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Abstract A new algorithm for solving large-scale convex optimization problems with a
separable objective function is proposed. The basic idea isto combine three techniques:
Lagrangian dual decomposition, excessive gap and smoothing. The main advantage of this
algorithm is that it dynamically updates the smoothness parameters which leads to numeri-
cally robust performance. The convergence of the algorithmis proved under weak conditions
imposed on the original problem. The rate of convergence isO( 1

k), wherek is the iteration
counter. In the second part of the paper, the algorithm is coupled with a dual scheme to con-
struct a switching variant of the dual decomposition. We discuss implementation issues and
make a theoretical comparison. Numerical examples confirm the theoretical results.

Keywords Excessive gap· smoothing technique· Lagrangian decomposition· proximal
mappings· large-scale problem· separable convex optimization· distributed optimization.

1 Introduction

Large-scale convex optimization problems appear in many areas of science such as graph
theory, networks, transportation, distributed model predictive control, distributed estimation
and multistage stochastic optimization [8,17,21,22,24,32,34,38,39,40,41]. Solving large-
scale optimization problems is still a challenge in many applications [9]. Over the years,
thanks to the development of parallel and distributed computer systems, the chances for
solving large-scale problems have been increased. However, methods and algorithms for
solving this type of problems are limited [2,9].

Convex minimization problems with a separable objective function form a class of prob-
lems which is relevant in many applications. This class of problems is also known as sep-
arable convex minimization problems, see, e.g. [2]. Without loss of generality, a separable
convex optimization problem can be written in the form of a convex program with sepa-
rable objective function and coupled linear constraints [2]. In addition, decoupling convex
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constraints may also be considered. Mathematically, this problem can be formulated in the
following form:

min
x∈Rn

φ(x) :=
M

∑
i=1

φi(xi)

s.t. xi ∈ Xi (i = 1, · · · ,M),
M

∑
i=1

Aixi = b,

(1)

whereφi :Rni →R is convex,Xi ∈R
ni is a nonempty, closed convex set,Ai ∈R

m×ni , b∈R
m

for all i = 1, . . . ,M, andn1+n2+ · · ·+nM = n. The last constraint is calledcoupling linear
constraint. In principle, many convex problems can be written in this separable form by
doubling the variables, i.e. introducing new variablesxi and imposing the constraintxi = x.
Despite the increased number of variables, treating convexproblems by doubling variables
may be useful in some situations, see, e.g. [11,12].

In the literature, numerous approaches have been proposed for solving problem (1). For
example, (augmented) Lagrangian relaxation and subgradient methods of multipliers [2,
13,33,39], Fenchel’s dual decomposition [15], alternating linearization [6,12,23], proximal
point-type methods [4,7,37], interior point methods [21,41,25,36], mean value cross de-
composition [18] and partial inverse method [35] among manyothers have been proposed.
Our motivation in this paper is to develop a numerical algorithm for solving (1) which can
be implemented in a parallel or distributed fashion. Note that the approach presented in the
present paper is different from splitting methods and alternating methods considered in the
literature, see, e.g. [6,10].

One of the classical approaches for solving (1) is Lagrangian dual decomposition. The
main idea of this approach is to solve the dual problem by means of a subgradient method.
It has been recognized in practice that subgradient methodsare usually slow and numeri-
cally sensitive to the step size parameters. In the special case of a strongly convex objective
function, the dual function is differentiable. Consequently, gradient schemes can be applied
to solve the dual problem.

Recently, Nesterov [29] developed smoothing techniques for solving nonsmooth convex
optimization problems based on the fast gradient scheme which was introduced in his early
work [28]. The fast gradient schemes have been used in numerous applications including
image processing, compressed sensing, networks and systemidentification [1,5,14,16,12,
26].

Exploiting Nesterov’s idea in [30], Necoara and Suykens [27] applied a smoothing tech-
nique to the dual problem in the framework of Lagrangian dualdecomposition and then
used the fast gradient scheme to maximize the smoothed function of the dual problem. This
resulted in a new variant of dual decomposition algorithms for solving separable convex op-
timization. The authors proved that the rate of convergenceof their algorithm isO( 1

k) which
is much better thanO( 1√

k
) in the subgradient methods of multipliers, wherek is the iteration

counter. A main disadvantage of this scheme is that the smoothness parameter requires to
be givena priori. Moreover, this parameter crucially depends on the given desired accuracy.
Since the Lipschitz constant of the gradient of the objective function in the dual problem
is inversely proportional to the smoothness parameter, thealgorithm usually generates short
steps towards a solution of the problem although the rate of convergence isO( 1

k ).
To overcome this drawback, in this paper, we propose a new algorithm which combines

three techniques: smoothing [30,31], excessive gap [31] and Lagrangian dual decomposition
[2] techniques. Instead of fixing the smoothness parameters, we update them dynamically
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at every iteration. Even though the worst case complexity isO( 1
ε ), whereε is a given toler-

ance, the algorithms developed in this paper work better than the one in [27] and are more
numerically robust in practice. Note that the computational cost of the proposed algorithms
remains almost the same as in the proximal-center-based decomposition algorithm proposed
in [27, Algorithm 3.2]. (Algorithm 3.2 in [27] requires to compute an additional dual step).
This algorithm is called dual decomposition with primal update (Algorithm 1). Alterna-
tively, we apply the switching strategy of [31] to obtain a decomposition algorithm with
switching primal-dual update for solving problem (1). Thisalgorithm differs from the one
in [31] at two points. First, the smoothness parameter is dynamically updated with an exact
formula and second the proximal-based mappings are used to handle the nonsmoothness of
the objective function. The second point is more significantsince, in practice, estimating
the Lipschitz constants is not an easy task even if the objective function is differentiable.
The switching algorithm balances the disadvantage of the decomposition methods using the
primal update (Algorithm 1) and the dual update (Algorithm 3.2 [27]). Proximal-based map-
ping only plays a role of handling the nonsmoothness of the objective function. Therefore,
the algorithms developed in this paper do not belong to any proximal-point algorithm class
considered in the literature. Note also that all algorithmsdeveloped in this paper are first
order methods which can be highly distributed.

Contribution. The contribution of this paper is the following:

1. We apply the Lagrangian relaxation, smoothing and excessive gap techniques to large-
scale separable convex optimization problems which are notnecessarily smooth. Note
that the excessive gap condition that we use in this paper is different from the one in
[31], where not only the duality gap is measured but also the feasibility gap is used in
the framework of constrained optimization, see (23).

2. We propose two algorithms for solving general separable convex optimization problems.
The first algorithm is new, while the second one is a new variant of the first algorithm
proposed in [31, Algorithm 1] applied to Lagrangian dual decomposition. A special
case of the algorithms, where the objective is strongly convex is considered. All the
algorithms are highly parallelizable and distributed.

3. The convergence of the algorithms is proved and the rate ofconvergence is estimated.
Implementation details are discussed and a theoretical andnumerical comparison is
made.

The rest of this paper is organized as follows. In the next section, we briefly describe the La-
grangian dual decomposition method [2] for separable convex optimization, the smoothing
technique via prox-functions as well as excessive gap techniques [31]. We also provide sev-
eral technical lemmas which will be used in the sequel. Section 3 presents a new algorithm
calleddecomposition algorithm with primal updateand estimates its worst-case complexity.
Section 4 is a combination of the primal and the dual step update schemes which is called
decomposition algorithm with primal-dual update. Section 5 is an application of the dual
scheme (55) to the strongly convex case of problem (2). We also discuss the implementation
issues of the proposed algorithms and a theoretical comparison of Algorithms 1 and 2 in
Section 6. Numerical examples are presented in Section 7 to examine the performance of
the proposed algorithms and to compare different methods.

Notation. Throughout the paper, we shall consider the Euclidean spaceR
n endowed with

an inner productxTy for x,y ∈ R
n and the norm‖x‖ :=

√
xTx. Associated with‖ · ‖, ‖ ·

‖∗ := max
{

(·)Tx : ‖x‖ ≤ 1
}

defines its dual norm. For simplicity of discussion, we use
the Euclidean norm in the whole paper. Hence,‖ · ‖∗ is equivalent to‖ · ‖. The notation
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x= (x1, . . . ,xM) represents a column vector inRn, wherexi is a subvector inRni , i = 1, . . . ,M
andn1+ · · ·+nM = n.

2 Lagrangian dual decomposition and excessive gap smoothing technique

A classical technique to address coupling constraints in optimization is Lagrangian relax-
ation [2]. However, this technique often leads to a nonsmooth optimization problem in the
dual form. To overcome this situation, we combine the Lagrangian dual decomposition and
smoothing technique in [30,31] to obtain a smoothly approximate dual problem.

For simplicity of discussion, we consider problem (1) withM = 2. However, the methods
presented in the next sections can be directly applied to thecaseM > 2 (see Section 6). The
problem (1) can be rewritten as follows:

φ ∗ :=











min
x:=(x1,x2)

φ(x) := φ1(x1)+φ2(x2)

s.t. A1x1+A2x2 = b
x∈ X1×X2 := X,

(2)

whereφi : Rni → R is convex,Xi is a nonempty, closed, convex and bounded subset in
R

ni , Ai ∈ R
m×ni andb ∈ R

m (i = 1,2). Problem (2) is said to satisfy the Slater constraint
qualification condition if ri(X)∩{x = (x1,x2) | A1x1+A2x2 = b} 6= /0, where ri(X) is the
relative interior of the convex setX. Let us denote byX∗ the solution set of this problem.
Throughout the paper, we assume that:

A.1 The solution set X∗ is nonempty and either the Slater qualification condition for prob-
lem(2) holds or Xi is polyhedral. The functionφi is proper, lower semicontinuous and convex
in R

n, i = 1,2.

SinceX is convex and bounded,X∗ is also convex and bounded. Note that the objective
function φ is not necessarily smooth. For example,φ(x) = ‖x‖1 = ∑n

i=1 |x(i)|, which is is
nonsmooth and separable.

