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EFFICIENT ALGORITHMS FOR ROBUST AND STABLE PRINCIPAL COMPONENT

PURSUIT PROBLEMS

NECDET SERHAT AYBAT∗, DONALD GOLDFARB† , AND SHIQIAN MA‡

Abstract. The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is

known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing

and web data ranking. It has been shown that under certain conditions, the solution to the NP-hard RPCA problem can be

obtained by solving a convex optimization problem, namely the robust principal component pursuit (RPCP). Moreover, if the

observed data matrix has also been corrupted by a dense noise matrix in addition to gross sparse error, then the stable principal

component pursuit (SPCP) problem is solved to recover the low-rank matrix. In this paper, we develop efficient algorithms with

provable iteration complexity bounds for solving RPCP and SPCP. Numerical results on problems with millions of variables

and constraints such as foreground extraction from surveillance video, shadow and specularity removal from face images and

video denoising from heavily corrupted data show that our algorithms are competitive to current state-of-the-art solvers for

RPCP and SPCP in terms of accuracy and speed.
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1. Introduction. Principal component analysis (PCA) plays an important role in applications arising

from image and video processing, web data analysis and bioinformatics. PCA obtains a low-dimensional

approximation to high-dimensional data in the ℓ2 sense, by computing the singular value decomposition

(SVD) of a matrix. However, when the given data is corrupted by gross errors, classical PCA becomes

impractical because the grossly corrupted observations can jeopardize the ℓ2 estimation. To overcome this

shortcoming, a new model called robust PCA (RPCA) was considered by Wright et al. [26], Candès et al.

[5] and Chandrasekaran et al. [9] under the assumption that the gross errors are sparse. In this model it

is assumed that the data matrix D ∈ R
m×n is of the form D := L0 + S0, where L0 is a low-rank matrix,

i.e., rank(L0) ≪ min{m,n}, and S0 is a sparse matrix, i.e., ‖S0‖0 ≪ mn, where the so-called ℓ0-norm

‖S‖0 := ‖vec(S)‖0, vec(S) is the vector obtained by stacking the columns of S in order and ‖.‖0 counts the

number of nonzero elements of its argument.

To obtain a low rank and sparse decomposition of a given matrix D, RPCA combines both the rank

function and the ℓ0-norm in the objective with some weighting parameter ξ > 0 to balance the weights of

rank and sparsity. This leads to the following formulation of RPCA:

min
L,S∈Rm×n

{rank(L) + ξ‖S‖0 : L+ S = D}.(1.1)

The RPCA problem is related to the matrix rank minimization [6, 8, 12, 24] problem, which itself is a

generalization of the recovery problem in compressed sensing [7, 11]. As in the compressed sensing and

matrix rank minimization problems, (1.1) is NP-hard due to the combinatorial nature of the rank function

and the ℓ0-norm.

Recently, it has been shown that under certain probabilistic conditions on D := L0 +S0, with very high

probability, the low-rank matrix L0 and the gross sparse “error” matrix S0 can be recovered by solving the
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robust principal component pursuit (RPCP) problem [5]:

min
L,S∈Rm×n

{‖L‖∗ + ξ‖S‖1 : L+ S = D},(1.2)

where ξ = 1√
max{m,n}

, ‖L‖∗ denotes the nuclear norm of L, which is defined as the sum of the singular

values of L, and ‖S‖1 := ‖vec(S)‖1. Moreover, problem (1.2) is also studied in [9], where a deterministic

condition for exact recovery for is provided.

In [29], it is shown that the recovery is still possible even when the data matrix, D := L0 + S0 +N0, is

corrupted with a dense error matrix, N0 such that ‖N0‖F ≤ δ. Indeed, any optimal solution (L∗, S∗) to the

stable principal component pursuit (SPCP) problem

(1.3) min
L,S∈Rm×n

{‖L‖∗ + ξ‖S‖1 : ‖L+ S −D‖F ≤ δ},

satisfies ‖L∗ − L0‖2F + ‖S∗ − S0‖2F = O(δ2) with very high probability. Note that RPCP problem (1.2) is a

special case of SPCP problem (1.3) with δ = 0.

In some applications, some of the entries of D in (1.3) may be missing. Let Ω ⊂ {i : 1 ≤ i ≤ m} × {j :

1 ≤ j ≤ n} be the index set of the entries of D that are observable and define the projection operator

πΩ : Rm×n → R
m×n as (πΩ(L))ij = Lij , if (i, j) ∈ Ω and (πΩ(L))ij = 0 otherwise. Note that π∗

Ω(.) = πΩ(.),

where π∗
Ω denotes the adjoint operator. In these applications with missing data, the problem

(1.4) min
L,S∈Rm×n

{‖L‖∗ + ξ‖S‖1 : ‖πΩ(L+ S −D)‖F ≤ δ},

is solved to recover the low rank and sparse components of D. It has been shown under some randomness

hypotheses that the low rank L0 and sparse S0 can be recovered with high probability by solving (1.4) when

δ = 0 (see Theorem 1.2 in [5]). In this paper, we will provide efficient methods to solve a problem equivalent

to (1.4). In the following theorem, we state the alternative formulation and establish its equivalence to (1.4).

Theorem 1.1. (L∗, πΩ(S
∗)) is an optimal solution to (1.4) if (L∗, S∗) is an optimal solution to

min
L,S∈Rm×n

{‖L‖∗ + ξ‖πΩ(S)‖1 : ‖L+ S − πΩ(D)‖F ≤ δ}.(1.5)

Proof. Suppose (L̄, S̄) is an optimal solution to (1.4). We claim that S̄ij = 0, ∀ (i, j) /∈ Ω. Otherwise,

(L̄, πΩ(S̄)) is feasible to (1.4) and has a strictly smaller objective function value than (L̄, S̄), which contradicts

the optimality of (L̄, S̄). Thus, ‖πΩ(S̄)‖1 = ‖S̄‖1. Let (L∗, S∗) be an optimal solution to (1.5). Now suppose

that (L∗, πΩ(S
∗)) is not optimal to (1.4); then we have

‖L̄‖∗ + ξ‖S̄‖1 = ‖L̄‖∗ + ξ‖πΩ(S̄)‖1 < ‖L∗‖∗ + ξ‖πΩ(S
∗)‖1.(1.6)

By defining a new matrix S̃ as

S̃ij =

{

S̄ij , (i, j) ∈ Ω

−L̄ij, (i, j) /∈ Ω,
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we have that (L̄, S̃) is feasible to (1.5) and ‖πΩ(S̃)‖1 = ‖πΩ(S̄)‖1. Combining this with (1.6), we obtain

‖L̄‖∗ + ξ‖πΩ(S̃)‖1 < ‖L∗‖∗ + ξ‖πΩ(S
∗)‖1,

which contradicts the optimality of (L∗, S∗) to (1.5). Therefore, (L∗, πΩ(S
∗)) is optimal to (1.4).

Although (1.5) can be reformulated as a semi-definite programming (SDP) problem and thus, in theory,

can be efficiently solved by interior point methods, these solution techniques are impractical when the problem

size is large. Recently, algorithms using only first-order information for solving RPCP problem (1.2) and

SPCP problem (1.4) have been proposed. Algorithms for RPCP include the accelerated proximal gradient

(APG) method by Lin et al. [20] and alternating direction method of multipliers (ADMM) by Lin et al.

[19], Candès et al. [5] and Yuan and Yang [28]. The APG method in [20] is a variant of Nesterov’s optimal

gradient methods [3, 22, 23]. In particular, the APG method in [20] is essentially the FISTA method in [3]

applied to RPCP. Algorithms for SPCP problem include an augmented Lagrangian algorithm FALC [2] by

Aybat and Iyengar; and two alternating direction augmented Lagrangian algorithms: ASALM [25] by Tao

and Yuan and NSA [1] by Aybat and Iyengar. Indeed, in [1, 25], it is shown that ASALM and NSA iterate

sequences converge to an optimal solution of the SPCP problem. However, there is no iteration complexity

result for both ASALM and NSA. On the other hand, FALC proposed in [2] can be used to solve both RPCP

and SPCP problems and computes an ǫ-optimal solution within O(1/ǫ) SVD computations.

Our contribution. This paper is dedicated to developing efficient algorithms for solving RPCP and

SPCP problems given (1.5) (for RPCP δ = 0). We propose several first-order methods and alternating

direction type methods for solving (1.5) and analyze their iteration complexity results. We show how

our proposed methods can be applied to solve huge problems, involving millions of variables and linear

constraints, arising from foreground extraction from surveillance video, shadow and specularity removal

from face images and video denoising from heavily corrupted data. We report numerical results on these

problems which show that our algorithms are competitive with current state-of-the-art solvers for RPCP

and SPCP in terms of accuracy and speed.

Organization. The rest of this paper is organized as follows. In section 2, we briefly describe the

smoothing technique we used to smooth at least one of the non-smooth terms in the objective function of the

RPCP and SPCP problems. Next, in Section 3 we briefly review the exact and inexact alternating direction

methods for solving RPCP (1.2) proposed in [5, 19]. In Section 4, we propose our alternating linearization

method (ALM) for solving the RPCP problem (1.5) with δ = 0 and present its iteration complexity bound.

