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Abstract

This paper presents several methodological and algorithmic improvements over a state-of-the-
art dynamic programming algorithm for solving the bi-objective {0, 1} knapsack problem. The
variants proposed make use of new definitions of lower and upper bounds, which allow a large
number of states to be discarded. The computation of these bounds are based on the application
of dichotomic search, definition of new bound sets, and bi-objective simplex algorithms to solve
the relaxed problem. Although these new techniques are not of a common application for dynamic
programming, we show that the best variants tested in this work can lead to an average improve-
ment of 20% in CPU-time and significant less memory usage than the original approach in a wide
benchmark set of instances, even for the most difficult ones in the literature.

1 Introduction

The single-objective {0, 1} knapsack problem consists of choosing a subset of objects from a finite set
that maximizes the overall profit, which results from the sum of the individual benefits of the selected
objects where a capacity constraint must be fulfilled, i.e., the sum of the weights of the selected objects
must not surpass a given capacity [12, 14].
The multi-objective version of this problem consists of “maximizing” a finite small number of objective
functions under the same budgetary constraint. The operator “maximizing” means to search for all
efficient (nondominated) solution (vectors). The expression “efficient solutions” is related to the space
of objects while the expression “nondominated vectors” is related to the space of the outcomes or
objective functions values. A vector is said to be nondominated if there is no other vector that
improves simultaneously the outcomes of all the objectives.
The problem of searching for efficient solutions can be stated as a {0, 1} linear programming problem
as follows:

“max” f(x) =
(
f1(x), f2(x), . . . , f `(x), . . . , fp(x)

)
subject to: wTx 6W,x ∈ {0, 1}n (1)
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where f `(x) =
∑n

j=1 v
`
jxj , v

`
j is the benefit of object j on objective `, j = 1, . . . , n, ` = 1, . . . , p, and

x = (x1, . . . , xj , . . . , xn) with xj = 1 if object j is included in the subset of the selected objects and
xj = 0 otherwise; w = (w1, . . . , wj , . . . , wn) is the weight vector andW is the overall capacity. Operator
“max” means that it is not possible to maximize all the objectives simultaneously. Assume, without
loss of generality, that v`j , wj , and W belong to N, j = 1, . . . , n, ` = 1, . . . , p and that

∑n
j=1wj > W

(to avoid obvious solutions). In this paper, we consider the bi-objective {0, 1} knapsack problem, i.e.,
the multi-objective {0, 1} knapsack problem with p = 2. Applications of this problem can be found in
capital budgeting [17, 10], transportation [19], and biology [13].
Several approaches were developed to deal with the multi-objective {0, 1} knapsack problem. Some
are of an exact nature, such as branch-and-bound algorithms [20] and dynamic programming (DP) [11,
4, 2], while others are approximate approaches including polynomial approximations [6, 3], heuristics
[7], metaheuristics [8], and hybrid methods [9]. Exact based algorithms, such as DP, can deal with
different and difficult medium-large size instances in a very efficient way [2], while approximation
based algorithms appear to be more relevant for very large scale problems.
This article deals with several improvements of DP algorithm of Bazgan et al. [2] for the bi-objective
{0, 1} knapsack problem (herewith called BKP-DP). This approach uses several complementary dom-
inance relations to discard elements from the current pool of partial solutions at each stage. For one
of the three dominance relations, the algorithm needs to update two bounds at each stage: an upper
bound vector obtained for each partial solution in the pool based on the improved state-of-the-art
Martello and Toth bound [14], and a lower bound set that contains feasible extensions of partial solu-
tions in the pool. A partial solution is discarded if its upper bound is dominated by some extension
in a given lower bound set. Clearly, the tighter the lower and the upper bound are, the larger the
number of partial solutions that can be discarded. In this article, we present three ways of tightening
the upper bound and the lower bound set. Briefly, the three techniques are described as follows:

• Variant 1, which computes of a small set of efficient solutions by solving a sequence of weighted
scalarized bi-objective {0, 1} knapsack problem with dichotomic search.

