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Abstract In this paper we consider cardinality-constrained convex programs
that minimize a convex function subject to a cardinality constraint and other
linear constraints. This class of problems has found many applications, includ-
ing portfolio selection, subset selection and compressed sensing. We propose
a successive convex approximation method for this class of problems in which
the cardinality function is first approximated by a piecewise linear DC function
(difference of two convex functions) and a sequence of convex subproblems is
then constructed by successively linearizing the concave terms of the DC func-
tion. Under some mild assumptions, we establish that any accumulation point
of the sequence generated by the method is a KKT point of the DC approxi-
mation problem. We show that the basic algorithm can be refined by adding
strengthening cuts in the subproblems. Finally, we report some preliminary
computational results on cardinality-constrained portfolio selection problems.
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1 Introduction

Cardinality constraint is often encountered in optimization models of real-
world applications when the decision variables have to be sparse or the number
of nonzero variables is required to be less than the total number of the decision
variables. A general form of cardinality-constrained convex program can be
expressed as

(P ) min f(x)

s.t. g(x) ≤ b,
card(x) ≤ K,

where f : <n → < is a differentiable convex function, g(x) = (g1(x), . . . , gm(x))T ,
gi : <n → <, i = 1, . . . ,m, are differentiable convex functions, b ∈ <m, and
card(x) ≤ K is called the cardinality constraint, where card(x) is the number
of nonzero variables of x and 1 ≤ K < n is a given integer. In the absence of
the cardinality constraint, problem (P ) reduces to a conventional convex pro-
gram that can be solved efficiently by nonlinear programming methods (see,
e.g., [29]).

It has been shown that problem (P ) is in general NP-hard due to the pres-
ence of the cardinality constraint (see [3,31]). The computational difficulty of
problem (P ) stems from the combinatorial nature of the cardinality constraint.
In fact, by introducing a 0-1 variable yi to enforce xi = 0 or xi 6= 0, problem
(P ) can be reformulated as the following mixed-integer 0-1 convex program:

(MIP ) min f(x)

s.t. g(x) ≤ b,
eT y ≤ K, y ∈ {0, 1}n

liyi ≤ xi ≤ uiyi, i = 1, . . . , n,

where e is the all one column vector and li and ui are the lower bound and
upper bound of xi, respectively. In practice, when there are no explicit lower
and upper bounds for the set X = {x ∈ <n | g(x) ≤ b}, we can set li = −M
and ui = M (i = 1, . . . , n) for a sufficiently large M .

In the applications of cardinality-constrained convex programs, the follow-
ing quadratic case of (P ) is of particular interest:

(QP ) min f(x) := xTQx+ cTx

s.t. Ax ≤ b,
card(x) ≤ K.

For instance, the cardinality-constrained or limited diversified mean-variance
portfolio selection model is a special case of (QP ) where the cardinality con-
straint limits the total number of different assets in the optimal portfolio (see,
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e.g., [3,4,8,21,31,35]). Recently, the topic of finding sparse solutions to a sys-
tem of linear equations has attracted much attention in subset selection prob-
lems of multivariate linear regression (see [1,28]) and compressed sensing prob-
lems of signal processing (see [6] and the references therein). The optimization
model of such problems is a special case of (QP ) where f(x) = ‖Ax− b‖22 and
the general linear constraints Ax ≤ b are absent.

Until recently, the studies of cardinality-constrained convex programs have
focused mainly on the quadratic case (QP ). Solution methods in the literature
for (QP ) can be classified into two main categories: exact methods and heuris-
tic methods. Most of the exact methods are based on tackling the mixed-integer
quadratic program reformation of (QP ) and are of branch-and-bound frame-
work using various relaxations and bounding techniques (see, e.g., [2,3,5,23,
31,33]). An MIQCQP reformulation is derived in [13] for a class of cardinality-
constrained portfolio selection problems where the assets returns are driven
by factor models. In [36], an SDP approach is proposed for finding the “best”
diagonal decomposition in the perspective reformulation of quadratic program
with cardinality and minimum threshold constraints. Recently, a novel geomet-
ric approach is proposed in [17] for minimizing a quadratic function subject
to a cardinality constraint. Based on this geometric approach, a branch-and-
bound method is then developed in [17] for solving cardinality-constrained
portfolio selection problems. Heuristic methods for (QP ) are typically meta-
heuristic approaches based on genetic algorithms, tabu search and simulated
annealing. A detailed literature review on metaheuristic methods for portfolio
selection with discrete features can be found in [8] and [35]. Heuristic methods
and local search methods for portfolio selection models with cardinality con-
straint and minimum buy-in threshold constraints have been also studied by
many other authors in the context of limited-diversification, small portfolios
and empirical study for comparing different portfolio selection models with
real features (see, e.g., [4,21,22,27]).

It is often convenient to define the cardinality function card(x) as (quasi)
`0-norm ‖x‖0, which is the limit of the `p-norm ‖x‖p as p tends to zero.
The `1-norm approximation has been a popular method for finding sparse
solutions to linear system (see [6] and the references therein). Replacing the
cardinality constraint by the `1-norm constraint ‖x‖1 ≤ K, we can obtain a
convex approximation of (P ):

(P1) min f(x)

s.t. g(x) ≤ b,
‖x‖1 ≤ K.