In section 6, we show how the generic proximal gradient algorithms can be customized for solving SPCP

problem given in (1.5). Specifically, we show that the subproblems that arise when applying the accelerated

proximal gradient method FISTA proposed in [3] to the SPCP problem have solutions that can be obtained

with very modest effort. This result enables us to provide a worst case computational complexity result

for the SPCP problem. Numerical results on synthetic and real RPCP and SPCP problems are reported in

sections 5 and 7, respectively.

2. Smoothing Technique. Note that the objective function of (1.5) is the sum of two non-smooth

functions f(L) := ‖L‖∗ and g(S) := ξ‖πΩ(S)‖1. The algorithms with provable iteration complexity bounds

introduced in this paper require that one or both of the functions f(L) and g(S) are smooth with Lipschitz

continuous gradients. Here we adopt Nesterov’s smoothing technique [23] to guarantee that the gradient of

the smoothed function is Lipschitz continuous. For fixed parameters µ > 0 and ν > 0, we define the smooth

C1,1 functions fµ(.) and gν(.) as follows

3



fµ(L) := max
W∈Rm×n: ‖W‖≤1

〈L,W 〉 − µ

2
‖W‖2F ,(2.1)

gν(S) := max
Z∈Rm×n: ‖Z‖∞≤ξ

〈πΩ(S), Z〉 − ν

2
‖Z‖2F ,(2.2)

where ‖W‖ denotes the spectral norm of W ∈ R
m×n and ‖Z‖∞ := ‖vec(Z)‖∞. We denote the optimal

solutions of (2.1) and (2.2) by Wµ(L) and Zν(S), respectively. Using the rotational invariance of (2.1), we

reduce it to a vector problem:

min
σ∈Rmin{m,n}

{‖σ − σ̄/µ‖2 : ‖σ‖∞ ≤ 1},

where σ̄ is a vector whose elements are the singular values of the matrix L. This problem has a closed form

solution σ∗ such that σ∗
i = min

{

σ̄i

µ , 1
}

for i = 1, . . . ,min{m,n}. Thus

Wµ(L) = U Diag

(

min

{

σ̄

µ
,1

})

V ⊤(2.3)

gives the solution to (2.1), where L = U Diag(σ̄)V ⊤ is the singular value decomposition of L and 1 denotes

the vector of ones. Similarly, we can show that the solution to (2.2) is

[Zν(S)]ij =

{

sgn(Sij)min{|Sij |/ν, ξ}, ∀ (i, j) ∈ Ω;

0, ∀ (i, j) /∈ Ω.
(2.4)

According to Theorem 1 in [23], the gradient of fµ is given by ∇fµ(L) = Wµ(L) and is Lipschitz continuous

with Lipschitz constant 1/µ; and the gradient of gν is given by ∇gν(S) = π∗
Ω(Zν(S)) = Zν(S) and is Lipschitz

continuous with Lipschitz constant 1/ν.

In the following sections, we will introduce algorithms with provable iteration complexity bounds that

solve problems approximating (1.5) with a smooth objective function

(2.5) min
L,S∈Rm×n

{fµ(L) + gν(S) : (L, S) ∈ χ},

and with a partially smooth objective function

(2.6) min
L,S∈Rm×n

{fµ(L) + g(S) : (L, S) ∈ χ},

where χ := {(L, S) ∈ R
m×n × R

m×n : ‖L+ S − πΩ(D)‖F ≤ δ}.
The inexact solutions of (2.5) and (2.6) are closely related to solution of (1.5). In fact, let τ :=

1
2 min{m,n}. Then we have max{ 1

2‖W‖2F : ‖W‖ ≤ 1} = τ , and max{ 1
2‖Z‖2F : ‖Z‖∞ ≤ ξ} = 1

2mnξ2 = τ ,

where the second equality follows from ξ = 1√
max{m,n}

. Hence, from (2.1) and (2.2), we have

fµ(L) ≤ f(L) ≤ fµ(L) + µτ, ∀L ∈ R
m×n,(2.7)

gν(S) ≤ g(S) ≤ gν(S) + ντ, ∀S ∈ R
m×n.(2.8)
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Therefore, we have the following fact about an ǫ-optimal solution to problem (1.5) (x̂ ∈ C is called an

ǫ-optimal solution of h∗ := minx{h(x) : x ∈ C} if h(x̂)− h∗ ≤ ǫ holds).

Theorem 2.1. Let (L∗, S∗) be an optimal solution to problem (1.5). Given ǫ > 0, let (L∗(µ), S∗(ν))

denote an optimal solution to the smoothed problem (2.5) with µ = ν = ǫ
4τ . If (L(µ), S(ν)) is an ǫ/2-optimal

solution to (2.5), then (L(µ), S(ν)) is an ǫ-optimal solution to (1.5).

Proof. Using the inequalities in (2.7) and (2.8), we have

f(L(µ)) + g(S(ν))− f(L∗)− g(S∗) ≤ fµ(L(µ)) + gν(S(ν)) + (µ+ ν)τ − fµ(L
∗)− gν(S

∗)

≤ fµ(L(µ)) + gν(S(ν)) + (µ+ ν)τ − fµ(L
∗(µ)) − gν(S

∗(ν))

≤ ǫ/2 + (µ+ ν)τ = ǫ/2 + ǫ/2 = ǫ,

where the third inequality is due to the fact that (L(µ), S(ν)) is an ǫ/2-optimal solution to (2.5) and the

following equality is due to µ = ν = ǫ
4τ .

Similarly, with µ = ǫ
2τ , an ǫ/2-optimal solution to (2.6) is an ǫ-optimal solution to (1.5).

In the following sections, we introduce algorithms that find an ǫ-optimal solution to either (2.5) or (2.6)

with provable iteration complexity bounds.

3. Alternating Direction Methods for RPCP. The alternating direction methods (ADM) in [5,

19, 28] are based on an augmented Lagrangian framework. Note that given a penalty parameter ρ > 0, the

augmented Lagrangian function associated with problem (1.2) is

Lρ(L, S; Λ) := ‖L‖∗ + ξ‖S‖1 − 〈Λ, L+ S −D〉+ 1

2ρ
‖L+ S −D‖2F ,(3.1)

where Λ is a matrix of Lagrange multipliers. Note that the penalty parameter ρ can be adjusted dynamically,

and this yields the k-th iteration of the augmented Lagrangian method as follows:











(Lk+1, Sk+1) := argminL,S Lρk
(L, S; Λk)

Λk+1 := Λk − (Lk+1 + Sk+1 −D)/ρk,

ρk+1 := ηρk,

(3.2)

where η ∈ (0, 1].

The Exact ADM (EADM) in [19] is based on (3.2). However, minimizing (3.1) with respect to L and S

simultaneously is not easy. In fact, it is as hard as the original problem (1.2). On the other hand, it is easy

to minimize Lρ(L, S; Λ) with respect to L or S while keeping the other matrix fixed and each minimization

has a closed form solution which is easy to compute. Thus, EADM computes (Lk+1, Sk+1) by alternatingly

minimizing Lρk
(L, S; Λk) repeatedly in L and in S, while fixing the other, until the stopping criterion for

the inner loop is met, i.e.,

{

Lk,j+1 := argminL Lρk
(L, Sk,j ; Λk),

Sk,j+1 := argminS Lρk
(Lk,j+1, S; Λk),

loop is repeated until max{‖Lk,j+1−Lk,j‖F , ‖Sk,j+1−Sk,j‖F } ≤ 10−6 ‖D‖F holds; at that point (Lk+1, Sk+1)
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is set to (Lk,j+1, Sk,j+1). Next, Λk and ρk are updated:

{

Λk+1 := Λk − (Lk+1 + Sk+1 −D)/ρk,

ρk+1 := ηρk.

As a result, the iterate (Lk+1, Sk+1) in EADM only approximately minimizes Lρk
(L, S; Λk).

Updating the matrix of Lagrangian multipliers Λ at every iteration after minimizing Lρk
(L, S; Λk) first

in L and then in S leads to the following alternating direction method of multipliers (ADMM). In the k-th

iteration of ADMM, one computes,























Lk+1 := argminL Lρk
(L, Sk; Λk),

Sk+1 := argminS Lρk
(Lk+1, S; Λk),

Λk+1 := Λk − (Lk+1 + Sk+1 −D)/ρk,

ρk+1 := ηρk,

(3.3)

where η ∈ (0, 1]. The Inexact ADM (IADM) in [5, 19, 28] executes (3.3) as given.

ADM algorithms can be very efficient since the two minimization subproblems in (3.3) are easy to solve.

Note that the generic form of the subproblem corresponding to L is minL Lρ(L, S̃; Λ̃), for some given ρ, S̃

and Λ̃, which can be reduced to

min
L

ρ‖L‖∗ +
1

2
‖L+ S̃ −D − ρΛ̃‖2F .(3.4)

(3.4) has a closed-form optimal solution which is given by the matrix shrinkage operator (see, e.g., [4, 21])

U Diag ((σ − ρ)+)V
⊤, where U Diag(σ)V ⊤ is the singular value decomposition of the matrix (D+ ρΛ̃− S̃)

and (.)+ is a componentwise operator such that (a)+ := max{a, 0} for all a ∈ R.