• Variant 2, which computes the nondominated extreme vectors of the relaxation of the prob-
lem solved by a bi-objective simplex algorithm and makes use of a repairing mechanism (the
improvement method described by Gomes da Silva et al. [8]) to restore feasibility.

• Variant 3, which generates feasible extensions for each partial solution at a given stage k by
adding its profit to the profits obtained through dichotomic search on the reduced bi-objective
{0, 1} knapsack problem with the remaining n− k objects.

Note that Variants 1 and 2 will generate a lower bound, whereas Variant 3 will generate an upper
bound for each partial solution. In addition, note that Variant 1 and 3 consist of solving several
single-objective {0, 1} knapsack problems. However, Variant 1 performs dichotomic search once and
Variant 3 is only performed in the last stages.
In this article, we incorporate the computation of these bounds in the state-of-the-art DP algorithm
proposed by Bazgan et al. [2] and analyze, from an experimental point of view, the performance of
several variants on a wide benchmark set of instances. The paper is organized as follows. Section 2
introduces the main definitions and notation in multi-objective optimization as well as an explanation
of BKP-DP algorithm. The three variants used for improving the BKP-DP algorithm are presented
in Section 3. Section 4 comprises the design of the experiments, computational results and discussion.
Finally, Section 5 provides conclusions and lines for future research.
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2 Main concepts, definitions, and notation

This section is devoted to the main concepts in multi-objective combinatorial optimization, their
definitions, notation as well as a brief description of BKP-DP algorithm proposed by Bazgan et al. [2].

2.1 Optimality concepts

Let X denote the set of feasible solutions in the object or decision space and Y their image, Y := f(X),
in the objective space. Let x, x′ ∈ X. We introduce the following dominance relations for p objective
functions:

• f(x)∆f(x′) (x dominates x′), if and only if fi(x) > fi(x
′), i = 1, . . . , p;

• f(x)∆f(x′) (x strictly dominates x′), if and only if x∆x′ and f(x) 6= f(x′).

A solution x ∈ X is efficient if and only if there is no other feasible solution x′ ∈ X such that
f(x′)∆f(x) and its corresponding objective vector is nondominated. The set of all efficient solutions is
called the efficient set and the set of all nondominated vectors is denoted by ND(Y ). The algorithms
described in this article output the set ND(Y ). The computation of the efficient set can be obtained
by keeping states with the same profit and weight.
Very often in multi-objective combinatorial optimization it is usual to distinguish between supported
and unsupported vectors (solutions) in the objective (decision) space [18]. Consider Conv(Y ) the con-
vex hull of Y , Bound(Conv(Y )) the boundary of Conv(Y ), and Int(Conv(Y )) the interior of Conv(Y ).
A nondominated supported vector, f(x), is a nondominated vector located in Bound(Conv(Y )), while
an unsupported nondominated vector f(x′) belongs to Int(Conv(Y )). The preimage of supported
(unsupported) vectors are called supported (unsupported) efficient solutions. When necessary, the
notation NDS(Y ) and NDU(Y ) is used to denote the set of all supported nondominated vectors and
all unsupported nondominated vectors, respectively.

2.2 Main features of BKP-DP algorithm

The sequential process used in BKP-DP algorithm consists of n stages. At any stage k, the algorithm
generates a set of states Sk that correspond to a subset of the feasible solutions made up of objects
belonging exclusively to the k first objects, k = 1, . . . , n. A state s =

(
s1, s2, s3

)
∈ Sk represents

a feasible solution of profits s1 and s2, and weight s3. At each stage k = 1, . . . , n, the states are
generated according to the following recursion:

