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Abstract

Interactive multiobjective optimization methods have provided pro-

mising results in the literature but still their implementations are rare.

Here we introduce a core structure of interactive methods to enable

their convenient implementation. We also demonstrate how this core

structure can be applied when implementing an interactive method

using a modeling environment. Many modeling environments contain

tools for single objective optimization but not for interactive multiob-

jective optimization. Furthermore, as a concrete example, we present

GAMS-NIMBUS Tool which is an implementation of the classi�cation-

based NIMBUS method for the GAMS modeling environment. So far,

interactive methods have not been available in the GAMS environ-

ment, but with the GAMS-NIMBUS Tool we open up the possibility

of solving multiobjective optimization problems modeled in the GAMS

modeling environment. Finally, we give some examples of the bene-

�ts of applying an interactive method by using the GAMS-NIMBUS

Tool for solving multiobjective optimization problems modeled in the

GAMS environment.
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1 Introduction

Many real-world optimization problems contain several, con�icting objectives
that should be optimized at the same time. For such problems it is usually
not possible to �nd a single optimal solution. Instead, a multiobjective op-
timization problem typically has several compromise solutions with di�erent
trade-o�s between objective functions. In order to select the best solution
from the set of these so-called Pareto optimal solutions, some additional infor-
mation is needed. This information, called preference information, is usually
obtained from a decision maker (DM), who is assumed to have expertise in
the domain of the optimization problem being solved.

As the role of the DM is important when solving multiobjective opti-
mization problems, multiobjective optimization methods are often classi�ed
according to the role of the DM (see, e.g., [26]). In this paper we consider so-
called interactive methods, where the solution process is iterative consisting
of steps where some information is shown to the DM and the DM is asked
to provide preference information. Pareto optimal solutions are generated
based on this information until the DM �nds satisfactory solution.

Interactive methods have provided promising solutions in various �elds of
application including reservoir management [1], wastewater treatment man-
agement [14, 15], optimal control in steel casting [28, 38], chemical engineer-
ing [31], construction of bridges [40] and analyzing air pollution [46], etc.
Even though many interactive methods have been proposed in the literature
during the years (see, e.g., [22, 26, 39] and references therein), implemen-
tations of interactive methods are scarce. Separating methodological issues
from technical ones is suggested in [20] as a way to enhance method imple-
mentations. We follow this line here.

The objectives of this paper are twofold. First we present a core struc-
ture of characteristics common to interactive methods and introduce general
guidelines on how these characteristics can be utilized to implement an in-
teractive method. On the other hand, models of various phenomena have
been created in di�erent modeling environments over the years but, typi-
cally, the optimization capabilities available are limited to single objective
optimization. Our second objective is to demonstrate with the help of the
core structure that the optimization capabilities of modeling environments
can be extended without too much e�ort by providing a possibility to use
interactive multiobjective optimization methods. As a concrete example,
we apply the core structure to implement the interactive NIMBUS method
[33, 34, 35, 37] for the GAMS environment [5], an example of widely used
modeling environments. With the resulting GAMS-NIMBUS Tool, we can
provide users of the GAMS environment an access to an interactive multiob-
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jective optimization method and, on the other hand, the NIMBUS method
included in the GAMS-NIMBUS Tool can take advantage of the modeling
capabilities of GAMS and apply single objective GAMS solvers as a part of
the solution process.

The rest of this paper is organized as follows. In Section 2 we introduce
basic concepts of multiobjective optimization that are relevant for the rest
of the paper. In Section 3 we brie�y describe general characteristics of in-
teractive methods as well as introduce a core structure common to many
interactive methods to enable their implementation. In Section 4 we provide
insight on how to prepare an existing model (e.g., in a modeling environment)
of an optimization problem to be solved with an interactive method utilizing
the core structure. Then in Section 5 we introduce a new GAMS-NIMBUS
Tool, which is an implementation of the interactive NIMBUS method for the
GAMS modeling environment. The GAMS-NIMBUS Tool implementation
is based on the ideas presented in the two previous sections. In Section 6
we present two numerical examples to demonstrate how one can apply our
�ndings to solve multiobjective optimization problems in an interactive way
in a modeling environment and demonstrate the advantages of this approach.
The paper is concluded in Section 7.

2 Some Concepts of Multiobjective Optimiza-

tion

In this section we brie�y present the concepts and notation of multiobjec-
tive optimization that are relevant for the following sections. We consider
multiobjective optimization problems of the form

minimize or maximize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S, (1)

where fi : S → R are k (≥ 2) con�icting objective functions, and x =
(x1, x2, . . . , xn)T is the decision (variable) vector bounded by constraints that
form the feasible set S ⊂ Rn. Objective vectors f(x) = (f1(x), f2(x), . . . , fk(x))T

consist of objective (function) values calculated at x.
A decision vector x̂ and the corresponding objective vector f(x̂) are called

Pareto optimal if there does not exist any other feasible x so that fj(x) ≤
fi(x̂) for all i = 1, ..., k and fj(x) < fj(x̂) for least one j = 1, ..., k. These
objective vectors are called Pareto optimal solutions to problem (1), and
a set of Pareto optimal solutions is called a Pareto optimal set or a Pareto
frontier [26]. Therefore, instead of a single optimal solution, a multiobjective
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optimization problem with con�icting objectives has several di�erent Pareto
optimal solutions with di�erent trade-o�s.

Many methods have been developed for solving multiobjective optimiza-
tion problems. The overall process to �nd a solution to be called a �nal
solution for problem (1) is called a solution process.

As Pareto optimal solutions cannot be compared without some external
preference information, the most preferred of the solutions can be selected
based on the preference information expressed by a decision maker (DM). As
mentioned in the introduction, multiobjective optimization methods can be
classi�ed according to the role of the DM in the solution process [26]. In this
research, we consider interactive methods where the preference information is
obtained iteratively from the DM during the solution process. The interactive
solution process aims at supporting the DM in identifying the Pareto optimal
solution which best corresponds to his/her preferences. This most preferred
solution is here the �nal solution.

Information about the ranges of the objective function values in the
Pareto optimal set may be useful for the DM. It is possible to determine
the best (ideal) value of each objective function by optimizing it individually
(subject to the feasible set S). The worst values of the objective functions
in the Pareto optimal set can be estimated, for example, by using a so-called
pay-o� table [2, 26] which can be formed after individual optima have been
found or by using some more advanced heuristic (see, e.g., [8].) The vectors
representing the best and the worst objective function values in the set of
Pareto optimal solutions are called an ideal objective vector z? ∈ Rk and a
nadir objective vector znad ∈ Rk, respectively. For computation reasons, we
de�ne also a utopian objective vector z??, which is strictly better than z? in
each component.

A common way of solving a multiobjective optimization problem is to use
scalarization, that is, to reformulate the problem together with the preference
information available as a single objective optimization problem, to be called
a (scalarized) subproblem. The objective function of the subproblem is called
a scalarizing function. By selecting the scalarizing function carefully, one
can guarantee that the decision vector which is optimal to the subproblem is
Pareto optimal to problem (1). For further details, see, e.g., [26].

Interactive methods discussed in this research are based on scalarization
of the multiobjective optimization problem. An example of such a scalarized
subproblem that can be used to generate Pareto optimal decision vectors for
(1) is called an achievement scalarizing function [49]
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minimize max
i=1,...,k

[
fi(x)− z̄i
znad
i − z??i

]
+ ρ

k∑
i=1

fi(x)

znad
i − z??i

subject to x ∈ S,
(2)

where z̄ ∈ Rk is a reference point representing the DM's preferences in the
form of desirable objective function values and ρ > 0 is a so-called augmen-
tation coe�cient. In this formula we assume that all object functions are to
be minimized.