In contrast to its successful application in sparse solution to linear system, the
above `1-norm approximation problem, however, does not necessarily produce
solutions with desired sparsity due to the presence of the general constraints
g(x) ≤ b.
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Several nonconvex approximations to `0-norm have been recently studied
in the context of `2-`0 minimization problem defined by

min
x∈<n

‖Ax− b‖2 + λ‖x‖0,

where λ ∈ (0,+∞). Replacing λ‖x‖0 by a nonconvex and nonsmooth regu-
larization term λ‖x‖pp with p ∈ (0, 1) results in the `2-`p minimization prob-
lem. The complexity and the lower bound theory of nonzero entries of `2-`p
minimization were investigated in [9–11]. It was shown in [18] that the `2-`p
minimization with p ∈ (0, 1) is NP-hard. An interior-point potential reduc-
tion algorithm was proposed in [18] to search for a local solution of `2-`p
minimization. Similar nonconvex approximations to `0-norm have been used
in sparse generalized eigenvalue problem ([32]), feature selection ([34]), sparse
signal recovery ([7]) and matrix rank minimization ([14]). In [26], the following
exponential regularization term

λ

n∑
i=1

(1− exp(−α|xi|)), α > 0,

is suggested to seek for solutions of a concave minimization over a polyhedral
set with a minimum number of nonzero components. A successive linearization
algorithm was proposed in [26] to find a stationary point of the regularized
minimization problem over the polyhedral set. To the best of our knowledge,
the use of the above mentioned nonconvex approximations to ‖x‖0 has not
yet been investigated in the context of the general cardinality-constrained
convex program (P ) in the literature. The `p-(quasi) norm approximation and
the exponential approximation in [26] have been only used in the regularized
models of `0 minimization problems. Recently, a novel penalty decomposition
(PD) method was proposed in [25] for the general case of (P ). This PD method
framework was also used in [24] for rank minimization. Alternating direction
method or block coordinate descent method was utilized in [25] and [24] to
find a local optimal solution of the problem.

In this paper, we focus on solving the cardinality-constrained convex pro-
gram directly, without appealing to regularization terms. We propose a suc-
cessive convex approximation (SCA) method for solving problem (P ). This
method is based on a new piecewise linear DC approximation of the cardinal-
ity function card(x) or ‖x‖0. A prominent feature of this piecewise linear DC
approximation lies in its polyhedral properties which can be exploited to con-
struct tighter convex subproblems using strengthening cuts when linearization
method is used to derive convex approximation. We present a basic iterative
method in which a sequence of convex subproblems are solved successively.
Under some mild assumptions, we establish that any accumulation point of
the sequence generated by the method is a KKT point of the DC approxima-
tion problem. This basic SCA method can be further refined and improved by
adding strengthening cuts derived from the piecewise linear DC approximation
to ‖x‖0 ≤ K. We report computational results on test problems of portfolio se-
lection which show that our method is promising for finding feasible solutions
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of good quality. In particular, the proposed method is competitive with the PD
method of [25] and the two versions of the successive convex approximation
methods using `p-norm approximation and the exponential approximation of
[26], respectively, in terms of the quality of the feasible solutions obtained
within reasonable computation time.

The rest of the paper is organized as follows. In Section 2, we derive a
piecewise linear DC approximation to the cardinality function and establish
some technical results on the DC approximation. In Section 3, we first present
the basic successive convex approximation method and establish its conver-
gence. We then describe a refined method by adding n strengthening cuts into
the subproblems. In Section 4, we carry out numerical experiments to evalu-
ate the performance of the algorithm for solving test problems of cardinality-
constrained portfolio selection problems. Finally, we give some concluding re-
marks in Section 5.

2 Piecewise Linear DC Approximation to ‖x‖0

In this section, we derive a new piecewise linear DC approximation to the
cardinality function card(x), or equivalently, the `0-norm ‖x‖0. We also present
some basic properties of this DC approximation.

We first notice that

‖x‖0 =

n∑
i=1

sign(|xi|), (1)

where sign(z) denotes the sign function of z ∈ < which is discontinuous at 0.
Consider the following piecewise linear approximation of sign(|z|):

ψ(z, t) = min{1, 1

t
|z|}, (2)

where t > 0 is a parameter. Fig. 1 illustrates the graphs of functions y =
sign(|z|) and y = ψ(z, t).

We see that function ψ(z, t) can be also expressed as

ψ(z, t) =
1

t
|z| − 1

t

[
(z − t)+ + (−z − t)+

]
=

1

t
[d(z, 0)− d(z, t)],

where a+ = max(a, 0) and d(z, t) = (z−t)++(−z−t)+. Since d(z, t) is a convex
function of z, ψ(z, t) is a DC function (difference of two convex functions) of z.
Using ψ(z, t), we can construct the following piecewise linear underestimation
of the `0-norm function ‖x‖0 for x ∈ <n:

φ(x, t) =

n∑
i=1

ψ(xi, t) =
1

t
‖x‖1 −

1

t
h(x, t), (3)

where h(x, t) =
∑n
i=1 d(xi, t). We see that φ(x, t) is a nonsmooth piecewise

linear DC function of x.
The following lemma summarizes some basic properties of φ(x, t) and can

be easily proved.
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Fig. 1 (a) function y = sign(|z|); (b) function y = ψ(z, t)

Lemma 1 (i)For any t > 0, φ(x, t) is a piecewise linear underestimation of
‖x‖0, i.e., φ(x, t) ≤ ‖x‖0, ∀x ∈ <n, and φ(x, t) is a non-increasing function
of t.

(ii) For any fixed x ∈ <n, it holds that

lim
t→0+

φ(x, t) = ‖x‖0.