Sk := Dom
(
Tk := Sk−1 ∪

{(
s1 + v1k, s

2 + v2k, s
3 + wk

)
: s3 + wk 6W, s ∈ Sk−1

})
(2)

with the basis case S0 := {(0, 0, 0)}. Dom(Tk) denotes the use of certain dominance relations that
allow to filter the states in Tk. The efficiency of BKP-DP depends strongly on the definition of these
relations. Bazgan et al. propose the use of three dominance relations at each stage k = 1, . . . , n that
allow to discard states in Tk that will not lead to other states that represent nondominated vectors.
At stage k = 1, . . . , n, considering two states s ∈ Tk and s̄ ∈ Tk, s is discarded, and thus does not
belong to Sk, if and only if at least one of the following three conditions holds:

• (D1) s̄ =
(
s1 + v1k, s

2 + v2k, s
3 + wk

)
and s3 6W −

n∑
j=k

wj ,

• (D2)
(
s̄1, s̄2

)
∆
(
s1, s2

)
and s̄3 6 s3 if k < n,
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Figure 1: Illustration of condition (D3).

• (D3)

s̄1 +
∑
j∈J

v1j , s̄
2 +

∑
j∈J

v2j

 ∆u(s) and s̄3 6W −
∑
j∈J

wj ,

where u(s) is an upper bound of state s and J corresponds to the indices of the n − k last objects
with respect to given pre-ordering of objects provided that the capacity constraint is not violated.
Condition (D1) discards states whose residual capacity exceeds or is equal to the sum of the weights of
the remaining objects. Condition (D2) generalizes the dominance relation used within the Nemhauser-
Ullman algorithm [15]. Condition (D3) discards states based on the comparison between lower and
upper bounds (right and left-hand side of the first condition of D3, respectively). At each comparison,
a lower bound set is given by considering all states s̄ ∈ Tk. Figure 1 provides an illustration of this
condition where white circles correspond to the lower bound set. In the left-hand-side plot, state s is
discarded since u(s) is dominated by a lower bound vector. In the right-hand-side plot, state s is not
discarded since u(s) is not dominated by any lower bound vector.
The upper bound u(s) := (u1, u2) in condition (D3) is computed according to the improved Martello
and Toth bound [14]. Let W (s) := W − s3 be the residual capacity associated to state s ∈ Sk. We
denote by ci the position of the first object in {k + 1, . . . , n} that cannot be added to s due to the
capacity constraint, when the objects are ordered according to a given criterion. Thus, given the same
ordering of the objects, the upper bound ui, i = 1, 2, is computed as follows:

ui := si +

ci−1∑
j=k+1

vij + max

{⌊
W (s)

vici+1

wci+1

⌋
,

⌊
vici −

(
wci −W (s)

) vici−1
wci−1

⌋}
(3)

Two orderings of the objects were considered by the authors. Let Oi corresponds to the sequence of
objects ordered according to the ratios vk/wk for objective i and let ri be the rank of a given object
with respect to objective i, i = 1, 2. Osum denotes an order according to increasing values of the sum
of the positions of objects in orders O1 and O2. Omax denotes an order according to the increasing
values of the maximum rank of objects in orders O1 and O2, where the worst rank of an object in the
orders above is given by max{r1, r2}+ (r1 + r2)/2n.
Bazgan et al. [2] showed that is possible to devise a DP algorithm that operates under the three
dominance conditions and orderings as described above and that Sn will contain all and only the
elements of ND(Y ). For efficiency reasons, the authors suggest to test conditions (D1) and (D2) first
since they are easier to check. Condition (D3), which is more computationally expensive, is a final
step at each stage of the algorithm.
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3 Algorithmic variants

In this study, three variants are proposed that explore three different ways of defining upper and lower
bounds and that allow to discard further states. Therefore, they redefine condition (D3) as described
in Section 2.2 and include a pre-processing step.

