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Abstract

We consider a regularized least squares problem, with regularization by structured sparsity-inducing norms,
which extend the usual `1 and the group lasso penalty, by allowing the subsets to overlap. Such regularizations
lead to nonsmooth problems that are difficult to optimize, and we propose in this paper a suitable version of an
accelerated proximal method to solve them. We prove convergence of a nested procedure, obtained composing
an accelerated proximal method with an inner algorithm for computing the proximity operator. By exploiting the
geometrical properties of the penalty, we devise a new active set strategy, thanks to which the inner iteration is
relatively fast, thus guaranteeing good computational performances of the overall algorithm. Our approach allows
to deal with high dimensional problems without pre-processing for dimensionality reduction, leading to better
computational and prediction performances with respect to the state-of-the art methods, as shown empirically
both on toy and real data.

keywords: Structured sparsity, proximal methods, regularization

AMS Classification: 65K10, 90C25

1 Introduction

Sparsity has become a popular way to deal with a number of problems arising in signal and image processing,
statistics and machine learning [18]. In a broad sense, it refers to the possibility of writing the solution in terms
of a few building blocks. Often sparsity based methods are the key towards finding interpretable models in real-
world problems. For example, sparse regularization based with `1-type penalties is a powerful approach to find
sparse solutions by minimizing a convex functional [47, 11, 17]. The success of `1 regularization motivated ex-
ploring different kinds of sparsity properties for regularized optimization problems, exploiting available a priori
information, which restricts the admissible sparsity patterns of the solution. An example of a sparsity pattern is
when the variables are partitioned into groups (known a priori), and the goal is to estimate a sparse model where
variables belonging to the same group are either jointly selected or discarded. This problem can be solved by
regularizing with the group `1 penalty, also known as group lasso penalty [51]. The latter is the sum, over the
groups, of the euclidean norms of the coefficients restricted to each group. Note that, for any p > 1, the same
groupwise selection can be achieved by regularizing with the `1/`p norm, i.e. the sum over the groups of the `p
norm of the coefficients restricted to each group. A possible generalization of the group lasso penalty is obtained
considering groups of variables which can be potentially overlapping [52, 23], and the goal is to estimate a model
which support is the union of groups. For example, this is a common situation in bioinformatics (especially in
the context of high-throughput data such as gene expression and mass spectrometry data), where problems are
characterized by a very low number of samples with several thousands of variables. In fact, when the number of
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samples is not sufficient to guarantee accurate model estimation, a possible solution is to take advantage of the
huge amount of prior knowledge encoded in online databases such as the Gene Ontology [14]. Largely motivated
by applications in bioinformatics, the latent group lasso with overlap penalty is proposed in [21] and further studied
in [35, 2] and in [37] in the image processing context, which generalizes the `1/`2 penalty to overlapping groups,
thus satisfying the assumption that the admissible sparsity patterns must be unions of a subset of the groups.

All the methods proposed in the literature solve the minimization problem arising in [21] by applying state-
of-the-art techniques for group lasso in an expanded space, called space of latent variables, built by duplicating
variables that belong to more than one group. The most popular optimization strategies that have been proposed
are interior-points methods [3, 36], block coordinate descent [27], proximal methods [42, 30, 37, 25, 12] and the re-
lated alternating direction method [15]. Very recently, the paper [39] proposed an accelerated alternating direction
method and [40] studied a block coordinate descent, along with a proximal method with variable step-sizes.

As already noted in [21], though very natural, every implementation developed in the latent variables does
not scale to large datasets: when the groups have significant overlap, a more scalable algorithm with no data
duplication is needed. For this reason we propose an alternative optimization approach to solve the group lasso
problem with overlap, and extend it to the entire family of group lasso with overlap penalties, that generalize the
`1/`p penalties to overlapping groups for p > 1. Our method is a two-loops iterative scheme based on proximal
methods (see for example [32, 6, 5]), and more precisely on the accelerated version named FISTA [5]. It does not
require explicit replication of the variables and is thus more appropriate to deal with high dimensional problems
with large group overlap. In fact, the proximity operator can be efficiently computed by exploiting the geometrical
properties of the penalty. We show that such an operator can be written as the identity minus the projection onto a
suitable convex set, which is the intersection of as many convex sets as the number of active groups, that is groups
corresponding to active constraints, which can be easily found. Indeed, the identification of the active groups is a
key step, since it allows computing the projection in a reduced space. For general p, the projection can be solved
via the Cyclic Projections algorithm [4]. Furthermore, for the case p = 2, we present an accelerated scheme, where
the reduced projection is computed by solving a corresponding dual problem via the projected Newton method
[7], thus working in a much lower dimensional space.

The present paper completes and extends the preliminary results presented in the short conference version
[31]. In particular, it contains a general mathematical presentation and all the proofs, which were omitted in [31].
We next describe how the rest of the paper is organized, and then highlight the main novelties with respect to
the short version. In Section 2, we cast the problem of Group-wise Selection with Overlap (GSO) as a regulariza-
tion problem based on a modified `1/`p-type penalty and compare it with other structured sparsity penalties. We
extend the approach in [31] for p = 2 to general p > 1. In Section 3, we describe the derivation of the proposed
optimization scheme, and prove its convergence. Precisely, we first recall proximal methods in Subsection 3.1, then
in Subsection 3.2 we describe the technical results that ease the computation of the proximity operator as a simpli-
fied projection, and present different projection algorithms depending on p. With respect to [31], we show that our
active set strategy can be profitably used in this generalized framework in combination with any algorithm chosen
to compute the inner projection. Furthermore, to solve the projection for a general p ∈ (1,+∞], we discuss the use
of a cyclic projections algorithm, whose convergence in norm is guaranteed and results in a rate of convergence for
the proposed proximal method, proved in Subsection 3.3. Section 4 is a substantial extension of the experiments
performed in [31]. We empirically analyze the computational performance of our optimization procedure. We first
study the performance of the different variations of the proposed optimization scheme. Then we present a set of
numerical experiments comparing running time of our algorithm with state-of-the-art techniques. We conclude
with a real data experiment where we show that the improved computational performance allows dealing with
large data sets without preprocessing thus improving also the prediction and selection performance. Finally, in
Appendix B we review the projected Newton method [7].