(iii) For any fixed t > 0, the subgradient of the convex function h(x, t) with
respect to x is ∂h(x, t) = {(ξ1, . . . , ξn)T | ξi ∈ ∂d(xi, t), i = 1, . . . , n}, where

∂d(xi, t) =


−1, xi ∈ (−∞,−t),
[−1, 0], xi = −t,
0, xi ∈ (−t, t),
[0, 1], xi = t,
1, xi ∈ (t,∞).

(4)

(iv) For any fixed t > 0, φ(x, t) is a continuous nonconvex function of
x ∈ <n and its Clarke’s generalized gradient (see [12]) with respect to x is
∂φ(x, t) = {(ξ1, . . . , ξn)T | ξi ∈ ∂ψ(xi, t), i = 1, . . . , n}, where

∂ψ(xi, t) =



0, xi ∈ (−∞,−t),
[−1/t, 0], xi = −t,
−1/t, xi ∈ (−t, 0),
[−1/t, 1/t], xi = 0,
1/t, xi ∈ (0, t),
[0, 1/t], xi = t,
0, xi ∈ (t,∞).

(5)

We now consider the DC approximation to problem (P ). Replacing the
`0-norm (cardinality) function in (P ) by the above DC approximation φ(x, t),
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we obtain the following problem:

(Pt) min f(x)

s.t. g(x) ≤ b,
φ(x, t) ≤ K.

Since φ(x, t) ≤ ‖x‖0 for any x ∈ <n and t > 0, problem (Pt) is a relax-
ation of (P ). Let F0 and Ft denote the feasible sets of problem (P ) and (Pt),
respectively, i.e.,

F0 = {x ∈ <n | g(x) ≤ b, ‖x‖0 ≤ K}, Ft = {x ∈ <n | g(x) ≤ b, φ(x, t) ≤ K}.

It is easy to see that F0 and Ft are closed sets in <n and F0 ⊆ Ft for any t > 0.
In the sequel, we always assume that F0 6= ∅ so that Ft 6= ∅ for any t > 0.

Example 1 To illustrate the feasible sets of (P ) and (Pt), let us consider a
small example of (P ) where F0 = {x ∈ [−1, 1]2 | ‖x‖0 ≤ 1}. The feasible set of
(Pt) is Ft = {x ∈ [−1, 1]2 | φ(x, t) ≤ 1} with 0 < t < 1. Fig. 2 illustrates the
two feasible sets, from which we can see that F0 is the union of the two cross
lines and Ft is the union of the small diamond and the four attached shorter
lines.

Fig. 2 Illustration of the piecewise linear approximation: (a) Set F0; (b) Set Ft

Let x∗ be a local optimal solution to (Pt). By Proposition 2.3.3 and The-
orem 6.1.1 in [12], under certain constraint qualification, there exist λ∗ ∈ <m+
and µ∗ ∈ <+ such that

0 ∈ ∇f(x∗) +∇g(x∗)λ∗ + µ∗∂φ(x∗, t), (6)

λ∗i (gi(x
∗)− bi) = 0, i = 1, . . . ,m, (7)

µ∗(φ(x∗, t)−K) = 0, (8)

where ∇g(x∗) ∈ <n×m is the Jacobian of g(x) at x∗. We call a point x∗

satisfying conditions (6)-(8) as a KKT point of problem (Pt).
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Let v(·) denote the (global) optimal value of problem (·). The following
theorem shows the relationship between (Pt) and (P ).

Theorem 1 (i) Ft is a non-decreasing set-valued function of t > 0 and limt→0+ Ft =
F0;

(ii) v(Pt) is a non-increasing function of t > 0 and limt→0+ v(Pt) = v(P ).

Proof. (i) Since φ(x, t) is non-increasing with respect to t, we have φ(x, t2) ≤
φ(x, t1) for any 0 < t1 ≤ t2, which in turn implies that F0 ⊂ Ft1 ⊆ Ft2 . It
follows that limt→0+ Ft exists (see, e.g., [30]) and limt→0+ Ft ⊇ F0. Next, we
prove that limt→0+ Ft ⊆ F0. For any x ∈ limt→0+ Ft, there exist tk → 0+

and xk ∈ Ftk such that xk → x. Since xk ∈ Ftk , we have xk ∈ X and
φ(xk, tk) ≤ K. Taking k → ∞ and using Lemma 1 (ii), we have x ∈ X and
‖x‖0 ≤ K. Therefore, x ∈ F0 and limt→0+ Ft ⊆ F0.

(ii) For any set Ω ∈ <n, define IΩ(x) as follows: IΩ(x) = 0 if x ∈ Ω and
IΩ(x) = +∞ if x 6∈ Ω. Let θt(x) = f(x) + IFt(x) and θ0(x) = f(x) + IF0(x).
Since f(x) is a continuous function, θt(x) and θ0(x) are lower semi-continuous
and proper functions. It can be easily verified that θt(x) epi-converges to θ0(x)
as t → 0+. Thus, it follows from (i) and Proposition 7.4 in [30] that IFt

(x)
epi-converges to IF0

(·) as t→ 0+. Therefore, by Theorem 7.33 in [30], we have
limt→0+ v(Pt) = v(P ). �

3 Successive Convex Approximation Methods

In this section, we first describe a basic successive convex approximation
method for the DC approximation problem (Pt) by constructing a sequence of
convex subproblems. We then establish the convergence of the basic method to
a KKT point of (Pt). To improve the approximation effects of the subproblems
to the original problem (P ), we further refine the basic method by adding a
group of strengthening cuts in the subproblems.