The generic form of the subproblem corresponding to S is minS Lρ(L̃, Y ; Λ̃), for some given ρ, L̃ and Λ̃,

which can be reduced to

min
S

ρξ‖S‖1 +
1

2
‖L̃+ S −D − ρΛ̃‖2F .(3.5)

(3.5) has a closed-form optimal solution, which is given by the vector shrinkage operator (see, e.g., [10, 15])

sgn(D + ρΛ̃− L̃)⊙
(

|D + ρΛ̃− L̃| − ρξ
)

+
, where ⊙ denotes the componentwise multiplication.

The following convergence result is proved in [19] for EADM, i.e., for (3.2). On the other hand, no

iteration complexity results have been given for EADM when the minimization step in (3.2) is carried out

inexactly, and in practical implementations of EADM, one has to adopt inexact minimizations.

Theorem 3.1. (Theorem 1 in [19]) Let {(Lk, Sk)}k∈Z+
be the sequence of iterates produced by EADM.

Then any accumulation point (L∗, S∗) of {(Lk, Sk)}k∈Z+
is an optimal solution to the RPCP problem (1.2)

and the convergence rate is at least O(ρk) in the sense that

|‖Lk‖∗ + ξ‖Sk‖1 − ‖L∗‖∗ − ξ‖S∗‖1| = O(ρk−1).

From this result, it looks like one can obtain any rate result via choosing {ρk}k∈Z+
sequence accordingly.

However, it is important to note that Theorem 3.1 requires that the optimization problem in (3.2) be solved

exactly; and solving this subproblem for a small value of ρk is almost as hard as solving the original RPCP

problem (1.2).
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Iteration complexity of IADM, i.e., (3.3), is not known. On the other hand, the following convergence

result is proved in [19] for IADM.

Theorem 3.2. (Theorem 2 in [19]) Let {(Lk, Sk)}k∈Z+
be the sequence of iterates produced by IADM. If

{ρk}k∈Z+
is nonincreasing and

∑+∞
k=1 ρk = +∞, then (Lk, Sk) converges to an optimal solution of the RPCP

problem (1.2).

In the next section, we propose our alternating linearization method and present an iteration complexity

bound for it.

4. Alternating Linearization Method for RPCP. In this section, we introduce the alternating

linearization method (ALM) for solving RPCP, i.e., (1.5) with δ = 0. For a given penalty parameter ρ > 0,

when δ = 0, the augmented Lagrangian function associated with problem (1.5) is

Lρ(L, S; Λ) := ‖L‖∗ + ξ‖πΩ(S)‖1 − 〈Λ, L+ S − πΩ(D)〉+ 1

2ρ
‖L+ S − πΩ(D)‖2F ,(4.1)

where Λ is a matrix of Lagrange multipliers.

ALM can be derived from a variant of the ADMM (3.3). Note that in each iteration (3.3) of ADMM,

the Lagrange multiplier matrix Λ is updated just once, which occurs after the subproblem with respect to S

is solved. Since there is no particular reason to minimize the augmented Lagrangian function with respect

to L before minimizing it with respect to S, it is natural to also update Λ after the subproblem with respect

to L is solved. By doing this, we get the following symmetric version of the ADMM for a given sequence of

penalty multipliers {ρk}k∈Z+
:























Lk+1 := argminL Lρk
(L, Sk; Λk)

Λk+ 1
2

:= Λk − (Lk+1 + Sk − πΩ(D))/ρk

Sk+1 := argminS Lρk
(Lk+1, S; Λk+ 1

2
)

Λk+1 := Λk+ 1
2
− (Lk+1 + Sk+1 − πΩ(D))/ρk.

(4.2)

Although (4.2) can be applied directly to solve the RPCP problem, i.e., (1.5) with δ = 0, an iteration

complexity bound for this method is not known. However, when (4.2) is applied to solve the problem given

in (2.5) with δ = 0 where the two functions in the objective are both in C1,1, we can prove an iteration

complexity bound. That is, if we use (4.2) to solve problem

(4.3) min
L,S∈m×n

{F (L, S) ≡ fµ(L) + gν(S) : L+ S = πΩ(D)},

we have a provable complexity result. With ‖L‖∗ replaced by fµ(L) and ξ‖S‖1 replaced by gν(S) in the

augmented Lagrangian function Lρ given in (4.1), and together with the two updating formulas for Λ in

(4.2), the optimality conditions for the two subproblems in (4.2) yield:

(4.4) Λk+ 1
2
= ∇fµ(Lk+1) and Λk+1 = ∇gν(Sk+1).

Let ρk = ρ for all k ≥ 1 for some ρ > 0. By substituting (4.4) into (4.2), and defining

Qg(L, S) := fµ(L) + gν(S)− 〈∇gν(S), L+ S − πΩ(D)〉 + 1

2ρ
‖L+ S − πΩ(D)‖2F ,(4.5)

Qf (L, S) := fµ(L)− 〈∇fµ(L), L+ S − πΩ(D)〉+ 1

2ρ
‖L+ S − πΩ(D)‖2F + gν(S),(4.6)
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we obtain the alternating linearization method given in Algorithm 1 that was proposed and analyzed in [14]

by Goldfarb et al. for minimizing the sum of two convex functions. The ALM method, with a nonincreasing

sequence {ρk}k∈Z+
of proximal term parameters, was first proposed by Kiwiel et al. [16]. However, no

iteration complexity analysis was presented in [16].

Algorithm 1 Alternating Linearization Method (ALM)

1: input: L0 ∈ R
m×n, ρ > 0

2: k ← 0, S0 ← πΩ(D)− L0

3: while not converged do

4: Lk+1 ← argminL Qg(L, Sk)
5: Sk+1 ← argminS Qf (Lk+1, S)
6: k ← k + 1
7: end while

8: return (Lk, Sk)

InAlgorithm 1, the functions fµ and gν are alternatingly replaced by their linearizations plus a proximal

regularization term to get an approximation to the original function F . Thus, Algorithm 1 can also be

viewed as a proximal point algorithm.

Theorem 4.1. Suppose (L∗, S∗) is an optimal solution to (4.3) with δ = 0. The sequence {(Lk, Sk)}k∈Z+

generated by Algorithm 1 with ρ ≤ min{µ, ν} satisfies:

F (πΩ(D)− Sk, Sk)− F (L∗, S∗) ≤ ‖L∗ − L0‖2F
4ρk

.(4.7)

Thus the sequence {F (πΩ(D) − Sk, Sk)} produced by Algorithm 1 converges to F (L∗, S∗). Moreover, if

βmin{µ, ν} ≤ ρ ≤ min{µ, ν} with 0 < β ≤ 1, Algorithm 1 needs O(1/ǫ2) iterations to obtain an ǫ-optimal

solution to problem in (1.5) with δ = 0.

Proof. For the proof see Corollary 2.4 in [14].

The iteration complexity bound of O(1/ǫ2) in Theorem 4.1 for RPCP problem can be improved further.

The accelerated version of ALM proposed in [14] needs only O(1/ǫ) iterations to obtain an ǫ-optimal solution,

while the computational effort for the subproblems in each iteration is the same as that for the subproblems

in ALM.

4.1. Solving the Subproblems. We now show how to solve the two subproblems in Algorithm 1.

Note that the two subproblems at the iteration k of Algorithm 1 reduce to

Lk+1 = argmin
L

fµ(L)− 〈∇gν(Sk), L + Sk − πΩ(D)〉+ 1

2ρ
‖L+ Sk − πΩ(D)‖2F ,(4.8)

Sk+1 = argmin
S

−〈∇fµ(Lk+1), Lk+1 + S − πΩ(D)〉 + 1

2ρ
‖Lk+1 + S − πΩ(D)‖2F + gν(S).(4.9)

Note that the first-order optimality conditions for (4.8) are

Wµ(Lk+1)− Zν(Sk) +
1

ρ
(Lk+1 + Sk − πΩ(D)) = 0,(4.10)

where Wµ(L) and Zν(S) are defined in (2.3) and (2.4). It is easy to check that

Lk+1 = UDiag(σ∗)V ⊤, σ∗
i = σ̄i −

ρσ̄i

max{σ̄i, ρ+ µ} for i = 1, . . . ,min{m,n}(4.11)
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satisfies (4.10), where U Diag(σ̄)V ⊤ is the singular value decomposition of the matrix ρZν(Sk)−Sk+πΩ(D).

Thus, solving the subproblem (4.8) corresponds to a singular value decomposition. The first-order optimality

conditions for (4.9) are:

−Wµ(Lk+1) +
1

ρ
(Lk+1 + Sk+1 − πΩ(D)) + Zν(Sk+1) = 0.(4.12)

It is easy to check that

(Sk+1)ij =

{

sgn(Bij)max
{

ν
ν+ρ |Bij |, |Bij | − ρξ

}

, ∀ (i, j) ∈ Ω;

Bij , ∀ (i, j) /∈ Ω,
(4.13)

satisfies (4.12), where B = ρWµ(Lk+1) − Lk+1 + πΩ(D). Thus, solving the subproblem (4.9) can be done

very cheaply.

5. Numerical results for RPCP. We conducted two sets of numerical experiments using ALM

(Algorithm 1) to solve (1.5) with δ = 0. In the first set of experiments, we compared ALM with EADM

and IADM [19] on problems with real data. In the second set, we solved randomly generated instances of

the RPCP problem with missing observations. In this setting, we tested only the ALM algorithm to see

how the run times scaled with respect to problem parameters and size.