3.1 Variant BKP-DP1

In variant BKP-DP1, a lower bound set is given by the set of supported solutions of the bi-objective
{0, 1} knapsack problem that is computed in a pre-processing step. This is obtained by performing
dichotomic search [1]. This procedure consists of constructing a weighted sum objective function of
the bi-objective {0, 1} knapsack problem and optimize according to different weights. The following
procedure guarantees that set NDS(Y ) is found:

1. Compute the lexicographic maximal (lexmax) solutions x1 and x2 w.r.t. f1 and f2, respectively.
Let x1 ∈ arg lexmax

{(
f1(x), f2(x)

)
: x ∈ X

}
and x2 ∈ arg lexmax

{(
f2(x), f1(x)

)
: x ∈ X

}
.

Let y1 := f(x1), y2 := f(x2), V := ∅ and k := 2.

2. Let R := {y1, . . . , yk} with y11 > y12 > . . . > y1k. If R \ V = {yk}, then stop; otherwise let
yi ∈ arg max

{
y1 : y ∈ R \ V

}
.

3. Let λ1 := y2i+1 − y2i and λ2 := y1i − y1i+1. Let v∗j = λ1v1j + λ2v2j , for j = 1, . . . , n.

4. Compute the (single-objective) optimal solution x̄ with respect to profits v∗. If f(x̄) = yi or
f(x̄) = yi+1, then V := V ∪ yi; otherwise, let yk+1 := f(x̄) and R := R ∪ yk+1. Let k = k + 1
and go to Step 2.

At the end of above procedure, set R will contain only and all elements of NDS(Y ).
For this variant, we rewrite condition (D3) as given in Section 2.2 as follows: At a stage k = 1, . . . , n, a
state s ∈ Tk is removed if there exists a vector s̄ ∈ NDS(Y ) such that s̄∆u(s). Note that, as opposed
to the original algorithm proposed by Bazgan et al. [2] where a lower bound set is updated for each
partial solution in the pool (see condition D3 in Section 2.2), the supported solutions need only to be
computed once in a pre-processing step. However, this implies that an NP-hard problem has to be
solved for each weighted sum problem. In the implementation used in this study, the code of Pisinger
[16] was adapted to solve each weighted sum problem. Preliminary computational results on a wide
benchmark set of problems indicated that this implementation is very fast in practice.

3.2 Variant BKP-DP2

Variant BKP-DP2 also computes a lower bound set as variant BKP-DP1, but avoids the drawback
of solving an NP-hard problem as described in the previous section. This is performed by solving
the relaxation of the bi-objective {0, 1} knapsack problem with a simplex algorithm and restoring
the feasibility of the relaxed solutions. The simplex algorithm described as follows computes all the
nondominated extreme vectors as well as efficient solutions of the bi-objective problem. Hence, it is
a more complete version of the algorithm presented in Gomes da Silva et al. [8] that was used to
compute only some extreme non-dominated vectors.
The continuous 0 − 1 bi-objective knapsack problem can be formalized as follows (see Section 1 for
the notation and Eq. (1) for the discrete variant):

max f(x) =
(
f1(x), f2(x)

)
subject to: wTx 6W,x ∈ [0, 1]n

(4)
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The simplex algorithm computes the set of all nondominated vectors of problem (4). It start from
one lexicographically-optimal solution. Then, it proceeds with an efficient pivoting process until an
efficient solution of optimal value for objective f2 is obtained. In order to obtain the lexicographically-
optimal solution, the objects are sorted in non-increasing order of the profit-to-weight ratio v1k/wk. In
case of ties, the objects with the same profit-to-weight ratio are sorted in non-increasing order of the
profit-to-weight ratio for v2k/wk.

Remark 3.1 If two objects j and ` have the same profit-to-ratio on the first and the second objective,
then consider only one object of weights wj + w` and of profit (v1j + v1` , v

2
j + v2` ).

The lexicographical-optimal solution x∗ is obtained by using a greedy procedure that includes sorted

objects until the capacity is achieved. Let c = min
{
j :
∑j

k=1wj > W
}

be the critical object; then

x∗ = (x∗1, . . . , x
∗
n) is such that:

x∗j =


1 for j = 1, . . . , c− 1,(
W −

c−1∑
k=1

wk

)
/wc, for j = c,

0 for j = c+ 1, . . . , n.