2.1 Decomposition via Lagrangian relaxation

Let us define the Lagrange function of the problem (2) with respect to the coupling constraint
A1x1+A2x2 = b as:

L(x,y) := φ1(x1)+φ2(x2)+yT(A1x1+A2x2−b), (3)

wherey ∈ R
m is the multiplier associated with the coupling constraintA1x1+A2x2 = b. A

triplet (x∗1,x
∗
2,y

∗) ∈ X×R
m is called a saddle point ofL if:

L(x∗,y)≤ L(x∗,y∗)≤ L(x,y∗), ∀x∈ X, ∀y∈ R
m. (4)

Next, we define the Lagrange dual functiond of the problem (2) as:

d(y) := min
x∈X

{

L(x,y) := φ1(x1)+φ2(x2)+yT(A1x1+A2x2−b)
}

. (5)

and then write down the dual problem of (2):

d∗ := max
y∈Rm

d(y). (6)
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Let A= [A1,A2]. Due to Assumption A.1strong dualityholds and we have:

d∗ = max
y∈Rm

d(y)
strong duality

= min
x∈X

{φ(x) | Ax= b}= φ ∗. (7)

Let us denote byY∗ the solution set of the dual problem (6). It is well-known that Y∗ is
bounded due to Assumption A.1.

Now, let us consider the dual functiond defined by (5). It is important to note that the
dual functiond(y) can be computed separately as:

d(y) = d1(y)+d2(y)−bTy, (8)

where
di(y) := min

xi∈Xi

{

φi(xi)+yTAixi
}

, i = 1,2. (9)

We denote byx∗i (y) a solution of the minimization problem in (9) (i = 1,2) andx∗(y) :=
(x∗1(y),x

∗
2(y)). Sinceφi is continuous andXi is closed and bounded, this problem has a solu-

tion. Note that ifx∗i (y) is not uniques for a giveny thendi is not differentiable at the point
y (i = 1,2). Consequently,d is not differentiable aty. The representation (8)-(9) is called a
dual decompositionof the dual functiond.

2.2 Smoothing the dual function via prox-functions

By assumption thatXi is bounded, instead of considering the nonsmooth functiond, we
smooth the dual functiond by means of prox-functions. A functionpi is called a proximity
function (prox-function) of a given nonempty, closed and bounded convex setXi ⊂R

ni if pi

is continuous, strongly convex with convexity parameterσi > 0 andXi ⊆ dom(pi).
Suppose thatpi is a prox-function ofXi andσi > 0 is its convexity parameter (i = 1,2).

Let us consider the following functions:

di(y;β1) := min
xi∈Xi

{

φi(xi)+yTAixi +β1pi(xi)
}

, i = 1,2, (10)

d(y;β1) := d1(y;β1)+d2(y;β1)−bTy. (11)

Here,β1 > 0 is a given parameter called smoothness parameter. We denote byx∗i (y;β1) the
solution of (10), i.e.:

x∗i (y;β1) := argmin
xi∈Xi

{

φi(xi)+yTAixi +β1pi(xi)
}

, i = 1,2. (12)

Note that it is possible to use different parametersβ i
1 for (10) (i = 1,2).

Let xc
i be the prox-center ofXi which is defined as:

xc
i = argmin

xi∈Xi
pi(xi), i = 1,2. (13)

Without loss of generality, we can assume thatpi(xc
i ) = 0. SinceXi is bounded, the quantity

Di := max
xi∈Xi

pi(xi) (14)

is well-defined and 0≤ Di <+∞ for i = 1,2. The following lemma shows the main proper-
ties ofd(·;β1), whose proof can be found, e.g., in [27,31].
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Lemma 1 For anyβ1 > 0, the function di(·;β1) defined by(10) is well-defined and contin-
uously differentiable onRm. Moreover, this function is concave and its gradient w.r.t yis
given as:

∇di(y;β1) = Aix
∗
i (y;β1), i = 1,2, (15)

which is Lipschitz continuous with a Lipschitz constant Ld
i (β1) =

‖Ai‖2

β1σi
(i = 1,2). The fol-

lowing estimates hold:

di(y;β1)≥ di(y)≥ di(y;β1)−β1Di , i = 1,2. (16)

Consequently, the function d(·;β1) defined by(11) is concave and differentiable and its gra-
dient is given by∇d(y;β1) := Ax∗(y;β1)−b which is Lipschitz continuous with a Lipschitz

constant Ld(β1) := 1
β1

∑2
i=1

‖Ai‖2

σi
. Moreover, it holds that:

d(y;β1)≥ d(y) ≥ d(y;β1)−β1(D1+D2). (17)

The inequalities (17) show thatd(·;β1) is an approximation ofd. Moreover,d(·;β1) con-
verges tod asβ1 tends to zero.

Remark 1Even without the assumption thatX is bounded, if the solution setX∗ of (2) is
bounded then, in principle, we can bound the feasible setX by a large compact set which
contains all the sampling points generated by the algorithms (see Section 4 below). However,
in the following algorithms we do not useDi , i = 1,2 (defined by (14)) in any computational
step. They only appear in the theoretical complexity estimates.

Next, for a givenβ2 > 0, we define a mappingψ(·;β2) from X toR by:

ψ(x;β2) := max
y∈Rm

{

(Ax−b)Ty− β2

2
‖y‖2

}

. (18)

This function can be considered as an approximate version ofψ(x) := max
y∈Rm

{

(Ax−b)Ty
}

using the prox-functionp(y) := 1
2‖y‖2. It is easy to show that the unique solution of the

maximization problem in (18) is given explicitly asy∗(x;β2) =
1

β2
(Ax−b) andψ(x;β2) =

1
2β2

‖Ax−b‖2. Therefore,ψ(·;β2) is well-defined and differentiable onX. Let

f (x;β2) := φ(x)+ψ(x;β2) = φ(x)+
1

2β2
‖Ax−b‖2. (19)

The next lemma summarizes the properties ofψ(·;β2).

Lemma 2 For any β2 > 0, the functionψ(·;β2) defined by(18) is continuously differen-
tiable on X and its gradient is given by:

∇ψ(x;β2) = (∇x1ψ(x;β2),∇x2ψ(x;β2)) = (AT
1 y∗(x;β2), AT

2 y∗(x;β2)), (20)

which is Lipschitz continuous with a Lipschitz constant Lψ(β2) := 1
β2
(‖A1‖2 + ‖A2‖2).

Moreover, the following estimate holds for all x, x̂∈ X:

ψ(x;β2) ≤ ψ(x̂;β2)+∇1ψ(x̂;β2)
T(x1− x̂1)+∇2ψ(x̂;β2)

T(x2− x̂2)
(21)

+
Lψ

1 (β2)

2
‖x1−x̂1‖2+

Lψ
2 (β2)

2
‖x2−x̂2‖2,

where Lψ1 (β2) := 2
β2
‖A1‖2 and Lψ

2 (β2) := 2
β2
‖A2‖2.
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Proof Sinceψ(x;β2)=
1

2β2
‖A1x1+A2x2−b‖2 by the definition (18) andy∗(x;β2)=

1
β2
(A1x1+

A2x2−b), it is easy to compute directly∇ψ(·;β2). Moreover, we have:

ψ(x;β2)−ψ(x̂;β2)−∇ψ(x̂;β2)
T(x−x̂) =

1
2β2

‖A1(x1− x̂1)+A2(x2− x̂2)‖2

(22)
≤ 1

β2
‖A1‖2‖x1− x̂1‖2+

1
β2

‖A2‖2‖x2− x̂2‖2.

This inequality is indeed (21). �

From the definition off (·;β2), we obtain:

f (x;β2)−
1

2β2
‖Ax−b‖2 = φ(x)≤ f (x;β2). (23)

Note that f (·;β2) is an upper bound ofφ(·) instead of a lower bound as in [31]. Note that
the Lipschitz constants in (21) are roughly estimated. These quantities can be quantified
carefully by taking into account the problem structure to trade-off the computational effort
in each component subproblem.

2.3 Excessive gap technique

Since the primal-dual gap of the primal and dual problems (2)-(6) is measured byg(x,y) :=
φ(x)−d(y), if the gapg is equal to zero for some feasible pointx andy then this point is an
optimal solution of (2)-(6). In this section, we apply to theLagrangian dual decomposition
framework a technique calledexcessive gapproposed by Nesterov in [31].

Let us considerd̂(y;β1) := d(y;β1)−β1(D1+D2). It follows from (17) and (23) that
d̂(·;β1) is an underestimate ofd(·), while f (·;β2) is an overestimate ofφ(·). Therefore,
0≤ g(x,y) = φ(x)−d(y) ≤ f (x;β2)−d(y;β1)+β1(D1+D2). Let us recall the following
excessive gap condition introduced in [31].

Definition 1 We say that a point(x̄, ȳ) ∈ X ×R
m satisfies theexcessive gapcondition with

respect to two smoothness parametersβ1 > 0 andβ2 > 0 if:

f (x̄;β2)≤ d(ȳ;β1), (24)

where f (·;β2) andd(·;β1) are defined by (23) and (11), respectively.

The following lemma provides an upper bound estimate for theduality gap and the feasibil-
ity gap of problem (2).

Lemma 3 Suppose that(x̄, ȳ) ∈ X×R
m satisfies the excessive gap condition(24). Then for

any y∗ ∈Y∗, we have:

−‖y∗‖‖Ax̄−b‖ ≤φ(x̄)−d(ȳ)≤β1(D1+D2)−
1

2β2
‖Ax̄−b‖2≤β1(D1+D2), (25)

and

‖Ax̄−b‖ ≤ β2

[

‖y∗‖+
√

‖y∗‖2+
2β1

β2
(D1+D2)

]

. (26)
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Proof Suppose that ¯x andȳ satisfy condition (24). For a giveny∗ ∈Y∗, one has:

d(ȳ)≤ d(y∗) = min
x∈X

{

φ(x)+(Ax−b)Ty∗
}

≤ φ(x̄)+(Ax̄−b)Ty∗

≤ φ(x̄)+‖Ax̄−b‖‖y∗‖,

which implies the first inequality of (25). By using Lemma 1 and (19) we have:

φ(x̄)−d(ȳ)
(17)+(23)

≤ f (x̄;β2)−d(ȳ;β1)+β1(D1+D2)−
1

2β2
‖Ax̄−b‖2.