3.1 Basic Successive Convex Approximation Method

Let y be a feasible solution to (Pt). Recall that φ(x, t) = 1
t ‖x‖1−

1
th(x, t). Let

ξ ∈ ∂h(y, t), where ∂h(y, t) is defined in (4). By the convexity of h(·, t), we
have h(x, t) ≥ h(y, t) + ξT (x− y) for all x. Thus, we have the following convex
overestimation of φ(x, t) at y:

φ(x, t) ≤ u(x, y, ξ, t) :=
1

t
‖x‖1 −

1

t
[h(y, t) + ξT (x− y)], ∀x ∈ <n. (9)

Using (9), the following convex subproblem can be constructed at y:

(Pt(y, ξ)) min f(x)

s.t. g(x) ≤ b
u(x, y, ξ, t) ≤ K.
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The feasible set of (Pt(y, ξ)) is an inner approximation to problem (Pt). The
nonsmoothness of the term ‖x‖1 in function u(x, y, ξ, t) can be eliminated by
introducing a variable zi for each |xi|. The resulting problem is the following
convex program:

(CPt(y, ξ)) min f(x)

s.t. g(x) ≤ b
1

t
eT z − 1

t
[h(y, t) + ξT (x− y)] ≤ K,

− zi ≤ xi ≤ zi, i = 1, . . . , n.

Lemma 2 If (x∗, z̄) solves (CPt(y, ξ)), then (x∗, z∗) with z∗i = |x∗i | (i =
1, . . . , n) also solves (CPt(y, ξ)) and x∗ solves (Pt(y, ξ)).

Proof. We first note that −zi ≤ xi ≤ zi is equivalent to |xi| ≤ zi. If (x∗, z̄)
solves (CPt(y, ξ)), then the solution (x∗, z∗) with z∗i = |x∗i | (i = 1, . . . , n) is
also feasible to (CPt(y, ξ)) and has the same objective value as (x∗, z̄). Thus,
(x∗, z∗) is an optimal solution to (CPt(y, ξ)) and x∗ is an optimal solution to
(Pt(y, ξ)). �

The above lemma suggests that we can always obtain an optimal solution
(x∗, z∗) to (CPt(y, ξ)) with z∗i = |x∗i | by solving (CPt(y, ξ)) and setting z∗i :=
|x∗i | if necessary.

Let Ft(y, ξ) be the feasible sets of problem (Pt(y, ξ)). Since y ∈ Ft(y, ξ),
we have Ft(y, ξ) 6= ∅. Also, by (9), it holds that Ft(y, ξ) ⊆ Ft and hence
v(Pt(y, ξ)) ≥ v(Pt). Therefore, (Pt(y, ξ)), or equivalently, (CPt(y, ξ)), is a con-
vex inner approximation of (Pt).

In the sequel, we always assume that a certain constraint qualification
holds to guarantee the existence of a KKT point of (CPt(y, ξ)). This is not a
restrictive assumption and can be always satisfied when gi(x) (i = 1, . . . ,m)
are linear or quadratic functions.

The following lemma gives a sufficient condition for an optimal solution of
(CPt(y, ξ)) to be a KKT point of (Pt).

Lemma 3 Let ȳ ∈ Ft. If (ȳ, z̄) with z̄i = |ȳi| (i = 1, . . . , n) solves (CPt(ȳ, ξ̄))
for some ξ̄ ∈ ∂h(ȳ, t), then ȳ is a KKT point of (Pt).

Proof. By KKT conditions, there exist multipliers (λ̄, ᾱ, β̄, µ̄) ≥ 0 such that

∇f(ȳ) +∇g(ȳ)λ̄+ ᾱ− β̄ − 1

t
µ̄ξ̄ = 0, (10)

1

t
µ̄e− ᾱ− β̄ = 0, (11)

λ̄i(gi(ȳ)− bi) = 0, i = 1, . . . ,m, (12)

µ̄[
1

t
eT z̄ − 1

t
h(ȳ, t)−K] = 0, (13)

ᾱi(z̄i − ȳi) = 0, β̄i(z̄i + ȳi) = 0, i = 1, . . . , n. (14)
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We now show that ᾱ − β̄ − (1/t)µ̄ξ̄ ∈ µ̄∂φ(ȳ, t). In fact, since z̄i = |ȳi| for
i = 1, . . . , n, (14) implies that ȳi > 0 ⇒ β̄i = 0 and ȳi < 0 ⇒ ᾱi = 0. Thus,
we deduce from (11) that ᾱi = (1/t)µ̄ when ȳi > 0 and β̄i = (1/t)µ̄ when
ȳi < 0. When ȳi = 0, (11), together with ᾱi ≥ 0 and β̄i ≥ 0, implies ᾱi − β̄i ∈
[−(1/t)µ̄, (1/t)µ̄]. It then follows from (5) that ᾱ − β̄ − (1/t)µ̄ξ̄ ∈ µ̄∂φ(ȳ, t).
Thus, we infer from (10), (12) and (13) that ȳ satisfies the KKT conditions
(6)-(8) of (Pt). �

The main idea of the successive convex approximation (SCA) method is
to generate a sequence of solutions {xk} ⊂ Ft by successively solving the con-
vex conservative approximation subproblems (Pt(x

k, ξk)) via (CP t(x
k, ξk)),

where x0 is an initial feasible solution of (Pt) and xk+1 is an optimal solution
of (Pt(x

k, ξk)). A detailed description of the basic successive convex approxi-
mation method is given as follows.