Di�erent interactive methods utilize di�erent scalarized subproblems in-
volving di�erent types of preference information. Besides reference points,
examples of other types of preference information are classi�cation, marginal
rates of substitution and selecting from a small set of Pareto optimal solutions
(for further details see, e.g., [22, 26, 39, 42]). When selecting an interactive
method to be used one should check what kind of preference information the
DM is willing and able to provide.

The scalarized subproblem must be solved with a single objective opti-
mization method that is appropriate to the characteristics of the problem in
question (e.g., di�erentiable or nondi�erentiable, convex or nonconvex, etc.).
By changing the preference information, e.g., values of the components of the
reference point vector z̄ in subproblem (2), one can generate di�erent Pareto
optimal solutions and this is how the DM can direct the solution process.
For further information on multiobjective optimization see, e.g., [4, 7, 26, 47]
and references therein.

Before introducing the actual core structure of interactive multiobjective
optimization methods we need to de�ne concepts model and solver that are
needed in the following sections. In order to solve an optimization problem
with a computer it must be expressed as computational model. This can be
done, for example, using a modeling language in some modeling environment
or with some simulator software. Such an expression of the optimization
problem is called a model. When modeling a multiobjective optimization
problem it should be noted that the preference information to be given by the
DM is typically based on objective function values, so the objective functions
in the model should be meaningful for the decision maker.

In this research we do not consider single objective optimization meth-
ods. Instead, we assume that there exists an appropriate implementation of
a method that can be used to solve the subproblem in question. Such an
implementation is called a solver. For example, when solving problems mod-
eled with the GAMS modeling language, it is natural to use single objective
solvers included in the GAMS environment. The same is naturally valid for
other modeling environments.
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3 Core Structure of Interactive Multiobjective

Optimization Methods

In this section we introduce a core structure which characterizes features com-
mon to scalarization-based interactive multiobjective optimization methods.
The core structure can be used as a general guideline when building an im-
plementation of an interactive multiobjective optimization method. The core
structure is not devoted to any particular modeling environment or modeling
language but because of its general nature it is suitable for any implementa-
tion environment.

As mentioned earlier, the solution process with an interactive multiobjec-
tive optimization method is iterative. On each iteration the DM is provided
with Pareto optimal solutions and asked to specify new preference informa-
tion to generate more satisfactory new Pareto optimal solution(s) for the next
iteration. With this iterative process, the DM can in�uence from which part
of the Pareto optimal set the �nal solution is being looked for. During the it-
erative exploration of the Pareto frontier, the DM can obtain new information
and insight about the interdependencies among the objective functions. It is
even possible that the new knowledge obtained a�ects his or her preferences,
leading to solutions which were not previously considered. As mentioned
in Section 2, when solving the multiobjective optimization problem (1), the
solution process generally aims at supporting the DM in identifying a single
Pareto optimal solution that he or she �nds as the most preferred (see, e.g.
[39]).

A core structure of an interactive multiobjective optimization method can
be generally characterized to contain the following steps:

1. Initialize the process, e.g., calculate ideal and nadir objective vectors.

2. By solving a method-speci�c subproblem generate an initial Pareto
optimal solution to be used as a current solution.

3. Ask the DM to provide preference information related to the current
solution.

4. Generate new solution(s) based on the preference information by solv-
ing appropriate subproblem(s).

5. Ask the DM to select the best solution of the previously generated
solutions and denote it as the current solution.

6. If the selected current solution is satisfactory, stop. Otherwise continue
from step 3.
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The core structure introduced is in line with the general interactive ap-
proaches presented in [22, 42] as well as with methods described, e.g., in
[31, 39]. As can be seen, this core structure has two active participants: a)
the DM, who is asked to provide preference information and to select the so-
lution that best corresponds to his or her preferences and b) the algorithm,
which provides the DM with the initial solution and new Pareto optimal
solutions based on preference information given. Therefore, an implementa-
tion of an interactive method can be divided into two distinct parts: the user
interface (steps 3 and 5) and the algorithm part (steps 1, 2 and 4).

The core structure is an answer to the need posed in [20] of separat-
ing methodological issues (algorithm) from technical ones (user interface)
in order to enhance method implementations. Thus, in this research we
focus on the algorithm side and do not consider user interface implementa-
tion (for such studies see, e.g., [32, 48]). Besides, user interfaces may need
application-speci�c elements but we want to retain on a more general algo-
rithm level without going into application-speci�c details. One example of
an implementation of a user interface is demonstrated in Section 5.

It should be noted that di�erent methods can require di�erent types of
user input in addition to the preference information. For example, the solu-
tion process may contain parameters that the DM can change, such as the
number of new Pareto optimal solutions to be obtained per each iteration. If
the additional information is to be given once, it is a part of the initialization
in step 1. Otherwise, it is a part of step 3.

As mentioned earlier, we consider scalarization-based interactive multiob-
jective optimization methods where Pareto optimal solutions are generated
by solving single objective subproblems. The algorithm side of an interac-
tive method uses the original multiobjective optimization problem and the
preference information to formulate a scalarized single objective subproblem.
When this subproblem is solved with an appropriate single objective solver,
the Pareto optimal solution generated should correspond to the given pref-
erence information. As mentioned, each interactive method usually has a
distinct fashion for the DM to express his or her preference information and
di�erent methods use di�erent scalarizations to create the subproblem (see,
e.g. [6, 37, 39, 41, 42, 49]).

Steps 1 and 2 of the core structure of an interactive method presented do
not depend on the DM, so these steps can be regarded as a single initializa-
tion stage at the beginning of the solution process. During the initialization,
in step 1, the ideal and the nadir objective vectors can be determined to
provide information of the ranges of the objective function values attain-
able in the Pareto optimal set as described in Section 2, or their estimates
can be obtained from the DM. In step 2, the initial Pareto optimal solution
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is generated as the starting point of the solution process by solving some
method-speci�c subproblem providing a Pareto optimal solution. Alterna-
tively, a starting solution can be asked from the DM. In the latter case, the
Pareto optimality must be checked by projecting the solution to the Pareto
frontier using, e.g. subproblem (2) (by setting the objective vector of the
starting solution as the reference point).

Whenever an interactive method is implemented, the algorithm part of
the implementation requires various models. Creating these models means
implementing method-speci�c subproblems in the environment in question.
Actually this is all that the implementation of the algorithm part needs.
Naturally, to get started we need a multiobjective problem model de�ning
the original multiobjective optimization problem. This model is used by all
other models to determine the feasible set of the problem and to calculate
objective function values.

If the initialization stage requires calculating ideal and nadir objective
vectors, a model is needed for optimizing each individual objective function
separately. As mentioned in Section 2, the ideal objective vector and an
estimated nadir objective vector can then be obtained. One more model is
needed in the initialization stage for step 2 to create the initial Pareto optimal
solution. This typically involves implementing a method-speci�c subproblem
which does not involve preference information (as it is not yet available at
the very beginning of the solution process). Furthermore, step 4 requires
implementing a scalarization model for creating Pareto optimal solution(s)
according to the preference information speci�ed. In some interactive meth-
ods step 4 uses several subproblems and in such cases we must implement
several scalarization models.

The structure of a general interactive multiobjective optimization met-
hod following the core structure can be seen in Figure 1. The results of
the initialization stage are passed to the user interface, where the DM can
express his or her preference information in step 3. This information is then
passed to the scalarization model, implementing step 4 of the core structure.
The solution obtained from the scalarization model is a new Pareto optimal
solution, which is passed back to the user interface for step 5 where the
DM can select the best solution from the set of generated Pareto optimal
solutions. If the selected solution is not satisfactory, the solution process is
continued from step 3. Otherwise, the selected solution (both decision and
objective vectors) is set as the �nal solution.