Now, by substituting the condition (24) into this inequality, we obtain the second inequality
of (25). Letη := ‖Ax−b‖. It follows from (25) thatη2−2β2‖y∗‖η −2β1β2(D1+D2)≤ 0.
The estimate (26) follows from this inequality after few simple calculations. �

3 New decomposition algorithm

In this section, we derive an iterative decomposition algorithm for solving (2) based on
the excessive gap technique. This method is called adecomposition algorithm with primal
update. The aim is to generate a point(x̄, ȳ) ∈ X×R

m at each iteration such that this point
maintains the excessive gap condition (24) while the algorithm drives the parametersβ1 and
β2 to zero.

3.1 Proximal mappings

As assumed earlier, the functionφi is convex but not necessarily differentiable. Therefore,
we can not use the gradient information of these functions. We consider the following map-
pings (i = 1,2):

Pi(x̂;β2) := argmin
xi∈Xi

{

φi(xi)+y∗(x̂;β2)
TAi(xi − x̂i)+

Lψ
i (β2)

2
‖xi − x̂i‖2

}

, (27)

wherey∗(x̂;β2) := 1
β2
(Ax̂−b). SinceLψ

i (β2) defined in Lemma 2 is positive,Pi(·;β2) is well-
defined. This mapping is calledproximal operator[7]. Let P(·;β2) = (P1(·;β2),P2(·;β2)).

First, we state that the excessive gap condition (24) is well-defined by showing that there
exists a point(x̄, ȳ) that satisfies (24). This point will be used as a starting point in Algorithm
1 described below.

Lemma 4 Suppose that xc = (xc
1;xc

2) is the prox-center of X. For a givenβ2 > 0, let us
define:

ȳ :=
1
β2

(Axc−b) and x̄ := P(xc;β2). (28)

If the parameterβ1 is chosen such that:

β1β2 ≥ 2 max
1≤i≤2

{‖Ai‖2

σi

}

, (29)

then(x̄, ȳ) satisfies the excessive gap condition(24).

The proof of Lemma 4 can be found in the appendix.
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3.2 Primal step

Suppose that(x̄, ȳ) ∈ X ×R
m satisfies the excessive gap condition (24). We generate a new

point (x̄+, ȳ+) ∈ X×R
m and by applying the following update scheme:

(x̄+, ȳ+) := A
p

m(x̄, ȳ;β1,β+
2 ,τ)⇐⇒











x̂ := (1− τ)x̄+ τx∗(ȳ;β1),

ȳ+ := (1− τ)ȳ+ τy∗(x̂;β+
2 ),

x̄+ := P(x̂;β+
2 ),

(30)

β+
1 := (1− τ)β1 andβ+

2 = (1− τ)β2, (31)

whereP(·;β+
2 ) = (P1(·;β+

2 ),P2(·;β+
2 )) andτ ∈ (0,1) will be chosen appropriately.

Remark 2In the scheme (30), the pointsx∗(ȳ;β1) = (x∗1(ȳ;β1),x∗2(ȳ;β1)), x̂ = (x̂1, x̂2) and
x̄+ = (x̄+1 , x̄

+
2 ) can be computedin parallel. To computex∗(ȳ;β1) andx̄+ we need to solve

the corresponding convex programs inR
n1 andRn2, respectively.

The following theorem shows that the update rule (30) maintains the excessive gap con-
dition (24).

Theorem 1 Suppose that(x̄, ȳ) ∈ X ×R
m satisfies(24) with respect to two valuesβ1 > 0

and β2 > 0. Then(x̄+, ȳ+) generated by scheme(30)-(31) is in X×R
m and maintains the

excessive gap condition(24) with respect to two smoothness parameter valuesβ+
1 andβ+

2
provided that:

β1β2 ≥
2τ2

(1− τ)2 max
1≤i≤2

{‖Ai‖2

σi

}

. (32)

Proof The last line of (30) shows that ¯x+ ∈ X. Let us denote by ˆy = y∗(x̂;β+
2 ). Then, by

using the definition ofd(·;β1), the second line of (30) andβ+
1 = (1− τ)β1, we have:

d(ȳ+;β+
1 ) = min

x∈X

{

φ(x)+(Ax−b)T ȳ++β+
1 [p1(x1)+ p2(x2)]

}

line 2 (30)
= min

x∈X

{

φ(x)+(1− τ)(Ax−b)T ȳ+ τ(Ax−b)T ŷ

+ (1− τ)β1[p1(x1)+ p2(x2)]} (33)

= min
x∈X

{

(1− τ)
[

φ(x)+(Ax−b)T ȳ+β1[p1(x1)+ p2(x2)]
]

+ τ
[

φ(x)+(Ax−b)T ŷ
]}

.

Now, we estimate the first term in the last line of (33). Sinceβ+
2 = (1− τ)β2, one has:

ψ(x̄;β2) =
1

2β2
‖Ax̄−b‖2 = (1− τ)

1
2β+

2

‖Ax̄−b‖2 = (1− τ)ψ(x̄;β+
2 ). (34)
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Moreover, if we denote byx1 = x∗(ȳ;β1) then, by the strong convexity ofp1 and p2, (34)
and f (x̄;β2)≤ d(ȳ;β1), we have:

T1 := φ(x)+(Ax−b)T ȳ+β1[p1(x1)+ p2(x2)]

≥ min
x∈X

{

φ(x)+(Ax−b)T ȳ+β1[p1(x1)+p2(x2)]
}

+
1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]

= d(ȳ;β1)+
1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]

(35)
(24)
≥ f (x̄;β2)+

1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]

def. f (·;β2)
= φ(x̄)+ψ(x̄;β2)+

1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]

(34)
= φ(x̄)+ψ(x̄;β+

2 )+
1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]− τψ(z̄;β+
2 )

(22)
= φ(x̄)+ψ(x̂;β+

2 )+∇ψ(x̂;β+
2 )T(x̄− x̂)+

1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]

+
1

2β+
2

‖A(x̄− x̂)‖2− τψ(x̄;β+
2 ).

For the second term in the last line of (33), we use the fact that ŷ = 1
β+

2
(Ax̂− b) and

∇yψ(x̂;β2) = AT ŷ to obtain:

T2 := φ(x)+(Ax−b)T ŷ

= φ(x)+ ŷTA(x− x̂)+(Ax̂−b)T ŷ
(36)

def. ŷ+(20)
= φ(x)+∇ψ(x̂;β+

2 )T(x− x̂)+
1

β+
2
‖Ax̂−b‖2

def. ψ̂
= φ(x)+ψ(x̂;β+

2 )+∇ψ(x̂;β+
2 )T(x− x̂)+ψ(x̂;β+

2 ).

Substituting (35) and (36) into (33) and noting that(1−τ)(x̄− x̂)+τ(x− x̂) = τ(x−x1) due
to the first line of (30), we obtain:

d(ȳ+;β+
1 ) = min

x∈X
{(1− τ)T1+ τT2}

(35)+(36)
≥ min

x∈X

{

(1− τ)
[

φ(x̄)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T(x̄− x̂)

+
1
2

β1
[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]
]

+τ
[

φ(x)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T(x− x̂)
]

}

−τ(1− τ)ψ(x̄;β+
2 )+

(1− τ)
2β+

2
‖A(x̄− x̂)‖2+ τψ(x̂;β+

2 ) (37)

= min
x∈X

{

(1− τ)φ(x̄)+ τφ(x)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T [(1− τ)(x̄− x̂)+ τ(x− x̂)]

+
1
2
(1− τ)β1

[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]
}

+T3

φ−convex
≥ min

x∈X

{

φ((1− τ)x̄+ τx)+ψ(x̂;β+
2 )+ τ∇ψ(x̂;β+

2 )T(x−x1)

+
1
2
(1− τ)β1

[

σ1‖x1−x1
1‖2+σ2‖x2−x1

2‖2]
}

+T3,
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whereT3 := (1−τ)
2β+

2
‖A(x̄− x̂)‖2+τψ(x̂;β+

2 )−τ(1−τ)ψ(x̄;β+
2 ). Next, we note that the con-

dition (32) is equivalent to:

(1− τ)β1σi ≥
2τ2

(1− τ)β2
‖Ai‖2 ≥ Lψ

i (β
+
2 )τ2, i = 1,2. (38)

Moreover, if we denote byu := x̄+ τ(x− x̄) then:

u− x̂= x̄+ τ(x− x̄)− x̂= x̄+ τ(x− x̄)− (1− τ)x̄− τx1 = τ(x−x1). (39)

Now, by using Lemma 2, the condition (38) and (39), the estimation (37) becomes:

d(ȳ+;β+
1 )−T3

(39)
≥ min

u:=x̄+τ(x−x̄)∈x̄+τ(X−x̄)

{

φ(u)+ψ(x̂;β+
2 )+∇ψ(x̂;β2)

T(u− x̂)

+
β1(1− τ)σ1

2τ2 ‖u1− x̂1‖2+
β1(1− τ)σ2

2τ2 ‖u2− x̂2‖2
}

x̄+τ(X−x̄)⊆X
≥ min

u∈X

{

ψ(x̂;β+
2 )+φ(u)+∇ψ(x̂;β+

2 )T(u− x̂) (40)

+
β1(1− τ)σ1

2τ2 ‖u1− x̂1‖2+
β1(1− τ)σ2

2τ2 ‖u2− x̂2‖2
}

(38)
≥ min

u∈X

{

φ(u)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T(u− x̂)

+
Lψ

1 (β
+
2 )

2
‖u1− x̂1‖2+

Lψ
2 (β

+
2 )

2
‖u2− x̂2‖2

}

line 3 (30)
= φ(x̄+)+ψ(x̂;β+

2 )+∇ψ(x̂;β+
2 )T(x̄+− x̂)

+
Lψ

1 (β
+
2 )

2
‖x̄+1 − x̂1‖2+

Lψ
2 (β

+
2 )

2
‖x̄+2 − x̂2‖2

(21)
≥ φ(x̄+)+ψ(x̄+;β+

2 ) = f (x̄+;β+
2 ).