Notation. Given a vector x ∈ Rd, we denote with ‖·‖p the `p-norm of x, defined as ‖x‖p = (
∑d
j=1 x

p
j )

1/p and
‖x‖∞ = maxj∈{1,...d} |xj |. We will also use the notation ‖x‖G,p = (

∑
j∈G x

p
j )

1/p for p ≥ 1, and ‖x‖G,∞ =
maxj∈G |xj | to denote the `p-norm of the components of x in G ⊂ {1, . . . , d}. When the subscript p is omitted, the
`2 norm is used, ‖·‖ = ‖·‖2. The conjugate exponent of p is denoted by q; we recall that q is such that 1/p+ 1/q = 1.
In the following, X will denote Rd and Y a bounded interval in R.
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2 Group-wise selection with Overlap (GSO)

This paper proposes an optimization algorithm for a regularized least-squares problem of the type

min
x∈Rd

Epτ (x), Epτ (x) =
1

n
‖Ψx− y‖2 + 2τΩGp (x) , (GSO-p)

where Ψ : Rd → Rn is a linear operator, y ∈ Rn, and ΩGp : Rd → [0,+∞) is a convex and lower semicontinuous
penalty, depending on a parameter p ∈ (1,+∞], and on an a priori given group structure, G = {Gr}Br=1, with
Gr ⊂ {1, . . . , d} and

⋃B
r=1Gr = {1, . . . , d}. Note that other data fit terms could be used, different from the quadratic

one, as long as they are convex and continuously differentiable with Lipschitz continuous gradient. We will focus
on least squares to simplify the exposition. Most group sparsity penalties can be built starting from the family of
canonical linear projections on the subspace identified by the indices belonging to Gr, i.e. Pr : Rd → RGr . The
definition of the penalties we consider is based on the adjoint of the linear operator

P : Rd →
B∏
r=1

RGr , Px = (P1x, . . . , PBx),

that is the operator

P ∗ :

B∏
r=1

RGr → Rd, P ∗(v1, . . . , vB) =

B∑
r=1

P ∗r vr,

where P ∗r : RGr → Rd is the canonical injection. For x ∈ Rd we set

ΩGp (x) = min
v∈

∏
RGr

P∗v=x

B∑
r=1

‖vr‖p . (1)

For p = 2, the functional ΩG2 was introduced in [21] (see also [35, 2]). The distinctive feature of the family of
penalties ΩGp , is that they have the property of inducing group-wise selection, that is they lead to solutions with
support (i.e. set of non zero entries) which is the union of a subsets of the groups defined a priori. In fact, ΩGp can
be seen as a generalization of the mixed `1/`p norms, originally introduced for disjoint groups:

RGp (x) =

B∑
r=1

‖x‖Gr,p , p ≥ 1.

For p = 2, RGp is the group lasso penalty, and it is well-known [51] that such penalties lead to solutions whose
support is the union of a small number of groups. The penalty RGp can be written also if the groups overlap, and
more generally the composite absolute penalties (CAP)

JGγ,p(x) =

B∑
r=1

(‖x‖Gr,p)
γ ,

first introduced in [52] and coinciding with RGp for γ = 1, have been intensively studied. The Jγ,p penalties allow to
deal with complex groups structures involving hierarchies or graphs and it is proved in [23] that the CAP penalties
constraint the support to be the complement of a union of groups. ΩGp and RGp are thus somehow complementary
and have different domain of applications [23, 26, 24].

While many algorithms have been proposed to solve the optimization problem corresponding to RGp , the one
corresponding ΩGp is much less studied. This is due on the one hand to the fact that the penalty is more complex,
and on the other hand to the widespread use of the “replication strategy”. The latter is based on the observation
that, using the definition of ΩGp , and the surjectivity of P ∗, the (GSO-p) minimization problem can be written as

min
v∈

∏B
r=1 RGr

1

n
‖ΨP ∗v − y‖2 + 2τ

B∑
r=1

‖vr‖p , (2)
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which is a group lasso problem without overlap for the linear operator ΨP ∗ in the so called latent variables (vr)
B
r=1,

obtained by replicating variables belonging to more than one group. The last rewriting allows to apply every
algorithm developed for the standard group-lasso to the overlapping case, but this strategy is not feasible for high
dimensional problems with large group overlaps, as potentially many artificial dimensions are created. The main
goal of this paper is to propose and study an optimization algorithm which does not require the replication of
variables belonging to more than one group.

The choice p > 1 has both technical and practical motivations. On the one hand, it guarantees convexity of the
penalty – which can be shown to be a norm (see Lemma 1 in [21] for p = 2) –, and, as a consequence, of the (GSO-p)
regularization problem (note that this is valid for p = 1 too). On the other hand, it enforces “democracy” among
the elements that belong to the same group, in the sense that no intragroup sparsity is enforced, thus inducing
group-wise selection. The case p = 1 is trivial, since the penalty ΩG1 coincides with the `1 norm, or lasso penalty
[47]:

ΩG1 (x) = inf
(v1,...,vB)∈

∏
RGr

P∗v=x

B∑
r=1

∑
j∈Gr

|(vr)j | = inf
(v1,...,vB)∈

∏
RGr

P∗v=x

d∑
j=1

B∑
r:j∈Gr

|(vr)j | =
d∑
j=1

|xj |,

and is thus independent of G.

Example 1. A particular instance of the above problem occurs in statistical learning. Assume that the estimator and
the regression function can be described by a generalized linear model f(x) =

∑d
j=1 xjψj(x), for a given dictionary

{ψj}dj=1 of functions ψj : X → Y (with X a set and Y ⊆ R). Given a training set {(xi, yi)ni=1} ∈ (X × Y )n the
regularized empirical risk takes the form

1

n
‖Ψx− y‖2 + 2τΩGp (x),

with Ψ : Rd → Rn, Ψx =
∑d
j=1 ψj(xi)xj and y = (y1, . . . , yn).

Example 2. Most results obtained in the paper hold in an infinite dimensional setting. In particular, our approach
can be naturally extended to the multiple kernel learning(MKL) problem [28]. For this problem, given reproducing
kernel Hilbert spaces H1, . . . ,Hm of functions g : X → R, defining H =

∑m
r=1Hr, the resulting optimization

problem takes the form (see [28])

min
g∈

∏
rHr

∥∥∥∥∥Ψ(
∑
r

gr)− y

∥∥∥∥∥
2

+

m∑
r=1

‖gr‖Hr ,

for a suitable Ψ : H → Rn, y ∈ Rn. As can be readily seen, the multiple kernel learning problem has the same
structure of the (GSO-p) problem described above.