As mentioned, steps 2 and 4 provide the decision maker with new Pareto
optimal solutions by solving scalarized subproblems. It is possible that these
steps use very similar subproblems. Therefore, it should be noted that the
models involved can share some common elements, which makes the imple-
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Figure 1: Core structure and information exchange in an interactive method
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mentation even easier.
With the core structure and division of the e�ort and roles between a user

interface and an algorithm, implementing scalarization-based interactive mul-
tiobjective optimization methods should be straightforward. An example of
a multiobjective optimization method containing the six steps described in
the core structure is the NIMBUS method [34, 35, 37] outlined in Appendix
A. Next we give a short description of how an existing problem model im-
plemented in a modeling environment can be prepared to be solved using an
implementation of an interactive multiobjective optimization method follow-
ing the core structure.

4 Preparing the Multiobjective ProblemModel

We have noticed how optimization problems are often modeled as single ob-
jective optimization problems even though their real character would neces-
sitate considering multiple con�icting objectives simultaneously. One reason
for such a simpli�cation is the lack of appropriate multiobjective optimization
tools available. In particular, models of various phenomena have been created
in di�erent modeling environments over the years but, typically, the optimiza-
tion capabilities available are limited to single objective optimization. In the
previous section we introduced a core structure for interactive multiobjective
optimization methods and we can summarize that implementing an interac-
tive method, e.g., in a modeling environment simply involves implementing
the multiobjective optimization problem and the method-speci�c subprob-
lems in the modeling language in question. In this section, we give a short
overview on how to prepare an existing (possibly originally single objective)
optimization problem model for a modeling environment to be solved with
an implementation of an interactive multiobjective optimization method.

In what follows, we present how a multiobjective problem model (as de-
�ned for the core structure in the previous section) can be created in a
modeling environment based on a previously implemented model. Here this
model is referred as original problem model. It should be noted that the im-
plementation guidelines given are not speci�c to any modeling environment.
The given information can be easily applied for most modeling environments,
such as GAMS [5], AMPL [10] and AIMMS [3]. In fact, in addition to the
case GAMS-NIMBUS described in this research, the guidelines given here
have already been applied to implement the interactive NIMBUS method
using the OPL modeling language [19] to solve multiobjective optimization
problems.

Here we assume that the DM wants to solve some problem involving
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multiple con�icting objectives and an interactive multiobjective optimization
method is desired to be applied. Furthermore, we assume that the DM
already has some problem model available. The original problem model
can be a single objective model, to which the DM desires to add additional
objective functions, or to convert some of the constraints of the original
problem model as objective functions. Alternatively, some noninteractive
multiobjective optimization method may have already been applied to the
problem model (i.e., the problem is already in the form (1), and the DM now
wishes to solve the problem with an interactive multiobjective optimization
method implemented within a modeling environment. In any case, we assume
that the DM has already established which objective functions (depending
on decision variables) are to be optimized, and those objective functions (and
possible constraints) are expressed with some modeling language.

The process of preparing a multiobjective problem model from an exist-
ing original problem model to be solved with an interactive multiobjective
optimization method implementation involves the following steps:

1. Create a new multiobjective problem model from an original problem
model.

(a) Select an original problem model to be the basis for the multiob-
jective problem model.

(b) Identify equations from the problem model to be directly selected
as objective functions.

(c) Write additional objective functions as new equations.

2. Edit the properties of the multiobjective problem model.

(a) Objective function properties can be edited, e.g., whether the
function should be minimized or maximized.

(b) Single objective solver and its parameter values can be changed.

To be more speci�c, the �rst step of preparing a multiobjective problem
model is to select an original problem model and identifying which equations
stand for objective functions of the multiobjective optimization problem. The
objective functions can be either selected from a list of existing equations
obtained from the problem model, or they can be written as new equations.
The list of equations can be generated, for example, by �nding scalar equa-
tions where the left or the right side of the equation contains only a single
item. Additionally, if the original model has been previously used to solve

$Date: Thu Apr 12 12:22:40 2012 +0300 $ 11 �DRAFT�



�DRAFT� �DRAFT�

the problem in question with some single objective or noninteractive mul-
tiobjective optimization methods, the related commands (e.g., GAMS solve
statements if GAMS is used) should not be included in the multiobjective
problem model.

Next, additional information related to the model of the multiobjective
optimization problem may be needed, for example, whether the objective
functions are to be maximized or minimized. This should be noted that the
interactive multiobjective optimization method can take this into account
when solving the problem. If objective functions are assumed to be mini-
mized by default and an objective function is indicated to be maximized,
the objective function values of the latter must be multiplied by −1 in the
model. In the user interface, objective function values should be shown to
the DM without this conversion.

Once the multiobjective problem model is �nished, the corresponding
multiobjective optimization problem can be solved using an implementation
of an interactive method. In the next section, we provide a concrete example
of an implementation of an interactive method and in the following section
we solve two problems with the resulting tool.

5 GAMS-NIMBUS Tool

In this section we demonstrate how an implementation of an interactive mul-
tiobjective optimization method can be prepared in a modeling environment
based on the ideas presented in Sections 3 and 4. As a concrete example of
applying the core structure we implement the so-called synchronous NIMBUS
method [37] (described in Appendix A) in GAMS to create a new GAMS-
NIMBUS Tool that can be used to solve optimization problems involving
multiple objectives. As for the user interface for the GAMS-NIMBUS Tool,
we use the interface previously developed for the IND-NIMBUS software
framework [27]. (If a user interface was not available, it could be imple-
mented, for example, with the ASK utility of the GAMS environment or,
alternatively, simply by manually editing input �les.)

Some other interactive multiobjective optimization method (e.g., methods
presented in [22, 42]) could be easily used instead of NIMBUS by simply
replacing the models of the scalarized subproblems used in NIMBUS by the
models of the subproblems of the other method. (Naturally, if the preference
information required from the DM is not similar to the information used in
the NIMBUS method, the user interface must be adapted in an appropriate
way.)
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5.1 Implementing NIMBUS with the Core Structure for

the GAMS Environment

As mentioned in Section 3, the implementation of the algorithm part of the
NIMBUS method necessitates implementing various models. Firstly there is
the multiobjective problem model, which models the original problem to be
optimized. Secondly, there are the models utilized by the initialization stage
and scalarization, which create new Pareto optimal solutions.

In the GAMS environment, the multiobjective problem model de�nes the
problem to be solved as a GAMS model. That is, the multiobjective prob-
lem model contains GAMS expressions de�ning the objective functions and
constraints of the problem as functions of the decision variables. In addi-
tion, the multiobjective problem model contains other information, e.g., the
model should contain ideal and nadir objective vector values when available,
so there is no need to calculate them for every interactive method iteration.
Therefore, the multiobjective problem model is included in the models of the
initialization stage as well as in the scalarization model as a submodel in or-
der to grant those models an access to the GAMS equations and formulations
de�ning the original optimization problem as well as other information.

In step 1 of the initialization stage, the ideal and the nadir objective
vectors are calculated and estimated, respectively, as mentioned in Sections
2 and 3. In the NIMBUS method, step 2 means solving a subproblem (2)
using z̄i = (znad

i +z??i )/2 for i = 1, ..., k as components of the reference point to
obtain a so-called neutral compromise solution [50] as a starting point for the
solution process. In the GAMS-NIMBUS Tool, this subproblem, as well as
the single objective optimization problems for calculating the components of
the ideal objective vector are naturally implemented in the GAMS modeling
language.