Algorithm 1 (Basic SCA Method for (Pt))

Step 0. Choose a small t > 0 and a stopping parameter ε > 0. Choose x0 ∈ Ft
and ξ0 ∈ ∂h(x0, t). Set k := 0.

Step 1. Solve the convex subproblem (CPt(x
k, ξk)), where ξk ∈ ∂h(xk, t). Let

(xk+1, zk+1) be an optimal solution to (CPt(x
k, ξk)).

Step 2. If ‖xk+1 − xk‖ ≤ ε, stop.
Step 3. Set k := k + 1 and go to Step 1.

A sequential convex algorithm was proposed in [19] for solving a joint
chance constrained program, where the joint chance constraint is rewritten
as a DC constraint g1(x) − g2(x) ≤ 0 with gi (i = 1, 2) being continuously
differentiable convex functions. Algorithm 1 can be viewed as a generalization
of the method in [19] for solving problem (Pt) which has a nonsmooth DC
constraint φ(x, t) ≤ K.

We now establish the convergence of Algorithm 1 to a KKT point of (Pt).
For the convenience of analysis, suppose that ξk ∈ ∂h(xk, t) in Step 0 and Step
1 is determined by

ξki =


−1, xki < −ti,
−0.5, xki = −ti,
0, −ti < xki < ti,
0.5, xki = ti,
1, xki > ti,

(15)

for i = 1, . . . , n.

Theorem 2 Let ε = 0 and {xk} be a sequence of solutions generated by Al-
gorithm 1.

(i) If the algorithm stops when xk+1 = xk, then xk is a KKT point of
problem (Pt).

(ii) Any accumulation point of {xk} is a KKT point of (Pt).
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Proof. (i) If the algorithm stops when xk+1 = xk, then (xk, zk) with zki = |xki |
solves (CPt(x

k, ξk)). By Lemma 3, xk is a KKT point of problem (Pt).

(ii) Since xk+1 solves (Pt(x
k, ξk)) and xk is feasible to (Pt(x

k, ξk)), it holds
that v(Pt) ≤ f(xk+1) ≤ f(xk). So {f(xk)} is non-increasing and convergent
with limk→∞ f(xk) = infk f(xk) ≥ v(Pt).

Let x̄ be an accumulation point of {xk}. Then, there exists a subsequence
{xkj} ⊂ {xk} such that xkj → x̄. Since xk ∈ Ft, we have x̄ ∈ Ft and f(x̄) =
limk→∞ f(xk) = infk f(xk).

Let z̄i = |x̄i| for i = 1, . . . , n. In the following, we prove that (x̄, z̄) is
an optimal solution to (CPt(x̄, ξ̄)) for some ξ̄ ∈ ∂h(x̄, t) and hence Lemma
3 implies that x̄ is a KKT point of (Pt). We first show that there exists a
sufficiently large j such that the feasible set of (CPt(x

kj , ξkj )) is the same
as that of (CPt(x̄, ξ̄)) for some ξ̄ ∈ ∂h(x̄, t). To this end, we consider the
linearized constraint in (CPt(y, ξ)):

1

t
eT z − 1

t
[h(y, t) + ξT (x− y)] ≤ K, (16)

where h(y, t) =
∑n
i=1 d(yi, t) with d(yi, t) = (yi − t)+ + (−yi − t)+ and ξ ∈

∂h(y, t). Let

p(xi, yi, ξi) = d(yi, t) + ξi(xi − yi),

where ξi ∈ ∂d(yi, t). Then, (16) can be expressed as

1

t
eT z − 1

t

n∑
i=1

p(xi, yi, ξi) ≤ K. (17)

For each i = 1, . . . , n, consider the following two cases of x̄i:

(a) x̄i ∈ (−∞,−t) ∪ (−t, t) ∪ (t,+∞);

(b) x̄i = t or x̄i = −t.
In case (a), since x

kj
i → x̄i, when j is sufficiently large , x

kj
i lies in the same

open interval as x̄i does. Thus, by (15), one of the following three subcases
happens:

(1) x̄i, x
kj
i ∈ (−∞,−t), ξkji = −1 = ξ̄i ∈ ∂d(x̄i, t), and

p(xi, x
kj
i , ξ

kj
i ) = (−xkj − t)− (xi − x

kj
i ) = −xi − t = p(xi, x̄i, ξ̄i).

(2) x̄i, x
kj
i ∈ (−t, t), ξkji = 0 = ξ̄i ∈ ∂d(x̄i, t), and

p(xi, x
kj
i , ξ

kj
i ) = 0 = p(xi, x̄i, ξ̄i).

(3) x̄i, x
kj
i ∈ (t,+∞), ξ

kj
i = 1 = ξ̄i ∈ ∂d(x̄i, t), and

p(xi, x
kj
i , ξ

kj
i ) = (x

kj
i − t) + (xi − x

kj
i ) = xi − t = p(xi, x̄i, ξ̄i).
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In case (b), when j is sufficiently large, then x
kj
i > 0 if x̄i = t or x

kj
i < 0

if x̄i = −t. When x̄i = t, by (15), we have ξ
kj
i = 0 if 0 < x

kj
i < t, ξ

kj
i = 0.5 if

x
kj
i = t, and ξ

kj
i = 1 if x

kj
i > t. Consequently, we have

p(xi, x
kj
i , ξ

kj
i ) =


0 0 < x

kj
i < t,

0.5(xi − x
kj
i ) = 0.5(xi − t), x

kj
i = t,

(x
kj
i − t) + (xi − x

kj
i ) = xi − t, x

kj
i > t.

