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Abstract As one of the most competitive approaches to multi-objective optimization, 
evolutionary algorithms have been shown to obtain very good results for many real-
world multi-objective problems. One of the issues that can affect the performance of 
these algorithms is the uncertainty in the quality of the solutions which is usually rep­
resented with the noise in the objective values. Therefore, handling noisy objectives 
in evolutionary multi-objective optimization algorithms becomes very important and 
is gaining more attention in recent years. In this paper we present α-degree Pareto 
dominance relation for ordering the solutions in multi-objective optimization when 
the values of the objective functions are given as intervals. Based on this dominance 
relation, we propose an adaptation of the non-dominated sorting algorithm for ranking 
the solutions. This ranking method is then used in a standard multi-objective evolution­
ary algorithm and a recently proposed novel multi-objective estimation of distribution 
algorithm based on joint variable-objective probabilistic modeling, and applied to a 
set of multi-objective problems with different levels of independent noise. The experi­
mental results show that the use of the proposed method for solution ranking allows to 
approximate Pareto sets which are considerably better than those obtained when using 
the dominance probability-based ranking method, which is one of the main methods 
for noise handling in multi-objective optimization. 
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1 Introduction 

Many of the real world optimization problems are often best characterized by more 
than one objective. When trying to solve these problems, several, possibly conflicting, 
criteria should be fulfilled simultaneously. Let T = {/1,..., /m} be the set of objective 
functions for a problem, where each objective function is defined as f}• : D i-> R, and 
assume that all of the objectives should be minimized. D determines the set of feasible 
value-settings for the vector of input variables X = (X1,..., Xn) and sometimes it is 
referred to as the decision space. Then an unconstrained continuous multi-objective 
optimization problem (MOP) is defined as 

min f(x)=(f1(x),...,fm(x)). (1) 
xeOQR" y ' 

The objective functions of an MOP map the solutions in D to another space which is 
called the objective space of the problem. 

In general, with more than one objective function, the optimum solution to the MOP 
in Eq. (1) is not unique anymore, even if the constituting objective functions are not 
multi-modal. The presence of conflicting objectives implies that trying to improve one 
of the objectives will result in worse values for some other. Thus, the goal of a multi-
objective optimization algorithm is to search for solutions which result in an optimal 
trade-off between different objectives of the problem. One of the most frequently used 
approaches is to employ the notion of Pareto optimality [1] and the corresponding 
Pareto dominance relation [2]. 

Definition 1 (Pareto Dominance) Let x and y be two solutions of the MOP defined 
in Eq. (1) in the decision space D. Then x Pareto dominates y, denoted as x -< y, if 
and only if: 

1. Wfj e T fj(x) < fj(y), and 
2. 3/fc e T fk(x)< fk(y). 

Pareto dominance defines a partial order between the solutions, i.e. an irreflexive, 
antisymmetric and transitive relation. Using this relation, the solutions to an MOP can 
be ranked into a number of disjoint Pareto non-dominated sets (or Pareto sets for short) 
where every two solutions in the same set either have exactly equal objective values 
or are incomparable in terms of Pareto dominance. The corresponding projections 
of these Pareto sets onto the objective space are called Pareto non-dominated fronts 
(similarly Pareto fronts for short). The best Pareto set containing optimal trade-off 
solutions (no other solution in D dominates them) is called the Pareto optimal set, and 
its projection onto the objective space is called the Pareto optimal front. In general, the 
number of solutions in the Pareto optimal set can be exponentially large or even infinite 
in the case of continuous domains and thus multi-objective optimization algorithms 
try to obtain a good approximation of this set. 



Because of the complexity of solving MOPs, a promising approach which is gaining 
an increasing interest is to use evolutionary algorithms (EAs), giving rise to evolu­
tionary multi-objective optimization (EMO) algorithms [3–6], otherwise known as 
multi-objective EAs. Although these algorithms do not ensure the optimality of the 
solutions compared with some of the conventional mathematical optimization tech­
niques, they have been successfully applied to many complex real-world MOPs. Beside 
their simple mechanism which motivates their wide-spread use in different applica­
tions, another advantage of these algorithms encouraging their use for multi-objective 
optimization is their population-based search allowing them to simultaneously explore 
several regions of the search space, finding a set of trade-off solutions in contrast to a 
single solution, in an individual run. 

Estimation of distribution algorithms (EDAs) [7–10] are a relatively recent class of 
EAs developed by using probabilistic modeling in the framework of EAs. They have 
proven to be promising optimization algorithms for many difficult problems with high 
computational complexity. These algorithms explore the search space by building 
a probabilistic model from a set of selected candidate solutions. This probabilistic 
model is then used to sample new candidate solutions in the search space. As the 
result, these algorithms will provide a model expressing the regularities of the problem 
structure, as well as the final solutions. EDAs have also been used for multi-objective 
optimization [11–13], where the model building in EDAs is combined with a multi-
objective solution ranking and selection mechanism to solve MOPs. 

A feature of many real-world problems is the existence of noise, which can appear as 
variable or environmental change, or/and as uncertainty in the objective values. Many 
of the methods that are proposed for solution ranking in EMO algorithms are based 
on the Pareto dominance relation. When EMO algorithms based on Pareto dominance 
relation are used for solving these problems, the noise in objective values can mislead 
the algorithm by selecting inferior solutions that are considered good because of noise, 
and discarding good solutions that are necessary for directing the search to promising 
areas. One of the ways to deal with noisy objectives is to assume each objective returns 
an interval of values for a solution. This interval can be obtained by considering the 
range of error or amount of noise in the system, or from a set of values obtained from 
multiple reevaluations of a solution in different conditions. Considering an interval of 
values instead of a single value allows the EMO algorithm to take into account the 
extent of noise in the objectives when selecting solutions for recombination. 

In this paper we introduce a new solution ranking, called α-degree Pareto domi­
nance, for EMO algorithms applied to noisy problems when independently computed 
objective functions return intervals. This new relation for ranking the solutions allows 
the intervals to overlap each other, and determines the dominance among solutions 
based on the extent to which their corresponding intervals are better than those of other 
solutions. The method can also be extended to the case where only some of the objec­
tive functions of the MOP are noisy. This solution ranking method is then integrated 
into a standard multi-objective EA and MBN-EDA [14], a multi-objective EDA based 
on joint variable-objective probabilistic modeling, for finding the solutions of noisy 
MOPs. 

The rest of paper is organized as follows. In the next section we briefly review 
some of the methods proposed in the literature for noise handling in EMO algo-



rithms. Section 3 introduces the α-degree Pareto dominance relation, discusses some 
of its properties, and proposes a solution ranking method based on this relation. In 
Sect. 4, MBN-EDA and its joint probabilistic modeling of variables and objectives are 
described. The details of the experiments and their results are presented and discussed 
in Sect. 5. Finally, Sect. 6 concludes the paper and gives some lines of future work. 

2 A review on EMO with noise 

The topic of EMO under uncertainty and noise has gained a lot of attention in the past 
few years, and many studies and methods are reported in the literature. In general, 
as explained by Jin and Branke [15], three different types of noise handling can be 
identified in EAs. First, the population-based search in these algorithms, by itself, 
implicitly deals with certain levels of noise in objective values. The average quality 
of a population or subgroups of the population, presenting certain subspaces, is less 
susceptible to noise. Therefore, the larger the population is, the better the algorithm 
can overcome the noise in the quality of solutions for finding the optimal solutions. 
However, the existence of several objectives in a multi-objective scenario reduces 
the effectiveness of EAs in noise handling [16]. Second approach is to explicitly 
reevaluate each solution of the population several times to obtain a better estimation 
of its objective values. Although this approach greatly increases the computational cost 
of optimization, it is inevitable for some of the problems where the objective values 
are obtained as the result of simulations. A third approach is to consider the noise in 
objective values in the selection step of EAs. This is usually done by modifying the 
solution ranking method, assuming a level of uncertainty in the objective values. 

As explained before, noise can exist in the values of the input variables, the outputs 
of the objective functions or even both. There are some works on EMO algorithms 
considering the former type of noise, i.e. noise in the input values, which is sometimes 
referred to as robust optimization and its aim is to find solutions with the highest sta­
bility in their objective values. Soares et al. [17] optimized the worst noisy objective 
values of the solutions in a min-max formulation using interval analysis. To decrease 
the amount of uncertainty in the intervals they propose to recursively divide the inter­
vals into halves, resulting in a grid which is placed on the objective space and is used to 
compute the worst objective values of the solutions. The grid also serves as a niching 
method, penalizing the solutions that are very close in the objective space. The noise 
is introduced in the input variables using an uncertainty vector which is incorporated 
in the definition of the objective functions. Goh et al. [18] offered a classification of 
the noisy MOPs depending on the effect of noise on the Pareto front, Pareto set and 
landscape of the problem. Based on this classification, they proposed some guidelines 
for designing challenging MOPs for robust optimization, and introduced a Gaussian 
landscape generator for this purpose using a number of basis functions. 