5.1. RPCP problems with real data. In this section, we report the numerical results of our ALM for

solving (1.2) with real data arising from background extraction from surveillance video, removing shadows

and specularities from face images and video denoising from heavily corrupted data as in [5]. We will compare

the performance of ALM with EADM and IADM in [19].

EADM and IADM adopt a continuation strategy on ρ, in which, ρ is updated in every iteration via

(5.1) ρk+1 = ηρk

after updating the Lagrange multiplier matrix, where η ∈ (0, 1]. The strategy used in EADM sets η = 1/6

and ρ0 = 2‖sgn(D)‖. The one used in IADM sets η = 2/3 and ρ0 = 0.8‖D‖. To guarantee a fair comparison

and to further accelerate ALM, we used the same continuation strategy as IADM, i.e., we set η = 2/3 and

ρ0 = 0.8‖D‖ in ALM. Our ALM codes were written in MATLAB. The MATLAB codes of EADM and IADM

were downloaded from http://watt.csl.illinois.edu/∼perceive/matrix-rank/sample code.html. The default

settings of EADM and IADM were used. All the numerical experiments were conducted on a Windows 7

machine with Intel Core i7-3520M Processor (4 MB cash, 2 cores at 2.9 GHz), and 16 GB RAM running

MATLAB 7.14 (64 bit).

Note that in each iteration of ALM, EADM and IADM, one has to compute a partial SVD with only

certain number of leading singular values and corresponding singular vectors. To make a fair comparison,

we adopted a modified version of LANSVD function of PROPACK with threshold option to compute the

partial SVDs in ALM, EADM and IADM. This modified version of LANSVD function1 can compute only the

singular values that are greater than a given threshold. In particular, in EADM and IADM, one has to solve

a problem in the form of minL Lρk
(L, Sk; Λk), which corresponds to computing SVD of D+ ρkΛ

k − Sk with

only singular values that are greater than ρk. In ALM, one has to compute a partial SVD with threshold

µk in order to compute (4.11). Note that by setting a threshold for the SVD computation in ALM, Lk+1 in

1Available from http://svt.stanford.edu/code.html
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(4.11) is computed inexactly. However, as µk is approaching to 0, the computation of Lk+1 becomes more

accurate. We denote the total number of singular values computed during all the iterations by lsv.

All algorithms were terminated when the relative infeasibility was less than 10−7, i.e.,

‖Lk + Sk −D‖F
‖D‖F

< 10−7.

5.1.1. Foreground extraction from surveillance video. Extracting the almost still background

from a sequence of frames in a video is an important task in video surveillance. This problem is difficult due

to the presence of moving foreground in the video. Interestingly, this problem can be formulated as a RPCP

or SPCP problem depending on the existence of noise. Note that by stacking the columns of each frame into

a long vector, we can get a matrix D whose columns correspond to the sequence of frames of the video. This

matrix D can be decomposed into the sum of three matrices D := L0 + S0 +N0, where N0 is a dense noise

matrix. The matrix L0, which represents the backgrounds in the frames, should be of low rank due to the

correlation between frames. The matrix S0, which represents the moving foregrounds in the frames, should

be sparse since the foreground usually occupies a small portion of each frame.

Here, we apply ALM to solve the RPCP problem (1.2) corresponding to four videos introduced in [18],

where N0 = 0. Our first example is a sequence of 200 grayscale frames of size 144× 176 from a video of a

hall at an airport; thus D ∈ R
25344×200. The second example is a sequence of 300 grayscale frames of size

130× 160 from a video of an escalator at an airport; thus D ∈ R
20800×300. In this video, the background is

changing because of the moving escalator. The third example is a sequence of 250 grayscale frames of size

128× 160 from a video taken in a lobby; thus D ∈ R
20480×250. In this video, the background changes with

the switching off of some lights. The fourth example is a sequence of 320 grayscale frames of size 128× 160

from a video taken at a campus. In this video, the background is changing because of the oscillating trees.

Table 5.1 summarizes the numerical results on these problems, where cpu denotes the running time of

ALM in seconds, and lsv denotes the average number of leading singular values computed. We note that

the CPU times of ALM and were roughly comparable (the CPU time of ALM was slightly better in the third

example, but IADM took slightly less CPU time in the first, second and fourth examples). However, both

ALM and IADM were much faster than EADM. For example, ALM was about 15 times faster than EADM

for the second test problem.

Table 5.1

Comparison of ALM, EADM and IADM on surveillance video problems

ALM Exact ADM Inexact ADM

Problem m n lsv cpu lsv cpu lsv cpu

Hall 25344 200 6713 43 104083 450 5357 38

Escalator 20800 300 9513 68 168326 992 7392 59

Lobby 20480 250 6377 46 26385 855 3839 50

Campus 20480 320 9596 70 181301 882 7889 63

Some frames of the videos and the recovered backgrounds and foregrounds are shown in Figures 5.1 and

5.2. We only show the frames produced by ALM, because EADM and IADM produced visually identical

results. From these figures we can see that ALM can effectively separate the nearly still background from

the moving foreground. We note that the numerical results in [5] show that the model (1.2) produces much

better results than other competing models for background separation in surveillance video.
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(a) (b) (c) (a) (b) (c)

Fig. 5.1. Images in columns (a) are the frames of the surveillance video. Images in columns (b) are the static backgrounds
recovered by ALM. Note that the man who kept still in all the 200 frames of the first video stays as in the background. Images
in columns (c) are the moving foregrounds recovered by ALM. Note that some artifacts of the escalator appears in the sparse
matrix part because the background is changing as the escalator moves.

(a) (b) (c) (a) (b) (c)

Fig. 5.2. Images in columns (a) are the frames of the surveillance video. Images in columns (b) are the static backgrounds
recovered by ALM. Images in columns (c) are the moving foregrounds recovered by ALM. Note that some artifacts of the trees
appears in the sparse matrix part because the background is changing as the trees oscillate.

5.1.2. Removing shadows and specularities from face images. Removing shadows and specular-

ities from face images is another problem that fits into the RPCA framework when they are not corrupted by

a dense noise matrix, i.e. N0 = 0. Suppose that we have many images of the same face taken under different

illumination conditions. Hence, different shadows and specularities exist in different images. However, due

to the correlation between the images, we should be able to remove shadows and specularities by RPCA.

Note that by stacking the columns of each face image into a long vector, we get a matrix D whose columns

correspond to the sequence of images of the face. This matrix D can be decomposed into the sum of two

matrices D := L0 + S0. The matrix L0, which represents the face in the images, should be of low rank due

to the correlation between images. The matrix S0, which represents the shadows and specularities in the

images, should be sparse since the shadows and specularities only occupy a small portion of each image.
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Here we present results on images taken from the dataset named “yaleB01 P00.tar.gz” in the Yale B

database [13]. Each image had a resolution 200× 200 and there were a total of 65 illuminations per subject,

yielding a matrix D ∈ R
40000×65. From Table 5.2 we see that ALM and IADM were roughly comparable in

terms of the CPU time, and they were both about 20 times faster than EADM.

Table 5.2

Comparison of ALM, EADM and IADM on face image problems

ALM Exact ADM Inexact ADM

Problem m n lsv cpu lsv cpu lsv cpu

Face image 40000 65 2622 17 73721 315 2351 15

Again, we only show the frames produced by ALM, because EADM and IADM produced visually

identical results. The images recovered by ALM are shown in Figure 5.3. From these figures we see that the

shadows and specularities have been effectively detected and put into S0 by ALM.

Fig. 5.3. The first column depicts the original face images. The second column depicts face images after removing shadows
and specularities by ALM. The third column correspond to the removed shadows and specularities, i.e., the sparse errors.

5.1.3. Video denoising. We now consider the problem of denoising videos corrupted by impulsive

noise [27]. Again, as in section 5.1.2, we assume that the frames are not corrupted by a dense noise matrix,

i.e. N0 = 0. As before, we get a large matrix D whose columns correspond to the frames of the video. Then

D can be decomposed into two parts D := L0 + S0, where the matrix L0, which corresponds to the matrix

formed by the uncorrupted video, is expected to be of low rank due to the correlation between frames; and

the matrix S0, which corresponds to the impulsive noise, is expected to be sparse. The colored video used

in our experiment was downloaded from the website http://media.xiph.org/video/derf. This video consisted

of 300 frames where each frame was an image stored in the RGB format, as a 144× 176× 3 array. The video

was then reshaped into a 144× 176 by 3× 300 matrix, i.e., L0 ∈ R
25344×900. We then added impulsive noise

S0 to the video, by randomly choosing 20% of the entries of S0 and setting these entries to values drawn

from an i.i.d. Gaussian distribution ̺N (0, 1) with ̺ = 103. The other entries of S0 were set to zero. Finally,

we set D := L0 + S0.

12

http://media.xiph.org/video/derf


From Table 5.3 we see that although ALM is much faster than EADM, it is substantially slower than

IADM on this problem. Three frames of the video recovered by ALM are shown in Figure 5.4. From Figure

5.4 we see that, ALM can denoise the video heavily corrupted by impulsive noise very well.