Given that x∗c is not equal to zero (that case will be considered later on), it constitutes an efficient
basic variable. Note that an efficient basis is constituted by only one efficient basic variable.
The algorithm uses a pivoting procedure that ensures the transition from one efficient solution to an
adjacent one that decreases the value on the first objective. This procedure, which starts with solution
x∗ and one of its associated efficient basis {x∗c}, is described as follows for the general case considering
an efficient solution x and one of its associated efficient basis {xc}.

1. Given that variable xc is basic, compute the reduced costs associated to variable xj on the
objective i that is V i

(c,j) = vij − vic · wj/wc, i = 1, 2 and j = 1, . . . , n. The indexes of candidates
variables to enter the basis are:

J =

{
j ∈ {1, . . . , n} \ c such that:

V 1
(c,j) < 0 and V 2

(c,j) > 0, if xj = 0

V 1
(c,j) > 0 and V 2

(c,j) < 0, if xj = 1

}

If J is an empty set, the algorithm terminates since it is not possible to increase the value of
solution x on the second objective. Hence, x is an efficient solution that is optimal for the second
objective. Otherwise, the algorithm proceeds with an efficient pivoting between xc and variable
xj∗ (j∗ ∈ J), which provides a new efficient solutions such that the slope of the line through this
new solution and the previous solution x is the smallest. Then, j∗ is such that

V 2
(c,j∗)

V 1
(c,j∗)

= min
j∈J

V 2
(c,j)

V 1
(c,j)

Remark 3.2 Since the objects of the same profit-to-weight ratio for all j ∈ {1, . . . , n} \ c were
added, it does not hold that V 1

(c,j) = 0 and V 2
(c,j) = 0.

Remark 3.3 However, it is possible to obtain variables such that V 1
(c,j) = 0 and V 2

(c,j) < 0 or

V 1
(c,j) < 0 and V 2

(c,j) = 0, for xj = 0, as well as variables such that V 1
(c,j) = 0 and V 2

(c,j) > 0 or

V 1
(c,j) > 0 and V 2

(c,j) = 0, for xj = 1. Note that these variables are not candidate to enter the
basis since they cannot lead to an efficient pivoting and to a new efficient solution.

Remark 3.4 Index j∗ is the index in J that maximizes the value of −V 2
(c,j)/

(
V 1
(c,j) − V

2
(c,j)

)
6



2. Let δ = wc/wj . The values of variables xc and xj are updated as follows.

if xj = 0



if δxc < 1


xj := δxc

xc := 0

xj enters the basis in substitution of xc

if δxc > 1


xj := 1

xc := xc − δ
xc remains in the basis

if δxc = 1


xj := 1

xc := 0

The solution is integer

if xj = 1



if δ(1− xc) < 1


xj := 1− δ(1− xc)
xc := 1

xj enters the basis in substitution of xc

if δ(1− xc) > 1


xj := 0

xc := xc + δ

xc remains in the basis

if δ(1− xc) = 1


xj := 0

xc := 1

The solution is integer

The final solution is efficient. The pivoting process is repeated with the new basic solution. In case of
degeneration, i.e., when we obtain an integer solution, the pivoting procedure is slightly different. We
consider all possible increasing pivots between xi and xj for i = 1, . . . , n and j = i+1, . . . , n satisfying
that

V 1
i,j > 0 and V 2

i,j < 0, if xi = 0 and xj = 1

V 1
i,j < 0 and V 2

i,j > 0, if xi = 1 and xj = 0
(5)

Among all these possible pivots satisfying (5), the algorithm pivots between xc and xj∗ such that

V 2
(c,j∗)

V 1
(c,j∗)

= min
V 2
(c,j)