Most of the algorithms proposed for EMO in noisy environments consider the 
second type of noise, i.e. noise in the objective values, since this type of noise is 
harder to deal with. In this type of MOPs it is usually assumed that the objective 
values are distorted by an additive noise value. Almost all EMO algorithms reviewed 



in this section consider a Gaussian noise model for the objective values of the tested 
MOPs, unless otherwise mentioned. 

One of the earliest and well-known approaches to deal with noisy objectives when 
comparing two solutions in multi-objective optimization is to use probabilistic domi­
nance, considering the probability that one solution dominates another [19,20]. This 
approach has been successfully used for optimization in some of the real world prob­
lems like designing the shape of acoustic noise attenuation barriers with several 
receiver points [21]. Since this method is considered as a main reference in many 
later works on noisy objectives, we explain it here in more detail. 

Definition 2 (Dominance Probability [19,20]) Let U = f(x) and V = f(y) be 
two vectors of random variables representing the objective values returned for two 
solutions x and y of a noisy MOP in decision space D. Then the probability that x 
dominates y is given by: 

P(x < y) = • • • pu(t)1 — tyy(t)}dt, (2) 
— CO —oo 

where pu(-) denotes the joint probability distribution for the output of objective func­
tions given solution x, and ^y(-) is the cumulative probability distribution for the 
output of objective functions given solution y. 

Based on the probability of dominance, ranking strategies like the mean dominance 
probability [20] is used to order the solutions with noisy objective values. [19] also 
tested this approach when the noise is introduced to the input values, showing the ability 
of this method for handling noise in both input variables and output objective functions. 
Bui et al. [22] adopted probabilistic dominance in NSGA-II [23] and compared it with 
a version of this algorithm which is based only on reevaluation of objectives. They 
also proposed a fitness inheritance method to reduce the complexity of reevaluating 
the objectives. In a separate work [24], they performed a comparative study of the 
noise handling capability of the original versions of NSGA-II and SPEA2 [25] in the 
presence of different noise levels, using several performance measures. [26] proposed 
a Bayesian method for obtaining an estimation of the Gaussian noise variance when 
computing the probability of dominance between two solutions. They considered 
different scenarios like unknown, constant and variable noise for the objective values. 

Many of the EMO algorithms proposed for noise handling try to extend the existing 
solution ranking and selection methods by considering noise in the values of the 
objectives. Büche et al. [27] proposed a noise-tolerant EA using the Pareto strengths-
based solution ranking method [28] assigning a lifetime (number of generations) to the 
solutions in the archive depending on their strengths. This lifetime is used to determine 
which solutions are to be reevaluated or to be used for updating the archive in order to 
limit the influence of noisy objective values and outliers. They claim that elitism does 
not necessarily result in faster convergence when noise is present in multi-objective 
optimization. The proposed algorithm is applied to find an optimal flow of fuel in the 
burner of a gas turbines. 

Babbar et al. [29] modified NSGA-II to include neighbors of the non-dominated 
solutions in the first Pareto front. Neighboring solutions are determined using the mean 



and variance of the objective values for each solution, estimated from the reevaluation 
of the solutions. Solutions that are reevaluated less than a predetermined number of 
times during the evolution are considered as outliers and removed from the final Pareto 
set. 

Goh and Tan [30] proposed three techniques for noise handling in an EMO algo­
rithm which uses a two-part, discrete-continuous, representation for the solutions. 
The first technique consists of incorporating the direction of population movement 
along evolution into the generation of new solutions. The second technique is stretch­
ing or shrinking the search domain of each variable depending on the behavior of 
the algorithm in the current phase of evolution. The third technique is to assume 
objective values are given as fuzzy numbers and then use two newly proposed dom­
inance relations, called necessity and necessity-possibility, to update the archive of 
non-dominated solutions maintained by the algorithm. 

Eskandari and Geiger [31] considered the expected values of the objective func­
tions and proposed the stochastic dominance relation for ranking the solutions. In the 
selection process, the solutions are divided into two sets depending on whether they 
are stochastically dominated. The set of stochastically dominated solutions are further 
ordered by considering the expected strength of each solution depending on both how 
many solutions it dominates and by how many solutions it is dominated. To detect 
the algorithm convergence in noisy environments they proposed to monitor the rate of 
hypervolume indicator growth. 

Bui et al. [32] proposed the use of adaptive non-overlapping hyper-spheres which 
are locally moved in the search space to reduce the effect of noise. The motivation 
is that the average objective values of the solutions in a neighborhood of the search 
space provide a better approximation of the direction of movement during evolution. 
A particle swarm optimization based algorithm is used to update the center and radius 
of the hyper-spheres in the search space. The algorithm also deploys an archive of 
solutions and its corresponding hyper-sphere to represent the global behavior of the 
population. 

Syberfeldt et al. [33] proposed a method to increase the efficiency of solution reeval-
uations. When comparing two solutions in the non-dominated sorting algorithm [23], if 
the confidence in the differences between their objective values are less than a specific 
level, then one of them is reevaluated more to increase the level of confidence. Differ­
ent Pareto sets are assigned different values of minimum confidence level, and since 
during evolution the rank of solutions in the population changes, implicit dynamism is 
introduced during evolution as each solution is reevaluated. The proposed method is 
also applied to two real-world problems related to optimization in engine manufactur­
ing lines. Instead of discarding old evaluations of a solution in a noisy problem, Park 
and Ryu [34] proposed an accumulating approach which combines old evaluations 
with the new reevaluation of a solution to improve the expected value estimation of 
objective functions. 

Another approach taken by some of the proposed methods is to use decision maker 
(DM) provided information for EMO in the presence of noise. Mehnen et al. [35] 
used desirability functions to include both the preferences of DM and to reduce the 
effect of noise. Instead of performing the search in the objective space, they optimize 
the expected value of the desirability functions computed from noisy objectives. The 



final Pareto front is obtained by either applying the inverse desirability functions on 
the approximated front or computing the objective values of the final Pareto set. The 
method is used to find the working parameters of an industrial cutting tool. Woz´niak 
[36] proposed to use a number of reference points provided by DM, each accompanied 
with a weight vector showing the importance of the objectives, to select fitter solutions 
in the search process. To maintain the population diversity only one of the solutions 
in each neighborhood, defined by a predefined neighborhood radius, is selected. The 
method is then applied for the design of a motor speed controller. 

In addition to the noise in objective values, Kaji et al. [37] studied the effect of 
noise in constraint functions of a constrained MOP, trying to reduce the number of 
infeasible solutions selected in the Pareto set. For this purpose they form a history 
of solutions and estimate the value of objective and constraint functions by a locally 
weighted ridge regression of second order. The weights are defined using a Gaussian 
kernel. A safety margin is also introduced to the constraint functions and dynamically 
adjusted depending on the variance of the estimated constraint values. 

Basseur and Zitzler [38] proposed an indicator-based EMO algorithm for noisy 
environments, considering the presence of noise in both the objective functions and 
the input variables. They proposed methods to estimate the expected value of the 
epsilon indicator for ranking the solutions. A uniform noise is assumed for both inputs 
and outputs. Boonma and Suzuki [39] considered different types of distributions like 
Gaussian, uniform and Poisson for the noise model. Assuming that the quality of 
each solution is represented with several reevaluations of its objectives, they used a 
support vector machine to determine the confidence level in these objective values. The 
coverage metric is used to determine the dominance between two solutions after their 
values are classified as statistically reliable. The confidence level for accepting the 
objective values of the solutions is dynamically adjusted during evolution according 
to the disorder among objective values, which is computed with an entropy-based 
function. 

Table 1 summarizes the reviewed algorithms. 

3 α-Degree Pareto dominance 

Most of the methods reviewed in the previous section for handling the noise when 
selecting a subset of solutions, only consider singular objective values. Although these 
singular values maybe obtained as the result of averaging over several reevaluations, 
they still do not directly take into account the extent of the noise in the values. We 
also saw that some of the proposed methods optimize the expected values of the 
objectives and consider the variance of the objective values, implicitly assuming a 
type of confidence interval for the objective values. A closely related approach is 
the possibilistic dominance method [30], where objective values are considered to be 
fuzzy numbers. In this section we propose a method for directly comparing any kind of 
intervals, not necessarily confidence intervals, which also takes into account interval 
widths (representing the amount of noise). Moreover, the proposed method can deal 
with MOPs consisting of both singular and interval objectives. 