3 An efficient proximal algorithm

Due to non-smoothness of the penalty term, solving the (GSO-p) minimization problem is not trivial. Moreover,
if one needs to solve the (GSO-p) problem for high dimensional data, the use of standard second-order methods
such as interior-point methods is precluded (see for instance [6]), since they need to solve large systems of linear
equations to compute the Newton steps. On the other hand, first order methods inspired to Nesterov’s seminal
paper [33] (see also [32]) and based on the proximal map are accurate, and robust, in the sense that their perfor-
mance does not depend on the fine tuning of various controlling parameters. Furthermore, these methods were
already proved to be a computationally efficient alternative for solving many regularized inverse problems in
image processing [10], compressed sensing [6] and machine learning applications [2, 16, 30].
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3.1 Proximal methods

The (GSO-p) regularized convex functional is the sum of a convex smooth term, F (x) = 1
n ‖Ψx− y‖

2, with Lip-
schitz continuous gradient, and a non-differentiable penalty τΩGp (·). A minimizing sequence can be computed
with a proximal gradient algorithm [48] (a.k.a. forward-backward splitting method [13], and Iterative Shrinkage
Thresholding Algorithm (ISTA) [5])

xm = prox τ
σΩGp

(
xm−1 − 1

2σ
∇F (xm−1)

)
(ISTA)

for a suitable choice of σ, and any initialization x0. Recently, several accelerations of ISTA have been proposed
[34, 48, 5]. With respect to ISTA, they only require the additional computation of a linear combination of two
consecutive iterates. Among them, FISTA (Fast Iterative Shrinkage Thresholding Algorithm) [5] is given by the
following updating rule for m ≥ 1

xm = prox τ
σΩGp

(
hm − 1

2σ
∇F (hm)

)
sm+1 =

1

2

(
1 +

√
1 + 4s2

m

)
(FISTA)

hm+1 =

(
1 +

sm − 1

sm+1

)
xm +

1− sm
sm+1

xm−1

for a suitable choice of σ > 0, s1 = 1, and any initialization h1 = x0. Both schemes are based on the computation
of the proximity operator [29], which is defined as

proxλΩGp
(z) = argmin

x∈Rd
Φλ(x), with Φλ(x) =

1

2λ
‖x− z‖2 + ΩGp (x), λ > 0. (3)

Algorithm 1 FISTA for GSO-p

Given: G, p ∈ (1,+∞], τ > 0, ε0 > 0, α > 0, x0 = h0 ∈ Rd, s0 = 1,
Let: σ = ||ΨTΨ||/n,m = 0 and q such that 1

p + 1
q = 1.

while convergence not reached do
• ĥm = hm − 1

nσΨT (Ψhm − y)

• Find Ĝm = {G ∈ G,
∥∥∥ĥm∥∥∥

G
≥ τ

σ}

• Approximately compute the projection of ĥm onto τ
σK
Ĝm
p :=

⋂
G∈Ĝm

{
h ∈ Rd : ‖h‖G,q ≤

τ
σ

}
with toler-

ance ε0m−α

• xm = ĥm − π τ
σK
Ĝm
p

(ĥm)

• sm+1 = 1
2

(
1 +

√
1 + 4s2

m

)
• hm+1 =

(
1 + sm−1

sm+1

)
xm + 1−sm

sm+1
xm−1

end while
return xm

The convergence rate of Epτ (xm)−min Epτ , for ISTA and FISTA, is O(1/m) and O(1/m2), respectively, when the
proximity operator is computed exactly. However, in general, the exact expression is not available. Recently, it
has been shown that, also in the presence of errors, the accelerated version maintains advantages with respect to
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the basic one. In fact, the rate O(1/m2) for FISTA in the presence of computational errors was recently proved in
[45, 50] for various error criteria. Convergence of ISTA with errors was already known, and first proved in [41, 13].

Since the proximity operator of the penalty ΩGp is not admissible in closed form, the (GSO-p) minimization prob-
lem can thus be solved via an inexact version of the iterative schemes ISTA or FISTA, where ∇F (hm) is simply
2ΨT (Ψhm−y)/n. Note that, in the special case of not overlapping groups, the proximity operator can be explicitly
evaluated group-wise, and reduces to a group-wise soft-thresholding operator. In the general case, as explained
in Subsection 3.2, the proximity operator can be written in terms of a projection, and we will provide an algorithm
to approximately compute it. Note also that we will show that at each step the projection involves only a subset
of the initial groups, the active groups, thus significantly increasing the computational performance of the overall
algorithm.

3.2 Computing the proximity operator of ΩG
p

In this subsection we state the lemmas that allow us to efficiently compute the proximity operator of ΩGp and to
formulate the inexact version of FISTA reported in Algorithm 1.

As a direct consequence of standard results of convex analysis, Lemma 1 shows that the computation of the
proximity operator amounts to the computation of a projection operator onto the intersection of convex sets, each
of them corresponding to a group. In Lemma 2, we theoretically justifies an active set strategy, by showing that
when projecting a vector onto this intersection, it is possible to discard the constraints which are already satisfied.

Lemma 1. For any λ > 0 and p ≥ 1, the proximity operator of λΩGp , where ΩGp is defined in (1), is given by

proxλΩGp
= I − πλKGp .

where πλKGp denotes the projection onto λKGp , and KGp is given by

KGp = {x ∈ Rd, ‖x‖Gr,q ≤ 1, for r = 1, . . . , B}. (4)

The proof exploits the particular definition of the penalty and relies on the Moreau decomposition

proxλΩ(x) = x− λprox Ω∗
λ

(x
λ

)
. (5)

Formula (4) allows to compute the proximity operator of Ω starting from the proximity operator of the Fenchel
conjugate. In our case, being ΩGp one homogeneous, we obtain the identity minus the projection onto a closed and
convex set. The particular geometry of KGp , which is the intersection of B convex generalized cylinders “centered”
on a coordinate subspace, derives from definition of ΩGp and the explicit computation of its Fenchel conjugate. Ob-
serve that by definition ΩGp is the infimal convolution of B functions, and precisely the B norms on RGr composed
with the projections. By standard properties of the Fenchel conjugate, it follows that (ΩGp )∗ =

∑
ιq , where ιq is the

dual function of ‖·‖p, i.e. the indicator function of the `q unitary ball in RGr . We give here a self-contained proof
which does not use the notion of infimal convolution. A different proof for the case p = 2 is given in [35].

Proof. We start by computing explicitly the Fenchel conjugate of ΩGp . By definition,

(ΩGp )∗(u) = sup
x∈Rd

 〈x, u〉 − min
v∈

∏
RGr

P∗v=x

B∑
r=1

‖vr‖p

 = sup
x∈Rd

 sup
v∈

∏
RGr

P∗v=x

〈x, u〉 −
B∑
r=1

‖vr‖p


= sup
v∈

∏
RGr

[
〈
B∑
r=1

P ∗r vr, u〉 −
B∑
r=1

‖vr‖p

]
=

B∑
r=1

sup
vr∈RGr

[
〈P ∗r vr, u〉 − ‖vr‖p

]
B∑
r=1

sup
vr∈RGr

[
〈vr, Pru〉 − ‖vr‖p

]
=

B∑
r=1

ιq(Pru),
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where ιq is the Fenchel conjugate of ‖·‖p, i.e. the indicator function of the `q unitary ball in RGr . We can rewrite
the sum of indicator functions as

∑B
r=1 ιq(Pru) = ιKGp (u). It is well-known that

proxλι
KGp

(x) = πKGp (x).