V 1
(c,j)

Hence, the algorithm updates the values of xc and xj∗ using step 2 described above.
The computation of all the extreme nondominated vectors in the objective space defines an upper
bound set for ND(Y ). From these extreme points, a set of feasible vectors can be obtained and
used as a pool of solutions for the dynamic programming approach. The improved method to restore
feasibility is the one presented by Gomes da Silva et al. [8], the improvement method for the scatter
search algorithm. For each solution obtained by the simplex method described above, this repair
method iteratively removes the objects with the lowest profit-to-weight ratio to each objective, until
feasibility is achieved. Then, at each feasible solution, objects are inserted according to the non-
increasing order of the profit-to-weight ratio for each objective. The final set of solutions become a
lower bound set for the original bi-objective problem.
Let B denote the set of vectors returned by the procedure above. The condition (D3) as given in
Section 2.2 becomes as follows: At a stage k = 1, . . . , n, a state s ∈ Tk is removed if there exists a
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Figure 2: Illustration of upper bounds in BKP-DP3.

vector s̄ ∈ B such that s̄∆u(s). Similarly to the procedure described in Section 3.1, set B is computed
in a pre-processing step.

3.3 Variant BKP-DP3

Variant BKP-DP3 follows the same principle of variant BKP-DP1 but the upper bound is computed
in a different manner at a later stage. The main idea is to provide a tighter upper bound. At stage k,
several solutions for a reduced {0, 1} knapsack problem with the remaining n−k objects that were not
yet considered in the chosen partial solution are computed. In particular, two solutions are optimal
for each objective of the reduced problem and the remaining ones are optimal for several weighted sum
scalarized problems, by varying the weight parameters, or by using dichotomic search (see Section 3.1).
Then, the profits of these solutions are summed up to the state s ∈ Tk, which provides several upper
bounds. In the following, we consider only one optimal solution for the weighted sum scalarized
problem with equal weights. We will denote by u1(s) := (u11, u

1
2) and u2(s) := (u21, u

2
2), the bounds

that were obtained from optimal solutions for f1 and f2, respectively, and by u3(s) := (u31, u
3
2), the

bound obtained from the scalarized problem with equal weights.
The three upper bounds described above define two regions of interest in the objective space, denoted
by A, which is delimited by u1(s), u3(s) and (u31 − u12 + u32, u

1
2), and B, which is delimited by u2(s),

u3(s) and (u21, u
3
2 − u21 + u31). See left-hand-side plot of Figure 2. Note that A and B identify regions

where upper bounds can still be found for a scalarized problem with a different combination of weights.
However, region f1−u31 + f2−u32 > 0, denoted by C in the left plot of Figure 2, cannot have an upper
bound by the optimality definition of u3(s). Note that, since there may be alternative optima for the
scalarized problem, one should not expect that the regions A and B are connected, as shown in the
right-hand-side plot of Figure 2.
The removal, or not, of states in Tk works as follows. For a given state s ∈ Tk and the sequence(
`1, . . . , `m

)
of m lower bounds generated as in variant BKP-DP1, sorted in increasing order of f1

(and decreasing order of f2), consider a monotone rectilinear polyline L that connects the points in
this sequence. See the straight line in Figure 3. The state s can only be discarded if L and either
region A or B do not intersect. If they intersect at any place, then s cannot be discarded. Figure 3
illustrates the latter case. The detection of whether L intersects a triangular region is performed by
a classical technique of segment-segment intersection [5]. For efficient queries, balanced binary trees
were used to implement both bound sequences.
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4 Computational experiments

4.1 Design of experiments

The experiments were performed in a computer cluster with 6 nodes, each with an AMD Phenom II
X6 processor with 3.2GHz, 3 and 6 MB L2 and L3 Cache, respectively, and 12 GB DDR3 SDRAM.
All implementations were written in C++ and shared the same data structures. The operating system
was Ubuntu 8.04 LTS. All codes were compiled with g++ version 4.2.4 using the -O3 flag.
The bi-objective {0, 1} knapsack instances were the same as described by Bazgan et al.[2]. Each
weight and profit value of each instance is generated randomly according to an uniform distribution in
a given range. Different ranges induces different structure on the input data that may affect algorithm
performance. The instances considered are as follows:

• Type A (random instances) with weights and profits uniformly random generated in the range
[1, 1000].