Table 1 Summary of the EMO methods for noisy environments 

Method Noise type Noise 
location 

Teich [20] 

Hughes [19] 

Büche et al. [27] 

Babbar et al. [29] 

Bui et al. [22] 

Fieldsend and Everson [26] 

Basseur and Zitzler [38] 

Goh and Tan [30] 

Mehnen et al. [35] 

Wo ź  niak [36] 

Boonma and Suzuki [39] 

Bui et al. [32] 

Eskandari and Geiger [31] 

Kaji et al. [37] 

Soares et al. [17] 

Syberfeldt et al. [33] 

Park and Ryu [34] 

Probabilistic Dominance 

Probabilistic Dominance 

Lifetime-Based Archiving 

Objective Space Neighborhood 

Fitness Inheritance in Reevaluations 

Noise Variance Estimation 

Indicator Value Estimation 

Necessity and Necessity-Possibility 
Dominance 

Desirability Functions Optimization 

Weighted Reference Points 

Confidence-Based Solution Comparison 

Search Space Neighborhood 

Stochastic Dominance 

Value Estimation with Locally Weighted 
Ridge Regression 

Worst-Case Analysis 

Confidence-Based Reevaluations 

Reevaluation Accumulation 

Uniform 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Uniform 

Gaussian 

Gaussian 

Gaussian 

Gaussian, 
Uniform, 
Poisson 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Output 

Input, Output 

Output 

Output 

Output 

Output 

Input, Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output, 
Constraints 

Output 

Output 

Output 

One way to deal with the noise in an MOP when the objective values are repre­
sented with intervals is to extend the Pareto dominance definition (Definition 1). In 
the following definitions we assume that the set of objectives T is partitioned into 
two disjoint subsets of objectives with singular values Ts, and noisy objectives with 
interval values Tj, such that Ts U Tj = T and Ts n Ti = 0. 

Definition 3 (Extended Pareto Dominance) Let [/;(•*)] and [/;(•*)] respectively 
represent the lower and upper bounds of the interval value returned for solution x e D, 

by the noisy objective function fj e Ti, i.e. Uj lies in the interval 
Then, solution x is said to strictly dominate solution y, denoted as x <e y, if and only 
if: 

1. Wfj e Ts fj(x) < fj(y), and 
2. V/;- e Ti \fj(x)~\ < [fj(y)\, and 

3. (3 fk e Ts fk(x)< fk(y) or 3fk e Ti \fk(x)\ < l/feCj)!). 

This definition treats interval values similar to the way it considers singular values 
and only allows a solution to dominate other solutions if its corresponding interval 
values, returned by noisy objective functions, are strictly better than those of other 



solutions. In real-world noisy MOPs, such a requirement is hardly satisfied. A further 
extension is to relax this strict requirement and allow the intervals to have some degree 
of overlapping. 

Definition 4 (α-Degree Pareto Dominance) Assume the same notations as those of 
Definition 3. Then, solution x is said to dominate another solution y with a degree 
α e (0, 1], denoted as x <α y, if and only if: 

1. Wfj e TS fj(x) < fj(y), and 
2. Wfj e TI degj(*, y) > α, and 

3. (3 fk e TS fk(x)< fk(y) v 3fk e TI degk(x, 
y)>α), 

where degj (•, •) gives the degree that a solution dominates another with respect to the 
noisy objective function fj e TI 

\ lfj ( )| - | f j(*) |1 I degj(x, y) = min \ 1, max \ 0, ^ =. \ r . (3) 
\fj(*)] ~ \_fj(x)\ 

Intuitively, degj(x, y) computes the percentage of the interval obtained for solu­
tion x that is not overlapped by the interval obtained for solution y in objective 
fj e j-I I i.e.1 — / v —Yf((J)I I . Thus, only the segment of the interval obtained 

\ \fj(
x)\ i j x ] 

for solution x that is better than the best point in the interval obtained for solution y 
(i.e. its lower bound, when minimizing objectives) is taken into account. If α = 1, 
then Definition 4 is reduced to Definition 3. Definition 4 allows a solution to dominate 
other solutions when its corresponding interval values are partially better than those 
of other solutions. 

Figure 1 shows some examples of possible placements of two intervals and the 
corresponding values of the degj(-, •) function. Figure 1a shows a situation where 
the interval for solution x is strictly better than the other solution, resulting in 
degj(*, y) = 1. Figure 1b, c show cases when the two intervals partially overlap 
with 0 < degj(*, y) < 1. Finally, Fig. 1d shows an example of the situation when 
intervals completely overlap, i.e. degj(*, y) = 0. With higher values of α, a solution 
can only dominate other solutions if a major segment of its corresponding interval 
values are better than the best points of the interval values corresponding to other 
solutions. Thus, higher values of α place a stricter condition for accepting a solution 
as non-dominated. 

3.1 Properties 

In this section we show some of the properties of the α-Degree Pareto Dominance 
(Definition 4) which will allow us to use it for solution ordering. 

Proposition 1 α-Degree Pareto dominance defines a partial relation, i.e. withirreflex-
ivity, antisymmetry and transitivity properties, on the space of candidate solutions. 

Proof Since no x e D exists that satisfies x <α x for any α e (0, 1], the relation 
is irreflexive. To see the antisymmetry of the relation, assume x <α y. If 3fj e TS 
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Fig. 1 Examples of interval values and the resulting degrees of dominance. a degi(x,y) 
deg; (x, y) = 0.75, c deg; (x, y) = 0.5, d deg; (x, y) = 0 

1, b 

such that fj (x) < fj (y) then y -/<α x. If 3/y e T\ such that deg. (x, y) > α, then by 
definition of deg.(-, •) inEq. (3) if deg. (x, y) > 0 then deg.(j , x) = 0 and therefore 
y yi.α x for any α e (0, 1]. 

For transitivity, assume that x <α j a n d j <α z. Then we have V/) e Ts, fj(x) < 
fj(y) and fj(y) < fj(z). Therefore, fj(x) < fj(z), V/;- e Ts. Similarly, we have 
degj(x,z) > α,Vfj e Tj, because if V/y e Tj such that [//(-^J < \_fjW\ and 
[fj(y)\ < [fj(z)\, then 

we have [/;(*)] < \_fj(z)\,Vfj e J7/. Now, given either 
3fj e Ts such that fj(x) < fj(y) or 3fj e IF] such that deg,-(*, y) > α (similarly 
3fj e Ts such that fj(y) < fj(z) or 3fj e Tj such that deg,(j , z) > α) we can 
respectively conclude either 3/v e .F^ such that fj(x) < /;(z) or 3/v e J7/ such 
that deg. (x,z) > α, which completes the proof of proposition. • 

The partial relation defined by α-degree Pareto dominance allows to readily adopt 
the terms of α-degree Pareto optimal solution, α-degree Pareto optimal set, α-degree 
Pareto optimal front and α-degree Pareto non-dominated set for noisy MOPs, in the 
same way they are defined using the conventional Pareto dominance relation. The 
α-degree Pareto dominance relation also has interesting properties when different 
confidence levels are considered for the objective values. To see this, lets assume that 



the values returned by noisy objective functions for solution x are confidence intervals 
given in the form of 

(E(fj(*)) - £ y (f j(*)), E(f j(*)) + By (fj (X)) ) , 

where E(fj(x')) represents an estimation of the expected value of the jth objective 
function for solution x and 

ey(fj(x)) =z1 2y&(fj(x)) 

is the half-width [31] of the confidence interval computed according to a specific 
confidence level y. Here, z(1-Y)/2 denotes the value for which <t>(Z > z(1-Y)/2) = 
~2 , where $(Z) is the cumulative standard Gaussian (or t-student) distribution. 
a (fj (*) is the estimation for the standard deviation of mean objective value. With 
confidence intervals, the definition of degj(*, y) for a noisy objective fj e FI can 
be rewritten as 

degj(*, y) = min i 1, 

(t(fj(y)) -E(fj(x))) - (eY(fj(y)) -eY(fj(x)j) 1 
max I 0, \ \ . (4) 

2eY(fj(x)) 

According to this definition, the degree that a solution outperforms another solution 
with respect to a noisy objective fj e IFI is determined by the differences in both 
expected values and half-widths. The following propositions show how the change in 
the confidence level y or dominance degree a affects the a-degree Pareto dominance 
relation. 

Proposition 2 Any reduction in the confidence level of the interval values given by 
noisy objective functions in FI does not affect x -<a y, if for every objective function 
fj e FI wehaveE(fj(x)) < E(f j(j)). 

Proof We only consider noisy objectives in FI here because the change in confidence 
level does not affect singular values. Let x -<& y denote that solution x dominates 
solution y with a degree a, when the confidence level in the interval value of all noisy 
objectives in FI is at least y. 

Assuming x - ^ y implies that 

(E(fj(v)) - E(fj(x)j) - (ey1 (fj(y)) - eM (fAx))) 
Vfj e FI, . r > a 

2en{fj(x)) 

E(fj(v)) - E(fj(x)) aifjiy)) -aifdx)) 
=>• — ^ ; ^ V > «• 

2z1 2y1a(fj(x)) 2a(fj(x)) 



Changing the confidence level does not influence the second quotient above. The 
numerator of the first quotient is positive because of the proposition assumption and, 
since z1- 2 > z1-2 , Vy2 < Y1, this quotient will become larger if confidence level 
decreases to y2. Therefore, for all fj e TI 

(Mfjiy)) -E(fj(x)j) (eyJfjiyj) -eyJfAx))) 
r > 

2en(fj(x)) 

(E(fj(y)) - E(fj(*))) - (en (fj(y)) - en (fj(x))) 
2ey1(fj(x)) 

> a, 

which means x -<]? y. • 

Now, let VSa denote the a-degree Pareto optimal set imposed by a-degree Pareto 
dominance relation -<„, when the confidence level in the interval values returned by 
the noisy objectives is at least y. 