Using the Moreau decomposition (5) and basic properties of the projection we obtain

proxλΩ(x) = x− λπKGp (x/λ) = x− πλKGp (x). (6)

The following lemma shows that, when evaluating the projection πKGp (x), we can restrict ourselves to a subset

of active groups, denoted by Ĝ = G(x̂) and defined in Lemma 2. This equivalence is crucial to speed up Algorithm
1, in fact the number of active groups at iteration m will converge to the number of selected groups, which is
typically small if one is interested in sparse solutions.

Lemma 2. Given x ∈ Rd, it holds
πλKGp (x) = πλKĜp

(x) , (7)

where Ĝ :=
{
G ∈ G, ‖x‖G,q > λ

}
.

Proof. Given a group of indices G and a number p > 1, we denote by CG,p the convex set

CG,p = {x ∈ Rd : ‖x‖G,q ≤ 1}.

To prove the result we first show that for any subset S ⊆ G the projection onto the intersection λKSp = ∩G∈SλCG,p
is non-expansive coordinate-wise with respect to zero. More precisely, for all x ∈ Rd, it holds that |πλKSp (x)i| ≤ |xi|
for all i = 1, . . . , d and for all λ > 0. By contradiction, assume that there exists an indexĵ such that |πλKSp (x)̂j | > |xĵ |.
Consider the vector x̃ defined by setting

x̃j =

{
πλKSp (x)j if j 6= ĵ

xĵ otherwise.

First note that x̃ ∈ λKSp , since ‖x̃‖G,q ≤
∥∥∥πλKSp (x)

∥∥∥
G,q
≤ λ for all G ∈ S. On the other hand

‖x− x̃‖2 =

d∑
j=1

j 6=ĵ

(xj − x̃j)2 <
∥∥∥x− πλKSp (x)

∥∥∥2

,

which is a contradiction. To conclude, suppose that x ∈ λKSp , with S ⊆ G. If we prove that

πλKGp (x) = π
λK
G\S
p

(x),

we are done. For the sake of brevity denote v = π
λK
G\S
p

(x). Thanks to the non-expansive property it follows

|vj | ≤ |xj | for all j = 1, . . . , d and therefore v ∈ λKSp . Since v ∈ λK
G\S
p by hypotheses, we get that v ∈ λKGp .

Furthermore by definition of projection

‖v − x‖ ≤ ‖w − x‖ , for every w ∈ λKG\Sp

and a fortiori ‖v − x‖ ≤ ‖w − x‖ for every w ∈ λKGp .

7



3.2.1 The projection on KGp for general p

The convex set KGp is an intersection of convex sets, precisely

KGp =
⋂
G∈G

CG,p

where CG,p = {v ∈ Rd, ‖v‖G,q ≤ 1}.
For general p a possible minimization scheme for computing the projection in (7) can be obtained by applying

the Cyclic Projections algorithm [8] or one of its modified versions (see [4] and references therein). In the particular
case of p = 2, we describe the Lagrangian dual problem corresponding to the projection onto KG2 , and we propose
an alternative optimization scheme, the projected Newton method [7], which better exploits the geometry of the
set KG2 , and in practice proves to be faster than the Cyclic Projections algorithm. Note that, in order to satisfy the
hypothesis of Theorem 14, the tolerance for stopping the iteration must decrease with the outer iteration m.

A simple way to compute the projection onto the intersection of convex sets is given by the Cyclic Projections
algorithm [8], which amounts to cyclically projecting onto each set. Here we recall in Algorithm 2 a modification
of the Cyclic Projections algorithm proposed by [4], for which strong convergence is guaranteed (see Theorem 4.1
in [4]).

Algorithm 2 Cyclic Projections

Given x ∈ Rd, {CG1,p, . . . , CGB ,p}
Let l = 0, w0 = x and find CĜ1,p

, . . . , CĜB̂ ,p
while convergence not reached do
l = l + 1
Let πl the projection onto τCĜlmodB̂ ,p

wl =
1

l + 1
x+

l

l + 1
πl(w

l−1)

end while

In the following we describe how to compute each projection πCp,r for specific values of p.

p = 2. In this case q = 2, and the projection is trivial

[πτCG,2(w)]j =

{
τ

wj
‖w‖G,2

if j ∈ G and ‖w‖G,2 > τ

wj otherwise

p =∞. In this case q = 1, andCG,∞ is an `1 ball when restricting to the coordinates inG. From Lemma 4.2 in [19],
we have that if ‖w‖1 > τ , then the projection of w onto the `1 ball of radius τ , τB1, is given by the soft-thresholding
operation

[πτB1(w)]j = (|wj | − µ)+sign(wj)

where µ (depending on w and τ ) is chosen such that
∑
j(|wj | − µ)+ = τ .

We recall a simple procedure provided in [19] for determining µ. In a first step, sort the absolute values of the
components of w, resulting in the rearranged sequence, w∗j ≥ w∗j+1 ≥ 0 for all j. Next, perform a search to find k
such that

k−1∑
j=1

(w∗j − w∗k) ≤ τ ≤
k∑
j=1

(w∗j − w∗k+1).

Then set µ = w∗k + k−1
(∑k−1

j=1 (w∗j − w∗k)− τ
)

8



p 6= 2,+∞. In these cases no known closed form for the projection on the set CGr,p exist, but it can be efficiently
computed using Newton’s method, as done in [22].

3.2.2 The projection on KGp for p = 2

When p = 2, the projection onto KG2 amounts to solving the constrained minimization problem

Minimize ‖v − x‖2

subject to v ∈ Rd, ‖v‖G,2 ≤ τ, for G ∈ Ĝ, (8)

which Lagrangian dual problem can be written in a closed form. Working on the dual is advantageous, since the
number of groups is typically much smaller than d, and furthermore Lemma 2 guarantees that one can restrict to
the subset of groups

Ĝ := {G ∈ G : ‖x‖G,2 > τ} =: {Ĝ1, . . . , ĜB̂} (9)

which in general is a proper subset of G.
In the following theorem we show how to compute the solution to problem (8), by solving the associated dual

problem.

Theorem 1. Given x ∈ Rd, G = {Gr}Br=1 with Gr ⊂ {1, . . . , d}, Ĝ as in (9) and τ > 0, the projection of x onto the convex
set τKG2 with KG2 = {v ∈ Rd : ‖v‖Gr,2 ≤ τ for r = 1, . . . , B} is given by[

πτKG2
(x)
]
j

=
xj

1 +
∑B̂
r=1 λ

∗
r1r,j

for j = 1, . . . , d (10)

where λ∗ is the solution of

argmax
λ∈RB̂+

f(λ), with f(λ) =

d∑
j=1

−x2
j

1 +
∑B̂
r=1 1r,jλr

−
B̂∑
r=1

λrτ
2, (11)

and 1r,j equal to 1 if j belongs to group Ĝr and 0 otherwise.