To complete the proof, we show thatT3 ≥0. Indeed, let us define ˆu :=Ax̂−bandū :=Ax̄−b,
thenû− ū= A(x̂− x̄). We have:

T3
def.ψ(·;β2)

=
τ

2β+
2

‖Ax̂−b‖2− τ(1− τ)
2β+

2

‖Ax̄−b‖2+
(1− τ)
2β+

2

‖A(x̂− x̄)‖2

=
1

2β+
2

[

τ‖û‖2− τ(1− τ)‖ū‖2+(1− τ)‖û− ū‖2]

=
1

2β+
2

[

τ‖û‖2− τ(1− τ)‖ū‖2+(1− τ)‖û‖2+(1− τ)‖ū‖2−2(1− τ)ûT ū
]

(41)

=
1

2β+
2

[

‖û‖2+(1− τ)2‖ū‖2−2(1− τ)ûT ū
]

=
1

2β+
2

‖û− (1− τ)ū‖2 ≥ 0.

Substituting (41) into (40) we obtain the inequalityd(ȳ+;β+
1 ) ≥ f (x̄+;β+

2 ). �
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Remark 3If φi is convex and differentiable and its gradient is Lipschitz continuous with a
Lipschitz constantLφi

i ≥ 0 for somei = 1,2, then instead of using the proximal mapping
Pi(·;β2) in (30) we can use the gradient mapping which is defined as:

Gi(x̂;β+
2 ) :=argmin

xi∈Xi

{

∇φi(x̂i)
T(xi−x̂i)+y∗(x̂;β2)

TAi(xi−x̂i)+
L̂ψ

i (β
+
2 )

2
‖xi − x̂i‖2

}

, (42)

whereL̂ψ
i (β

+
2 ) := Lφi +

2‖Ai‖2

β+
2

. Indeed, let us prove the conditiond(ȳ+;β+
1 ) ≥ f ( ˆ̄x+;β+

2 ),

whereG(x;β2) := (G1(x1;β2),G2(x2;β2)) and ˆ̄x+ :=G(x̂;β+
2 ). First, by using the convexity

of φi and the Lipschitz continuity of its gradient, we have:

φi(x̂i)+∇φi(x̂i)
T(ui − x̂i)≤ φi(ui)≤ φi(x̂i)+∇φi(x̂i)

T(ui − x̂i)+
Lφi

2
‖ui − x̂i‖2. (43)

Next, by summing up the second inequality fromi = 1 to 2 and adding to (21) we have:

φ(u)+ψ(u;β+
2 ) ≤ φ(x̂)+ψ(x̂;β+

2 )+
[

∇φ(x̂)+∇ψ(x̂;β+
2 )

]T
(u− x̂)

(44)

+
L̂ψ

1 (β
+
2 )

2
‖u1− x̂1‖2+

L̂ψ
2 (β

+
2 )

2
‖u2− x̂2‖2.

Finally, from the second inequality of (40) we have:

d(ȳ+;β+
1 )−T3

(38)
≥ min

u∈X

{

φ(u)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T(u− x̂)

+
(1− τ)β1σ1

2τ2 ‖u1− x̂1‖2+
(1− τ)β1σ2

2τ2 ‖u2− x̂2‖2
}

φ−convex+(44)
≥ min

u∈X

{

φ(x̂)+∇φ(x̂)T(u− x̂)+ψ(x̂;β+
2 )+∇ψ(x̂;β+

2 )T(u− x̂)

+
L̂ψ

1 (β
+
2 )

2
‖u1− x̂1‖2+

L̂ψ
2 (β

+
2 )

2
‖u2− x̂2‖2

}

(42)
= φ(x̂)+ψ(x̂;β+

2 )+
[

∇φ(x̂)+∇ψ(x̂;β+
2 )

]T
( ˆ̄x+− x̂)

+
L̂ψ

1 (β
+
2 )

2
‖ ˆ̄x+1 − x̂1‖2+

L̂ψ
2 (β

+
2 )

2
‖ ˆ̄x+2 − x̂2‖2

(44)
≥ φ( ˆ̄x+)+ψ( ˆ̄x+;β+

2 ) = f ( ˆ̄x+;β+
2 ).

In this case, the conclusion of Theorem 1 is still valid for the substitutionˆ̄x+ := G(x̂;β+
2 )

provided that:
(1− τ)

τ2 β1σi ≥ Lφi +
2‖Ai‖2

(1− τ)β2
, i = 1,2. (45)

If Xi is polytopic then problem (42) becomes a convex quadratic programming problem.

Now, let us show how to update the parameterτ such that the condition (32) holds for
β+

1 andβ+
2 . From the update rule (31) we haveβ+

1 β+
2 = (1−τ)2β1β2. Suppose thatβ1 and

β2 satisfy the condition (32), i.e.:

β1β2 ≥
τ2

(1− τ)2 L̄, whereL̄ := 2 max
1≤i≤2

{‖Ai‖2

σi

}

.
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If we substituteβ1 and β2 by β+
1 and β+

2 , respectively, in this inequality then we have

β+
1 β+

2 ≥ τ2
+

(1−τ+)2
L̄. However, sinceβ+

1 β+
2 = (1−τ)2β1β2, it impliesβ1β2 ≥ τ2

+

(1−τ)2(1−τ+)2
L̄.

Therefore, if τ2

(1−τ)2 ≥ τ2
+

(1−τ)2(1−τ+)2
thenβ+

1 andβ+
2 satisfy (32). This condition leads to

τ ≥ τ+
1−τ+ . Sinceτ ,τ+ ∈ (0,1), the last inequality implies 0< τ+ < 1

2 and

0< τ+ ≤ τ
τ +1

< 1. (46)

Hence, (30)-(31) are well-defined.
Now, we define a rule to update the step size parameterτ .

Lemma 5 Suppose thatτ0 is arbitrarily chosen in(0, 1
2). Then the sequence{τk}k≥0 gen-

erated by:

τk+1 :=
τk

τk+1
(47)

satisfies the following equality:

τk =
τ0

1+ τ0k
, ∀k≥ 0. (48)

Moreover, the sequence{βk}k≥0 generated byβk+1 = (1− τk)βk for fixedβ0 > 0 satisfies:

βk =
β0

τ0k+1
, ∀k≥ 0. (49)

Proof If we denote byt := 1
τ and consider the functionξ (t) := t + 1 then the sequence

{tk}k≥0 generated by the ruletk+1 := ξ (tk) = tk+1 satisfiestk = t0+k for all k≥ 0. Hence
τk =

1
tk
= 1

t0+k = τ0
τ0k+1 for k ≥ 0. To prove (49), we observe thatβk+1 = β0 ∏k

i=0(1− τi).
Hence, by substituting (48) into the last equality and carrying out a simple calculations, we
get (49). �

Remark 4Sinceτ0 ∈ (0,0.5), from Lemma 5 we see that withτ0 → 0.5− (e.g.,τ0 = 0.499)
the right-hand side estimate of (49) is minimized.

3.3 The algorithm and its worst case complexity

Before presenting the algorithm, we assume that the prox-center xc
i of Xi is given a priori

for (i = 1,2). Moreover, the parameter sequence{τk} is updated by (47). The algorithm is
presented in detail as follows:

ALGORITHM 1 (Decomposition Algorithm with Primal Update)

Initialization:

1. Setτ0 := 0.499. Chooseβ 0
1 > 0 andβ 0

2 > 0 as follows:

β 0
1 = β 0

2 :=

√

2 max
1≤i≤2

{‖Ai‖2

σi

}

.
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2. Compute ¯x0 andȳ0 from (28) as:

ȳ0 :=
1

β 0
2

(Axc−b) andx̄0 := P(xc;β 0
2 ),

Iteration: For k= 0,1, · · · do

1. If a given stopping criterion is satisfied then terminate.
2. Update the smoothness parameterβ k+1

2 := (1− τk)β k
2 .

3. Compute ¯xk+1
i in parallel for i = 1,2 andȳk+1 by the scheme (30):

(x̄k+1, ȳk+1) := A
p

m(x̄k, ȳk;β k
1 ,β k+1

2 ,τk).

4. Update the smoothness parameter:β k+1
1 := (1− τk)β k

1 .
5. Update the step size parameterτk by: τk+1 := τk

τk+1 .

End of For.

As mentioned in Remark 2, there are two steps of the schemeA
p

m at Step 3 of Algorithm 1
that can be parallelized. The first step is findingx∗(ȳk;β1) and the second one is computing
x̄k+1. In general, both steps require solving two convex programming problems in parallel.
The stopping criterion of Algorithm 1 at Step 1 will be discussed in Section 6.

The following theorem provides the worst-case complexity estimate for Algorithm 1.

Theorem 2 Let{(x̄k, ȳk)} be a sequence generated by Algorithm 1. Then the following du-
ality gap and feasibility gap hold:

φ(x̄k)−d(ȳk) ≤
√

L̄(D1+D2)

0.499k+1
, (50)

and

‖Ax̄k−b‖ ≤
√

L̄
0.499k+1

[

‖y∗‖+
√

‖y∗‖2+2(D1+D2)

]

, (51)

whereL̄ := 2 max
1≤i≤2

{‖Ai‖2

σi

}

and y∗ ∈Y∗.