As mentioned earlier, the scalarization model contains the single objective
subproblem used in step 4 to generate a new Pareto optimal solution based
on the preference information speci�ed (obtained from the DM via the user
interface). As described in Appendix A, the NIMBUS method utilizes up to
four di�erent subproblems, which can generate up to four di�erent Pareto
optimal solutions for the same preference information (as justi�ed in [36]).
Thus, we need four scalarization models in GAMS-NIMBUS, all expressed in
the GAMS modelilng language. It should be noted that one of the subprob-
lems includes additional constraints based on preference information besides
the original constraints.
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5.2 Description of the GAMS-NIMBUS Tool

The NIMBUS method is based on the classi�cation of the objective functions
(see Appendix A). In other words, the DM indicates with the help of a
classi�cation how the current Pareto optimal solution should be altered to
get a more preferred solution. An example of the classi�cation phase of
the NIMBUS method in the GAMS-NIMBUS Tool software (similar to the
IND-NIMBUS software) is given in Figure 2, illustrating the solution process
of Example 1 to be described later. Here each bar represents an objective
function value and its ranges (i.e. components of ideal and nadir objective
vectors). As can be seen, Example 1 has three objective functions. Of these,
the third is to be maximized, which is indicated by placement of the colored
bar on the right side. Thus, the interpretation is the same for both objective
functions to be minimized and maximized: the shorter the bar, the better
the value. The classi�cation is done by clicking di�erent parts of objective
function bars, depending on how the DM desires to change the corresponding
objective function values in order to get a more desirable Pareto optimal
solution. If a value is desired to be decreased as much as possible, the DM
clicks the arrow pointing to the left. If, instead, an increase is desired, he or
she clicks the arrow pointing to the right. If the DM desires to give some
bound or a level till which the objective function value should be improved,
he or she can click the actual bar and the corresponding value is then shown
in the edit box next to the objective function bar. The DM can then edit
the value, if he or she so desires. If the current objective function value is
deemed suitable, the DM clicks the arrow pointing downwards on the top of
the bar.

Once the DM is satis�ed with his or her classi�cation, he or she can simply
click the play button at the bottom of the application screen or on the tool-
bar, and the GAMS-NIMBUS Tool calculates new Pareto optimal solutions
based at the given preference information. New Pareto optimal solutions are
obtained by solving the constructed GAMS scalarization models.

Before choosing to calculate new Pareto optimal solutions, the DM can,
if he or she so wishes, change the maximum number of new solutions to be
calculated. As a default, the NIMBUS method forms four di�erent subprob-
lems from the same preference information and each of them can provide
the DM with a di�erent Pareto optimal solution to give more feedback of
what kind of Pareto optimal solutions are attainable. It is also possible to
change the single objective solver used to solve subproblems related to the
classi�cation. These selections can be made with the tool bar on the upper
most part of the user interface.

It should be noted that in this kind of a user interface the DM is not
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Figure 2: GAMS-NIMBUS Tool classi�cation view

asked speci�cally to classify the functions. Instead, the interface hides the
algorithmic details from the DM and silently converts the user input to a
corresponding NIMBUS classi�cation. Therefore, this interface can be used
for other methods using similar preference information, e.g., reference points.

During the solution process, the DM has access to all solutions generated
during the solution process. Therefore, any solution can be selected as a
starting solution for a new classi�cation when using the NIMBUS method,
or as an end point for generating intermediate solutions between any two
solutions, at any time. In this way, the DM can generate representations of
interesting parts of the Pareto optimal set according to his or her preferences
for further study.

5.3 IND-NIMBUS Software Framework

As mentioned, the GAMS-NIMBUS Tool uses the user interface implemented
in the IND-NIMBUS software framework. IND-NIMBUS [27] is a cross plat-
form desktop software framework intended to provide method developers
with a tool-set that can be used for implementing di�erent interactive multi-
objective optimization methods. At the moment, the IND-NIMBUS software
framework has been used to implement the NIMBUS method and prototypes
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of the Pareto Navigator [9] and PAINT [17] methods.
In addition to di�erent interactive multiobjective optimization methods,

the IND-NIMBUS software framework contains integration modules, which
can be used to connect interactive multiobjective optimization methods with
various modeling and simulation tools. The computational model of the prob-
lem to be solved is assumed to be formulated with one of these tools. Exam-
ples of using such tools in various problem domains include the Matlab R©
environment for radiotherapy treatment planning [43, 44], the GPS-XTM

wastewater treatment plant simulation and optimization application[14, 15],
the Balas R© process simulation software in chemical process design [11, 13],
the Numerrin environment in optimal shape design [18], and almost any pro-
gramming language [16, 23, 28, 38].

The IND-NIMBUS framework architecture follows the core structure and
the structure described in Figure 1, as it consists of a separate user interface
and an algorithm part. In the IND-NIMBUS framework, these parts are
separated so that they can be easily changed independently. For developing
the GAMS-NIMBUS Tool we have replaced the algorithm part of the IND-
NIMBUS framework with GAMS models, implementing steps 1, 2 and 4
of the core structure. This enables the GAMS-NIMBUS Tool to use single
objective solvers of the GAMS environment to solve scalarized subproblems
realized with the GAMS modeling language, while utilizing the graphical
user interface developed for the IND-NIMBUS software framework.

In addition to the user interface and algorithm parts, the IND-NIMBUS
framework includes an automatic testing module that is used to verify the
results generated in the algorithm part. This is achieved by solving a set
multiobjective optimization problems with prede�ned preference informa-
tion and verifying that the obtained Pareto optimal solutions correspond to
Pareto optimal solutions known to be obtained form these preferences. The
testing module is used to verify that methods included in the IND-NIMBUS
framework are implemented correctly.

In order to collate the Pareto optimal solutions generated, the DM can
create di�erent �lters, for example, to show only those solutions where the
�rst objective function has values above a certain limit. There is also a pos-
sibility to view only those solutions generated in the last classi�cation or
solution generation. The DM can also store the best solution candidates in
a speci�c list at any time during the solution process. Furthermore, unde-
sirable solutions can be deleted from the solution list. The IND-NIMBUS
framework contains also di�erent graphical views for visualizing the solutions
for comparison [29], and the solutions can be exported to be visualized with
external software, such as Microsoft Excel.
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6 Numerical Examples

To demonstrate the applicability of the GAMS-NIMBUS Tool and bene�ts
of interactive multiobjective optimization methods in general, we solve two
examples of GAMS problem models using the GAMS-NIMBUS Tool. As for
the �rst example, we use the power generation problem [24] included in the
GAMS model library. The second example is a multiobjective optimization
version of the heat exchanger network synthesis problem, previously solved
using a customized implementation of the NIMBUS method for the GAMS
environment [21]. This problem is also available in the GAMS model library.
The solutions tabulated along the examples can be reproduced by using the
demonstration version of the GAMS-NIMBUS Tool, available at http://

ind-nimbus.it.jyu.fi/ as part of the IND-NIMBUS software framework.

Example 1: Power Generation Problem

In the �rst example the task is to determine the number of power generation
units in a region. This simpli�ed linear model has three objective functions:
minimize cost of production, minimize CO2 emission and maximize use of
endogenous sources. The model is constrained by the power generation unit
capacity of each type of power generator unit and three constraints set by
power production demands [24]. The model can be found in the GAMS
Model library as model EPSCM.

The EPSCM model contains instructions of how to solve this multi-
objective optimization problem using the augmented ε-constraint method
AUGMECON [25]. Here we �rst solve the model using the AUGMECON
method and then with the GAMS-NIMBUS Tool. It should be noted that
the AUGMECON and the NIMBUS methods solve a multiobjective opti-
mization problem di�erently, and therefore provide di�erent results. The
AUGMECON method is an a posteriori method, providing the DM with a
representative set of Pareto optimal solutions, from which he or she must
select the solution he or she prefers the most. With an interactive multi-
objective optimization method, such as the NIMBUS method, the DM can
study various Pareto optimal solutions, which are generated based on his or
her preference information, until he or she is satis�ed with some solution.

The AUGMECON method could also be modi�ed to act as an interac-
tive method. As the interactive version of AUGMECON is not included in
the GAMS Model library, we do not, as such, compare results obtained with
the GAMS-NIMBUS Tool to the results obtained with the AUGMECON
method. Instead, the EPSCM model is used as a conveniently available ex-
ample to demonstrate how the GAMS-NIMBUS Tool can be used to apply
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an interactive multiobjective optimization method to solve a multiobjective
optimization problem in GAMS. It should be noted that interactive AUG-
MECON method could be implemented following the guidelines given in the
Section 3.