Proof. The Lagrangian function for the minimization problem (8) is defined as

L(v, λ) = ‖v − x‖2 +

B̂∑
r=1

λr(‖v‖2Gr − τ
2)

=

d∑
j=1

(vj − xj)2 +

B̂∑
r=1

λr1r,jv
2
j

− B̂∑
r=1

λrτ
2

=

d∑
j=1

(1+

B̂∑
r=1

1r,jλr)

(
vj−

xj

1+
∑B̂
r=11r,jλr

)2

−
d∑
j=1

x2
j

1+
∑B̂
r=11r,jλr

−
B̂∑
r=1

λrτ
2+‖x‖2

(12)

where λ ∈ RB̂ . The dual function is then

f(λ) = inf
v∈Rd

L(v, λ) = L

(
xj

1 +
∑B̂
r=1 1r,jλr

, λ

)
= −

d∑
j=1

x2
j

1 +
∑B̂
r=1 1r,jλr

−
B̂∑
r=1

λrτ
2 + ‖x‖2 .

Since strong duality holds, the minimum of (4) is equal to maximum of the dual problem which is therefore

Maximize f(λ)

subject to λr ≥ 0 for r = 1, . . . , B̂.
(13)
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Once the solution λ∗ to the dual problem (13) is obtained, the solution to the primal problem (8), v∗, is given by

v∗j =
xj

1 +
∑B̂
r=1 λ

∗
r1r,j

for j = 1, . . . , d.

The dual problem can be efficiently solved, for instance, via Bertsekas’ projected Newton method described in
[7], and here reported as Algorithm 5 in the Appendix, where the first and second partial derivatives of f(λ) are
given by

∂rf(λ) =

d∑
j=1

x2
j1r,j

(1 +
∑B̂
s=1 1s,jλs)

2
− τ2,

and

∂r∂sf(λ) = −
d∑
j=1

2x2
j1r,j1s,j

(1 +
∑B̂
s=1 1s,jλs)

3

=

{
0 if Ĝr ∩ Ĝs = ∅
−2
∑
j∈Ĝr∩Ĝs x

2
j (1 +

∑B̂
s=1 1s,jλs)

−3 otherwise.

Bertsekas’ iterative scheme combines the basic simplicity of the steepest descent iteration [43] with the quadratic
convergence of the projected Newton’s method [9]. It does not involve the solution of a quadratic program thereby
avoiding the associated computational overhead. Its convergence properties have been studied in [7] and are
briefly mentioned in next section.

3.3 Convergence analysis of GSO-p Algorithm

In this subsection we clarify the accuracy in the computation of the projection which is required to prove con-
vergence of the Algorithm 1. As mentioned above, we rely on recent theorems providing a convergence rate for
proximal gradient methods with approximations.

Definition 1. We say that w is an approximation of πτ/σKGp (x) with tolerance ε if ‖w − πτ/σKGp (x)‖ ≤ ε.

Theorem 2. Given x0 ∈ Rd, and σ = ||ΨTΨ||/n. Assume that πτ/σKGp (xm) in Algorithm 1 is approximately computed at
step m with tolerance εm = ε0/m

α.

• If α > 2, there exists a constant CI := CI(p,G, x0, σ, τ, α) such that the iterative update (ISTA) satisfies

Epτ

(
1

m

m∑
i=1

xi

)
− Epτ (x∗) ≤ CI

m
. (14)

• If α > 4, there exists a constant CF := CF (p,G, x0, σ, τ, α) such that the iterative update (FISTA) satisfies

Epτ (xm)− Epτ (x∗) ≤ CF
m2

. (15)

Proof. It is enough to show that there exists a constant C > 0 (independent of wl and xm) such that∥∥∥wl − πτKGp (xm)
∥∥∥ ≤ εm

C
=⇒ Φ τ

σ
(wl) ≤ min Φ τ

σ
+ εm (16)

where Φ τ
σ

is defined as in (3). Then the statement directly follows from Proposition 1 and Proposition 2 in [45]. In
order to prove equation (16) first note that thanks to the assumption ∪Br=1Gr = {1, . . . , d} made at the beginning,
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it easily follows from the definition that ΩGp is a norm on Rd, and therefore it is equivalent to the euclidean one.
Thus, there exists a constant A (depending only on p and G) such that

ΩGp (x)− ΩGp (x′) ≤ A ‖x− x′‖ , ∀x, x′ ∈ Rd.

Next, let w and x be such that ∥∥∥w − πτ/σKGp (x)
∥∥∥ ≤ γ, (17)

for some γ > 0 (and suppose w.l.o.g. that γ < 1). By Lemma 1 and by definition of prox τ
σΩGp

(x) and Φ τ
σ

(see
equation (3)) we have

Φ τ
σ

(x− πτ/σKGp (x)) = min Φ τ
σ
.

Thus, by equation (17), and using the fact that ΩGp is a norm

Φ τ
σ

(x− w) =
σ

2τ
‖w‖2 + ΩGp (x− w)

≤ σ

2τ

∥∥∥w − πτ/σKGp (x)
∥∥∥2

+
σ

2τ

∥∥∥πτ/σKGp (x)
∥∥∥2

+
σ

τ
〈w − πτ/σKGp (x), πτ/σKGp (x)〉

+ ΩGp (x− πτ/σKGp (x)) + ΩGp (πτ/σKGp (x)− w)

≤ min Φ τ
σ

+
σ

2τ
γ2 +

σ

τ
γÃ+Aγ

= min Φ τ
σ

+
( σ

2τ
γ +

σ

τ
Ã+A

)
γ

≤ min Φ τ
σ

+ Cγ

where Ã is such that supv∈KGp ‖v‖ ≤ Ã and C = C(p,G, σ, τ). Therefore, equation (16) holds with C as defined
above.

As it happens for the exact accelerations of the basic forward-backward splitting algorithm such as [33, 6, 5],
convergence of the sequence xm is no longer guaranteed unless strong convexity is assumed.

By Theorem 3.1 in [4], Algorithm 2 is strongly convergent, and therefore, given arbitrary ε > 0 and x ∈ Rd,
there exists an index lm := lm(ε) such that wlm produced through Algorithm 2 enjoys the property∥∥∥wl − πτKGp (xm)

∥∥∥ ≤ ε,
for every l ≥ lm.

Algorithm 1 combined with Algorithm 2 thus converges to the minimum of (GSO-p) problem with rate 1/m2,
if the projection is approximately computed with tolerance ε0/mα with α > 4. Similarly, one can use ISTA instead
of FISTA as updating rule in Algorithm 1, obtaining the convergence rate 1/m, and setting α > 2. It is clear that
the choice of α defines the stopping rule for the internal algorithm (see Subsection 4.1).