• Type B (unconflicting instances) with profits v1j and v2j of each object j in the range [111, 1000]

and [v1j − 100, v1j + 100], respectively; this induces a positive correlation between profits of an
object; the weights are in the range [1, 1000].

• Type C (conflicting instances) with the profit v1j and weight wj of each object j in the range

[1, 1000]; the profit v2j is in the range [max{900− v1j , 1},min{1100− v1j , 1000}], which induces a
negative correlation between profits of an object.

• Type D (conflicting instances with correlated weights) Similar to Type C instances, but the
weights are in the range [v1j + v2j − 200, v1j + v2j + 200], which induces a positive correlation
between the weight and the two profits of an object.

For every instance, the capacity W is half of the total sum of weight values.
Variant BKP-DP3 follows the same principle of variant BKP-DP1 until a given stage i. From this
stage on, the algorithm computes an upper bound set of three solutions per state, as mentioned in
Section 3.3. We considered i = 0.05 · n, 0.08 · n and 0.1 · n; we denote the corresponding variants
by BKP-DP3.05, BKP-DP3.08 and BKP-DP3.10, respectively. Preliminary experiments suggest that
variant BKP-DP3 takes a large amount of time, if the computation of the new bound is performed at
an earlier stage.
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Type n |ND(Y )| BKP-DP BKP-DP1 BKP-DP2 BKP-DP3.05 BKP-DP3.08 BKP-DP3.10
A 100 159.3 0.5 0.4 0.4 0.4 0.5 0.5

200 529.0 26.6 19.7 19.8 21.4 20.7 20.3
300 1 130.7 204.9 155.3 155.2 163.1 159.4 159.1
400 1 713.3 835.9 603.5 600.9 630.4 617.2 627.6
500 2 537.5 2 690.6 1 941.4 1 953.2 2 029.6 2 085.9 2 281.1
600 3 593.9 6 862.8 5 052.7 5 019.6 5 282.3 5 663.6 6 433.1
700 4 814.8 14 236.2 12 024.2 12 115.1 12 498.4 14 141.8 16 907.0

B 600 74.3 2.2 1.6 2.0 1.7 1.7 1.7
700 78.6 3.6 2.6 3.2 2.7 2.7 2.7
800 118.1 8.7 6.8 8.0 6.9 6.9 7.1
900 124.4 11.0 8.7 10.6 8.8 9.1 9.3

1 000 157.0 19.4 15.0 17.6 16.0 16.4 16.5
2 000 477.7 624.5 487.5 514.9 493.9 502.3 510.6
3 000 966.9 4 555.8 3 513.2 3 610.0 3 622.3 3 638.8 3 757.7
4 000 1 542.3 17 676.0 15 442.0 15 829.0 15 767.9 15 866.5 16 336.4

C 100 558.2 5.5 4.2 4.3 4.7 4.5 4.4
200 1 612.8 141.7 104.3 103.6 110.9 113.1 123.9
300 2 893.6 1 027.3 731.4 724.0 783.8 904.5 1 076.1
400 4 631.2 4 164.9 3 006.3 3 001.6 3 324.2 4 389.5 6 062.8
500 7 112.1 9 324.7 8 625.4 9 910.0 8 642.3 14 892.4 21 357.6

D 100 1 765.4 93.5 82.8 83.1 88.5 89.9 91.1
150 3 418.5 701.7 585.2 605.9 632.9 653.5 696.1
200 5 464.0 3 246.9 2 792.3 2 750.3 2 943.3 3 166.5 3 652.0

Table 1: Average CPU-time of several approaches for the benchmark set of instances.