(18)

On the other hand, when x̄i = t, we have p(xi, x̄i, ξ̄i) = ξ̄i(xi − t), where
ξ̄i ∈ ∂d(x̄i, t) = [0, 1]. Thus, we have from (18) that

p(xi, x
kj , ξ

kj
i ) = p(xi, x̄i, ξ̄i), for some ξ̄i ∈ ∂d(x̄i, t). (19)

Similarly, we can show that (19) holds when x̄i = −t.
In summary, we have shown that (19) holds for each i = 1, . . . , n when

j is sufficiently large. Therefore, we deduce from (17) that the feasible set of
problem (CPt(x

kj , ξkj )) is identical to that of problem (CPt(x̄, ξ̄)) for some
ξ̄ ∈ ∂h(x̄, t), when j is sufficiently large. Since (xkj+1, zkj+1) is an optimal
solution to (CPt(x

kj , ξkj )), it is also an optimal solution to (CPt(x̄, ξ̄)). Also,
since (x̄, z̄) is a feasible solution to (CPt(x̄, ξ̄)), we have f(xkj+1) ≤ f(x̄), so
it must hold f(xkj+1) = f(x̄) by the fact f(x̄) = infk f(xk). Therefore, (x̄, z̄)
is an optimal solution to (CPt(x̄, ξ̄)) for some ξ̄ ∈ ∂h(x̄, t). This completes the
proof of the theorem. �

3.2 Refined SCA Method with Strengthening Cuts

In this subsection, we construct a group of strengthening cuts for improving the
convex approximation problem (CPt(y, ξ)). Recall that φ(x, t) =

∑n
i=1 ψ(xi, t)

and the convex overestimation of φ(x, t) is

u(x, y, ξ, t) =

n∑
i=1

w(xi, yi, ξi, t),

where w(xi, yi, ξi, t) = 1
t |xi|−

1
t [d(yi, t) + ξi(xi− yi)] is the convex overestima-

tion of ψ(xi, t).

By the definition of ψ(xi, t) in (2), it always holds that ψ(xi, t) ≤ 1 (i =
1, . . . , n) and thus ψ(xi, t) ≤ 1 (i = 1, . . . , n) are redundant to the constraints
in (Pt). However, the convex constraints w(xi, yi, ξi, t) ≤ 1 (i = 1, . . . , n),
which are the conservative approximation of ψ(xi, t) ≤ 1, provide strength-
ening cuts to the feasible set of (Pt(y, ξ)), which can help to improve the
approximation of the subproblem (Pt(y, ξ)) to the original problem (P ).

To illustrate the effect of adding strengthening cuts to the feasible set of
(Pt(y, ξ)), let us consider an example with F0 = {x ∈ [−1, 1]3 | ‖x‖0 ≤ 2}. Let
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0 < t < 0.5 and y = (0.5, t, 0)T ∈ F0. Take ξ = (1, 0.5, 0)T ∈ ∂h(y, t). Then,
the feasible set of (Pt(y, ξ)) is

Ft(y, ξ) = {x ∈ [−1, 1]3 | 1

t
‖x‖1 −

1

t
[(x1 − t) + 0.5(x2 − t)] ≤ 2}.

The strengthening cuts w(xi, yi, ξi, t) ≤ 1 (i = 1, 2, 3) have the following forms:

1

t
[|x1| − (x1 − t)] ≤ 1,

1

t
[|x2| − 0.5(x2 − t)] ≤ 1,

1

t
|x3| ≤ 1.

Notice that the first inequality can be reduced to x1 ≥ 0 and the second and
third inequalities are redundant to Ft(y, ξ). So, the revised feasible set after
adding the strengthening cuts is

F vt (y, ξ) = Ft(y, ξ) ∩ {x ∈ <3 | x1 ≥ 0}.

Fig. 3 illustrates the projections of sets Ft(y, t) and F vt (y, ξ) to the plane
L = {x ∈ <3 | x3 = 0}, respectively, from which we can see clearly that
F vt (y, ξ) ⊂ Ft(y, ξ).

Fig. 3 (a) Projection of set Ft(y, ξ) to L; (b) Projection of set F v
t (y, ξ) to L

Using these n strengthening cuts, the convex approximation subproblem
at y can be strengthened to

(P vt (y, ξ)) min f(x)

s.t. g(x) ≤ b,
u(x, y, ξ, t) ≤ K,
w(xi, yi, ξi, t) ≤ 1, i = 1, . . . , n,
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which can be solved via the following convex program:

(CP vt (y, ξ)) min f(x)

s.t. g(x) ≤ b,
1

t
eT z − 1

t
[h(y, t) + ξT (x− y)] ≤ K,

1

t
zi −

1

t
[d(yi, t) + ξi(xi − yi)] ≤ 1, i = 1, . . . , n,

− zi ≤ xi ≤ zi, i = 1, . . . , n.

Using the above modified subproblem, we have the following refined suc-
cessive convex approximation method for (Pt).

Algorithm 2 (Refined SCA Method for (Pt))

Step 0. Choose a small t > 0 and a stopping parameter ε > 0. Choose x0 ∈ Ft
and ξ0 ∈ ∂h(x0, t). Set k := 0.

Step 1. Solve the modified convex subproblem (CP vt (xk, ξk)), where ξk ∈
∂h(xk, t). Let (xk+1, zk+1) be an optimal solution to (CP vt (xk, ξk)). For
i = 1, . . . , n.