Every other algorithm producing admissible approximations can be used in place of Algorithm 2 in the com-
putation of the projection. In the case p = 2, we tested Bertsekas’ projected Newton method, reported in the
Appendix as Algorithm 5. Its convergence is not always guaranteed, since there are particular choices of x and G
for which the partial Hessian of the dual function is not strictly positive defined, as would be required to ensure
strong convergence (see Proposition 3 and Proposition 4 in [7]). However, ideas which are useful for circumvent-
ing the same problem for unconstrained Newton’s method, such as preconditioning, could be easily adapted to
this case, and convergence has always been observed in our experiments (for more details see the discussion in [7]
and also the comments at the end of the next subsection).
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3.4 Computing the regularization path

In Algorithm 3 we report the complete scheme for computing the regularization path for the Group-wise Selection
with Overlap problem (GSO-p), i.e. the set of solutions corresponding to different values of the regularization
parameter τ1 > . . . > τT . Note that we employ the continuation strategy proposed in [20]. When computing the

Algorithm 3 Regularization path for GSO-p
Given: τ1 > τ2 > · · · > τT ,G, ε0 > 0, ν > 0
Let: σ = ||ΨTΨ||/n, x(τ0) = 0
for t = 1, . . . , T do

Initialize: x = x(τt−1)

while convergence not reached do
• update x according to Algorithm 1, with the projection computed via Cyclic Projections or by solving the
dual problem

end while
x(τt) = x

end for
return x(τ1), . . . , x(τT )

proximity operator with Bertsekas’ projected Newton method, a similar warm starting is applied to the inner
iteration, since the m-th projection is initialized with the solution of the (m−1)-th projection. Despite the local
nature of Bertsekas’ scheme, such an initialization empirically proved to guarantee convergence.

3.5 The replicates formulation

As discussed in Section 2, the most common method to solve (GSO-p) problem is to minimize the standard group
`1/`p regularization (without overlap) in the expanded space of latent variables in (2) built by replicating variables
belonging to more than one group, thus working in a d̃-dimensional space with d̃ =

∑B
r=1 |Gr|. Setting Ψ̃ = ΨP ∗

and RGp (v) =
∑B
r=1 ‖vr‖p, problem (2) can be written as

min
v∈

∏B
r=1 RGr

1

n

∥∥∥Ψ̃v − y
∥∥∥2

+ 2τRGp (v).

The main advantage of such a formulation relies on the possibility of using any state-of-the-art optimization
procedure for `1/`p regularization without overlap. In terms of proximal methods, a possible solution is given by
Algorithm 3, where the proximity operator can be now computed group-wise as(

(proxλRGp
(v))j

)
j∈Gr

=
(
I − πλSGr,p

)
((vj)j∈Gr )

for all r = 1, . . . , B, where SGr,p now denotes the `q unitary ball in RGr . Furthermore for p = 2 and p = +∞
each projection can be computed exactly as described in Subsection 3.2.1 , and the proximity operator of RGp is thus
exact. The optimization algorithm for solving (GSO-p) via FISTA in the replicated space is reported in Algorithm
4.

The replicate formulation involves a much simpler proximity operator, but each iteration has higher compu-
tational cost, since now depends on d̃ rather than on d, and thus increases with the amount of overlap among
variables subsets (see Section 4 for numerical comparisons between the projection and replication approaches).

4 Numerical experiments

In this section we present numerical experiments aimed at studying the computational performance of the pro-
posed family of optimization algorithms, and at comparing them with the state-of-the-art algorithms applied to
the replicate formulation.
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Algorithm 4 FISTA for Group-wise Selection without overlap

Given: v0 ∈
∏B
r=1 RGr , τ > 0, σ = ||Ψ̃T Ψ̃||/n

Initialize: m = 0, w1 = v0, t1 = 1
while convergence not reached do

for r = 1, . . . , B do

vr =
(
I − π τ

σSGr,p

)((
wm − 1

nσ
Ψ̃T (Ψ̃wm − y)

)
j∈Gr

)
end for

sm+1 =
1

2

(
1 +

√
1 + 4s2

m

)
wm+1 =

(
1 +

sm − 1

sm+1

)
vm +

(
1− sm
sm+1

)
vm−1

end while
return vm

4.1 Cyclic Projections vs dual formulation

We buildB groups,{Gr}Br=1, of size b, withGr ⊆ {1, . . . , d}, by randomly drawing sets of b indexes from {1, . . . , d},
and consider the cases b = 10, and b = 100. We vary the number of groupsB, so that the dimension of the expanded
space is α times the input dimension, d̃ = αd, with α = 1.2, 2 and 5. Clearly this amounts to taking B = α · d/b.
We then generate a vector x ∈ Rd by randomly drawing each of its entry from N (0, 1). We then pick a value of τ
such that, when computing proxτΩGp

(x), all groups are active. Precisely we take τ = .8 · minr=1,...,B ‖x‖Gr,2. We

first compute the exact solution x† = proxΩG2
(x) 1. Then we compute the approximated solutions with the Cyclic

Projections Algorithm 2 and by solving the dual via the projected Newton method. We will refer to the former as
CP2 and to the latter as dual. We stop the iteration when the distance from the exact solution is less than ε the norm
of x†. We consider different values for the tolerance ε, precisely we take ε = 10−2, 10−3, 10−4.

Mean and standard deviation of the computing time over 20 repetitions are plotted in Figure 1 and 2 for each
value of α and ε. The dual formulation is faster than the Cyclic Projections algorithm in most situations. It is
convenient to use Cyclic Projections when the number of active groups is high and the required tolerance very
low. When computing the projection for Algorithm 1, it is thus reasonable to use Cyclic Projections in the very
first outer iterations, when the tolerance – which depends on the outer iterations – is low, and the solution could
be not sparse, because still far from convergence. After few iterations, it is more convenient to resort to the dual
formulation. Even though, not optimal, in the following experiments, when denoting GSO-2 via projection we
will consider always the projection computed with the dual formulation.

4.2 Projection vs replication

In this Subsection we compare the running time performance of the proposed set of algorithms where the proxim-
ity operator is computed approximately, to state-of-the-art algorithms used to solve the equivalent formulation in
the replicated space. For such a comparison we restrict to p = 2, since many benchmark algorithms are available
in the case of groups that do not overlap. In order to ensure a fair comparison, we first run some preliminary
experiments to identify the fastest codes for group `1 regularization with no overlap.