Proof By the choice ofβ 0
1 = β 0

2 =
√

L̄ and Steps 1 in the initialization phase of Algorithm
1 we see thatβ k

1 = β k
2 for all k ≥ 0. Moreover, sinceτ0 = 0.499, by Lemma 5, we have

β k
1 = β k

2 = β0
τ0k+1 =

√
L̄

0.499k+1 . Now, by applying Lemma 3 withβ1 andβ2 equal toβ k
1 andβ k

2
respectively, we obtain the estimates (50) and (51). �

Remark 5The worst case complexity of Algorithm 1 isO( 1
ε ). However, the constants in

the estimations (50) and (51) also depend on the choices ofβ 0
1 andβ 0

2 , which satisfy the
condition (29). The values ofβ 0

1 andβ 0
2 will affect the accuracy of the duality and feasibility

gaps.

In Algorithm 1 we can use a simple update ruleτk =
a

k+1 , wherea> 0 is arbitrarily chosen
such that the conditionτk+1 ≤ τk

τk+1 holds. However, the rule (47) is the tightest one.
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4 Switching decomposition algorithm

In this section, we apply the switching strategy to obtain a new variant of the first algorithm
proposed in [31, Algorithm 1] for solving problem (2). This scheme alternately switches
between the primal and dual step depending on the iteration counterk being even or odd.
Apart from its application to Lagrangian dual decomposition, this variant is still different
from the one in [31] at two points. First, since we assume thatthe objective function is
not necessarily smooth, instead of using the gradient mapping in the primal scheme, we
use the proximal mapping defined by (27) to construct the primal step. In contrast, since
the objective function in the dual scheme is Lipschitz continuously differentiable, we can
directly use the gradient mapping to compute ¯y+ (see (55)). Second, we use the exact update
rule for τ instead of the simplified one as in [31].

4.1 The gradient mapping of the smoothed dual function

Since the smoothed dual functiond(·;β1) is Lipschitz continuously differentiable onRm

(see Lemma 1). We define the following mapping:

G(ŷ;β1) := argmax
y∈Rm

{

∇d(ŷ;β1)
T(y− ŷ)− Ld(β1)

2
‖y− ŷ‖2

}

, (52)

whereLd(β1) :=Ld
1(β1)+Ld

2(β1)=
‖A1‖2

β1σ1
+ ‖A2‖2

β1σ2
and∇d(ŷ;β1)=A1x∗1(ŷ;β1)+A2x∗2(ŷ;β1)−

b. This problem can explicitly be solved to get the unique solution:

G(ŷ;β1) =
1

Ld(β1)
[Ax∗(ŷ;β1)−b]+ ŷ. (53)

The mappingG(·;β1) is called gradient mapping of the functiond(·;β1) (see [29]).

4.2 A decomposition scheme with primal-dual update

First, we adapt the scheme (30)-(31) in the framework of primal and dual variant. Suppose
that the pair(x̄, ȳ) ∈ X ×R

m satisfies the excessive gap condition (24). The primal step is
computed as follows:

(x̄+, ȳ+) := A
p(x̄, ȳ;β1,β2,τ) ⇐⇒











x̂ := (1− τ)x̄+ τx∗(ȳ;β1),

ȳ+ := (1− τ)ȳ+ τy∗(x̂;β2),

x̄+ := P(x̂;β2),

(54)

and then we updateβ+
1 := (1− τ)β1, whereτ ∈ (0,1) andP(·;β2) is defined in (27). The

difference between schemesA
p

m andA p is that the parameterβ2 is fixed inA p.
Symmetrically, the dual step is computed as:

(x̄+, ȳ+) := A
d(x̄, ȳ;β1,β2,τ)⇐⇒











ŷ := (1− τ)ȳ+ τy∗(x̄;β2),

x̄+ := (1− τ)x̄+ τx∗(ŷ;β1),

ȳ+ := G(ŷ;β1),

(55)



16

whereτ ∈ (0,1). The parameterβ1 is kept unchanged, whileβ2 is updated byβ+
2 := (1−

τ)β2.
The following result shows that(x̄+, ȳ+) generated either byA p or by A

d maintains
the excessive gap condition (24).

Lemma 6 Suppose that(x̄, ȳ) ∈ X ×R
m satisfy(24) with respect to two valuesβ1 and β2.

Then(x̄+, ȳ+) generated either by schemeA p or by A
d is in X×R

m and maintains the
excessive gap condition(24)with respect to either two new valuesβ+

1 andβ2 or β1 andβ+
2

provided that the following condition holds:

β1β2 ≥
2τ2

1− τ
max
1≤i≤2

{‖Ai‖2

σi

}

. (56)

The proof of this lemma is quite similar to [31, Theorem 4.2.]that we omit here.

Remark 6Given β1 > 0, we can chooseβ2 > 0 such that the condition (29) holds. Let
yc := 0∈ R

m, we compute a point(x̄0, ȳ0) as:

x̄0 := x∗(yc;β1) and ȳ0 := G(yc;β1) =
1

Ld(β1)
(Ax̄−c)+yc. (57)

Then, similar to (28), the point(x̄0, ȳ0) satisfies (24). Therefore, we can use this point as a
starting point for Algorithm 2 below.

In Algorithm 2 below we apply either the primal schemeA p or the dual schemeA d by
using the following rule:
Rule A. If the iteration counter k is even then applyA

p. Otherwise,A d is used.
Now, we provide an update rule to generate a sequence{τk} such that the condition (56)

holds. LetL̄ := 2 max
1≤i≤2

{‖Ai‖2

σi

}

. Suppose that at the iterationk the condition (56) holds,

i.e.:

β k
1β k

2 ≥ τ2
k

1− τk
L̄. (58)

Since at the iterationk+ 1, we either updateβ k
1 or β k

2 . Thus we haveβ k+1
1 β k+1

2 = (1−
τk)β k

1β k
2 . However, as the condition (58) holds, we have(1− τk)β k

1β k
2 ≥ τ2

k L̄. Now, we
suppose that the condition (56) is satisfied withβ k+1

1 andβ k+1
2 , i.e.:

β k+1
1 β k+1

2 ≥
τ2

k+1

1− τk+1
L̄. (59)

This condition holds ifτ2
k L̄≥ τ2

k+1
1−τk+1

L̄, which leads toτ2
k+1+τ2

k τk+1−τ2
k ≤0. Sinceτk,τk+1∈

(0,1), we obtain:

0< τk+1 ≤
τk

2

[

√

τ2
k +4− τk

]

< τk. (60)

The tightest rule for updatingτk is:

τk+1 :=
τk

2

[

√

τ2
k +4− τk

]

, (61)
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for all k ≥ 0 andτ0 ∈ (0,1) given. Associated with{τk}, we generate two sequences{β k
1}

and{β k
2} as:

β k+1
1 :=

{

(1− τk)β k
1 if k is even

β k
1 otherwise,

and β k+1
2 :=

{

β k
2 if k is even

(1− τk)β k
2 otherwise,

(62)

whereβ 0
1 = β 0

2 = β̄ > 0 are fixed.

Lemma 7 Let{τk}, {β k
1} and{β k

2} be three sequences generated by(61)and (62), respec-
tively. Then:

(1− τ0)β̄
2τ0k+1

< β k
1 <

2β̄
√

1− τ0

τ0k
, and

β̄
√

1− τ0

2τ0k+1
< β k

2 <
2β̄
τ0k

, (63)

for all k ≥ 1.

The proof of this lemma can be found in the appendix.

Remark 7We can see that the right-hand sideηk(τ0) := 4β̄
√

1−τ0
τ0(k+τ0)

of (63) is decreasing in
(0,1) for k≥ 1. Therefore, we can chooseτ0 as large as possible to minimizeηk(·) in (0,1).
For instance, we can chooseτ0 := 0.998 in Algorithm 2.

Note that Lemma 7 shows thatτk ∼ O( 1
k). Hence, in Algorithm 2, we can also use a simple

updating rule forτk asτk =
a

k+b, wherea ∈ ( 3
2,2) andb ≥ a−1

2−a > 0. This update satisfies
(56).

4.3 The algorithm and its worst-case complexity

Suppose that the initial point(x̄0, ȳ0) is computed by (57). Then, we can chooseβ 0
1 = β 0

2 =
√

2 max
1≤i≤2

{‖Ai‖2

σi

}

which satisfy (29). The algorithm is now presented in detailas follows:

ALGORITHM 2 (Decomposition Algorithm with Primal-Dual Update)

Initialization:

1. Chooseτ0 := 0.998 and setβ 0
1 = β 0

2 :=

√

2max1≤i≤2

{

‖Ai‖2

σi

}

.

2. Compute ¯x0 andȳ0 as:

x̄0 := x∗(yc;β 0
1 ), andȳ0 :=

1

Ld(β 0
1 )

(Ax̄0−b)+yc.

Iteration: For k= 0,1, · · · do
1. If a given stopping criterion is satisfied then terminate.
2. If k is even then:

2a) Compute(x̄k+1, ȳk+1) as:

(x̄k+1, ȳk+1) := A
p(x̄k, ȳk;β k

1 ,β
k
2 ,τk).
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2b) Update the smoothness parameterβ k
1 asβ k+1

1 := (1− τk)β k
1 .

3. Otherwise, i.e. ifk is odd then:
3a) Compute(x̄k+1, ȳk+1) as:

(x̄k+1, ȳk+1) := A
d(x̄k, ȳk;β k

1 ,β k
2 ,τk).

3b) Update the smoothness parameterβ k
2 asβ k+1

2 := (1− τk)β k
2 .

4. Update the step size parameterτk as:τk+1 := τk
2

[√

τ2
k +4− τk

]

.

End of For.

The main steps of Algorithm 2 are Steps 2a and 2b, which requires us to compute either
a primal step or a dual step. In the primal step, we need to solve two convex problem pairs
in parallel, while in the dual step, it only requires to solvetwo convex problems in parallel.
The following theorem shows the convergence of this algorithm.