Minimize Minimize Maximize
Cost of production CO2 emission Use of endogenous sources
3075000.0 62460.0 31000.0
3078000.0 62316.0 31200.0
3099000.0 61308.0 32600.0
3111000.0 60732.0 33400.0
3120000.0 60300.0 34000.0
3141000.0 59292.0 35400.0
3147000.0 59004.0 35800.0
3162000.0 58284.0 36800.0
3183000.0 57276.0 38200.0
3204000.0 56268.0 39600.0
3219000.0 55548.0 40600.0
3225000.0 55260.0 41000.0
3315000.0 53820.0 39000.0
3423000.0 52092.0 36600.0
3531000.0 50364.0 34200.0
3639000.0 48636.0 31800.0
3747000.0 46908.0 29400.0
3855000.0 45180.0 27000.0

Table 1: Solutions obtained with the augmented ε-constraint method for
Example 1

A set of 18 Pareto optimal solutions generated by the AUGMECON
method is given in Table 1. Each row of Table 1 represents a Pareto op-
timal solution (objective vector) of the EPSCM model. As can be seen, the
AUGMECON method has generated more or less evenly distributed solutions
from the Pareto frontier. In contrast, the GAMS-NIMBUS Tool generates
solutions only from the areas that are interesting to the DM, as is shown in
Table 2. Table 2 summarizes the preference information provided and the
solutions generated in each iteration of the solution process.

When using the GAMS-NIMBUS Tool, the user �rst opens the GAMS
model, in this case the epscm.gms model �le from the GAMS Model Li-
brary, to be found in a sub-directory of the GAMS installation directory.
When opening the epscm.gms model �le, the GAMS-NIMBUS Tool is able to
�nd a single model, named example and three suitable expressions, z('cost'),
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z('CO2emission') and z('endogenous'). These three expressions are selected
as the objective functions. As z('endogenous') is an objective to be maxi-
mized, this is indicated by setting the type of the objective function to be
maximized. The original constrains are used without modi�cations, so the
multiobjective problem model is now completed and the GAMS-NIMBUS
Tool can be used to solve Example 1.

To get started, the GAMS-NIMBUS Tool �rst provided the DM with
information of the ranges of objective function values in the set of Pareto
optimal solutions and a neutral compromise solution in the initialization
stage. From this solution (objective function values given in Table 2), the
DM decided that he would like to give an upper bound (denoted by I≥=

in the table) of 56000 to CO2 emission, while maximizing (denoted by I<)
use of endogenous sources. The Cost of production is allowed to change
freely (denoted by I�). As can be seen in iteration 2 of the table, with this
preference information two new Pareto optimal solutions were generated and
in one of them the use of endogenous sources has reached the maximum, i.e.,
ideal objective value, while CO2 emission stayed below the desired bound.
While looking at these solutions, the DM noticed that he might be able
improve (I≤=) the CO2 emission until only 50000 tons of CO2 would be
emitted, while allowing deterioration till (I≥=) 33000 tons of endogenous
sources. This preference information was given in iteration 3, specifying that
three new solutions are desired. The �rst of the Pareto optimal solutions
was then selected as the �nal solution (shown in Table 2). The GAMS model
used to generate solutions for iteration 2 can be seen in Appendix B.

It should be noted that each solution generated by NIMBUS is Pareto
optimal [37], so even though the DM did not specify any preferences related to
the �rst objective, cost of production, the cost is always as low as possible, in
relation to the other objectives. When comparing to the solutions in Table
1, it can be seen that AUGMECON generated similar, but not the same
solutions as the GAMS-NIMBUS Tool. However, with the GAMS-NIMBUS
Tool the DM did not need to compare as many solutions simultaneously
as with AUGMECON and he could direct the search with his preference
information conveniently. Finally, much fewer solutions had to be generated
when using the NIMBUS method.

Example 2: Heat Exchanger Network Synthesis

In the second example we demonstrate how the GAMS-NIMBUS Tool can be
used to solve an optimization problem based on a more complicated GAMS
model. We use the heat exchanger network synthesis (Synheat) problem,
with the multiobjective problem formulation presented in [21]. The Syn-
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Minimize Minimize Maximize
Iter Cost of production CO2 emission Use of endog sources

Ideal 3075000.0 45180.0 41000.0
Nadir 4275000.0 65340.0 27000.0

1 Init. Sol. 3435000.0 51900.0 36333.33
2 Cur. Sol. 3435000.0 51900.0 36333.33

Classif I� I≥=56000.0 I<

3225000.0 55260.0 41000.0
3075000.0 62460.0 31000.0

3 Cur. Sol. 3225000.0 55260.0 41000.0
Classif I� I≤=50000.0 I≥=33000.0

3585000.0 49500.0 33000.0
3574583.3 49666.67 33231.48
3567986.8 49772.21 33378.07

Final Sol. 3585000.0 49500.0 33000.0

Table 2: Solutions of the GAMS-NIMBUS Tool for Example 1

heat model is available in the GAMS Model library as model number 319,
named SYNHEAT. Originally, the problem has been solved in [51] using the
weighting method (optimizing the weighted sum of the objective functions).
It should be noted that as the problem is nonconvex, and as we use a local
solver due to computational demands of the model, some of the subproblems
may generate only locally Pareto optimal solutions. However, even this is
much better than the weighting method which may completely miss Pareto
optimal solutions of nonconvex problems no matter how the weights are set.
Additionally, such a straightforward conversions can lose information about
interdependencies among the objectives which might a�ect the validity of the
results obtained (see, e.g., [26, 47]).

The goal in the heat exchanger network synthesis problem is to mini-
mize the total cost by simultaneously minimizing number of heat exchanger
units (Units), heat exchanger surface area (Area) cold utility consumption
(CU) and hot utility consumption (HU). In addition to these four objective
functions, the Synheat model has seven sets of constraints totaling to almost
seven hundred individual constraints in this example.

In the previous work [21], the NIMBUS method was implemented as a
part of the Synheat model, where the NIMBUS subproblems were added
to the original Synheat model by hand, combining the Synheat model and
the NIMBUS implementation to a single Synheat-NIMBUS model. In the
Synheat-NIMBUS model, scalarizations were handled by using di�erent if-
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Minimize Minimize Minimize Minimize
Iter Issue Units [-] Area [m2] HU [kW] CU [kW]

Ideal 4 2385.0 1756.0 1856.0
Nadir 8 382781.0 7100.0 7200.0

1 Init. Sol. 6 258474.0 5354.0 5454.0
2 Cur. Sol. 6 258474.0 5354.0 5454.0

Classif I≥7 I< I< I�

7 14492.0 1933.0 2033.0
3 Cur. Sol. 7 14492.0 1933.0 2033.0

Classif I= I< I≥2500 I�

7 7475.0 2500.0 2600.0
4 Cur. Sol. 7 7475.0 2500.0 2600.0

Classif I≤5 I< I≥3000 I�

5 7475.0 3000.0 3100.0
5 Cur. Sol. 5 7475.0 3000.0 3100.0

Classif I= I≥8000 I< I�

5 8000.0 2443.0 2543.0
Final Sol. 5 8000.0 2443.0 2543.0

Table 3: Synheat-NIMBUS model [21] solutions for Example 2

then and loop structures. As constructing them manually is laborious and
error-prone, the Synheat-NIMBUS model implemented the NIMBUS method
only partially. For example, the results obtained with the original Synheat-
NIMBUS model are only weakly Pareto optimal and the model implemented
only one NIMBUS subproblem (and therefore could generate only one solu-
tion per iteration).