Table 5.3

Comparison of ALM, EADM and IADM on video denoising problem

ALM Exact ADM Inexact ADM

Problem m n lsv cpu lsv cpu lsv cpu

Video denoising 25344 900 34623 526 15896 1157 2023 249

Fig. 5.4. Images in the first column are noisy frames with impulsive noise. Images in the second column are recovered
frames. Images in the third column are recovered noise.

5.2. Random RPCP Problems with Missing Data. In this section, we solved randomly generated

instances of the RPCP problem with missing data, i.e., (1.5) with δ = 0. In this setting, we tested only the

ALM algorithm to see how the run times scaled with respect to problem parameters and size

We set D := L0 + S0, where the rank r matrix L0 ∈ R
n×n was created as the product UV ⊤, of

random matrices U ∈ R
n×r and V ∈ R

n×r with i.i.d. Gaussian entries N (0, 1) and the sparse matrix S0 was

generated by choosing its support uniformly at random and its nonzero entries uniformly i.i.d. in the interval
[

−
√

8r/π,
√

8r/π
]

. In our synthetic problems, we wanted the non-zero entries of the sparse component and

the entries of the low-rank component to have the same magnitude. Indeed, for large n, L0
ij ∼

√
r N (0, 1) for

all i,j. Hence, E[|L0
ij |] =

√

2r
π . Therefore, the way we created S0

ij for (i, j) ∈ Λ ensures that E[|S0
ij |] =

√

2r
π .

In Table 5.4, cr := rank(L0)/n, cp := ‖S0‖0/n2, the relative errors relL := ‖L − L0‖F /‖L0‖F
and relS := ‖S − S0‖F/‖S0‖F , and the sampling ratio of Ω, SR = m/n2. The m indices in Ω were

generated uniformly at random. We set ξ = 1/
√
n and stopped ALM when the relative infeasibility

‖L+ S − πΩ(D)‖F /‖πΩ(D)‖F < 10−5 and for our continuation strategy, we set ρ0 = ‖πΩ(D)‖F /1.25.
The test results obtained using ALM to solve (1.5) with δ = 0 when the nonsmooth functions replaced

by their smoothed approximations are given in Table 5.4. For each test scenario, i.e., for fixed n, cp, cp and

SR values, we solved 5 random problem instances. All the results in Table 5.4 were averaged over five runs.

The CPU times reported were in seconds. From Table 5.4 we see that ALM recovered the test matrices from

a limited number of observations. Note that a fairly high number of samples was needed to obtain small

relative errors due to the presence of noise.

13



Table 5.4

Numerical results for noisy matrix completion problems

cr cp iter lsv relL relS cpu iter lsv relL relS cpu

SR = 90%,n = 500 SR = 80%,n = 500
0.05 0.05 24 1811 5.4e-006 3.0e-005 3.9 25 2034 5.5e-006 2.9e-005 4.3
0.05 0.10 23 2516 8.7e-006 3.4e-005 5.5 25 2782 7.4e-006 2.7e-005 6.1
0.10 0.05 24 2702 8.2e-006 3.5e-005 5.4 29 7018 2.0e-003 9.0e-003 6.6
0.10 0.10 30 9900 4.2e-004 1.4e-003 6.3 29 11235 1.0e-002 3.2e-002 5.6

SR = 90%,n = 1000 SR = 80%,n = 1000
0.05 0.05 26 3643 5.6e-006 3.3e-005 21.5 27 3530 6.6e-006 3.6e-005 21.5
0.05 0.10 27 4869 8.2e-006 3.1e-005 31.7 27 5326 7.3e-006 2.6e-005 34.2
0.10 0.05 26 5412 8.4e-006 3.7e-005 31.4 29 7470 5.2e-004 2.3e-003 47.1
0.10 0.10 25 7354 2.2e-005 7.0e-005 47.6 30 21495 6.3e-003 2.0e-002 37.3

SR = 90%,n = 1500 SR = 80%,n = 1500
0.05 0.05 27 4692 6.9e-006 4.2e-005 49.7 27 5173 7.0e-006 3.8e-005 56.0
0.05 0.10 27 7427 9.1e-006 3.5e-005 84.8 28 7930 7.0e-006 2.6e-005 91.4
0.10 0.05 28 7859 9.0e-006 4.0e-005 83.3 28 10212 1.7e-004 7.5e-004 117.2
0.10 0.10 27 11451 9.1e-006 2.9e-005 143.2 31 33003 4.7e-003 1.4e-002 113.7

6. Proximal Gradient Method for SPCP. In this section we focus on the problem (2.6) to solve

the SPCP problem (1.5) and show how the proximal gradient algorithm, i.e., the FISTA algorithm in [3],

can be applied to it. An advantage of this algorithm over to ALM algorithm is that only one of the two

terms in the objective function of the SPCP problem (1.5) needs to be smoothed. Note that this algorithm

can also easily be applied to the RPCP problem. The FISTA algorithm for (2.6) is given in Algorithm 2.

Algorithm 2 Partially Smooth Proximal Gradient (PSPG)

1: input: L0 ∈ R
m×n, Y0 ∈ R

m×n

2: k ← 0
3: while k ≤ k∗ do

4: (Lk, Sk)← argminL,S

{

ξ‖πΩ(S)‖1 + 〈∇fµ(Yk), L〉+
1

2µ
‖L− Yk‖

2
F : (L, S) ∈ χ

}

5: tk+1 ← (1 +
√

1 + 4t2k)/2
6: Yk+1 ← Lk + tk−1

tk+1
(Lk − Lk−1)

7: k ← k + 1
8: end while

9: return (Lk∗ , Sk∗)

Mimicking the proof in [3], it is easy to show that Algorithm 2 converges to the optimal solution of

(2.6). Given (L0, S0) ∈ χ := {(L, S) : ‖L+ S − πΩ(D)‖F ≤ δ}, e.g., L0 = 0 and S0 = πΩ(D), the current

algorithm keeps all iterates in χ, and hence it enjoys the full convergence rate of O
(

µ−1

k2

)

. Thus, setting

µ = Ω(ǫ), Algorithm 2 computes an ǫ-optimal, feasible solution of problem (1.5) in k∗ = O(1/ǫ) iterations.

However, overall complexity depends on per-iteration complexity, i.e. complexity of solving subproblem in

line 4 of Algorithm 2. Since the solution and the complexity of this step was not analyzed before, FISTA [3]

has not been applied to solve (2.6) previously and its overall complexity for (2.6) has been unknown.

In this paper, we show that the optimization subproblems in Algorithm 2 can be solved efficiently.

The subproblem that has to be solved at each iteration to compute (Lk, Sk) has the following generic form:

(Pns) : min

{

ξ‖πΩ(S)‖1 +
〈

Q,L− L̃
〉

+
1

2ρ
‖L− L̃‖2F : (L, S) ∈ χ

}

,(6.1)

for some ρ > 0. Lemma 6.1 shows that these computations can be done efficiently.
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Lemma 6.1. The optimal solution (L∗, S∗) to problem (Pns) can be written in closed form as follows.

When δ > 0,

S∗ = sgn
(

πΩ

(

D − q(L̃)
))

⊙max

{

|πΩ

(

D − q(L̃)
)

| − ξ
(1 + ρθ∗)

θ∗
E, 0

}

− πΩc

(

q(L̃)
)

,(6.2)

L∗ = πΩ

(

ρθ∗

1 + ρθ∗
(D − S∗) +

1

1 + ρθ∗
q(L̃)

)

+ πΩc

(

q(L̃)
)

,(6.3)

where q(L̃) := L̃ − ρ Q, E and 0 ∈ R
m×n are matrices with all components equal to ones and zeros,

respectively, and ⊙ denotes the componentwise multiplication operator. θ∗ = 0 if ‖πΩ(D − q(L̃))‖F ≤ δ;

otherwise, θ∗ is the unique positive solution of the nonlinear equation φ(θ) = δ, where

φ(θ) :=

∥

∥

∥

∥

min

{

ξ

θ
E,

1

1 + ρθ
|πΩ(D − q(L̃))|

}∥

∥

∥

∥

F

.(6.4)

Moreover, θ∗ can be efficiently computed in O(|Ω| log(|Ω|)) time.

When δ = 0,

(6.5) S∗ = sgn
(

πΩ(D − q(L̃))
)

⊙max
{

|πΩ(D − q(L̃))| − ξρ E, 0
}

− πΩc

(

q(L̃)
)

,

and L∗ = πΩ(D) − S∗.

Proof. See Appendix A for the proof.

We establish in Lemma 6.1 that, provided with q(L̃) := L̃ − ρQ, the generic form subproblem (Pns)

in (6.1) can be solved efficiently. In line 4 of PSPG, i.e. Algorithm 2, (Lk, Sk) is computed by solving

(Pns) with L̃ = Yk, Q = ∇fµ(Yk) and ρ = µ. Hence, before using Lemma 6.1 to compute (Lk, Sk), we have

to compute q(Yk) = Yk − µ ∇fµ(Yk). Note that ∇fµ(Yk) = Wµ(Yk) = U Diag
(

min
{

σ̄
µ , 1
})

V ⊤, where

Yk = U Diag(σ̄)V ⊤. However, computing ∇fµ(Yk) first and then computing q(Yk) can cause numerical

problems. It is easy to check that

q(Yk) = UDiag
(

(σ̄ − µ)+
)

V ⊤.(6.6)

Hence, one can compute q(Yk) directly without computing ∇fµ(Yk) to improve numerical stability.