Corollary 1 Ify2<y1, then VSYa c VSYa . 

Proof Assume that there exists a solution y such that y e VS72 and y <£ VSYa . This 
means that there exists a solution x e VSYa such that x -<„ y. By Proposition 2, 
we know that this implies x -<Q y. But the last relation means that y £ VS^2 which 
contradicts the hypothesis. • 

Proposition 3 The a-degree Pareto dominance relation between solutions is pre­
served when the dominance degree a is decreased. 

Proof It is trivial since if o!2 < «1 thendegj(*, y) > a1 implies that degj(*, y) > a2, 
for any two solutions x, y and every objective function fj e f I . • 

Corollary 2 If a2 < a1, then VSY
a2 c VSY

a1. 

Proof The same as the proof for Corollary 1. • 

3.2 a-Degree non-dominated sorting 

We use a-degree Pareto dominance relation to develop a version of the well-known 
non-dominated sorting algorithm [23] that can be applied for solution ranking in noisy 
environments, when the objectives are given as intervals. The main steps of this ranking 
method are shown in Algorithm 1. 

The algorithm first orders the solutions into a number of a-degree Pareto non-
dominated sets, by comparing the solutions of the population with the a-degree Pareto 
dominance relation. Then, within each a-degree non-dominated set, the solutions are 
ordered according to their crowding distances in the objective space, which reflects 
how scattered is each solution in the objective space with respect to the other solutions 
in the same a-degree non-dominated set. In practice, when this ranking method is used 



Inputs: 
A set of solutions P 
A dominance degree α 

1 r <^ 0 
2 while there are more solutions in P do 
3 r <^ r + 1 
4 Sr <— α-degree Pareto non-dominated solutions of P 
5 P <— P \ Sr 
6 end while 
7 for all i s {1 , . . . , r} do 
8 Dj <— Crowding distances of solutions in Sj 
9 Sj <— Reorder the solutions in Sj in decreasing value of Dj 
10 end for 

Output: {S1,...,Sr} 

Algorithm 1: The α-Degree Non-Dominated Sorting Algorithm 

with techniques like truncation selection, the crowding distance is computed only for 
the solutions of the α-degree non-dominated set which cannot be added completely 
to the set of selected solutions. 

To compute the crowding distances, the solutions are ordered with respect to each of 
the objectives individually, and the crowding distance of the solutions with minimum 
and maximum value for each objective is set to a large number, indicating that these 
solutions are well scattered with respect to that objective. The crowding distance of 
other in-between solutions is computed by summing up the normalized distances of 
each solution to its preceding and succeeding solutions in each objective with respect 
to the ordering. To order the solutions in each objective dimension, the quick sort 
algorithm is adapted to work with interval values, comparing two solutions by checking 
whether deg.(-, •) > 0. The value of deg.(-, •) function is also used as a normalized 
estimation of the distances between interval values of the solutions in each objective. 

4 Multi-objective optimization with joint variable-objective probabilistic 
modeling 

The common practice in most EAs (including EDAs) is to only use the variable values 
for generating new solutions in the search space. The objective values are used for 
ranking and selecting a subset of solutions, and apart from that, these algorithms ignore 
the objective information when generating new solutions. Although this scheme of new 
solution generation usually offers a relatively good exploration of the search space, 
the objective information of the selected solutions can be exploited in the new solution 
generation step of EAs for further improvement, so that the new solutions have better 
or comparable objective values than their parents. 

In the case of EDAs, when objective information is incorporated into probabilistic 
modeling, the estimated model not only encodes the characteristics of the variable 
values of the selected solutions, but it also encodes preferences concerning objective 
values of these solutions. This especially applies to MOPs, where, because of the 
existence of several objectives, more information about the quality of the solutions is 
available. EDAs try to represent the problem structure by probabilistically approximat-



Fig. 2 An example of a multi-dimensional Bayesian network structure 

ing the interactions between variables and how their combination of values influence 
the objective functions. Incorporating the objective values of the solutions in the mod­
eling step of these algorithms will allow them to obtain a probabilistic approximation 
of the relationships between objectives as well (e.g. based on the expected value of 
the objectives). 

A multi-objective EDA based on this idea is MBN-EDA [14], which uses multi­
dimensional Bayesian networks (MBNs), a type of Bayesian networks [40] initially 
used in multi-dimensional classification [41,42], for joint modeling of variables and 
objectives. Figure 2 shows an example of an MBN structure. In this type of model, the 
nodes are organized in two separate layers: the top layer comprises objective nodes and 
the bottom layer contains variable nodes. The set of arcs in the structure is partitioned 
into three subsets, resulting in the following subgraphs: 

– the class subgraph, containing the objective nodes and the interactions between 
them, 

– the feature subgraph, comprising the variable nodes and their relations, and 
– the bridge subgraph, depicting the top-down relationships between objective and 

variable nodes. 

The feature subgraph of MBN encodes the relationships between variables like 
the models learnt by other Bayesian network-based multi-objective EDAs [43–48]. 
However, the bridge and class subgraphs, encode new types of relationships as the 
result of joint modeling of variables and objectives. The bridge subgraph shows the 
interactions between each objective and the variables (selects a subset of relevant vari­
ables for each objective), and the class subgraph represents the relationships directly 
between objectives. 

Like other types of Bayesian networks, each node of MBN stores a set of parameters 
representing the conditional probability distributions for the values of each variable 
given different value-settings of their parents according to the network structure. In 
continuous domains, assuming a Gaussian distribution for the joint vector of variables 
and objectives, (X, Q) = (X1, . . . , Xn, Q1, . . . , Qm), where Q j is a random variable 
taking values from the range of the jth objective function, i.e. Q j = f j (X), the 
joint probability distribution encoded in the probabilistic model of MBN-EDA can be 
represented as 



n m 
ρ(x1,...,x„,q1,...,qm) = Y\ρ(xi\pai) • Y\ρ%\pa'j), (5) 

i=1 7 = 1 

wherePa; c {{X\X;}UQ} and Pa'^ c {Q \<2j} are the parents ofeach variable and 
objective, respectively, according to the MBN structure, and pat and pa! • represent 
one of their possible value-settings. q = (q1,..., qm) denotes a possible value-setting 
for the objective variables Q = (Q1, . . ., Qm). 

The presence of noise in objective values, represented with intervals, means that in 
thejoint vector (X1,..., Xn, Q1,..., Qm), a subset of objective variables Q}, where 
/ is the set of objective function indices in T\, take on interval values. Thus, not all of 
the values in the joint variable-objective dataset provided for probabilistic modeling 
are scalar values. 

There are some studies in the area of imprecise probabilities and credal sets for 
estimating a probability distribution for a vector of random variables, when some of 
these variables take non-scalar values (e.g. set of values or intervals). When Bayesian 
networks are used to encode this kind of probability distributions they are called credal 
networks [49]. Because of the inherent complexity of this type of models, the methods 
proposed for their learning and inference are usually very time consuming. 

To be able to iteratively perform the joint modeling of variables and objectives in 
each generation of MBN-EDA, we have used a simple approach for learning a proba­
bilistic model in the presence of noisy objectives with interval values. Before learning 
the joint model, all of the interval values are replaced by representative scalar values. 
For example, when the values returned by noisy objective functions are considered to 
be confidence intervals, a good representative value for each interval is its estimated 
expected value, E(<2;). This way of scalarization is also justified when taking into 
account the fact that in joint probabilistic modeling, objective values are only used 
to obtain an approximation of the influence of objectives on each other and on the 
variables. 

Once the dataset is scalarized, a relatively fast greedy local structure search algo­
rithm [50] is used for learning an MBN from the dataset. The algorithm starts with an 
initial structure for the network, which can be generated randomly or given based on 
some prior knowledge of the problem. At each iteration of the algorithm, all possible 
edge addition, removal and reversal operations that do not violate the constraint for 
top-down interactions between variable and objective nodes in the bridge subgraph 
are considered, and the one resulting in the best improvement of a scoring metric 
is selected and applied to the structure. This step is repeated until no more opera­
tions can be found to further improve the scoring metric. If the maximum number of 
node score evaluations is not reached yet, the structure search is restarted from a new 
random structure and otherwise the algorithm stops. At the end, the highest scoring 
Bayesian network in all these sub-searches is returned. We use the Bayesian informa­
tion criterion (BIC) [51] as the scoring metric, which computes a penalized maximum 
likelihood of the Bayesian network with respect to the dataset. 