In contrast, when using the GAMS-NIMBUS Tool, the NIMBUS method
implementation is contained in the algorithm part, separated from the orig-
inal problem model, as described earlier. With this approach, it is possible
to modify the Synheat model without modifying the subproblem models of
the GAMS-NIMBUS Tool, and vice versa.

The results obtained with the Synheat-NIMBUS model [21] can be seen in
Table 3 (collecting preference information speci�ed and solutions generated
in each iteration). In the �rst iteration, the DM was presented with the
ideal and the nadir objective vector components, and a neutral compromise
solution as a starting solution. Next, (iteration 2) the DM allowed the Units
objective to increase up to 7. The DM also speci�ed that objectives Area
and HU should both be minimized as much as possible (I<) and that the
fourth objective was allowed to vary freely (as in all subsequent iterations,
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as CU and HU are directly dependent on each other). In iteration 3, the
DM decided that the objective Units was satisfactory at its current level
(denoted by I=), but Area should be improved. As a trade-o�, the DM was
willing to increase the objective HU up to 2500. Then in iteration 4 the
DM decided to see if the number of units could be lowered, by allowing the
other objectives to be increased. Results obtained were almost satisfactory,
and after the classi�cation in iteration 5 the DM was �nally pleased with the
solution obtained.

Minimize Minimize Minimize Minimize
Iter Issue Units [-] Area [m2] HU [kW] CU [kW]

Ideal 4 2385.0 1756.0 1856.0
Nadir 8 382781.0 7100.0 7200.0

1 Init. Sol. 5 12962.15 2402.0 2502.0
2 Cur. Sol. 5 12962.15 2402.0 2502.0

Classif I≥=7 I< I< I�

7 12962.15 2053.64 2153.64
7 50277.34 1756.81 1856.81
7 3706.8 3564.58 3664.58

3 Cur. Sol. 7 12962.15 2053.64 2153.64
Classif I= I≤=7400.0 I≥=3000.0 I�

5 6496.83 2795.72 2895.72
4 Cur. Sol. 5 6496.83 2795.72 2895.72

Classif I= I≥=8000.0 I< I�

5 8000.0 2457.43 2557.43
7 51167.46 1756.67 1856.67
9 51032.99 1755.5 1855.5

5 Cur. Sol. 5 6496.83 2795.72 2895.72
Classif I= I≥=7900.0 I< I�

5 7900.0 2463.68 2563.68
9 51032.99 1755.5 1855.5
7 54862.92 1755.5 1855.5

Final Sol. 5 7900.0 2463.68 2563.68

Table 4: GAMS-NIMBUS Tool solutions for Example 2

The solutions generated using the GAMS-NIMBUS Tool are shown in Ta-
ble 4. When comparing these solutions to the previously obtained solutions,
it is immediately apparent that the initial solution (iteration 1) in Table 3
is not Pareto optimal, and in e�ect, the �rst two iterations of the previous
research did not provide the DM with correct information of the problem.
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This is due to a mistake in the manually constructed subproblem model used
to generate the initial solution in the Synheat-NIMBUS model. In addition,
when using the GAMS-NIMBUS Tool to get results collected in Table 4, the
DM decided to utilize the option of generating more than a single Pareto
optimal solution for the same preference information at each iteration.

Otherwise, the solutions generated with the GAMS-NIMBUS Tool are
similar to the previous solutions, even when starting from a di�erent initial
solution. As the DM had previously solved this problem, he had already
some insight of the trade-o�s between the objective functions and he had a
preset notion of which kind of solutions he could obtain a desirable value for.
Interestingly, by generating several Pareto optimal solutions per iteration,
he was able to obtain Area with �ve units in iteration 3 without implicitly
specifying this as a preference. In the following iterations he re�ned this
solution, until obtaining the �nal solution, which he considered to be better
than the �nal solution obtained in the previous research [21].

When comparing these two approaches, it its evident that by generat-
ing additional solutions for each given set of preference information the DM
could conveniently obtain valuable information of trade-o�s between objec-
tive functions with little additional e�ort. Importantly, the process to man-
ually construct subproblem models proved out to be error prone. Instead,
implementing NIMBUS by utilizing the distinction of roles in the core struc-
ture was a straightforward task. The same is valid for other methods that
may be implemented within problem models in modeling environments. Fur-
thermore, with the GAMS-NIMBUS Tool one could be more con�dent that
the subproblem model formulations are constructed correctly, as it includes
the testing module of the IND-NIMBUS framework.

Overall, with the GAMS-NIMBUS Tool the DM could conveniently direct
the solution process, see Pareto optimal solutions that were interesting to
him and gain insight into problems and trade-o�s in them. The amount of
information was limited in each iteration keeping the cognitive load small.
Because of the learning that takes place during the solution process, the DM
could be con�dent on the �nal solution obtained.

With the examples we demonstrated the advantages of interactive multi-
objective optimization. In a similar way, solving other problems can bene�t
from a multiobjective optimization formulation and an interactive solution
method.
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7 Conclusions

In spite of promising results reported in the literature of using interactive
multiobjective optimization methods, few implementations are available. We
have introduced a core structure which is valid for many scalarization-based
interactive multiobjective optimization methods and identi�ed various roles
to make method implementation a more straightforward task, in particular,
in modeling environments where many mathematical models already exist
ready to be solved with an interactive multiobjective optimization method.
The core structure should facilitate wider availability of implementations of
interactive multiobjective optimization methods as the main task is simply
to express subproblems of the method in question as models of the modeling
environment.

We have discussed how models available in modeling environments can
be prepared for multiobjective optimization. As an example of the ideas
presented and as a concrete example of an implementation prepared with
the help of a core structure in a modeling environment we have introduced
the GAMS-NIMBUS Tool, an implementation of the interactive NIMBUS
method in GAMS. With the GAMS-NIMBUS Tool, it is possible to use the
NIMBUS method to consider models containing several con�icting objectives
expressed with the GAMS modeling language. A demonstration version of
the tool is available at http://ind-nimbus.it.jyu.fi/, including examples
reported in this research.

As mentioned, as an example of modeling environments we have consid-
ered the GAMS environment providing a common platform for optimization
solvers, capable of solving a wide array of optimization problems. Previously,
the GAMS environment has not been widely used to solve multiobjective op-
timization problems; speci�cally using interactive multiobjective optimiza-
tion methods has been nonexistent. In this research, we have demonstrated
the steps needed for implementing interactive multiobjective optimization
for the GAMS environment. This enables bene�ting from the advantages
of multiobjective optimization and interactive methods when solving opti-
mization problems expressed as GAMS models. On the other hand, when
utilizing scalarization-based interactive methods, working in the GAMS en-
vironment gives access to many single objective solvers so that the solver
best suited for the characteristics of the problem at hand can be selected
among GAMS solvers. This makes many interactive methods more e�cient
than with standard solvers. The implementation ideas presented are valid
for other modeling environments like AMPL or AIMMS as well.

The GAMS-NIMBUS Tool introduced is based on the IND-NIMBUS
software framework, developed at the University of Jyväskylä. The IND-
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NIMBUS software framework contains tools implementing and testing in-
teractive optimization methods, which can be utilized also by the GAMS-
NIMBUS Tool. Currently, there are several new interactive methods being
implementated for the IND-NIMBUS framework, such as Pareto Navigator
[9], PAINT [17] and Nautilus [30], and in the future, the GAMS-NIMBUS
Tool can be used to apply these methods along with the NIMBUS method.
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A Synchronous NIMBUS method

The NIMBUS method is an interactive multiobjective optimization method
(see [26, 33, 34, 35, 37]) that has been used in solving several real-world
problems. Among others, it has been applied in optimal shape design of ul-
trasonic transducers [18], in designing a paper machine headbox [16], optimal
control in continuous casting of steel [28, 38], problems in chemical engineer-
ing [11, 13, 31], separation of glucose and fructose [12], intensity modulated
radiotherapy treatment planning [43], brachytherapy [45], wastewater treat-
ment plant simulation and optimization application [14, 15] and optimizing
heat exchanger network synthesis [21].