7. Numerical results for SPCP. We conducted two sets of numerical experiments using PSPG

(Algorithm 2) to solve (1.3), where ξ = 1√
max{m,n}

. In the first set we solved randomly generated instances

of the SPCP problem. In this setting, first we tested only the PSPG algorithm to see how the run times scaled

with respect to problem parameters and size; then we compared the PSPG algorithm with an alternating

direction augmented Lagrangian algorithm ASALM [25]. In the second set of experiments, we ran the PSPG

and ASALM algorithms to extract foreground from an airport security noisy video [18]. The MATLAB

code for PSPG is available at http://www2.ie.psu.edu/aybat/codes.html and the code for ASALM is

available on request from the authors of [25]. All the numerical experiments were conducted on a Windows

7 machine with Intel Core i7-3520M Processor (4 MB cash, 2 cores at 2.9 GHz), and 16 GB RAM running

MATLAB 7.14 (64 bit).

7.1. Implementation details. Note that in each iteration of PSPG, in order to solve the subproblem

in line 4 of Algorithm 2, one has to perform a matrix shrinkage operation to compute q(Yk) as given in

(6.6), which corresponds to computing the SVD of Yk and is expensive for large matrices. However, we
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do not have to compute the whole SVD, as only the singular values that are larger than the smoothing

parameter µ and the corresponding singular vectors are needed. As in section 5, during each partial SVD,

we used the modified version of PROPACK [17] to compute only those singular values that are greater than

the threshold µ and the corresponding singular vectors.

Finally, when we implemented PSPG (Algorithm 2), we adopted a continuation strategy on µ, in

which, µ is updated via

(7.1) µk+1 =

{

ηµk, k ≤ K̄;

µk, k > K̄,

after the subproblem in line 4 of Algorithm 2 is solved. The strategy used in PSPG sets K̄ = 30, η = 2/3

and µ0 = 0.8‖D‖. Note that the theoretical convergence properties of PSPG are not significantly affected

by the continuation strategy on µ and are still valid after the first K̄ iterations. On the other hand, in

our numerical experiments we noticed that the continuation strategy significantly decreases the run time of

the algorithm as the number of leading singular value computations decreases for larger values of µ -see the

computation of q(Yk) in (6.6) for the effect of µ.

7.2. Random Stable Principle Component Pursuit Problems.

7.2.1. Experimental Setting. We tested PSPG on randomly generated stable principle component

pursuit problems. The data matrices for these problems, D = L0 + S0 +N0, were generated as follows

i. L0 = UV T , such that U ∈ R
n×r, V ∈ R

n×r for r = crn and Uij ∼ N (0, 1), Vij ∼ N (0, 1) for all i, j are

independent standard Gaussian variables and cr ∈ {0.05, 0.1},
ii. Λ ⊂ {(i, j) : 1 ≤ i, j ≤ n} was chosen uniformly at random such that its cardinality |Λ| = p for p = cpn

2

and cp ∈ {0.05, 0.1},
iii. S0

ij ∼ U
[

−
√

8r
π ,
√

8r
π

]

for all (i, j) ∈ Λ are independent uniform random variables,

iv. N0
ij ∼ ̺ N (0, 1) for all i, j are independent Gaussian variables.

We created 10 random problems of size n ∈ {500, 1000, 1500}, i.e. D ∈ R
n×n, for each of the two choices

of cr and cp using the procedure described above, where ̺ was set such that the signal-to-noise ratio of D is

either 80dB or 45dB. The signal-to-noise ratio of D is given by

SNR(D) = 10 log10

(

E
[

‖L0 + S0‖2F
]

E [‖N0‖2F]

)

= 10 log10

(

crn + cs
8r
3π

̺2

)

.(7.2)

Hence, for a given SNR value, we selected ̺ according to (7.2). Table 7.1 displays the ̺ values that we used

in our experiments.

Table 7.1

̺ values depending on the experimental setting

SNR n cr=0.05 cp=0.05 cr=0.05 cp=0.1 cr=0.1 cp=0.05 cr=0.1 cp=0.1

80dB
500 0.5E-03 0.5E-03 0.7E-03 0.7E-03

1000 0.7E-03 0.7E-03 1.0E-03 1.0E-03

1500 0.9E-03 0.9E-03 1.3E-03 1.3E-03

45dB
500 2.9E-02 2.9E-02 4.1E-02 4.1E-02

1000 4.1E-02 4.1E-02 5.7E-02 5.9E-02

1500 5.0E-02 5.1E-02 7.0E-02 7.1E-02
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As in [25], we set δ =
√

(n+
√
8n)̺ in (1.3) in the first set of experiments for both PSPG and ASALM.

We terminated PSPG when

‖(Lk+1, Sk+1)− (Lk, Sk)‖F
‖(Lk, Sk)‖F + 1

≤ 0.05 ̺,(7.3)

where all the components of the dense noise matrix, N0, are i.i.d. with standard deviation ̺, i.e. N0
ij ∼

̺N (0, 1) for all i = 1, . . . ,m and j = 1, . . . , n. On the other hand, we terminated ASALM either when

it computed a solution with better relative errors compared to the PSPG solution for the same problem

or when an iterate satisfied (7.3). To be more specific, let D = L0 + S0 + N0 be generated as discussed

above. For a given iterate (L̃, S̃), we denote its relative error with relL(L̃) = ‖L̃ − L0‖F/‖L0‖F and

relS(S̃) = ‖S̃ − S0‖F /‖S0‖F . Suppose that the relative errors of the low-rank and sparse components of

the PSPG solution are rL and rS , respectively. If (k + 1)-th ASALM iterate, (Lk+1, Sk+1), is the first one

to satisfy the condition

relL(Lk+1) ≤ rL and relS(Sk+1) ≤ rS ,(7.4)

before the condition given in (7.3) holds, then we chose ASALM to return (Lk, Sk) to be fair in terms of run

time comparison, i.e., all the run times reported for ASALM are the cpu times required for (7.3) or (7.4) to

hold, whichever comes first.
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Fig. 7.1. Change of rank(q(Yk)) during PSPG iterations for D ∈ R
n×n and n=1500

17



In each iteration of ASALM, SVD of a low-rank matrix has to be computed as in PSPG. However, the

ASALM code, provided by the authors of [25], does this computation very inefficiently. Therefore, in order to

compare both codes on the same grounds, we used modified LANSVD function of PROPACK with threshold

option in PSPG and ASALM to compute low-rank SVDs more efficiently (modified LANSVD function with

threshold option can be downloaded from http://svt.stanford.edu/code.html).

7.2.2. Numerical results. As discussed earlier, solving subproblem in line 4 of PSPG (Algorithm 2)

is the only bottleneck operation and according to Lemma 6.1, it can be computed very efficiently when q(Yk)

is given. Hence, effectiveness of PSPG depends on the rank of q(Yk) to be small – see (6.6). It can be

seen in Figure 7.1 that rank(q(Yk)) ≤ rank(L0) except in the last one or two iterations and note that L0 is

a low-rank matrix. As shown in Figure 7.1 for both 45dB and 80dB, rank(q(Yk)) increases and stabilizes

exactly at rank(L0). This behavior plotted in the figure is true for all test problems we solved.

Table 7.2

PSPG: Solution time for decomposing D ∈ R
n×n, n ∈ {500, 1000, 1500}

cr=0.05 cp=0.05 cr=0.05 cp=0.1 cr=0.1 cp=0.05 cr=0.1 cp=0.1

SNR n Field avg / max avg / max avg / max avg / max

80dB

500

svd 28 / 28 28 / 28 26 / 26 27 / 27

lsv 1152.6 / 1163.0 1183.0 / 1191.0 1482.8 / 1502.0 1656.1 / 1680.0

cpu 4.7 / 4.8 5.4 / 5.5 4.0 / 4.2 5.2 / 5.3

1000

svd 26.3 / 27 27 / 27 25 / 25 26 / 26

lsv 1557.0 / 1714.0 1752.0 / 1778.0 2525.1 / 2530.0 2730.7 / 2738.0

cpu 14.4 / 16.5 18.5 / 18.8 13.6 / 13.8 17.6 / 17.8

1500

svd 26 / 26 27 / 27 25 / 25 25 / 25

lsv 2084.8 / 2094.0 2474.4 / 2492.0 3685.1 / 3695.0 3690.3 / 3703.0

cpu 28.7 / 32.8 41.3 / 45.2 34.0 / 34.3 38.2 / 38.6

45dB

500

svd 18 / 18 18 / 18 16 / 16 17 / 17

lsv 806.0 / 819.0 839.8 / 852.0 901.8 / 922.0 1080.5 / 1102.0

cpu 3.1 / 3.3 3.5 / 3.6 2.4 / 2.6 3.3 / 3.4

1000

svd 16.9 / 17 17 / 17 15 / 15 16 / 16

lsv 1100.8 / 1146.0 1172.5 / 1198.0 1475.0 / 1480.0 1685.7 / 1702.0

cpu 10.0 / 10.6 11.6 / 11.8 7.9 / 8.1 11.0 / 11.4

1500

svd 16 / 16 17 / 17 15 / 15 15.6 / 16

lsv 1267.8 / 1278.0 1665.4 / 1678.0 2154.9 / 2165.0 2352.5 / 2485.0

cpu 16.6 / 17.1 26.1 / 26.9 19.8 / 20.0 24.9 / 27.0

Tables 7.2 and 7.3 show the results of our experiments to determine how PSPG performs as the pa-

rameters of the SPCP problem change. In Table 7.2, the average and maximum values for the statistics

cpu, svd and lsv, which are taken over the 10 random instances, are given for each choice of n, cr and cp

values. For a given instance, cpu denotes the running time of PSPG in seconds, svd denotes the number of

partial SVDs computed during the run time and lsv denotes the total number of leading singular values and

corresponding singular vectors computed, i.e., total number of singular values computed in all the partial

SVDs during the run time. Table 7.2 shows that the number of partial SVDs was almost constant regardless

of the problem dimension n and the problem parameters related to the rank and sparsity of D, i.e., cr and

cp. Moreover, Table 7.3 shows that the relative error of the solution (Lsol, Ssol) was also almost constant for

different n, cr and cp values.