New solutions are generated from the estimated MBN using the probabilistic logic 
sampling (PLS) method [52]. PLS starts with finding an ancestral or topological order­
ing of the nodes in MBN. In such an ordering, each node appears after its parent nodes 



according to the MBN structure. Due to the restrictions imposed on the bridge sub­
graph in the learning process, all objective nodes appear before variable nodes in the 
ancestral ordering obtained for an MBN. Next, the conditional probability distribu­
tions encoded in the nodes of MBN are sampled one-by-one according to their order 
of appearance in the ancestral ordering. This means that objective nodes are treated the 
same as variable nodes and new values are generated for both variables and objectives 
when sampling the estimated model. In this way, the PLS algorithm can take into 
account the approximated values for objectives, leading to a sampling which is more 
consistent with the probabilities encoded in the estimated model. To generate a set of 
solutions (or samples) from the estimated MBN this sampling process is repeated. 

5 Experiments 

In this section we perform an experimental study to test the proposed solution ranking 
method based on a-degree Pareto dominance relation and examine the optimization 
performance of an standard multi-objective EA and MBN-EDA when using this rank­
ing method in noisy MOPs. The problems, noise characteristics and other experimental 
design features are explained in the following sections. 

5.1 Noise model 

In Sect. 2, we saw that many of the works in the literature simulate the noise in objective 
functions of an MOP with an additive zero-mean Gaussian distribution: 

fj(xi)+J\f(0, er„2), (6) 

where fj(xi) is the true value of the jth objective function for solution x*, and a„ 
controls the level of noise introduced to the objective functions of MOP, which often 
varies in the range [0.01, 1]. Arnold and Beyer [53] have also studied several other 
noise models and their influence on the performance of EAs. 

As explained earlier, the noise model in Eq. (6), which is used in many of the 
previous works, results in independent singular noisy values for the objective functions. 
To obtain interval values for noisy objectives, as it is assumed in this paper, we can 
draw several random values ^ from the noise model and use these values to compute a 
confidence interval, based on a specific confidence level y, for each objective function 
/;• and each solution x*: 

2 v K 

where K is the number of random values drawn from the noise model, and f and 
s(f) are respectively their mean and standard deviation. However, in practice, using 
such a method to generate interval values for the noisy objective functions imposes 
a significant computational overhead to the solution evaluation phase, especially for 
larger values of K. Moreover, this method can reduce the stochasticity of the interval 



values generated for the objective functions, as for example with a Gaussian noise 
model when K increases, the mean and standard deviation of the sampled random 
values tend to the corresponding parameters of the noise model. 

To have a somewhat similar randomness in the generated interval values as in the 
singular values obtained from Eq. (6), we draw two random values fm and t;s from a 
Gaussian noise model to compute a confidence interval for each objective function / ; 
and each solution x: 

(fj(Xi) + ^m ± Z1-yfj). (8) 

These two random values can be generated from two different Gaussian distributions. 
However, as it is explained in [31], it is more reasonable that the level of noise in fm 

and £j increase and decrease correspondingly. In this study we use similar Gaussian 
distributions for sampling these two values. 

5.2 WFG test problems 

Huband et al. [54] reviewed many of the benchmark MOPs proposed in the literature 
likeZDT [6], DTLZ [55] and OKA [56], and based on the analysis of these problems, 
they proposed a new set of MOPs called the walking fish group (WFG) problems. These 
MOPs have a diverse set of properties found in real-world problems and, therefore, can 
be a great challenge for any multi-objective optimization algorithm. Each objective 
function / , of an MOP in this benchmark is defined as 

min fj (z) = D • zm + Sj • hj {z1,..., zm-1), (9) 

where D and Sj are scaling factors and hj (•) is a shape function, meaning that it will 
determine the shape of the Pareto optimal front of an MOP (e.g. concave, convex, 
etc.) together with the shape functions in the definition of other objective functions 
of that MOP. z = (z1,..., zm) is an m -dimensional vector of parameters obtained by 
applying a number of transformation functions, like shifting, biasing or reduction, to 
the ^-dimensional input solution x e D. 

We have selected 5 MOPs of this benchmark for our experiments in this paper. The­
ses problems areWFG1, WFG2, WFG3, WFG7 andWFG9, and cover different shapes 
for the Pareto optimal front. WFG1 has a mixed convex-concave optimal front shape, 
WFG2 has a disconnected convex front, and WFG3 has a degenerated linear front. 
WFG7 and WFG9 problems have a concave Pareto optimal front. Besides different 
shapes, the objective functions of these MOPs have various properties like insepara­
bility, multi-modality and deception. We consider three objectives and 10 variables 
for all of the MOPs. Noise is introduced to the output of all three objective functions 
in each MOP using Eq. (8), resulting in a confidence interval for each solution in the 
search space. 

5.3 Experimental design 

In the experiments performed in this section, we study and compare two solution 
ranking methods when the noisy objective values are given as intervals. The first 



method is the proposed a-degree non-dominated sorting algorithm (Algorithm 1), 
hereafter referred to as degree ranking (DR), and tested with three different dominance 
degrees: a e {0.1, 0.5, 0.9}. As the second method, we adopt probabilistic ranking 
(PR) [19], based on dominance probability (Definition 2), which is often used as a 
reference solution ranking method in the studies on multi-objective optimization in 
noisy environments, and ranks each solution ** as follows: 

N N 1 

y 1 - r — i 
P{xk < xi) -\— > P{xk = xi) , (10) 

2 * ' 2 
k=1 k=1 

where 

P(x = y) = 1 — P(x -< y) — P(x >- y) 

represents the probability that neither x nor y dominate each other, and N is the 
population size. The last term in Eq. (10) is subtracted so that 

y N (N — 1) 
rankpRix/c) = . 

2 
k=1 

This ranking method defines a total ordering between the solutions of population, 
allowing to sort the solutions based on the ranks assigned by rankp^(-). 

To simplify dominance probability computation in multi-objective case, which 
involves multivariate integration, the objective functions are assumed to be statis­
tically independent [19,20], and therefore the dominance probability in Eq. (2) is 
approximated as: 

p(x < y) = \\ P(Uj < Vj), (11) 
7 = 1 

where Uj = fj(x) and Vj = fj(y) are the random variables representing the jth 
objective values returned for two solutions x and y. Moreover, when noise is modeled 
as a Gaussian distribution, Hughes [19] proposed an approximation of the univariate 
integration required in the computation of P(Uj < Vj) to further reduce the compu­
tational complexity of the overall solution ranking: 

1 1 / U,• — Vj \ 
P{Uj < Vj) = erf I 

2 2 \av J 2 + 2 ( ^ ) 2 / 

1 1 / Uj — Vj \ 
=» tanh I I, (12) 

2 2 \0.8avj2 + 2Q)2J 

where o\j and ay are the standard deviations of the random variables Uj = fj (x) and 
Vj = fj (y), respectively. When objective values are given as confidence intervals, 
the estimated expected values and half-widths are used as approximations for Uj and 



Vj and their standard deviations in the computation of dominance probability with 
Eq. (12). 

These ranking methods are used in MBN-EDA to rank and select a subset of solu­
tions for offspring generation with probabilistic modeling. A deterministic binary 
tournament selection with replacement strategy is employed to select 50% of the pop­
ulation solutions. 

For better comparison, we have also included a standard EMO algorithm based 
on NSGA-II [23] in the experimentation which uses simulated binary crossover [57] 
and polynomial mutation [58] for offspring generation and search space exploration. 
We refer to this algorithm simply as EA in contrast to MBN-EDA which will be 
indicated as EDA in the experimental results. Both of the algorithms use an elitist 
replacement strategy, a population of 50 solutions and stop after 300 generations. The 
initial population is generated randomly in both algorithms by uniform sampling from 
the variables domain. 

For each of the five MOPs tested in our experiments, we have studied three dif­
ferent levels of noise and confidence: σn e {0.01, 0.1, 1} and γ e {0.90, 0.95, 0.99}. 
Therefore, all together, there are 5 x 3 x 3 x 2 x 4 = 360 different possible combina­
tions for the experiments. For each combination, 10 independent runs are performed. 
To evaluate the results of experiments, we have used 5 different quality measures: 
hypervolume [28], inverted generational distance (IGD) [59], epsilon indicator [60], 
relative maximum spread [30] and Schott’s spacing [61]. In the evaluation process, the 
Pareto set approximated by each algorithm is used to obtain a noiseless Pareto front 
which is then used to compute any of these indicators. For this purpose the objective 
values (without the influence of the noise model) are computed for the solutions in 
the approximated Pareto sets, resulting in the corresponding noiseless Pareto fronts. 
Therefore, the noisy Pareto fronts approximated by the algorithms in the course of 
evolution might be (and usually are) better than the noiseless Pareto fronts, especially 
for higher levels of noise. 

Given a Pareto set approximation A, its hypervolume indicator value with respect 
to a set R of reference points in the objective space, denoted as h(A, R), is given as 

Ih(A, R) = I J H(f(x), R), (13) 

where H(a, B) indicates the (hyper-)volume between point a and the points of set 
B in the objective space. A higher value for this indicator implies a better Pareto set 
approximation. We use a single reference point, often called the nadir point, with a 
value of 100 for all objectives to compute this indicator. 