The idea of the NIMBUS method is that the DM examines the values
of the objective functions calculated at the current Pareto optimal decision
vector xc and classi�es objective functions into up to �ve classes. This means
that the DM is asked to indicate (by means of a classi�cation) what kind of
a solution would be more satisfactory than the current one. The classes are
functions fi (to be minimized) whose values

should be improved (i ∈ I< ),

should be improved to some aspiration level ẑi < fi(x
c) (i ∈ I≤ ),

are satisfactory at the moment (i ∈ I= ),

are allowed to impair up till some bound εi > fi(x
c) (i ∈ I≥),

are allowed to change freely i ∈ I�.

Classi�cation must be done so that at least one objective function value
should be improved, and at least one is allowed to impair. Otherwise, the
method cannot generate a new Pareto optimal solution as there does not
exist new Pareto optimal solution whose objective function values could be
better than those of the Pareto optimal solution shown to the DM.

In the synchronous NIMBUS method [37], the preference information
expressed as a classi�cation with the corresponding aspiration levels and
bounds is used to formulate from one to four di�erent singe objective sub-
problems. These subproblems can then be solved with an appropriate single
objective solver, producing new Pareto optimal solutions [37]. It should be
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noted that by using di�erent subproblem formulations, it is possible to gen-
erate somewhat di�erent Pareto optimal solutions from the same preference
information [36] obeying the preference information in somewhat di�erent
ways giving the DM more information about what kind of Pareto optimal
solutions are available.

Originally in [37], NIMBUS subproblems involved single objective min-
max functions. They are nondi�erentiable and must be solved by an appro-
priate single objective solver. To avoid introducing nondi�erentiability to the
problem to be solved, we modify the original nondi�erentiable subproblems
to their di�erentiable equivalents, by adding a new decision variable α to
the problem, and treating the min-max functions as constraints. Avoiding
nondi�erentiability in this way is naturally possible only if all functions of
the original problem are di�erentiable.

As an example, the di�erentiable version of one of the NIMBUS subprob-
lems is

minimize α + ρ
∑k

i=1
fi(x)

znadi −z??i

subject to
fi(x)− z?i
znad
i − z??i

≤ α for all i ∈ I<,
fj(x)− ẑj
znad
j − z??j

≤ α for all j ∈ I≤,

fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ εi for all i ∈ I≥,
x ∈ S.

(3)

The synchronous NIMBUS method has three other subproblems, but as their
di�erentiable formulations are quite straightforward to construct, they are
not presented here.

In addition to the classi�cation, the DM can ask new Pareto optimal
solutions to be generated as intermediate solutions between any two existing
Pareto optimal solutions. This is done by taking steps of equal length in the
objective function space between two Pareto optimal solutions, and giving
these as reference points (ẑ) to a di�erentiable counterpart of problem (2)

minimize α + ρ
∑k

i=1
fi(x)

znadi −z??i

subject to fi(x)−z̄i
znadi −z??i

≤ α for all i = 1, . . . , k

x ∈ S.
(4)

The solution process is terminated if the DM does not want to improve
any objective function value or is not willing to let any objective value impair.
Otherwise, the search continues iteratively by moving around the Pareto op-
timal set. In this way, the DM can learn about the problem, adjust one's
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hopes and �nally identify the most desirable solution. It should be noted
that when using the NIMBUS method, the DM is shown and asked to clas-
sify the actual objective function values and no arti�cial concepts requiring
cognitive mapping between di�erent concepts are used. For more details of
the NIMBUS method, see [37].

B GAMS-NIMBUS Tool model listing

Listing 1 shows the GAMS model used to generate solutions for iteration
2 of Table 2 without the equations speci�c to the original problem model
and commands used to pass new Pareto optimal solution values to the IND-
NIMBUS software framework. The listing has four scalarization models of
the GAMS-NIMBUS tool, corresponding to the scalarized subproblems used
by the NIMBUS method (see e.g. problems (3) and (4)). In Table 2 there
are only three new solutions shown for iteration 2, as two of the subproblems
provided similar results.

Listing 1: Iteration 2 of Example 1
∗ L i s t i n g shows the GAMS model used to generate s o l u t i o n s f o r i t e r a t i o n 2
∗ o f Table 2 : " So lu t i on s o f the GAMS−NIMBUS Tool f o r Example 1" the
∗ equat ions s p e c i f i c to the o r i g i n a l problem model but without commands
∗ used to pass new Pareto optimal s o l u t i o n va lues to the GAMS−NIMBUS Tool .
∗ The l i s t i n g has four s c a l a r i z a t i o n models corresponding to the
∗ s c a l a r i z e d subproblems used by the NIMBUS method ( see e . g . \ subproblems
∗ (3 ) and ( 4 ) . In the Table 2 there are only two new s o l u t i o n s shown f o r
∗ i t e r a t i o n 2 , as two o f the s c a l a r i z a t i o n models did not provide new
∗ Pareto optimal s o l u t i on s , t h e r e f o r e d i s r egarded

$STit l e Set NIMBUS Parameters
Parameter DUTO Di f f e r en c e o f i d e a l and utopian va lues

/ 0 .001 / ;
Parameter RAUGMT Coe f f i c i e n t o f the augmentation term

/ 0.001 / ;

$STi t l e Mu l t i o j e c t i v e Problem Model

∗ Model Example automat i ca l ly generated from the epscm .319 model inc luded in the
∗ GAMS Model Library by
∗
∗ Mavrotas , G, Generation o f e f f i c i e n t s o l u t i o n s in Mu l t i ob j e c t i v e Mathematical
∗ Programming problems us ing GAMS. Tech . rep . , School o f Chemical Engineer ing ,
∗ National Technica l Un ive r s i ty o f Athens , 2006 .

$ in l inecom [ ]
$eolcom //

Sets
p power genera t i on un i t s / L ign i te , Oil , Gas , RES /
i load areas / base , middle , peak /
pi (p , i ) a v a i l a b i l i t y o f un i t f o r load types

/ L i gn i t e . ( base , middle ) , Oi l . ( middle , peak ) , Gas . s e t . i , RES . ( base , peak ) /
es (p) endogenous source s / Lign i te , RES /
k ob j e c t i v e f unc t i on s / cost , CO2emission , endogenous /

$se t min −1
$se t max +1
Parameter d i r ( k ) d i r e c t i o n o f the ob j e c t i v e f unc t i on s

/ cos t %min%, CO2emission %min%, endogenous %max% / ;

Set pheader / capacity , cost , CO2emission / ;
Table pdata ( pheader , p)

L i gn i t e Oi l Gas RES
capac i ty [GWh] 31000 15000 22000 10000
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co s t [ $/MWh] 30 75 60 90
CO2emission [ t /MWh] 1 .44 0 .72 0 .45 0 ;

Parameter
ad annual demand in GWh / 64000 /
df ( i ) demand f r a c t i o n f o r load type / base 0 . 6 , middle 0 . 3 , peak 0 .1 /
demand( i ) demand f o r load type in GWh; demand( i ) = ad∗df ( i ) ;

Var iab l e s
z (k ) ob j e c t i v e func t i on va r i a b l e s

Po s i t i v e Var iab l e s
x (p , i ) product ion l e v e l o f un i t in load area in GWh

Equations
ob j co s t ob j e c t i v e f o r minimizing cos t in K$
objco2 ob j e c t i v e f o r minimizing CO2 emis s i ons in Kt
ob j e s ob j e c t i v e f o r maximizing endogenous source s in GWh
defcap (p) capac i ty c on s t r a i n t
defdem ( i ) demand s a t i s f a c t i o n

;

