ilxi <b, by
adding a new slack variabig; . 1 such thalzi'v'glxi =band 0< xu 1 < b, we can transform
this problem into[{IL). The objective function of the resudtiproblem becomes:

Ty — 5N ¢l Nk ok) if i =
(ﬂ(xi) — {al Xi ZIZlCI In (zk:lhl X +g|) |-f | 1....M, (78)
0 ifi=M+1

Here,a € R™, ¢, g € RT andH; := (W) e RT*™, (i =1,...,M). The functionq is convex
(but not strongly convex) for all=1,...,M + 1. As described in_[38] that the variabte
is referred to as transmit power spectral density= N for all i = 1,...,M is the number
of users,M is the number of frequency tones which is usually large @nis a convex
approximation of a desired BER functifirthe coding gain and noise margin. A detail model

and parameter descriptions of this problem can be fouriddh [3

1 Bit Error Rate function
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We test three algorithms for the caseMf= 224 tones andN = 7 users. The other
parameters are selected as[in|[38]. Algorifiim 1 requiresit@2ations, Algorithni2 needs
1314 iterations, whileeCBD reaches the maximum number of iteratidqgyx = 3000. The
relative feasibility gapg/AX< — bj|/||b|| reported by the three algorithms ar@95x 104,
9.998x 10~* and 2431x 10~2, respectively. The obtained approximate solutions oftlale
gorithms and the optimal solution are plotted in Fidure 3chiriepresent the transmit power
with respect to the frequency tones. The relative errori@fapproximatiorx® to the op-
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Fig. 3 The approximate solutions of the DSL-dynamic spectrum mament probleni{47) reported by three
algorithms and the optimal solution.

timal solutionx*, erry := ||x€ —x*||/||x*||, are 000853, 000528 and 03264, respectively.
The corresponding objective values are 1386830, 1325%7633 and 134039722, re-
spectively, while the optimal value is 13267919.

Figure[3 shows that the solutions reported by three alguosthre consistently close to
the optimal one. As claimed in_[38bcBD works much better than subgradient methods.
However, we can see from this application that Algorittith\d[@ require fewer iterations
thanPCBD to reach a relatively similar approximate solution.

8 Conclusions

In this paper, two new algorithms for large scale separateex optimization have been

proposed. Their convergence has been proved and compledityd has been given. The
main advantage of these algorithms is their ability to dyicaity update the smoothness pa-
rameters. This allows the algorithms to control the step-sif the search direction at each
iteration. Consequently, they generate a larger step dirthiéterations instead of remain-

ing fixed for all iterations as in the algorithm proposed!i@][2The convergence behavior
and the performance of these algorithms have been illestthtough numerical examples.
Although the global convergence rate is still sub-linehe tomputational results are re-
markable, especially when the number of variables as weleaumber of nodes increase.
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From a theoretical point of view, the algorithms possessa geerformance behavior, due
to their numerical robustness and reliability. Currerttig numerical results are still prelim-
inary, however we believe that the theory presented in thEpis useful and may provide
guidance for practitioners. Moreover, the steps of theritlyns are rather simple so they
can easily be implemented in practice. Future researcletiires include the dual update
scheme and extensions of the algorithms to inexact varésmgell as applications.

Acknowledgments.The authors would like to thank Dr. lon Necoara and Dr. MidBaés for useful com-
ments on the text and for pointing out some interesting esfegs. Furthermore, the authors are grateful to
Dr. Paschalis Tsiaflakis for providing the reality data ir #econd numerical example. Research supported
by Research Council KUL: CoE EF/05/006 Optimization in Eregiring(OPTEC), IOF-SCORES4CHEM,
GOA/10/009 (MaNet), GOA /10/11, several PhD/postdoc ardidviegrants; Flemish Government: FWO:
PhD / postdoc grants, projects G.0452.04, G.0499.04, G.081G.0226.06, G.0321.06, G.0302.07, G.0320.08,
G.0558.08, G.0557.08, G.0588.09, G.0377.09, G.0712%&arch communities (ICCoS, ANMMM, MLDM);
IWT: PhD Grants, Belgian Federal Science Policy Office: IUR8/04; EU: ERNSI; FP7-HDMPC, FP7-
EMBOCON, ERC-HIGHWIND, Contract Research: AMINAL. Othételmholtz-viCERP, COMET-ACCM.

A. The proofs of Technical Lemmas

This appendix provides the proofs of two technical lemmatestin the previous sections.
A.1. The proof of Lemmal4. The proof of this lemma is very similar to Lemma 3[in[31].
Proof Lety:=y*(X;B2) = i(A)”(f b). Then it follows from[[21) that:

)
WOcB) 2 B + i Be) (0 — %) + D% o) (50— 5o)
LY Ly
O =t < AT
§ 1 i Ly Ly (79
B e R A L N i
Ly Ly
=7 (Ao ) = o kb P2 5 2 2 g 2

By using the expressiofi(x; B2) = @(X) + Y(x; B2), the definition ofx; the condition[(2P) and{79) we have:

F(5B2) 2 00+ 5" AR — ) 47" Aol —6)
v w
ST ()

1

c|12 2
_ 1A —
(2 — || 232” b

. 1
@rxgy{fp(X) + @”AXC*bHZJf)ﬁ—Al(Xl*XE)TL?—AZ(XZ*X%)

LY (B2) 2, L(B) 1 2
+ = 12+ =25 e | }—Z—BZHAXC—bH

w w
- min{qo(x) 7 () + L g e ) —x5|2} ~ 5 e b2
2

XeX
D i {0(x) + 7" (Ax—b) 1 Bilpa(xa) + p2xe)]} — oo |AK b2
< min O y 1|P1(X1) + P2(X2 26
:dwl)—iuAﬂbnzsd(mx

which is indeed the conditiof.(4). O
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A.2. The proof of Lemmald.

Proof Let us definéé (t) :=

—2 i F— . .
| how th ). M _
(o] t is easy to show thaf is increasing in(0,1). Moreover, Ty 1

&(1y) for all k > 0. Let us introduces := 2/t. Then, we can show tha2, < &(2) < 32;. By using this
inequalities and the increase &in (0,1), we have:

u+l-

To  _ 2 T < 2 _ VA
1+2T0k_U0+2k k U0+k_2+'[0k.

(80)

Now, by the update rul€(62), at each iteratigrwe only either updatﬁf orﬁé‘. Hence, it implies that:

BY = (1—T0)(1— T2) -+~ (1— Tps2) ) BY,

81
BY=(1-11)(1—13) (1— To/2-1)B5. 6

where| x| is the largest integer number which is less than or equakigdsitive real numbet. On the other
hand, sincea;;1 < 1 fori > 0, for anyl > 0, it implies:

1-10)2o(1-1) < [(1-T0)(1- o)+ (1—12)]* < [Z$11—n),

(82)
and M2oM(1-1) < [(1-1)(1—13) -+ (1—Ta-1)]* < (1— 1) [12p(1— m).
Note that[]< o(1— 1) = %T‘)—)Tf it follows from (81) and[(8R) fok > 1 that:
0
1—10)B? 0/I—1 0VI—1 9
Gl Y AL P L ML Py . O
To To To To
By combining these inequalities adid[80), and noting that (0, 1), we obtain[(6B). O
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