IGD indicator accounts for both the diversity of the approximated front as well as 
its convergence to the Pareto optimal front. Given a set of points F*, representing a 
well-distributed sampling of the Pareto optimal front of an MOP, the IGD value for a 
Pareto set approximation A is computed as: 

min d(r, / » ) 
^ VxeA 

r ^ reF* ) 
1(JDF*(A) = (14 

\F*\ 



where d(-, •) gives the Euclidean distance between the two points in objective space. A 
smaller value for this indicator means a better approximation. A sampling of 10, 000 
points is used for representing the Pareto optimal front of the MOPs when computing 
the values of this indicator. The description of the other three quality indicators is 
given in the supplementary Online Resource of the paper. 

5.4 Results 

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 show the mean and standard deviation of the 
hypervolume and IGD indicator values for the final Pareto solutions obtained with 
different combinations of the two algorithmic frameworks and the studied ranking 
methods, for the tested MOPs. The corresponding figures showing the average val­
ues of hypervolume, IGD, epsilon, relative maximum spread and Schott’s spacing 
indicators for the Pareto solutions obtained along the evolution path are given in the 
supplementary Online Resource of the paper. 

With the increase in the noise level, the change in the position of intervals with 
respect to the original noiseless values of the objective function will be higher, and 
also the length of intervals increases. Besides, increasing the confidence level results 
in wider intervals. Therefore, as the level of noise increases the value of objective 
functions are more distorted. Because of this, we focus the analysis of the results on 
the common patterns for the average behavior of the algorithms on different instances 
(with different levels of noise and confidence) of the tested problems. 

In the objective functions of WFG1 problem, the input variables are greatly biased, 
making an even exploration of the search space very difficult, especially in the presence 
of noise. According to the employed quality indicators, the solution ranking provided 
by DR method (with different degrees of dominance) allows to obtain better approxi­
mations of Pareto set on most of the problem instances. As the noise level increases, 
the quality of the Pareto sets obtained using each of the two ranking methods become 
closer. The increase in the noise level also blurs the differences in the performance of 
the algorithms using different degrees of dominance for DR method. Moreover, the 
increase in the confidence level has less influence on DR method when using a high 
dominance degree like α = 0.9. 

A closer inspection of the Pareto fronts obtained for WFG1 problem shows that 
the algorithms are not able to obtain a well covering approximation of the Pareto 
optimal front. This can also be seen by the values obtained for the relative maximum 
spread indicator (see the supplementary Online Resource). Actually, EA completely 
minimizes this indicator along the evolution path for smaller noise levels, as a result of 
the high bias in the objectives. However, the joint modeling adopted in EDA allows a 
better exploration of this problem’s search space, at least for lower noise levels, which 
is also reflected by the values obtained for hypervolume and IGD indicators. 

The results obtained for WFG2 problem (Tables 4, 5) also show that the Pareto 
sets approximated with DR method are superior to those obtained using PR method. 
When a higher degree of dominance is used for the DR method, the performance of 
the algorithms with respect to the different quality indicators are more sensitive to 
the increase in the length of the intervals, i.e. when increasing the level of noise or 



Table 2 Mean hypervolume values of the final Pareto fronts obtained for WFG1 problem with different levels of noise and confidence 

EA EDA 

Hypervolume 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

9.537E+05 

±1336 

9.538E+05 

±1503 

9.533E+05 

±1028 

9.539E+05 

±555 

9.538E+05 

±773 

9.538E+05 

±542 

9.539E+05 

±705 

9.539E+05 

±317 

9.54E+05 

±741 

DR(0.1) 

9.557E+05 

±485 

9.557E+05 

±534 

9.558E+05 

±750 

9.545E+05 

±885 

9.543E+05 

±823 

9.542E+05 

±404 

9.542E+05 

±459 

9.541E+05 

±454 

9.541E+05 

±508 

DR(0.5) 

9.558E+05 

±1112 

9.56E+05 

±704 

9.556E+05 

±612 

9.546E+05 

±691 

9.548E+05 

±826 

9.543E+05 

±459 

9.539E+05 

±404 

9.539E+05 

±407 

9.544E+05 

±1019 

DR(0.9) 

9.554E+05 

±941 

9.554E+05 

±665 

9.56E+05 

±1400 

9.541E+05 

±649 

9.553E+05 

±1239 

9.55E+05 

±934 

9.541E+05 

±585 

9.537E+05 

±205 

9.539E+05 

±550 

PR 

9.567E+05 

±6222 

9.545E+05 

±647 

9.54E+05 

±491 

9.542E+05 

±501 

9.543E+05 

±591 

9.541E+05 

±584 

9.542E+05 

±521 

9.538E+05 

±414 

9.541E+05 

±489 

DR(0.1) 

9.569E+05 

±4184 

9.578E+05 

±5778 

9.564E+05 

±4380 

9.541E+05 

±538 

9.544E+05 

±724 

9.544E+05 

±537 

9.541E+05 

±514 

9.54E+05 

±533 

9.539E+05 

±328 

DR(0.5) 

9.604E+05 

±6967 

9.583E+05 

±5494 

9.605E+05 

±6012 

9.541E+05 

±696 

9.544E+05 

±541 

9.557E+05 

±4464 

9.541E+05 

±478 

9.54E+05 

±331 

9.54E+05 

±495 

DR(0.9) 

9.561E+05 

±4345 

9.564E+05 

±4344 

9.577E+05 

±5366 

9.545E+05 

±490 

9.543E+05 

±841 

9.54E+05 

±414 

9.539E+05 

±315 

9.541E+05 

±717 

9.54E+05 

±812 



Table 3 Mean IGD values of the final Pareto fronts obtained for WFG1 problem with different levels of noise and confidence 

EA EDA 

IGD 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

2.761 

±0.14 

2.762 

±0.15 

2.805 

±0.12 

2.769 

±0.06 

2.772 

±0.07 

2.776 

±0.05 

2.757 

±0.08 

2.759 

±0.04 

2.746 

±0.07 

DR(0.1) 

2.556 

±0.06 

2.554 

±0.05 

2.537 

±0.08 

2.696 

±0.09 

2.7 

±0.10 

2.695 

±0.06 

2.728 

±0.05 

2.721 

±0.06 

2.734 

±0.05 

DR(0.5) 

2.555 

±0.11 

2.532 

±0.08 

2.544 

±0.07 

2.656 

±0.09 

2.645 

±0.10 

2.704 

±0.06 

2.761 

±0.05 

2.765 

±0.05 

2.682 

±0.12 

DR(0.9) 

2.572 

±0.10 

2.573 

±0.07 

2.525 

±0.16 

2.721 

±0.09 

2.613 

±0.14 

2.645 

±0.10 

2.739 

±0.06 

2.777 

±0.03 

2.756 

±0.05 

PR 

2.72 

±0.19 

2.72 

±0.07 

2.771 

±0.07 

2.752 

±0.06 

2.745 

±0.07 

2.763 

±0.07 

2.753 

±0.05 

2.787 

±0.04 

2.765 

±0.06 

DR(0.1) 

2.556 

±0.10 

2.576 

±0.16 

2.613 

±0.13 

2.737 

±0.06 

2.734 

±0.07 

2.713 

±0.06 

2.749 

±0.07 

2.76 

±0.06 

2.768 

±0.05 

DR(0.5) 

2.494 

±0.16 

2.51 

±0.14 

2.428 

±0.19 

2.754 

±0.09 

2.72 

±0.08 

2.697 

±0.11 

2.776 

±0.03 

2.78 

±0.03 

2.769 

±0.07 

DR(0.9) 

2.644 

±0.14 

2.615 

±0.11 

2.559 

±0.16 

2.706 

±0.06 

2.73 

±0.11 

2.761 

±0.06 

2.784 

±0.03 

2.748 

±0.08 

2.776 

±0.09 



Table 4 Mean hypervolume values of the final Pareto fronts obtained for WFG2 problem with different levels of noise and confidence 

EA EDA 

Hypervolume 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

9.726E+05 

±6096 

9.713E+05 

±5379 

9.703E+05 

±6919 

9.706E+05 

±7679 

9.698E+05 

±7395 

9.725E+05 

±6276 

9.673E+05 

±7505 

9.667E+05 

±10151 

9.647E+05 

±11084 

DR(0.1) 

9.77E+05 

±2035 

9.771E+05 

±2362 

9.771E+05 

±5242 

9.786E+05 

±3893 

9.76E+05 

±4198 

9.817E+05 

±3775 

9.71E+05 

±4764 

9.73E+05 

±4939 

9.733E+05 

±5837 

DR(0.5) 

9.788E+05 

±5061 

9.766E+05 

±2197 

9.767E+05 

±5584 

9.805E+05 

±6358 

9.79E+05 

±6325 

9.791E+05 

±3749 

9.698E+05 

±5033 

9.716E+05 

±6456 

9.713E+05 

±5028 

DR(0.9) 