Theorem 3 Let the sequence{(x̄k, ȳk)}k≥0 be generated by Algorithm 2. Then the duality
and feasibility gaps satisfy:

φ(x̄k)−d(ȳk) ≤ 2
√

L̄(D1+D2)

0.998k
, (64)

and

‖Ax̄k−b‖ ≤ 2
√

L̄
0.998k

[

‖y∗‖+
√

‖y∗‖2+2(D1+D2)

]

, (65)

whereL̄ := 2 max
1≤i≤2

{‖Ai‖2

σi

}

and k≥ 1.

Proof The conclusion of this theorem follows directly from Lemmas3 and 5, the condition
τ0 = 0.998,β 0

1 = β 0
2 =

√
L̄ and the fact thatβ k

1 ≤ β k
2 . �

Remark 8Note that the worst-case complexity of Algorithm 2 is stillO( 1
ε ). The constants

in the complexity estimates (50) and (51) are similar to the one in (64) and (65), respectively.
As we discuss in Section 6 below, the rate of decrease ofτk in Algorithm 2 is smaller than
two times ofτk in Algorithm 1. Consequently, the sequences{β k

1} and{β k
2} generated by

Algorithm 1 approach zero faster than the ones generated by Algorithm 2.

Remark 9Note that the role of the schemesA p andA d in Algorithm 2 can be exchanged.
Therefore, Algorithm 2 can be modified at three steps to obtain a symmetric variant as
follows:

1. At Step 2 of the initialization phase, (28) to compute ¯x0 andȳ0 instead of (57).
2. At Steps 2a,A p is used if the iteration counterk is odd. Otherwise, we useA d at Step

3a.
3. At Steps 2b,β k

2 is updated ifk is odd. Otherwise,β k
1 is updated at Step 3b.

5 Application to strongly convex programming problems

If φi (i = 1,2) in (2) is strongly convex then the convergence rate of the dual scheme (55)
can be accelerated up toO( 1

k2 ).
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Suppose thatφi is strongly convex with a convexity parametersσi > 0 (i = 1,2). Then the
functiond defined by (5) is well-defined, concave and differentiable. Moreover, its gradient
is given by:

∇d(y) = A1x∗1(y)+A2x∗2(y)−b, (66)

which is Lipschitz continuous with a Lipschitz constantLφ := ‖A1‖2

σ1
+ ‖A2‖2

σ2
. The excessive

gap condition (24) in this case becomes:

f (x̄;β2) ≤ d(ȳ), (67)

for given x̄ ∈ X, ȳ ∈ R
m andβ2 > 0. From Lemma 3 we conclude that if the point(x̄, ȳ)

satisfies (67) then, for a giveny∗ ∈Y∗, the following estimates hold:

−2β2‖y∗‖2 ≤−‖y∗‖‖Ax̄−b‖ ≤ φ(x̄)−d(ȳ) ≤ 0, (68)
and

‖Ax̄−b‖ ≤ 2β2‖y∗‖. (69)

We now adapt the dual scheme (55) to this special case. Suppose (x̄, ȳ) ∈ X ×R
m satisfies

(67), we generate a new pair(x̄+, ȳ+) as

(x̄+, ȳ+) := A
d

s (x̄, ȳ;β2,τ)⇐⇒











ŷ := (1− τ)ȳ+ τy∗(x̄;β2),

x̄+ := (1− τ)x̄+ τx∗(ŷ),

ȳ+ = 1
Lφ (Ax∗(ŷ)−b)+ ŷ,

(70)

wherey∗(x̄;β2) =
1

β2
(Ax̄−b), andx∗(y) := (x∗1(y),x

∗
2(y)) is the solution of the minimiza-

tion problem in (5). The parameterβ2 is updated byβ+
2 := (1− τ)β2 andτ ∈ (0,1) will

appropriately be chosen.
The following lemma shows that(x̄+, ȳ+) generated by (70) satisfies (67) whose proof

can be found in [31].

Lemma 8 Suppose that the point(x̄, ȳ) ∈ X×R
m satisfies the excessive gap condition(67)

with the valueβ2. Then the new point(x̄+, ȳ+) computed by(70) is in X×R
m and also

satisfies(67)with a new parameter valueβ+
2 provided that

β2 ≥
τ2Lφ

1− τ
. (71)

Now, let us derive the rule to update the parameterτ . Suppose thatβ2 satisfies (71). Since

β+
2 = (1− τ)β2, the condition (71) holds forβ+

2 if τ2 ≥ τ2
+

1−τ+ . Therefore, similar to Algo-
rithm 2, we update the parameterτ by using the rule (47). The conclusion of Lemma 7 still
holds for this case.

Before presenting the algorithm, it is necessary to find a starting point (x̄0, ȳ0) which
satisfies (67). Letyc = 0∈ R

m andβ2 = Lφ . We compute(x̄0, ȳ0) as

x̄0 := x∗(yc) and ȳ0 :=
1

Lφ (Ax̄0−b)+yc. (72)

It follows from Lemma 7.4 [31] that(x̄0, ȳ0) satisfies the excessive gap condition (67).
Finally, the decomposition algorithm for solving the strongly convex programming prob-

lem of the form (2) is described in detail as follows:
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ALGORITHM 3 (Decomposition algorithm for strongly convex objective function)

Initialization:

1. Chooseτ0 := 0.5. Setβ 0
2 = ‖A1‖2

σ1
+ ‖A2‖2

σ2
.

2. Compute ¯x0 andȳ0 as:

x̄0 := x∗(yc) andȳ0 :=
1

Lφ (Ax̄0−b)+yc.

Iteration: For k= 0,1, · · · do
1. If a given stopping criterion is satisfied then terminate.
2. Compute(x̄k+1, ȳk+1) using scheme (70):

(x̄k+1, ȳk+1) := A
d

s (x̄k, ȳk;β k
2 ,τk).

3. Update the smoothness parameter as:β k+1
2 := (1− τk)β k

2 .

4. Update the step size parameterτk as:τk+1 := τk
2

[
√

τ2
k +4− τk

]

.

End of For.

The convergence and the worst-case complexity of Algorithm3 are stated as in Theorem 4
below.

Theorem 4 Let {(x̄k, ȳk)}k≥0 be a sequence generated by Algorithm 3. Then the following
duality and feasibility gaps are satisfied:

−8Lφ ‖y∗‖2

(k+4)2
≤ φ(x̄k)−d(ȳk)≤ 0, (73)

and
‖Ax̄k−b‖ ≤ 8Lφ‖y∗‖

(k+4)2 , (74)

where Lφ := ‖A1‖2

σ1
+ ‖A2‖2

σ2
.

Proof From the update rule ofτk, we have(1− τk+1) =
τ2
k+1
τ2
k

. Moreover, sinceβ k+1
2 = (1−

τk)β k
2 , it implies thatβ k+1

2 = β 0
2 ∏k

i=0(1− τi) =
β 0

2 (1−τ0)

τ2
0

τ2
k . By using the inequalities (80)

andβ 0
2 = Lφ , we haveβ k+1

2 <
4Lφ (1−τ0)

(τ0k+2)2
. With τ0 = 0.5, one hasβ k

2 <
8Lφ

(k+4)2
. By substituting

this inequality into (68) and (69), we obtain (73) and (74), respectively. �

Theorem 4 shows that the worst-case complexity of Algorithm3 is O( 1√
ε ). Moreover, at

each iteration of this algorithm, only two convex problems need to be solvedin parallel.

6 Discussion on implementation and comparison

6.1 The choice of prox-functions and the Bregman distance

Algorithms 1 and 2 require to build a prox-function for each feasible setXi for i = 1,2. For a
nonempty, closed and bounded convex setXi , the simplest prox-function ispi(xi) := ρi

2 ‖xi −
x̄i‖2, for a given ¯xi ∈ Xi andρi > 0. This function is strongly convex with the parameter
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σi = ρi and the prox-center is ¯xi , (i = 1,2). In implementation, it is worth to investigate the
structure of the feasible setXi in order to choose an appropriate prox-function and its scaling
factorρi for each feasible subsetXi (i = 1,2).

In (27), we have used the Euclidean distance to construct theproximal terms. It is pos-
sible to use a generalized Bregman distance in these problems which is compatible to the
prox-functionpi and the feasible subsetXi (i = 1,2). Moreover, a proper choice of the norms
in the implementation may lead to a better performance of thealgorithms, see [31] for more
details.

6.2 Extension to a multi-component separable objective function

The algorithms developed in the previous sections can be directly applied to solve problem
(1) in the caseM > 2. First, we provide the following formulas to compute the parameters
of Algorithms 1-3.

1. The constant̄L in Theorems 2 and 3 is replaced byL̄M = M max
1≤i≤M

{‖Ai‖2

σi

}

.

2. The initial values ofβ 0
1 andβ 0

2 in Algorithms 2 and 3 areβ 0
1 = β 0

2 =
√

L̄M.

3. The Lipschitz constantLψ
i (β2) in Lemma 2 isLψ

i (β2) =
M‖Ai‖2

β2
(i = 1, . . . ,M).

4. The Lipschitz constantLd(β1) in Lemma 1 isLd(β1) := 1
β1

M

∑
i=1

‖Ai‖2

σi
.

5. The Lipschitz constantLφ in Algorithm 3 isLφ :=
M

∑
i=1

‖Ai‖2

σi
.

Note that these constants depend linearly onM and the structure of matrixAi (i = 1, . . . ,M).
Next, we rewrite the smoothed dual functiond(y;β1) defined by (11) for the caseM > 2

as follows:

d(y;β1) =
M

∑
i=1

di(y;β1),

whereM function valuesdi(y;β1) can be computed in parallel as:

di(y;β1) =− 1
M

bT
i y+ min

xi∈Xi

{

φi(xi)+yTAixi +β1pi(xi)
}

.