Next, we compared PSPG with ASALM [25] for a fixed problem size, i.e. n = 1500 where D ∈ R
n×n.

The code for ASALM was obtained from the authors of [25]. The comparison results are displayed in

Table 7.4 and Table 7.5. The statistics displayed in Table 7.4 and Table 7.5, i.e. cpu, svd, lsv, relL and

relS, are defined at the beginning of this section.
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Table 7.3

PSPG: Solution accuracy for decomposing D ∈ R
n×n, n ∈ {500, 1000, 1500}

cr=0.05 cp=0.05 cr=0.05 cp=0.1 cr=0.1 cp=0.05 cr=0.1 cp=0.1

SNR n Relative Error avg / max avg / max avg / max avg / max

80dB

500
relL 8.0E-05 / 8.0E-05 8.5E-05 / 8.5E-05 9.8E-05 / 1.0E-04 9.7E-05 / 9.9E-05

relS 2.6E-04 / 2.7E-04 2.3E-04 / 2.3E-04 2.9E-04 / 2.9E-04 2.6E-04 / 2.7E-04

1000
relL 9.9E-05 / 1.0E-04 9.7E-05 / 9.8E-05 1.1E-04 / 1.2E-04 1.1E-04 / 1.1E-04

relS 2.7E-04 / 2.8E-04 2.3E-04 / 2.4E-04 3.5E-04 / 3.6E-04 2.8E-04 / 2.9E-04

1500
relL 1.0E-04 / 1.0E-04 9.7E-05 / 9.8E-05 1.1E-04 / 1.1E-04 1.3E-04 / 1.3E-04

relS 2.7E-04 / 2.8E-04 2.3E-04 / 2.4E-04 3.5E-04 / 3.5E-04 3.5E-04 / 3.6E-04

45dB

500
relL 4.5E-03 / 4.6E-03 4.8E-03 / 4.9E-03 5.6E-03 / 5.7E-03 5.5E-03 / 5.6E-03

relS 1.5E-02 / 1.5E-02 1.3E-02 / 1.3E-02 1.7E-02 / 1.7E-02 1.5E-02 / 1.5E-02

1000
relL 5.2E-03 / 5.8E-03 5.5E-03 / 5.6E-03 6.5E-03 / 6.6E-03 6.3E-03 / 6.4E-03

relS 1.4E-02 / 1.5E-02 1.3E-02 / 1.3E-02 2.0E-02 / 2.1E-02 1.6E-02 / 1.6E-02

1500
relL 5.9E-03 / 5.9E-03 5.5E-03 / 5.6E-03 6.5E-03 / 6.5E-03 6.8E-03 / 7.5E-03

relS 1.6E-02 / 1.6E-02 1.3E-02 / 1.3E-02 2.0E-02 / 2.0E-02 1.8E-02 / 2.0E-02

Table 7.4 shows that for all of the problem classes, the number of partial SVDs required by PSPG

was slightly better than the number required by ASALM. On the other hand, there was a big difference in

CPU times; this difference can be explained by the fact that ASALM required more leading singular value

computations than PSPG did per partial SVD. Table 7.5 shows that the relative errors of the low-rank and

sparse components produced by PSPG and ASALM are almost the same.

Table 7.4

PSPG vs ASALM: Solution time for decomposing D ∈ R
n×n, n = 1500

cr=0.05 cp=0.05 cr=0.05 cp=0.1 cr=0.1 cp=0.05 cr=0.1 cp=0.1

SNR Alg. Field avg / max avg / max avg / max avg / max

80dB

PSPG

svd 26 / 26 27 / 27 25 / 25 25 / 25

lsv 2084.8 / 2094.0 2474.4 / 2492.0 3685.1 / 3695.0 3690.3 / 3703.0

cpu 28.7 / 32.8 41.3 / 45.2 34.0 / 34.3 38.2 / 38.6

ASALM

svd 29.2 / 30 32.5 / 33 29.8 / 30 35.3 / 36

lsv 3577.0 / 3643.0 5763.9 / 5809.0 6017.8 / 6059.0 9544.3 / 9651.0

cpu 45.8 / 47.5 77.9 / 80.1 63.1 / 64.4 106.8 / 108.4

45dB

PSPG

svd 16 / 16 17 / 17 15 / 15 15.6 / 16

lsv 1267.8 / 1278.0 1665.4 / 1678.0 2154.9 / 2165.0 2352.5 / 2485.0

cpu 16.6 / 17.1 26.1 / 26.9 19.8 / 20.0 24.9 / 27.0

ASALM

svd 13.6 / 14 20.9 / 21 15 / 15 22.6 / 23

lsv 2522.0 / 2597.0 5555.8 / 5607.0 3839.2 / 3855.0 7857.2 / 7979.0

cpu 33.0 / 34.5 76.2 / 79.6 44.1 / 44.5 93.5 / 96.0

Table 7.5

PSPG vs ASALM: Solution accuracy for decomposing D ∈ R
n×n, n = 1500

cr=0.05 cp=0.05 cr=0.05 cp=0.1 cr=0.1 cp=0.05 cr=0.1 cp=0.1

SNR Alg. Relative Error avg / max avg / max avg / max avg / max

80dB

PSPG
relL 1.0E-04 / 1.0E-04 9.7E-05 / 9.8E-05 1.1E-04 / 1.1E-04 1.3E-04 / 1.3E-04

relS 2.7E-04 / 2.8E-04 2.3E-04 / 2.4E-04 3.5E-04 / 3.5E-04 3.5E-04 / 3.6E-04

ASALM
relL 4.5E-05 / 4.7E-05 4.7E-05 / 4.9E-05 7.6E-05 / 7.8E-05 7.8E-05 / 8.0E-05

relS 4.6E-04 / 5.0E-04 3.3E-04 / 3.5E-04 6.4E-04 / 6.7E-04 4.4E-04 / 4.6E-04

45dB

PSPG
relL 5.9E-03 / 5.9E-03 5.5E-03 / 5.6E-03 6.5E-03 / 6.5E-03 6.8E-03 / 7.5E-03

relS 1.6E-02 / 1.6E-02 1.3E-02 / 1.3E-02 2.0E-02 / 2.0E-02 1.8E-02 / 2.0E-02

ASALM
relL 2.5E-03 / 2.9E-03 2.9E-03 / 3.0E-03 4.2E-03 / 4.3E-03 4.3E-03 / 5.2E-03

relS 2.0E-02 / 2.8E-02 1.3E-02 / 1.4E-02 3.0E-02 / 3.1E-02 2.0E-02 / 2.6E-02
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Fig. 7.2. Background extraction from a video with 20dB SNR using PSPG

7.3. Foreground Detection on a Noisy Video. As described in section 5.1.1, foreground extrac-

tion from a noisy video can be formulated as SPCP problem. We used PSPG and ASALM to extract

moving objects in a surveillance video [18], which is a sequence of 201 grayscale 144 × 176 frames. We

represented this information as a data matrix D ∈ R
(144×176)×201, where the i-th column of D was con-

structed by stacking the columns of the i-th frame into a long vector. We assumed that the original airport

security video was noiseless and created a noisy video sequence with SNR = 20dB as follows. We set

̺ = ‖D‖F/(
√
144× 176× 201 10SNR/20) and then added to each component Dij of the data matrix an

independent sample from a Normal distribution with mean zero and variance ̺2.

We solved the corresponding SPCP problem using PSPG and ASALM. We set i-th background frame to

be i-th column of the recovered low-rank matrix L, and the i-th foreground frame to be the i-th column of

the sparse matrix S. PSPG and ASALM were terminated when
‖(Lk+1,Sk+1)−(Lk,Sk)‖F

(‖(Lk,Sk)‖F+1)̺ is less than 5× 10−4

and 1× 10−4, respectively, in order to obtain similar visual quality in reconstruction. The recovery statistics

for each algorithm are displayed in Table 7.6. (Lsol, Ssol) denotes the variables corresponding to the low-

rank and sparse components of D, respectively, when the algorithm of interest terminates. The first row in

Figure 7.2 displays the 35-th, 100-th and 125-th frames of the noisy surveillance video [18]. The second and

third rows display the recovered background and foreground images of the selected frames, respectively, using

PSPG. The frames recovered by ASALM were very similar to those of PSPG. Even though the visual quality

of recovered background and foreground are very similar for both algorithms, Table 7.6 shows that both the

number of partial SVDs and the CPU time of PSPG are significantly smaller than those of ASALM.