9.792E+05 

±5044 

9.787E+05 

±4061 

9.771E+05 

±1919 

9.755E+05 

±1582 

9.76E+05 

±6571 

9.769E+05 

±2178 

9.726E+05 

±5479 

9.713E+05 

±3962 

9.717E+05 

±5617 

PR 

9.752E+05 

±5196 

9.732E+05 

±4468 

9.735E+05 

±5169 

9.709E+05 

±7983 

9.708E+05 

±7756 

9.716E+05 

±5136 

9.704E+05 

±8275 

9.702E+05 

±7664 

9.698E+05 

±7624 

DR(0.1) 

9.771E+05 

±3999 

9.789E+05 

±927 

9.783E+05 

±1669 

9.799E+05 

±4698 

9.787E+05 

±1524 

9.775E+05 

±3715 

9.731E+05 

±5626 

9.755E+05 

±2360 

9.748E+05 

±4837 

DR(0.5) 

9.771E+05 

±3288 

9.784E+05 

±1750 

9.798E+05 

±2325 

9.794E+05 

±2857 

9.783E+05 

±1720 

9.786E+05 

±1613 

9.744E+05 

±3638 

9.747E+05 

±5058 

9.764E+05 

±1510 

DR(0.9) 

9.802E+05 

±4071 

9.787E+05 

±1967 

9.789E+05 

±1352 

9.781E+05 

±2206 

9.774E+05 

±1708 

9.776E+05 

±1665 

9.704E+05 

±4770 

9.722E+05 

±5786 

9.727E+05 

±4034 



Table 5 Mean IGD values of the final Pareto fronts obtained for WFG2 problem with different levels of noise and confidence 

EA EDA 

IGD 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

1.314 

±0.32 

1.377 

±0.34 

1.341 

±0.36 

1.405 

±0.42 

1.358 

±0.36 

1.291 

±0.29 

1.561 

±0.39 

1.543 

±0.61 

1.578 

±0.68 

DR(0.1) 

1.067 

±0.10 

1.049 

±0.11 

1.126 

±0.17 

1.027 

±0.08 

1.084 

±0.14 

1.024 

±0.12 

1.272 

±0.22 

1.207 

±0.19 

1.239 

±0.25 

DR(0.5) 

1.118 

±0.10 

1.08 

±0.11 

1.122 

±0.15 

1.054 

±0.09 

1.077 

±0.10 

1.018 

±0.10 

1.273 

±0.22 

1.286 

±0.13 

1.226 

±0.24 

DR(0.9) 

1.047 

±0.11 

1.059 

±0.10 

1.098 

±0.12 

1.097 

±0.09 

1.096 

±0.24 

1.079 

±0.10 

1.249 

±0.21 

1.221 

±0.21 

1.181 

±0.21 

PR 

1.172 

±0.15 

1.141 

±0.23 

1.159 

±0.22 

1.286 

±0.39 

1.378 

±0.39 

1.265 

±0.23 

1.362 

±0.40 

1.35 

±0.43 

1.367 

±0.41 

DR(0.1) 

1.002 

±0.15 

0.8819 

±0.07 

0.9545 

±0.08 

0.9248 

±0.09 

0.8931 

±0.06 

0.9682 

±0.16 

1.183 

±0.27 

1.071 

±0.14 

1.125 

±0.19 

DR(0.5) 

1.001 

±0.14 

0.9531 

±0.07 

0.9067 

±0.04 

0.9341 

±0.06 

0.9195 

±0.06 

0.9453 

±0.04 

1.098 

±0.12 

1.116 

±0.19 

1.054 

±0.10 

DR(0.9) 

0.9254 

±0.09 

0.9233 

±0.09 

0.8941 

±0.10 

0.9241 

±0.10 

0.9516 

±0.08 

0.9508 

±0.08 

1.247 

±0.19 

1.183 

±0.30 

1.172 

±0.18 



Table 6 Mean hypervolume values of the final Pareto fronts obtained for WFG3 problem with different levels of noise and confidence 

EA EDA 

Hypervolume 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

9.74E+05 

±4689 

9.683E+05 

±5360 

9.673E+05 

±9163 

9.711E+05 

±7856 

9.666E+05 

±12485 

9.658E+05 

±14835 

9.717E+05 

±6030 

9.68E+05 

±8701 

9.673E+05 

±7144 

DR(0.1) 

9.826E+05 

±3846 

9.818E+05 

±2405 

9.79E+05 

±3007 

9.812E+05 

±1898 

9.816E+05 

±3101 

9.805E+05 

±2847 

9.802E+05 

±3141 

9.75E+05 

±6746 

9.754E+05 

±4342 

DR(0.5) 

9.812E+05 

±3554 

9.811E+05 

±4039 

9.813E+05 

±3068 

9.788E+05 

±2662 

9.817E+05 

±2567 

9.817E+05 

±2541 

9.744E+05 

±4287 

9.767E+05 

±4906 

9.737E+05 

±2878 

DR(0.9) 

9.804E+05 

±3125 

9.819E+05 

±2239 

9.802E+05 

±3623 

9.803E+05 

±2746 

9.8E+05 

±2622 

9.828E+05 

±2688 

9.758E+05 

±4906 

9.747E+05 

±4633 

9.743E+05 

±7510 

PR 

9.742E+05 

±6641 

9.709E+05 

±5220 

9.686E+05 

±9906 

9.728E+05 

±4481 

9.723E+05 

±8723 

9.736E+05 

±7060 

9.709E+05 

±5199 

9.713E+05 

±5905 

9.732E+05 

±4871 

DR(0.1) 

9.791E+05 

±3135 

9.786E+05 

±2545 

9.802E+05 

±3713 

9.818E+05 

±2236 

9.809E+05 

±3309 

9.822E+05 

±2628 

9.742E+05 

±4061 

9.774E+05 

±5480 

9.728E+05 

±5962 

DR(0.5) 

9.78E+05 

±2747 

9.795E+05 

±2658 

9.806E+05 

±4499 

9.818E+05 

±2581 

9.841E+05 

±2765 

9.806E+05 

±2212 

9.752E+05 

±2405 

9.754E+05 

±4647 

9.715E+05 

±4465 

DR(0.9) 

9.792E+05 

±5620 

9.79E+05 

±2556 

9.798E+05 

±3935 

9.788E+05 

±2386 

9.807E+05 

±3688 

9.816E+05 

±3692 

9.738E+05 

±6740 

9.751E+05 

±4594 

9.737E+05 

±3867 



Table 7 Mean IGD values of the final Pareto fronts obtained for WFG3 problem with different levels of noise and confidence 

EA EDA 

IGD 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

1.217 

±0.14 

1.408 

±0.34 

1.459 

±0.56 

1.339 

±0.35 

1.605 

±0.78 

1.746 

±0.89 

1.239 

±0.20 

1.412 

±0.51 

1.4 

±0.39 

DR(0.1) 

1.027 

±0.06 

1.039 

±0.06 

1.026 

±0.06 

1.046 

±0.04 

1.023 

±0.10 

1.022 

±0.04 

1.066 

±0.07 

1.164 

±0.18 

1.083 

±0.07 

DR(0.5) 

1.029 

±0.08 

1.057 

±0.07 

1.02 

±0.05 

1.099 

±0.06 

1.089 

±0.07 

1.059 

±0.08 

1.166 

±0.16 

1.142 

±0.13 

1.17 

±0.11 

DR(0.9) 

1.032 

±0.07 

1.074 

±0.06 

1.08 

±0.10 

1.039 

±0.07 

1.026 

±0.07 

1.012 

±0.06 

1.103 

±0.13 

1.153 

±0.09 

1.206 

±0.18 

PR 

1.202 

±0.30 

1.231 

±0.25 

1.504 

±0.61 

1.204 

±0.18 

1.263 

±0.36 

1.228 

±0.30 

1.181 

±0.25 

1.164 

±0.16 

1.131 

±0.17 

DR(0.1) 

1.005 

±0.07 

1.028 

±0.06 

0.9959 

±0.08 

0.9608 

±0.04 

1.007 

±0.06 

0.9706 

±0.04 

1.1 

±0.07 

1.051 

±0.05 

1.127 

±0.14 

DR(0.5) 

1.05 

±0.05 

1.017 

±0.08 

1.009 

±0.08 

0.9696 

±0.04 

0.962 

±0.04 

0.9816 

±0.04 

1.051 

±0.08 

1.102 

±0.12 

1.179 

±0.15 

DR(0.9) 

1.049 

±0.16 

0.9873 

±0.05 

1.033 

±0.07 

0.9911 

±0.02 

0.9956 

±0.07 

1 

±0.08 

1.131 

±0.15 

1.062 

±0.10 

1.075 

±0.12 



Table 8 Mean hypervolume values of the final Pareto fronts obtained for WFG7 problem with different levels of noise and confidence 