Note that the term− 1
M bT

i y is also computed locally for each component subproblem instead
of computing separately as in (11). The quantities ˆy andy+ := G(ŷ;β1) defined in (54) and
(55) can respectively be expressed as:

ŷ := (1− τ)ȳ+(1− τ)
M

∑
i=1

1
β2

(Ai x̄i −
1
M

b),

andy+ := ŷ+
M

∑
i=1

[

1
Ld(β1)

(Aix
∗
i (ŷ;β1)−

1
M

b)

]

.

These formulas show that each component of ˆy andy+ can be computed by only using the
local information and its neighborhood information. Therefore, both algorithms are highly
distributed.
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Finally, we note that if there exists a componentφi of the objective functionφ which is
Lipschitz continuously differentiable then the gradient projection mappingGi(x̂;β2) defined
by (42) corresponding to the primal convex subproblem of this component can be used
instead of the proximity mappingPi(x̂;β2) defined by (27). This modification can reduce the
computational cost of the algorithms. Note that the sequence {τk}k≥0 generated by the rule
(47) still maintains the condition (45) in Remark 3.

6.3 Stopping criterion

In practice, we do not often encounter a problem which reaches the worst-case complexity
bound. Therefore, it is necessary to provide a stopping criterion for the implementation of
Algorithms 1, 2 and 3 to terminate earlier than using the worst-case bound. In principle, we
can use the KKT condition to terminate the algorithms. However, evaluating the global KKT
tolerance in a distributed manner is impractical.

From Theorems 2 and 3 we see that the upper bound of the dualityand feasibility gaps
do not only depend on the iteration counterk but also on the constants̄L, Di andy∗ ∈ Y∗.
The constant̄L can be explicitly computed based on matrixA and the choice of the prox-
functions. We now discuss on the evaluations ofDi andy∗ in the caseXi is unbounded. Let
sequence{(x̄k, ȳk)} be generated by Algorithm 1 (or Algorithm 2). Suppose that{(x̄k, ȳk)}
converges to(x∗,y∗) ∈ X∗ ×Y∗. Thus, fork sufficiently large, the sequence{(x̄k, ȳk)} is
contained in a neighborhood ofX∗×Y∗. Givenω > 0, let us define

D̂k
i := max

0≤ j≤k
pi(x̄

j
i )+ω andŷk := max

0≤ j≤k
‖ȳ j‖+ω . (75)

We can use these constants to construct a stopping criterionin Algorithms 1 and 2. More
precisely, for a given toleranceε > 0, we compute

ed := β k
1(D̂

k
1+ D̂k

2), andep := β k
2

[

ŷk+
√

(ŷk)2+2(D̂k
1+ D̂k

2)

]

, (76)

at each iteration. We terminate Algorithm 1 ifed ≤ ε andep ≤ ε . A similar strategy can also
be applied to Algorithms 2 and 3.

6.4 Comparison.

Firstly, we compare Algorithms 1 and 2. From Lemma 3 and the proof of Theorems 2 and
3 we see that the rate of convergence of both algorithms is as same as ofβ k

1 and β k
2 . At

each iteration, Algorithm 1 updates simultaneouslyβ k
1 andβ k

2 by using the same value of
τk, while Algorithm 2 updates only one parameter. Therefore, to update both parametersβ k

1
andβ k

2 , Algorithm 2 needs two iterations. We analyze the update rule of τk in Algorithms 1
and 2 to compare the rate of convergence of both algorithms.

Let us define
ξ1(τ) :=

τ
τ +1

andξ2(τ) :=
τ
2

[

√

τ2+4− τ
]

.

The functionξ2 can be rewritten asξ2(τ) = τ√
(τ/2)2+1+τ/2

. Therefore, we can easily show

that:
ξ1(τ)< ξ2(τ)< 2ξ1(τ).
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If we denote by{τA1
k }k≥0 and{τA2

k }k≥0 the two sequences generated by Algorithms 1 and

2, respectively then we haveτA1
k < τA2

k < 2τA1
k for all k provided that 2τA1

0 ≥ τA2
0 . Since

Algorithm 1 updatesβ k
1 andβ k

2 simultaneously while Algorithm 2 updates each of them at
each iteration. If we chooseτA1

0 = 0.499 andτA2
0 = 0.998 in Algorithms 1 and 2, respec-

tively, then, by directly computing the value ofτA1
k andτA2

k , we can see that 2τA1
k > 2τA2

k
for all k ≥ 1. Consequently, the sequences{β k

1} and{β k
2} in Algorithm 1 converge to zero

faster than in Algorithm 2. In other words, Algorithm 1 is faster than Algorithm 2.
Now, we compare Algorithm 1, Algorithm 2 and Algorithm 3.2. in [27] (see also [38]).

Note that the smoothness parameterβ1 which is also denoted byc is fixed in Algorithm 3.2
of [27]. Moreover, this parameter is proportional to the given desired accuracyε , which is
often very small. Thus, the Lipschitz constantLd(β1) is very large. Consequently, Algorithm
3.2. of [27] makes a slow progress at the very early iterations. In Algorithms 1 and 2, the
parametersβ1 andβ2 are dynamically updated starting from given values. Besides, the cost
per iteration of Algorithm 3.2 [27] is more expensive than Algorithms 1 and 2 since it
requires to solve two convex problem pairs in parallel and two dual steps.

7 Numerical Tests

In this section, we verify the performance of the proposed algorithms by applying them to
solve the following separable convex optimization problem:



























min
x=(x1,...,xM)

{

φ(x) :=
M

∑
i=1

φi(xi)
}

,

s.t.
M

∑
i=1

xi ≤ (=)b,

l i ≤ xi ≤ ui , i = 0, . . . ,M,

(77)

whereφi : Rnx → R is convex,b, l i andui ∈R
nx are given fori = 1, . . . ,M. The problem (77)

arises in many applications including resource allocationproblems [19] and DSL dynamic
spectrum management problems [38]. In the case of inequality coupling constraints, we
can bring the problem (77) in to the form of (1) by adding a slack variablexM+1 as a new
component.

7.1 Implementation details

We implement Algorithms 1 and 2 proposed in the previous sections to solve (77). The im-
plementation is carried out in C++ running on a 16 cores workstation IntelR©Xeron 2.7GHz
and 12 GB of RAM. To solve general convex programming subproblems, we implement a
primal-dual predictor-corrector interior point method. All the algorithms are parallelized by
usingOpenMP.

The prox-functionsdi(xi) := ρ
2‖xi −xc

i ‖2 are used, wherexc
i is the center of the boxXi :=

[l i ,ui ] andρ := 1 for all i = 1, . . . ,M. We terminate Algorithms 1 and 2 ifrpfgap := ‖Axk−
b‖2/‖b‖2 ≤ εp and eitherrdfgap := max

{

0,β k
1 ∑M

i=1 DXi − 1
2β2

‖Axk−b‖2
}

≤ εd(|φ(xk)|+
1) or the value of the objective function does not significantlychange in 3 successive it-
erations, i.e.|φ(x̄k)− φ(x̄k− j)|/max{1.0, |φ(x̄k)|} ≤ εφ for j = 1,2,3, whereεp = 10−2,
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εd = 10−1 andεφ = 10−5 are given tolerances. Note that the quantityrdfgap is computed
in the worst-case complexity, see Lemma 3.

To compare the performance of the algorithms, we also implement the proximal-center-
based decomposition algorithm proposed in [27, Algorithm 3.2.] and an exact variant of the
proximal-based decomposition in [7, Algorithm I] for solving (77) which we namePCBD
andEPBD, respectively. The prox-function of the dual problem is chosen asdY(y) := ρ

2‖y‖2

with ρ := 1.0 and the smoothness parameterc of PCBD is set toc := εp

∑M
i=1 DXi

, whereDXi is

defined by (14). We terminatePCBD if the relative feasibility gaprpfgap ≤ εp and either
the objective value reaches the one reported by Algorithm 1 or the maximum number of
iterationsmaxiter = 10,000 is reached.

7.2 Numerical results and comparison

We test the above algorithms for three examples. The two firstexamples are resource alloca-
tion problems and the last one is a DSL dynamic spectrum management problem. The first
example was considered in [20], while the problem formulation and the data of the third
example are obtained from [38].

7.2.1. Resource allocation problems.Let us consider a resource allocation problem in the
form of (77) where the coupling constraint∑M

i=1 xi = b is tackled.

(a) Nonsmooth convex optimization problems.In the first numerical example, we choose
nx = 1, M = 5, the objective functionφi(xi) := i|xi − i| which is nonsmooth andb= 10 as in
[20]. The lower boundl i is set tol i =−5 and the upper boundui is ui = 7 for i = 1, . . . ,M.
With these choices, the optimal solution of this problem isx∗ = (−4,2,3,4,5).

We use four different algorithms which consist of Algorithm1, Algorithm 2,PCBD in
[27] andPCBD in [7, Algorithm I] to solved problem (77). The approximate solutions re-
ported by these algorithms after 100 iterations arexk = (−3.978,2,3,4,5), (−3.875,1.983,
2.990,3.996,5), (−4.055,2,3,4,5) and(−4.423,2,3,4,5), respectively. The correspond-
ing objective values areφ(xk) = 4.978, 4.954, 5.055 and 5.423, respectively.

The convergence behaviour of four algorithms is shown in Figure 1, where the relative
error of the objective function reφ := |φ(xk)−φ ∗|/|φ ∗| is plotted on the left and the relative
error of the solution rex := ‖xk−x∗‖/‖x∗‖ is on the right. As we can see from these figures
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Fig. 1 The relative error of the approximations to the optimal value (left) and to the optimal solution (right).

that the relative errors in Algorithm 2,PCBD andEPBD oscillate with respect to the iteration
counter while they are decreasing monotonously in Algorithm 1. The relative errors in Al-
gorithms 1 and 2 are approaching zero earlier than the ones inPCBD andEPBD. Note that in
this example a nonmonotone variant of thePCBD algorithm [27,38] is used.
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(b) Nonlinear resource allocation problems.In order to compare the efficiency of Algorithm
1, Algorithm 2 andPCBD, we build two performance profiles of these algorithms in terms of
total iterations and total computational time.