Step 2. If ‖xk+1 − xk‖ ≤ ε, stop.
Step 3. Set k := k + 1 and go to Step 1.

We point out that Algorithms 1 and 2 can be easily extended to the case
where the parameter t is dependent on i, i.e., we can use the following general
DC function:

φ(x, t) =

n∑
i=1

ψ(xi, ti) =

n∑
i=1

1

ti
|xi| −

n∑
i=1

1

ti
d(xi, ti). (20)

3.3 Recovery of a feasible solution

We note that Algorithms 1 and 2 tackle the approximation problem (Pt) where
φ(x, t) ≤ K is an approximation of card(x) ≤ K for a small t > 0. The solution
generated by Algorithms 1 and 2 may not satisfy the cardinality constraint
card(x) ≤ K. Let x∗ be a KKT point of (Pt). A simple heuristic for recovering
a feasible solution of (P ) from x∗ is as follows.

Heuristic 1. Rank the absolute values of x∗i as: |x∗i1 | ≤ |x
∗
i2
| ≤ · · · ≤ |x∗in |.

Set xij = 0 for j = 1, . . . , n−K in (P). Remove the cardinality constraint and
solve the reduced convex program with K variables. If the problem is feasible,
then, combined with xij = 0 for j = 1, . . . , n−K, the optimal solution is also
feasible to (P ).

In general cases, however, there is no guarantee for the above heuristic to
find a feasible solution of (P ). This is not surprising as testing the feasibility of
(P ) is already NP-complete when there are three linear inequality constraints
in (P ) (see [3]). While Heuristic 1 is very fast, the quality of the generated
feasible solution could be unsatisfactory. Another heuristic is based on solving
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a small reduced mixed-integer problem of (P ) (see [3]). The number of integer
variables of the reduced problem is K+κ, where κ is a prescribed small integer,
e.g., κ = 10. This heuristic can be described as follows:

Heuristic 2. Rank the absolute values of x∗i as: |x∗i1 | ≤ |x
∗
i2
| ≤ · · · ≤ |x∗in |.

Set xij = 0 for j = 1, . . . , n −K − κ in (P ). Solve the reduced mixed-integer
convex program with initial upper bound obtained from Heuristic 1 (or +∞
if no feasible solution is found by Heuristic 1). If the reduced mixed-integer
convex program is feasible, then, combined with xij = 0 for j = 1, . . . , n −
K − κ, the optimal solution is also feasible to (P ).

Early termination of the branch-and-bound method for solving the small
reduced mixed integer problem in Heuristic 2 can be also done by setting a
limit on the maximum time, number of nodes or relative gap. Since K + κ is
often much less than n in practice, it is expected that Heuristic 2 is efficient in
finding a reasonably good feasible solution of (P ). If the reduced mixed-integer
convex program is infeasible, we can increase κ until the reduced problem is
feasible.

4 Computational Results

In this section, we conduct computational experiments to evaluate the perfor-
mance of the SCA method (Algorithm 2) for problem (P ). The main purpose
of our computational experiments is to test the capability of the SCA method,
together with Heuristics 1 and 2, for finding good quality solutions of prob-
lem (P ) when both cardinality and other constraints are present. It is beyond
the scope of this paper to compare the proposed method with other specific
heuristic methods for sparse solutions of linear system though in theory the
DC approximation in (3) could be applicable to any optimization problems
involving `0-norm.

4.1 Test problems

The test problems in our computational experiments are cardinality con-
strained mean-variance portfolio selection problems (see [2,3,5,23,31]). Let
µ and Q be the mean and covariance matrix of n risky assets, respectively.
The problem can be formulated as

(MV ) min f(x) := xTQx

s.t card(x) ≤ K,
µTx ≥ ρ,
n∑
i=1

xi = 1, 0 ≤ xi ≤ ui, i = 1, . . . , n.

To build the test problems of (MV ), we use the 90 instances of portfolio
selection created in [15,16], 30 instances each for n = 200, 300 and 400.
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The 30 instances for each n are divided into three subsets, 10 instances in
each subset, with different diagonal dominance in matrix Q. The parame-
ters ρ and ui are uniformly drawn at random from intervals [0.002, 0.01] and
[0.375, 0.425], respectively. The data files of these instances are available at:
http://www.di.unipi.it/optimize/Data/MV.html. For each of the 90 in-
stances, we set K = 5, 10, 15, 20, respectively, to build 360 instances of (MV )
in total.

4.2 Implementation issues

In our computational experiments, we compare Algorithm 2 with the penalty
decomposition (PD) method in [25] and two versions of the successive convex
approximation (SCA) methods using `p-norm approximation and the expo-
nential approximation in [26], respectively. Using `p-norm approximation, we
can construct an `p-norm approximation problem to (P ):

min f(x) (21)

s.t. g(x) ≤ b,
‖x‖p ≤ K,

where p > 0 is a small number. Similarly, we can use the exponential approx-
imation in [26] to construct the following approximation problem to (P ):

min f(x) (22)

s.t. g(x) ≤ b,
n∑
i=1

(1− exp(−α|xi|)) ≤ K,

where α > 0 is a large number. SCA schemes similar to Algorithm 1 can be
then applied to problems (21) and (22) to obtain a KKT point of problems
(21) and (22), respectively.