∗ Object ive f unc t i on s
ob j co s t . . sum( pi (p , i ) , pdata ( ' cost ' , p)∗x ( p i ) ) =e= z ( ' cost ' ) ;
objco2 . . sum( pi (p , i ) , pdata ( ' CO2emission ' , p)∗x ( p i ) ) =e= z ( ' CO2emission ' ) ;
ob j e s . . sum( pi ( es , i ) , x ( p i ) ) =e= z ( ' endogenous ' ) ;

defcap (p ) . . sum( pi (p , i ) , x ( p i ) ) =l= pdata ( ' capac ity ' , p ) ;
defdem ( i ) . . sum( pi (p , i ) , x ( p i ) ) =g= demand( i ) ;

Model example / a l l / ;

Set
njob Number o f jobs /1∗4/
nobj Number o f ob j e c t i v e func t i on s /1∗3/
nim_nf Number o f f unc t i on s / f1 , f2 , f 3 /

;

Parameter
nim_job_obj ( njob , nobj ) Resu l t s f o r each job
nimgams_ideal ( nobj ) I d ea l Vector
nimgams_nadir ( nobj ) Nadir Vector
nimgams_utopia ( nobj ) Utopia Vector
nimgams_aspir ( nobj ) Asp i ra t ion l e v e l
r e f ( nobj ) Reference po int
f va lu e ( nobj ) Current po int
n imc lass ( nobj ) NIMBUS Sc a l a r i z a t i o n c l a s s e s

Var iab l e s
nim_obj ( nobj )
alpha
a_objval a u x i l i a r y va r i ab l e f o r the ob j e c t i v e func t i on
GN_obj aux i l i a r y va r i ab l e during the con s t ruc t i on o f s c a l a r i z a t i o n func t i on s

Equations
nim_obj_f1
nim_obj_f2
nim_obj_f3
;

nim_obj_f1 . . nim_obj ( ' 1 ' ) =e= z ( ' cost ' ) ;
nim_obj_f2 . . nim_obj ( ' 2 ' ) =e= z ( ' CO2emission ' ) ;
nim_obj_f3 . . nim_obj ( ' 3 ' ) =e= −1.0∗ z ( ' endogenous ' ) ;
;
Model NIMBUS / Example , nim_obj_f1 , nim_obj_f2 , nim_obj_f3 / ;

nimgams_nadir ( ' 1 ' ) = 4275000 .0 ;
nimgams_ideal ( ' 1 ' ) = 3075000 .0 ;
nimgams_nadir ( ' 2 ' ) = 65340 . 0 ;
nimgams_ideal ( ' 2 ' ) = 45180 . 0 ;
nimgams_nadir ( ' 3 ' ) = −27000.0;
nimgams_ideal ( ' 3 ' ) = −41000.0;
loop ( nobj , nimgams_utopia ( nobj ) = nimgams_ideal ( nobj ) − DUTO) ;

$STi t l e Four S c a l a r i z a t i o n Models
∗ Pre f e r ence in format ion obtained from the DM
∗ These va lues are changed f o r each i t e r a t i o n
r e f ( '1 ' )=3435000 .00 ;
r e f ( ' 2 ' )=51900 .00 ;
r e f ( '3 ')=−36333.3300;

f va lu e ( '1 ' )=3435000 .00 ;
f va lu e ( '2 ' )=51900 .00 ;
f va lu e ( '3 ')=−36333.3300;
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$STi t l e NIMBUS s c a l a r i z a t i o n model
Equations

nim_nim
nim_nim_con1
nim_nim_con2
nim_nim_con3
nim_nim_con4

;
nim_nim . . alpha + RAUGMT ∗ sum( nobj , nim_obj ( nobj ) /

( nimgams_nadir ( nobj)−nimgams_utopia ( nobj ) ) ) =e= GN_obj ;
nim_nim_con1 . . ( nim_obj ( ' 2 ' ) − ( 56000 .0) ) /

( nimgams_nadir ( '2 ')−nimgams_utopia ( ' 2 ' ) ) =l= alpha ;
nim_nim_con2 . . nim_obj ( ' 2 ' ) =l= fva lu e ( ' 2 ' ) ;
nim_nim_con3 . . ( nim_obj ( ' 3 ' ) − nimgams_ideal ( ' 3 ' ) ) /

( nimgams_nadir ( '3 ')−nimgams_utopia ( ' 3 ' ) ) =l= alpha ;
nim_nim_con4 . . nim_obj ( ' 3 ' ) =l= fva lu e ( ' 3 ' ) ;

model NIM / NIMBUS, nim_nim , nim_nim_con1 , nim_nim_con2 , nim_nim_con3 , nim_nim_con4 / ;

NIM. o p t f i l e =1;
∗ Solve NIMBUS s c a l a r i z a t i o n model

s o l v e NIM using nlp minimizing GN_obj ;
d i sp l ay ' Objec t ive s : ' , nim_obj . l ;

∗ Use d i f f e r e n t r e f e r e n c e po int f o r r e f e r e n c e po int based s c a l a r i z a t i o n s
r e f ( ' 1 ' ) = 4275000 .00 ;
r e f ( ' 2 ' ) = 56000 . 0 ;
r e f ( ' 3 ' ) = −41000.000;

$STi t l e Achievement s c a l a r i z a t i o n model
Equations

nim_ach
nim_ach_con( nobj )

;

nim_ach . . alpha + RAUGMT ∗ sum( nobj , nim_obj ( nobj ) /
( nimgams_nadir ( nobj)−nimgams_utopia ( nobj ) ) ) =e= GN_obj ;

nim_ach_con( nobj ) . . ( nim_obj ( nobj ) − r e f ( nobj ) ) /
( nimgams_nadir ( nobj)−nimgams_utopia ( nobj ) ) =l= alpha ;

model ACH / NIMBUS, nim_ach , nim_ach_con / ;

ACH. o p t f i l e =1;
∗ s o l v e achievement s c a l a r i z a t i o n model

s o l v e ACH using nlp minimizing GN_obj ;
d i sp l ay ' Objec t ive s : ' , nim_obj . l ;

$STi t l e Smooth STOM s c a l a r i z a t i o n model
Equations

nim_stom
nim_stom_con( nobj )

;

nim_stom . . alpha + RAUGMT ∗ sum( nobj , nim_obj ( nobj ) /
( r e f ( nobj)−nimgams_utopia ( nobj ) ) ) =e= GN_obj ;

nim_stom_con( nobj ) . . ( nim_obj ( nobj ) − nimgams_utopia ( nobj ) ) /
( r e f ( nobj)−nimgams_utopia ( nobj ) ) =l= alpha ;

model STOM / NIMBUS, nim_stom , nim_stom_con / ;

STOM. o p t f i l e =1;
∗ Solve STOM s c a l a r i z a t i o n model

s o l v e STOM using nlp minimizing GN_obj ;
d i sp l ay ' Objec t ive s : ' , nim_obj . l ;

$STi t l e Smooth GUESS s c a l a r i z a t i o n model
Equations

nim_guess
nim_guess_con ( nobj )

;

nim_guess . . alpha + RAUGMT ∗ sum( nobj , nim_obj ( nobj ) /
( nimgams_nadir ( nobj)+DUTO−r e f ( nobj ) ) ) =e= GN_obj ;

nim_guess_con ( nobj ) . . ( nim_obj ( nobj ) − nimgams_nadir ( nobj ) ) /
( nimgams_nadir ( nobj)+DUTO−r e f ( nobj ) ) =l= alpha ;

model GUESS / NIMBUS, nim_guess , nim_guess_con / ;

GUESS. o p t f i l e =1;
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∗Solve GUESS s c a l a r i z a t i o n model
s o l v e GUESS us ing nlp minimizing GN_obj ;

d i sp l ay ' Objec t ive s : ' , nim_obj . l ;
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