In this case, the objective functionφi is chosen asφi(xi) = aT
i xi −wi ln(1+bT

i xi), where
the linear cost vectorai , vectorbi and the weighting vectorwi are generated randomly in
the intervals[0,5], [0,10] and[0,5], respectively. The lower bound and the upper bound are
set tol i = (0, . . . ,0)T andui = (1, . . . ,1)T , respectively. Note that the objective functionφi

is linear ifwi = 0 and strictly convex ifwi > 0.
We carry out three algorithms for solving a collection of 50 random test problems with

the size varying fromM = 10 toM = 5,000 components,m= 5 to 300 coupling constraints
andn = 50 to 500,000 variables. The performance profiles are plotted in Figure 2 which
include the total number of iterations (left) and total computational time (right). The nu-
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Fig. 2 Performance profile of three algorithms in log2 scale: Left-Number of iterations, Right-CPU time.

merical test on this collection of problems shows that Algorithm 1 solves all the problems
and Algorithm 2 solve 48/50 problems, i.e. 96% of the collection.PCBD only solves 31/50
problems, i.e. 62% of the collection. However, Algorithms 1is the most efficient. It solves
up to more than 81% problems with the best performance.PCBD is rather slow and exceeds
the maximum number of iterations in many of the test problems(19 problems). Moreover,
it is rather sensitive to the smoothness parameter.

7.2.2. DSL dynamic spectrum management problem.In this example, we apply the proposed
algorithms to solve a separable convex programming problemarising in DSL dynamic spec-
trum management. This problem is a convex relaxation of the original DSL dynamic spec-
trum management formulation considered in [38].

Since the formulation given in [38] has an inequality coupling constraint∑M
i=1 xi ≤ b, by

adding a new slack variablexM+1 such that∑M+1
i=1 xi = b and 0≤ xM+1 ≤ b, we can transform

this problem into (1). The objective function of the resulting problem becomes:

φi(xi) :=

{

aT
i xi −∑ni

j=1 c j
i ln

(

∑ni
k=1 h jk

i xk
i +gk

i

)

if i = 1, . . . ,M,

0 if i = M+1.
(78)

Here,ai ∈R
ni , ci , gi ∈R

ni
+ andHi := (h jk

i )∈R
ni×ni
+ , (i = 1, . . . ,M). The functionφi is convex

(but not strongly convex) for alli = 1, . . . ,M+1. As described in [38] that the variablexi

is referred to as transmit power spectral density,ni = N for all i = 1, . . . ,M is the number
of users,M is the number of frequency tones which is usually large andφi is a convex
approximation of a desired BER function1, the coding gain and noise margin. A detail model
and parameter descriptions of this problem can be found in [38].

1 Bit Error Rate function
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We test three algorithms for the case ofM = 224 tones andN = 7 users. The other
parameters are selected as in [38]. Algorithm 1 requires 922iterations, Algorithm 2 needs
1314 iterations, whilePCBD reaches the maximum number of iterationskmax = 3000. The
relative feasibility gaps‖Axk −b‖/‖b‖ reported by the three algorithms are 9.955×10−4,
9.998×10−4 and 2.431×10−2, respectively. The obtained approximate solutions of three al-
gorithms and the optimal solution are plotted in Figure 3 which represent the transmit power
with respect to the frequency tones. The relative errors of the approximationxk to the op-
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Fig. 3 The approximate solutions of the DSL-dynamic spectrum management problem (77) reported by three
algorithms and the optimal solution.

timal solutionx∗, errk := ‖xk−x∗‖/‖x∗‖, are 0.00853, 0.00528 and 0.03264, respectively.
The corresponding objective values are 13264.68530, 13259.67633 and 13405.79722, re-
spectively, while the optimal value is 13267.11919.

Figure 3 shows that the solutions reported by three algorithms are consistently close to
the optimal one. As claimed in [38],PCBD works much better than subgradient methods.
However, we can see from this application that Algorithms 1 and 2 require fewer iterations
thanPCBD to reach a relatively similar approximate solution.

8 Conclusions

In this paper, two new algorithms for large scale separable convex optimization have been
proposed. Their convergence has been proved and complexitybound has been given. The
main advantage of these algorithms is their ability to dynamically update the smoothness pa-
rameters. This allows the algorithms to control the step-size of the search direction at each
iteration. Consequently, they generate a larger step at thefirst iterations instead of remain-
ing fixed for all iterations as in the algorithm proposed in [27]. The convergence behavior
and the performance of these algorithms have been illustrated through numerical examples.
Although the global convergence rate is still sub-linear, the computational results are re-
markable, especially when the number of variables as well asthe number of nodes increase.
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From a theoretical point of view, the algorithms possess a good performance behavior, due
to their numerical robustness and reliability. Currently,the numerical results are still prelim-
inary, however we believe that the theory presented in this paper is useful and may provide
guidance for practitioners. Moreover, the steps of the algorithms are rather simple so they
can easily be implemented in practice. Future research directions include the dual update
scheme and extensions of the algorithms to inexact variantsas well as applications.
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A. The proofs of Technical Lemmas

This appendix provides the proofs of two technical lemmas stated in the previous sections.

A.1. The proof of Lemma 4.The proof of this lemma is very similar to Lemma 3 in [31].

Proof Let ŷ := y∗(x̂;β2) := 1
β2
(Ax̂−b). Then it follows from (21) that:

ψ(x;β2)
(21)
≤ ψ(x̂;β2)+∇1ψ(x̂;β2)

T(x1− x̂1)+∇2ψ(x̂;β2)
T(x2− x̂2)

+
Lψ

1 (β2)

2
‖x1− x̂1‖2+

Lψ
2 (β2)

2
‖x2− x̂2‖2

(79)
def.ψ(·;β2)=

1
2β2

‖Ax̂−b‖2+ŷTA1(x1−x̂1)+ŷTA2(x2−x̂2)+
Lψ

1 (β2)

2
‖x1−x̂1‖2+

Lψ
2 (β2)

2
‖x2−x̂2‖2.

= ŷT (Ax−b)− 1
2β2

‖Ax̂−b‖2+
Lψ

1 (β2)

2
‖x1−x̂1‖2+

Lψ
2 (β2)

2
‖x2− x̂2‖2.

By using the expressionf (x;β2) = φ(x)+ψ(x;β2), the definition of ¯x, the condition (29) and (79) we have:

f (x̄;β2)
(79)
≤ φ(x̄)+ ȳT A1(x̄1−xc

1)+ ȳT A2(x̄2−xc
2)

+
Lψ

1 (β2)

2
‖x̄1−xc

1‖2+
Lψ

1 (β2)

2
‖x̄2−xc

2‖2+
1

2β2
‖Axc−b‖2

(28)
= min

x∈X

{

φ(x)+
1
β2

‖Axc−b‖2+ ȳTA1(x1−xc
1)+ ȳTA2(x2−xc

2)

+
Lψ

1 (β2)

2
‖x1−xc

1‖2+
Lψ

2 (β2)

2
‖x2−xc

2‖2
}

− 1
2β2

‖Axc−b‖2

= min
x∈X

{

φ(x)+ ȳT (Ax−b)+
Lψ

1 (β2)

2
‖x1−xc

1‖2+
Lψ

1 (β2)

2
‖x2−xc

2‖2

}

− 1
2β2

‖Axc−b‖2

(29)
≤ min

x∈X

{

φ(x)+ ȳT (Ax−b)+β1[p1(x1)+ p2(x2)]
}

− 1
2β2

‖Axc−b‖2

= d(ȳ;β1)−
1

2β2
‖Axc−b‖2 ≤ d(ȳ;β1),

which is indeed the condition (24). �
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A.2. The proof of Lemma 7.

Proof Let us defineξ (t) := 2√
1+4/t2+1

. It is easy to show thatξ is increasing in(0,1). Moreover,τk+1 =

ξ (τk) for all k ≥ 0. Let us introduceu := 2/t. Then, we can show that2u+2 < ξ ( 2
u) <

2
u+1 . By using this

inequalities and the increase ofξ in (0,1), we have:

τ0

1+2τ0k
≡ 2

u0+2k
< τk <

2
u0+k

≡ 2τ0

2+ τ0k
. (80)

Now, by the update rule (62), at each iterationk, we only either updateβ k
1 or β k

2 . Hence, it implies that:

β k
1 = (1− τ0)(1− τ2) · · · (1− τ2⌊k/2⌋)β0

1 ,
(81)

β k
2 = (1− τ1)(1− τ3) · · · (1− τ2⌊k/2⌋−1)β0

2 ,

where⌊x⌋ is the largest integer number which is less than or equal to the positive real numberx. On the other
hand, sinceτi+1 < τi for i ≥ 0, for anyl ≥ 0, it implies:

(1− τ0)∏2l
i=0(1− τi)< [(1− τ0)(1− τ2) · · · (1− τ2l )]

2 < ∏2l+1
i=0 (1− τi),

(82)
and ∏2l−1

i=0 (1− τi)< [(1− τ1)(1− τ3) · · · (1− τ2l−1)]
2 < (1− τ0)

−1 ∏2l
i=0(1− τi ).

Note that∏k
i=0(1− τi) =

(1−τ0)

τ2
0

τ2
k , it follows from (81) and (82) fork≥ 1 that:

(1− τ0)β0
1

τ0
τk+1 < β k+1

1 <
β0

1

√
1− τ0

τ0
τk−1, and

β0
2

√
1− τ0

τ0
τk+1 < β k+1

2 <
β0

2

τ0
τk−1.

By combining these inequalities and (80), and noting thatτ0 ∈ (0,1), we obtain (63). �
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