In our implementation, the initial feasible solutions of the above methods
are obtained by applying Heuristic 1 described in Subsection 3.3 to an opti-
mal solution of the `1-norm approximation problem (P1). When implementing
Algorithm 2, we use the DC function defined in (20) in which ti is set in the
following fashion: ti = x0[K] for i ∈ IK and ti = x0max otherwise, where x0[K]

is the K-th largest variable of the initial feasible solution x0, IK denotes the
set of index of the K nonzero variables of x0, and x0max is the largest variable
of x0. Note that for problem (MV ), we always have 0 < x0[K] ≤ x0max < 1 if

K > 1. As in the numerical tests of [10,26], we set p = 1
2 in (21) and α = 100

in (22). For each solution obtained by these methods, we apply Heuristic 2 to
recover a feasible solution of (P ). In Heuristic 2, we set κ = 10 for problems
with K = 5, 10, 15 and κ = 8 for K = 20. The reduced mixed-integer quadratic
problems in Heuristic 2 are solved by the MIQP solver in CPLEX 12.3 .
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The numerical tests have been performed on a PC equipped with Intel
Pentium G630 CPU (2.70 GHz) and 4 GB of RAM, running Windows 7 (32-
bit). All the convex quadratic subproblems in our numerical experiments are
solved by the QP solver in CPLEX 12.3 with Matlab interface (see [20]). In our
implementation of the PD method in [25], we use the Matlab code provided
by the authors of [25], which is available at: http://people.math.sfu.ca/∼
zhaosong/Codes/PD-sparse.

4.3 Numerical results

To measure the quality of a feasible solution x∗, we use the following relative
improvement of the function value of x∗ over the solution obtained from the
`1-norm approximation:

rel. imp. =
f(x`1)− f(x∗)

max(1, |f(x`1)|)
(%),

where x`1 is the feasible solution of (P ) obtained by applying Heuristic 1 to
an optimal solution of the `1-norm approximation problem (P1).

Table 1 summarizes the numerical results for test problems with n =
200, 300, 400 and K = 5, 10, 15, 20. Some notations in Table 1 are explained as
follows.

– “SCA-DC” denotes the refined successive convex approximation method
using the DC approximation (Algorithm 2);

– “SCA-`p” and “SCA-exp” stand for the two versions of the successive con-
vex approximation methods applied to problem (21) and (22), respectively;

– “PD” denotes the penalty decomposition method in [25];
– “time” (in seconds) is the average total computation time of the algorithm

and Heuristic 2 for the 30 instances of each n;
– “rel. imp.” is the average relative improvement for the 30 instances of each
n;

– “d” denotes the number of times the recovered feasible solution is better
than the initial feasible solution, i.e., rel. imp. > 0, for the 30 instances of
each n.

Comparing the results in Table 1, we observe that among the four meth-
ods, SCA-DC generates solutions with the best quality for all instances in
terms of the average relative improvement over the `1-norm approximation.
However, together with the computation time of Heuristic 2, the average total
computation time of SCA-DC is larger than that of SCA-exp and PD, but
slightly less than that of SCA-`p for almost all instances. We notice that the
computation time of the three versions of the successive convex approximation
methods (SCA-DC, SCA-`p and SCA-exp) tends to increase as the cardinality
K increases, while the relative improvements are similar for all K. We also see
that SCA-`p is competitive in terms of the number of times the method beats
`1-norm approximation, while SCA-exp spends the least computation time
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Table 1 Comparison results of the four methods for portfolio selection problems

SCA-DC SCA-`p SCA-exp PD
n K

rel. imp. time d rel. imp. time d rel. imp. time d rel. imp. time d
200 5 2.66 1.92 24 1.35 12.60 18 0.79 0.22 16 0.79 29.75 16
300 5 2.02 3.23 25 1.19 23.41 14 0.52 0.29 12 0.52 41.12 12
400 5 2.48 4.91 25 1.40 41.93 19 0.99 0.39 14 0.99 68.09 14
200 10 2.58 9.17 27 2.30 23.23 27 0.95 1.78 19 0.97 29.48 19
300 10 2.77 11.70 25 2.52 40.39 27 0.82 2.11 15 0.78 44.17 15
400 10 3.31 19.98 27 3.03 77.01 28 1.25 2.65 18 1.27 81.38 18
200 15 2.58 85.07 24 1.86 84.94 27 0.85 15.64 13 0.89 43.65 13
300 15 2.92 96.56 25 2.26 105.00 27 1.05 19.50 17 0.97 60.18 17
400 15 3.37 110.34 27 3.07 130.09 29 1.47 15.52 19 1.49 78.17 19
200 20 2.58 73.36 27 1.62 64.66 29 0.98 13.25 17 0.75 43.35 16
300 20 2.32 69.84 23 1.43 86.24 30 0.81 14.61 18 0.73 54.77 16
400 20 3.61 89.68 24 2.34 113.32 28 1.33 14.60 21 1.23 80.20 20

among all the four methods. Overall, it appears that SCA-DC can produce
solutions with good quality within reasonable computation time.

5 Concluding Remarks

We have presented in this paper a successive convex approximation method for
cardinality-constrained convex programming problems. Our method is based
on a piecewise linear DC approximation of the cardinality function. In our
method, this DC function is successively convexified to construct a sequence
of convex subproblems. We have established the convergence of the method to
a KKT point of the DC approximation problem. The basic successive convex
approximation method can be refined by adding strengthening cuts generated
from the separable DC functions. Computational results on test problems of
portfolio selection demonstrate that the DC approximation is promising in
finding good quality suboptimal solution and is competitive with other existing
inexact methods for cardinality constrained problems.
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