4.2 Results and discussion

Tables 1 and 2 presents the CPU-time and maximum number of states maintained in memory by the
implementations of the original BKP-DP and the three variants proposed in this article. The values
are averaged over each set of instances of the same type and size. The underlined values are the best
for each type and instance size.
The experimental results indicate that variants BKP-DP1 and BKP-DP2 are able to reach an average
of 20% improvement of CPU-time with respect to performance of BKP-DP as well as lower maximum
number of states. Moreover, in most instances of type B, BKP-DP1 performs relatively faster than
BKP-DP2. This fact seems to be related to the lower maximum number of states that are kept by
BKP-DP1. However, in the remaining type of instances, the running time of BKP-DP1 and BKP-DP2
is very similar. Except for instances of type B, BKP-DP1 keeps the lowest maximum number of states.
In general, variants BKP-DP3 take more time to terminate than variants BKP-DP1 and BKP-DP2,
and even more time than BKP-DP on large instances of type A and C. The results also indicate that it
is preferable to start the computation of the upper bound set in BKP-DP3 as latter as possible, which
means that the time spent on computing a more precise upper bound does not pay-off the pruning.
Still, the time spent by the best performing variant BKP-DP3 is always performing better than the
original approach.

5 Conclusions

In this paper we presented some methodological and computational improvements for the state of the
art implementation of dynamic programming based algorithms for bi-objective 0, 1-knapsack problems.
In general, all the proposed variants improved the baseline implementation, and the most performant
ones led to an important gain in terms of CPU time and memory requirements, mainly in large
instances; on average about 20% less time consuming and 15% less memory usage than the state of
the art implementation. This shows that the classical and improved version of dynamic programming
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Type n |ND(Y )| BKP-DP BKP-DP1,3∗ BKP-DP2

A 100 159.3 16 817 13 813 13 673
200 529.0 206 910 165 805 164 385
300 1 130.7 884 959 717 865 713 064
400 1 713.3 2 157 218 1 693 984 1 683 407
500 2 537.5 4 873 075 3 808 216 3 788 499
600 3 593.9 9 486 857 7 630 158 7 590 283
700 4 814.8 15 225 100 13 372 353 13 299 838

B 600 74.3 32 929 27 143 29 079
700 78.6 42 408 34 790 37 404
800 118.1 85 997 68 785 72 326
900 124.4 88 199 72 202 76 885

1 000 157.0 123 244 104 657 109 726
2 000 477.7 1 448 870 1 191 158 1 209 903
3 000 966.9 5 758 563 4 761 559 4 795 447
4 000 1 542.3 14 674 987 13 151 485 13 211 354

C 100 558.2 103 412 79 711 77 457
200 1 612.8 913 967 681 135 672 440
300 2 893.6 3 446 587 2 589 395 2 554 477
400 4 631.2 9 292 701 7 108 549 7 039 865
500 7 112.1 13 440 388 13 309 231 13 204 383

D 100 1 765.4 1 129 540 1 037 776 1 021 365
150 3 418.5 4 230 011 3 829 118 3 792 758
200 5 464.0 12 347 355 11 167 991 11 090 087

Table 2: Maximum amount of states in memory of several approaches for the benchmark set of
instances; BKP-DP1,3∗ denotes variants BKP-DP1, BKP-DP3.05, BKP-DP3.08 and BKP-DP3.10.

algorithms can be improved with the insertion of non-classical techniques for improving the bound
sets on the set of non-dominated solutions for the bi-objective case even for the most difficult instances
available in the literature. More variants and combination of variants can be done in future research.
One promising line of future research is the one related to variant BKP-DP3 and the computation
of more than three solutions for deriving a bound. Another avenue for future research is to use the
concept of bi-objective core and the heuristic associated with it to compute a good pool of initial
solutions [7].
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