1it is the solution computed via the projected Newton method for the dual problem with very tight tolerance
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Figure 1: Computing time (in seconds) necessary for evaluating the prox vs number of variables (d), for different
values of the overlap degree α and the tolerance, for fixed group size b = 10.
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Figure 2: Computing time (in seconds) necessary for evaluating the prox vs number of variables (d), for different
values of the overlap degree α and the tolerance, for fixed group size b = 100
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4.2.1 Comparison without overlap

Recently there has been a very active research on this topic, see e.g. [39, 40, 12]. For the comparison, we consid-
ered three algorithms which are representative of the optimization techniques used to solve group lasso: interior-
point methods, (group) coordinate descent and its variations, and proximal methods. As an instance of the
first set of techniques we employed the publicly available Matlab code at http://www.di.ens.fr/˜fbach/
grouplasso/index.htm described in [1]. For coordinate descent methods, we employed the R-package grlplasso,
which implements block coordinate gradient descent minimization for a set of possible loss functions. In the fol-
lowing we will refer to these two algorithms as “IP” and “BCGD”. Finally, as an instance of proximal methods,
we use our Matlab implementation of FISTA for Group-wise Selection, namely Algorithm 4 with FISTA instead of
ISTA as updating rule. We will refer to it as “PROX”.

We first observe that the solutions of the three algorithms coincide up to an error which depends on each
algorithm tolerance. We thus need to tune the each tolerance in order to guarantee that all iterative algorithms
are stopped when the level of approximation to the true solution is the same. Toward this end, we run Algorithm
PROX with machine precision, ν = 10−16, in order to have a good approximation of the asymptotic solution.
We observe that for many values of n and d, and over a large range of values of τ , the approximation of PROX
when ν = 10−6 is of the same order of the approximation of IP with optparam.tol= 10−9, and of BCGD with
tol= 10−12. Note also that with these tolerances the three solutions coincide also in terms of selection, i.e. their
supports are identical for each value of τ . Therefore the following results correspond to optparam.tol = 10−9

for IP, tol = 10−12 for BCGD, and ν = 10−6 for PROX. For the other parameters of IP we used the values used in
the demos supplied with the code.
Concerning the data generation protocol, the input variables x = (x1, . . . , xd) are uniformly drawn from [−1, 1]d.
The labels y are computed using a noise-corrupted linear regression function, i.e. y = x ·x+w, where x depends on
the first 30 variables, xj = c if j=1, . . . , 30, and 0 otherwise, w is an additive noise, w∼N(0, 1), and c is a rescaling
factor that sets the signal to noise ratio to 5:1. In this case the dictionary coincides with the variables, Ψj(x) = xj
for j=1, . . . , d. We then evaluate the entire regularization path for the three algorithms with B sequential groups
of 10 variables, (G1=[1, . . . , 10], G2=[11, . . . , 20], and so on), for different values of n and B. In order to make sure
that we are working on the correct range of values for the parameter τ , we first evaluate the set of solutions of
PROX corresponding to a large range of 500 values for τ , with ν=10−4. We then determine the smallest value of τ
which corresponds to selecting less than n variables, τmin, and the smallest one returning the null solution, τmax.
Finally we build the geometric series of 50 values between τmin and τmax, and use it to evaluate the regularization
path on the three algorithms. In order to obtain robust estimates of the running times, we repeat 20 times for each
pair n,B.

In Table 1 we report the computational times required to evaluate the entire regularization path for the three
algorithms. Algorithms BCGD and PROX are always faster than IP which, due to memory reasons, cannot be
applied to problems where the number of variables are more than 5000, since it requires to store the d × d matrix
Ψ × Ψ. It must be said that the code for GP-IL was made available mainly in order to allow reproducibility of
the results presented in [1], and is not optimized in terms of time and memory occupation. However it is well
known that standard second-order methods are typically precluded on large data sets, since they need to solve
large systems of linear equations to compute the Newton steps. PROX is the fastest for B = 10, 100 and has a
similar behavior to BCGD. The candidates as benchmark algorithms for comparison with FISTA via projection are
therefore BCGD and PROX. Since we are more familiar with the PROX algorithm, we therefore compare FISTA via
projection with the PROX algorithm, i.e. FISTA via replication only.

4.2.2 Comparison with overlap

Here we compare two different implementations of the GSO-2 solution: FISTA via approximated projection com-
puted by solving the dual problem with projected Newton method, and FISTA via replication. We will refer to the
former as FISTA-proj, and to the latter as FISTA-repl.

The data generation protocol is equal to the one described in the previous experiments, but x depends on the
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Table 1: Running time (mean and standard deviation) in seconds for computing the entire regularization path of
IP, BCGD, and PROX for different values of B, and n.

n = 100

B = 10 B = 100
IP 5.6± 0.6 60± 90

BCGD 2.1± 0.6 2.8± 0.6
PROX 0.21± 0.04 2.9± 0.4

n = 500

B = 10 B = 100
IP 2.30± 0.27 370± 30

BCGD 2.15± 0.16 4.7± 0.5
PROX 0.1514±0.0025 2.54± 0.16

n = 1000

B = 10 B = 100
IP 1.92± 0.25 328± 22

BCGD 2.06± 0.26 18± 3
PROX 0.182± 0.006 4.7± 0.5

first 12/5b variables (which correspond to the first three groups)

x = ( c, . . . , c︸ ︷︷ ︸
b·12/5 times

, 0, 0, . . . , 0︸ ︷︷ ︸
d−b·12/5 times

).

We then define B groups of size b, so that d̃ = B · b > d. The first three groups correspond to the subset of relevant
variables, and are defined as G1 = [1, . . . , b], G2 = [4/5b + 1, . . . , 9/5b], and G3 = [1, . . . , b/5, 8/5b + 1, . . . , 12/5b],
so that they have a 20% pair-wise overlap. The remaining B − 3 groups are built by randomly drawing sets
of b indexes from {1, d}. In the following we will let n = 10|G1 ∪ G2 ∪ G3|, i.e. n is ten times the number of
relevant variables, and vary d, b. We also vary the number of groups B, so that the dimension of the space of latent
variables is α times the input dimension, d̃ = αd, with α = 1.2, 2, 5. Clearly this amounts to taking B = α ·d/b. The
parameter α can be thought of as the average number of groups a single variable belongs to. We identify the correct
range of values for τ as in the previous experiments, using FISTA-proj with loose tolerance, and then evaluate the
running time and the number of iterations necessary to compute the entire regularization path for FISTA-repl on
the expanded space and FISTA-proj, both with ν = 10−6. Finally we repeat 20 times for each combination of the
three parameters d, b, and α.

Table 2: Running time (mean ± standard deviation) in seconds for b=10 (top), and b=100 (below). For each d and
α, the left and right side correspond to FISTA-proj, and FISTA-repl, respectively.

α = 1.2 α = 2 α = 5
d=1000 0.15± 0.04 0.20± 0.09 1.6± 0.9 5.1± 2.0 12.4± 1.3 68± 8
d=5000 1.1± 0.4 1.0± 0.6 1.55± 0.29 2.4± 0.7 103± 12 790± 57
d=10000 2.1± 0.7 2.1± 1.4 3.0± 0.6 4.5± 1.4 460± 110 2900± 400

α = 1.2 α = 2 α = 5
d=1000 11.7± 0.4 24.1± 2.5 11.6± 0.4 42± 4 13.5± 0.7 1467± 13
d=5000 31± 13 38± 15 90± 5 335± 21 85± 3 1110± 80
d=10000 16.6± 2.1 13± 3 90± 30 270± 120 296± 16 –
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Table 3: Number of iterations (mean ± standard deviation) for b = 10 (top) and b = 100 (below). For each d and α,
the left and right side correspond to FISTA-proj, and FISTA-repl, respectively.