In our preliminary numerical experiments, we noticed that the recovered background frames are almost

noise free even when the input video was very noisy, and almost all the noise shows up in the recovered

foreground images. This was observed for both PSPG and ASALM. Hence, in order to eliminate the noise
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Table 7.6

PSPG vs ASALM: Recovery statistics for foreground detection on a noisy video

Alg. svd lsv cpu ‖Lsol‖∗ ‖Ssol‖1 rank(Lsol)

PSPG 18 296 54.4 ≈ 3.5 × 105 ≈ 7.1 × 107 1

ASALM 56 2232 93.1 ≈ 4.0 × 105 ≈ 7.6 × 107 84

seen in the recovered foreground frames and enhance the quality of the recovered frames, we post-process

(Lsol, Ssol) of PSPG as follows:

Ssol
post := argmin

S
{‖S‖1 : ‖S + Lsol −D‖F ≤ δ}.(7.5)

The fourth row of Figure 7.2 shows the post-processed foreground frames and ‖Ssol
post‖1 ≈ 3.2× 107.

8. Conclusion. In this paper, we proposed proximal gradient and alternating linearization methods

for solving robust and stable PCA problems. We proved that O(1/ǫ) iterations are required to obtain an

ǫ-optimal solution to the nonsmooth RPCP and SPCP problems. Numerical results on problems with arising

from background separation from surveillance video, shadow and specularity removal from face images and

video denoising from heavily corrupted data are reported. The results show that our methods are able to

solve huge problems involving million variables and linear constraints effectively.
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Appendix A. Proof of Lemma 6.1.

Proof. Suppose that δ > 0. Let (L∗, S∗) be an optimal solution to problem (Pns) and θ∗ denote the

optimal Lagrangian multiplier for the constraint (L, S) ∈ χ written as

1

2
‖L+ S − πΩ(D)‖2F ≤ δ2

2
.(A.1)

Then the KKT optimality conditions for this problem are

22



i. Q+ ρ−1(L∗ − L̃) + θ∗(L∗ + S∗ − πΩ(D)) = 0,

ii. ξG+ θ∗(L∗ + S∗ − πΩ(D)) = 0 and G ∈ πΩ (∂‖πΩ(S
∗)‖1),

iii. ‖L∗ + S∗ − πΩ(D)‖F ≤ δ,

iv. θ∗ ≥ 0,

v. θ∗ (‖L∗ + S∗ − πΩ(D)‖F − δ) = 0,

where ii follows from π∗
Ω = πΩ. From i and ii, we have

[

(ρ−1 + θ∗)I θ∗I

θ∗I θ∗I

] [

L∗

S∗

]

=

[

θ∗πΩ(D) + ρ−1 q(L̃)

θ∗πΩ(D)− ξG

]

,(A.2)

where q(L̃) = L̃− ρ Q. From (A.2) it follows that

[

(ρ−1 + θ∗)I θ∗I

0
(

θ∗

1+ρθ∗

)

I

][

L∗

S∗

]

=

[

θ∗πΩ(D) + ρ−1 q(L̃)
θ∗

1+ρθ∗

(

πΩ(D)− q(L̃)
)

− ξG

]

.(A.3)

From the second equation in (A.3), we have

ξ
(1 + ρθ∗)

θ∗
G+ S∗ + q(L̃)− πΩ(D) = 0.(A.4)

But (A.4) is precisely the first-order optimality conditions for the “shrinkage” problem

min
S∈Rm×n

{

ξ
(1 + ρθ∗)

θ∗
‖πΩ(S)‖1 +

1

2
‖S + q(L̃)− πΩ(D)‖2F

}

.

Thus, S∗ is the optimal solution to the “shrinkage” problem and is given by (6.2). (6.3) follows from the

first equation in (A.3), and it implies

L∗ + S∗ − πΩ(D) =
1

1 + ρθ∗
πΩ(S

∗ + q(L̃)−D).(A.5)

Therefore,

‖L∗ + S∗ − πΩ(D)‖F =
1

1 + ρθ∗
‖πΩ

(

S∗ + q(L̃)−D
)

‖F ,

=
1

1 + ρθ∗
‖πΩ

(

sgn
(

D − q(L̃)
)

⊙max

{

|D − q(L̃)| − ξ
(1 + ρθ∗)

θ∗
E, 0

}

−
(

D − q(L̃)
)

)

‖F ,

=
1

1 + ρθ∗
‖πΩ

(

max

{

|D − q(L̃)| − ξ
(1 + ρθ∗)

θ∗
E, 0

}

− |D − q(L̃)|
)

‖F ,

=
1

1 + ρθ∗
‖πΩ

(

min

{

ξ
(1 + ρθ∗)

θ∗
E, |D − q(L̃)|

})

‖F ,

= ‖min

{

ξ

θ∗
E,

1

1 + ρθ∗

∣

∣

∣
πΩ

(

D − q(L̃)
)
∣

∣

∣

}

‖F ,(A.6)

where the second equation uses (6.2). Now let φ : R+ → R+ be

φ(θ) := ‖min

{

ξ

θ
E,

1

1 + ρθ

∣

∣

∣
πΩ

(

D − q(L̃)
)∣

∣

∣

}

‖F .(A.7)
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Case 1: ‖πΩ

(

D − q(L̃)
)

‖F ≤ δ. θ∗ = 0, L∗ = q(L̃) and S∗ = −πΩc

(

q(L̃)
)

trivially satisfy all the

KKT conditions.

Case 2: ‖πΩ

(

D − q(L̃)
)

‖F > δ. It is easy to show that φ(.) is a strictly decreasing function of θ. Since

φ(0) = ‖πΩ

(

D − q(L̃)
)

‖F > δ and limθ→∞ φ(θ) = 0, there exists a unique θ∗ > 0 such that φ(θ∗) = δ.

Given θ∗, S∗ and L∗ can then be computed from equations (6.2) and (6.3), respectively. Moreover, since

θ∗ > 0 and φ(θ∗) = δ, (A.6) implies that L∗, S∗ and θ∗ satisfy the KKT conditions.

We now show that θ∗ can be computed in O(|Ω| log(|Ω|)) time. Let A := πΩ

(

|D − q(L̃)|
)

and 0 ≤
a(1) ≤ a(2) ≤ ... ≤ a(|Ω|) be the |Ω| elements of the matrix A corresponding to the indices (i, j) ∈ Ω sorted in

increasing order, which can be done in O(|Ω| log(|Ω|)) time. Defining a(0) := 0 and a(|Ω|+1) := ∞, we then

have for all j ∈ {0, 1, ..., |Ω|} that

1

1 + ρθ
a(j) ≤

ξ

θ
≤ 1

1 + ρθ
a(j+1) ⇔

1

ξ
a(j) − ρ ≤ 1

θ
≤ 1

ξ
a(j+1) − ρ.(A.8)

For all k̄ < j ≤ |Ω| define θj such that 1
θj

= 1
ξ a(j) − ρ and let k̄ := max

{

j : 1
θj

≤ 0, j ∈ {0, 1, ..., |Ω|}
}

.

Then for all k̄ < j ≤ |Ω|

φ(θj) =

√

√

√

√

(

1

1 + ρθj

)2 j
∑

i=0

a2(i) + (|Ω| − j)

(

ξ

θj

)2

.(A.9)

Also define θk̄ := ∞ and θ|Ω|+1 := 0 so that φ(θk̄) := 0 and φ(θ|Ω|+1) = φ(0) = ‖A‖F > δ. Note that

{θj}{k̄<j≤|Ω|} contains all the points at which φ(θ) may not be differentiable for θ ≥ 0. Define j∗ := max{j :
φ(θj) ≤ δ, k̄ ≤ j ≤ |Ω|}. Then θ∗ is the unique solution of the system

√

√

√

√

(

1

1 + ρθ

)2 j∗
∑

i=0

a2(i) + (|Ω| − j∗)

(

ξ

θ

)2

= δ and θ > 0,(A.10)

since φ(θ) is continuous and strictly decreasing in θ for θ ≥ 0. Solving the equation in (A.10) requires finding

the roots of a fourth-order polynomial (a.k.a. quartic function); therefore, one can compute θ∗ > 0 using

the algebraic solutions of quartic equations (as shown by Lodovico Ferrari in 1540), which requires O(1)

operations. Note that if k̄ = |Ω|, then θ∗ is the solution of the equation

√

√

√

√

(

1

1 + ρθ∗

)2 |Ω|
∑

i=1

a2(i) = δ,(A.11)

i.e. θ∗ = ρ−1
(

‖A‖F

δ − 1
)

= ρ−1

(

‖πΩ(D−L̃)‖F

δ − 1

)

. Hence, we have proved that problem (Pns) can be

solved efficiently.

Now, suppose that δ = 0. Since L∗ + S∗ = πΩ(D), problem (Pns) can be written as

(A.12) minS∈Rm×n ξρ‖πΩ(S)‖1 + 1
2‖S + q(L̃)− πΩ(D)‖2F .

Then (6.5) trivially follows from first-order optimality conditions for the above problem and the fact that

L∗ = πΩ(D)− S∗.
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