α = 1.2 α = 2 α = 5
d=1000 100± 30 80± 30 1200± 500 1900± 800 2150± 160 11000± 1300
d=5000 100± 40 70± 30 148± 25 139± 24 6600± 500 27000± 2000
d=10000 100± 30 70± 40 160± 30 137± 26 13300± 1900 49000± 6000

α = 1.2 α = 2 α = 5
d=1000 913± 12 2160± 210 894± 11 2700± 300 895± 10 4200± 400
d=5000 600± 400 600± 300 1860± 110 4590± 290 1320± 30 6800± 500
d=10000 81± 11 63± 11 1000± 500 1800± 900 2100± 60 –

Running times and number of iterations are reported in Table 2 and 3, respectively. When the overlap, that is
α, is low the computational times of FISTA-repl and FISTA-proj are comparable. As α increases, there is a clear
advantage in using FISTA-proj instead of FISTA-repl. The same behavior occurs for the number of iterations.

4.3 p = 2 vs p =∞
We generate the groups and the coefficient vector as in Subsection 4.1, with b = 10. Differently from the Sub-
section 4.1, here we compare the computational performance of the same algorithm applied to two different
problems: Cyclic Projections for p = 2 and Cyclic Projections for p = ∞, that yield different solutions, since
proxτΩG2

(x) 6= proxτΩG∞
(x). In order to guarantee a fair comparison we consider two different values of τ , τ2

and τ∞, such that, when computing proxτ2ΩG2
(x) and proxτ∞ΩG∞

(x), all groups are active. Precisely we take
τ2 = .8 · minr=1,...,B ‖x‖Gr,2. and τ∞ = .8 · minr=1,...,B ‖x‖Gr,∞. We compute the approximated solutions with
the Cyclic Projections Algorithm 2 for p = 2 and p = ∞. We will refer to the former as CP2 and to the latter
as CPinf. We stop the iteration when the relative decrease of the approximated solution is below ε. We consider
different values for the tolerance ε, precisely we take ε = 10−2, 10−3, 10−4.

For each value of α and εwe estimate the number of iterations, and the computing time for the two algorithms,
and average over 20 repetitions. Mean and standard deviation of number of iterations and the computing time are
plotted in Figure 3 and 4. In all conditions CP2 is much faster than CPinf.

4.4 Real data Experiments: Microarray data

In the previous subsection we have shown that, thanks to the computational efficiency of the proposed projection
algorithm, the GSO-p regularization scheme can be easily applied to large data sets with large group overlap.
Here we show that on real data, indeed, dealing with the entire data set without resorting to preprocessing leads
to improved prediction and selection performance. We consider the microarray experiment presented in [21]
where the breast cancer dataset compiled by [49] (8141 genes for 295 tumors) is analyzed with the group lasso
with overlap penalty and the 637 gene groups corresponding to the MSigDB pathways [46]. In [21] the accuracy
of a logistic regression is estimated via 3-fold cross validation. On each split the 300 genes most correlated with
the output are selected and the optimal τ is chosen via cross validation. 6, 5 and 78 pathways are selected with
a 0.36 ± 0.03 cross validation error. We applied FISTA-proj to the entire data set with two loops of k-fold cross
validation (k= 3 for testing). The obtained cross validation error is 0.33 ± 0.05 and 0.30 ± 0.06, with k= 3 and
k= 10 for validation, respectively. In both cases the number of selected groups is 2, 3, and 4, with 1 group in 3,
and 3 pathways selected in 2 out of 3 splits. The computing time for running the entire framework for FISTA-
proj (comprising data and pathways loading, recentering, selection via FISTA-proj, regression via RLS on the
selected genes, and testing) is 850s (k=3) and 3387s (k=10). Note that, while the improved cross validation error
might be due to the second optimization step (RLS), the improved stability is probably due to the absence of the

18



Figure 3: Number of iteration necessary for evaluating the prox vs number of variables (d), for different values of
the overlap degree α, and the tolerance.

Figure 4: Computing time (in seconds) necessary for evaluating the prox vs number of variables (d), for different
values of the overlap degree α, and the tolerance
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preprocessing step, which can be highly unstable, thus compromising the overall stability of the solution.

5 Discussion

We have presented an efficient optimization procedure for computing the solution of a set of regularization
schemes that perform group-wise selection with overlapping groups, whose convergence is guaranteed. Our pro-
cedure allows dealing with high dimensional problems with large group overlap. We have empirically shown that
it has a significant computational advantage with respect to state-of-the-art algorithms for group-wise selection
applied on the expanded space built by replicating variables belonging to more than one group. We also mention
that computational performance may improve if our scheme is used as core for the optimization step of active set
methods, such as [44]. Finally, the improved computational performance enables to use group-wise selection with
overlap for pathway analysis of high-throughput biomedical data, since it can be applied to the entire data set and
using all the information present in online databases, without pre-processing for dimensionality reduction.
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A Projected Newton Method

In this appendix we report as Algorithm 5 Bertsekas’ projected Newton method described in [7], with the modif-
cations needed to perform the maximization of a concave function instead of the minimization of a convex one.

Algorithm 5 Projection onto KG2
Given: x ∈ Rd, λinit ∈ RB̂ , η ∈ (0, 1), δ ∈ (0, 1/2), ε > 0
Initialize: l = 0, λ0 = λinit

while (∂rf(λl) 6= 0 if λr > 0, or ∂rf(λl) > 0 if λr = 0, for some r = 1, . . . , B̂) do
l := l + 1

εl = min{ε, ||λl − [λl +∇f(λl)]+||}

Il+ =
{
r : 0 ≤ λlr ≤ εl, ∂rf(λl) < 0

}
H l
r,s =

{
0 if r 6= s, and r ∈ Il+or s ∈ Il+
∂r∂sf(λl) otherwise

(18)

λ(α) = [λl − α(H l)−1∇f(λl)]+

m = 0
while f(λ(ηm))−f(λl) < δ

{
−ηm

∑
r/∈Il+

∑B̂
s=1 ∂rf(λl)[(H l)−1]r,s∂sf(λl) +

∑
r∈Il+

∂rf(λl)[λr(η
m)− λlr]

}
do

m := m+ 1
end while

λl+1 = λ(ηm)

end while
return λl+1

The step size rule, i.e. the choice of α, is a combination of the Armijo-like rule [43] and the Armijo rule usually
employed in unconstrained minimization (see, e.g., [38]).
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