EA EDA 

Hypervolume 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

9.636E+05 

±15428 

9.641E+05 

±15292 

9.657E+05 

±18711 

9.732E+05 

±5138 

9.652E+05 

±9926 

9.626E+05 

±22110 

9.607E+05 

±13048 

9.656E+05 

±12450 

9.67E+05 

±15446 

DR(0.1) 

9.798E+05 

±4602 

9.792E+05 

±3844 

9.79E+05 

±4818 

9.822E+05 

±2563 

9.813E+05 

±3304 

9.8E+05 

±2771 

9.76E+05 

±6423 

9.793E+05 

±3969 

9.764E+05 

±4134 

DR(0.5) 

9.792E+05 

±5631 

9.783E+05 

±7057 

9.814E+05 

±3416 

9.825E+05 

±2295 

9.825E+05 

±4559 

9.812E+05 

±3439 

9.767E+05 

±6085 

9.744E+05 

±6211 

9.732E+05 

±6255 

DR(0.9) 

9.792E+05 

±3678 

9.788E+05 

±4661 

9.776E+05 

±4186 

9.774E+05 

±7348 

9.801E+05 

±4727 

9.793E+05 

±7210 

9.752E+05 

±5204 

9.758E+05 

±6726 

9.761E+05 

±7195 

PR 

9.717E+05 

±13703 

9.705E+05 

±11399 

9.7E+05 

±5074 

9.655E+05 

±10175 

9.711E+05 

±4542 

9.693E+05 

±8528 

9.681E+05 

±7863 

9.67E+05 

±11130 

9.687E+05 

±9159 

DR(0.1) 

9.765E+05 

±6829 

9.767E+05 

±5674 

9.777E+05 

±4949 

9.784E+05 

±4556 

9.787E+05 

±4043 

9.805E+05 

±3611 

9.725E+05 

±7561 

9.736E+05 

±3847 

9.712E+05 

±6473 

DR(0.5) 

9.744E+05 

±6392 

9.785E+05 

±6544 

9.758E+05 

±3820 

9.787E+05 

±4206 

9.795E+05 

±4872 

9.804E+05 

±2868 

9.736E+05 

±6038 

9.744E+05 

±4147 

9.726E+05 

±4400 

DR(0.9) 

9.785E+05 

±5045 

9.751E+05 

±5206 

9.776E+05 

±5862 

9.783E+05 

±4506 

9.786E+05 

±4436 

9.797E+05 

±3692 

9.724E+05 

±5855 

9.707E+05 

±7632 

9.725E+05 

±4589 



Table 9 Mean IGD values of the final Pareto fronts obtained for WFG7 problem with different levels of noise and confidence 

EA EDA 

IGD 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

1.665 

±0.83 

1.669 

±0.75 

1.706 

±0.88 

1.269 

±0.20 

1.61 

±0.43 

1.963 

±1.20 

1.76 

±0.67 

1.529 

±0.69 

1.526 

±0.70 

DR(0.1) 

1.001 

±0.11 

1.056 

±0.13 

0.9871 

±0.11 

0.9771 

±0.09 

0.9345 

±0.10 

0.9672 

±0.10 

1.144 

±0.13 

1.102 

±0.15 

1.09 

±0.14 

DR(0.5) 

1.043 

±0.17 

1.07 

±0.23 

1.004 

±0.08 

0.9505 

±0.09 

0.9779 

±0.10 

0.9256 

±0.12 

1.138 

±0.16 

1.169 

±0.18 

1.169 

±0.16 

DR(0.9) 

1.044 

±0.12 

1.055 

±0.10 

1.066 

±0.08 

1.055 

±0.25 

0.9985 

±0.13 

0.9956 

±0.13 

1.143 

±0.10 

1.156 

±0.22 

1.148 

±0.22 

PR 

1.274 

±0.64 

1.318 

±0.50 

1.219 

±0.24 

1.498 

±0.47 

1.204 

±0.20 

1.356 

±0.35 

1.356 

±0.34 

1.398 

±0.49 

1.267 

±0.34 

DR(0.1) 

1.075 

±0.14 

1.085 

±0.12 

1.024 

±0.11 

0.9425 

±0.09 

0.973 

±0.09 

0.915 

±0.05 

1.193 

±0.25 

1.12 

±0.12 

1.189 

±0.21 

DR(0.5) 

1.103 

±0.22 

1.002 

±0.12 

0.9848 

±0.11 

0.9286 

±0.07 

0.9673 

±0.10 

0.9986 

±0.11 

1.136 

±0.13 

1.116 

±0.14 

1.126 

±0.10 

DR(0.9) 

0.9745 

±0.14 

1.039 

±0.12 

1.006 

±0.15 

0.9758 

±0.15 

0.9522 

±0.10 

0.9638 

±0.12 

1.15 

±0.16 

1.169 

±0.17 

1.116 

±0.13 



Table 10 Mean hypervolume values of the final Pareto fronts obtained for WFG9 problem with different levels of noise and confidence 

EA EDA 

Hypervolume 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

9.728E+05 

±3711 

9.745E+05 

±4802 

9.724E+05 

±4195 

9.746E+05 

±5152 

9.732E+05 

±4368 

9.742E+05 

±4222 

9.738E+05 

±5035 

9.745E+05 

±8366 

9.738E+05 

±5003 

DR(0.1) 

9.804E+05 

±3605 

9.779E+05 

±3047 

9.781E+05 

±3109 

9.789E+05 

±4341 

9.785E+05 

±2574 

9.796E+05 

±2900 

9.751E+05 

±3059 

9.753E+05 

±3425 

9.731E+05 

±6386 

DR(0.5) 

9.781E+05 

±2578 

9.776E+05 

±2547 

9.792E+05 

±3144 

9.794E+05 

±2835 

9.788E+05 

±2985 

9.775E+05 

±3296 

9.777E+05 

±2749 

9.77E+05 

±4717 

9.758E+05 

±6772 

DR(0.9) 

9.78E+05 

±3524 

9.808E+05 

±3229 

9.789E+05 

±2658 

9.799E+05 

±3027 

9.781E+05 

±2259 

9.777E+05 

±2198 

9.75E+05 

±4684 

9.739E+05 

±2935 

9.775E+05 

±4432 

PR 

9.764E+05 

±4977 

9.742E+05 

±6516 

9.74E+05 

±6061 

9.738E+05 

±4811 

9.725E+05 

±5480 

9.708E+05 

±7236 

9.757E+05 

±3350 

9.734E+05 

±6417 

9.735E+05 

±4779 

DR(0.1) 

9.759E+05 

±3137 

9.803E+05 

±3071 

9.785E+05 

±2864 

9.805E+05 

±3052 

9.792E+05 

±3279 

9.787E+05 

±3313 

9.763E+05 

±3178 

9.772E+05 

±2835 

9.759E+05 

±4445 

DR(0.5) 

9.787E+05 

±3823 

9.783E+05 

±2552 

9.793E+05 

±1130 

9.812E+05 

±5180 

9.793E+05 

±2097 

9.79E+05 

±2771 

9.778E+05 

±3817 

9.755E+05 

±6227 

9.78E+05 

±3276 

DR(0.9) 

9.787E+05 

±2031 

9.783E+05 

±2133 

9.791E+05 

±3983 

9.795E+05 

±3735 

9.783E+05 

±2445 

9.785E+05 

±2505 

9.756E+05 

±5029 

9.766E+05 

±4090 

9.755E+05 

±5390 



Table 11 Mean IGD values of the final Pareto fronts obtained for WFG9 problem with different levels of noise and confidence 

EA EDA 

IGD 0.01 

0.1 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

0.90 

0.95 

0.99 

PR 

1.258 

±0.20 

1.333 

±0.23 

1.387 

±0.14 

1.28 

±0.19 

1.319 

±0.16 

1.319 

±0.18 

1.26 

±0.20 

1.326 

±0.24 

1.368 

±0.21 

DR(0.1) 

1.115 

±0.08 

1.166 

±0.09 

1.144 

±0.10 

1.146 

±0.11 

1.12 

±0.04 

1.045 

±0.14 

1.13 

±0.10 

1.18 

±0.09 

1.242 

±0.18 

DR(0.5) 

1.147 

±0.14 

1.175 

±0.07 

1.083 

±0.12 

1.095 

±0.10 

1.107 

±0.13 

1.155 

±0.08 

1.108 

±0.12 

1.142 

±0.18 

1.14 

±0.13 

DR(0.9) 

1.166 

±0.16 

1.06 

±0.11 

1.103 

±0.10 

1.055 

±0.05 

1.131 

±0.06 

1.116 

±0.06 

1.146 

±0.13 

1.189 

±0.14 

1.122 

±0.10 

PR 

1.086 

±0.20 

1.196 

±0.21 

1.191 

±0.20 

1.219 

±0.16 

1.147 

±0.14 

1.251 

±0.27 

1.062 

±0.12 

1.171 

±0.14 

1.08 

±0.11 

DR(0.1) 

1.044 

±0.06 

1.016 

±0.04 

1.06 

±0.11 

0.9553 

±0.08 

0.951 

±0.08 

1.007 

±0.08 

1.057 

±0.08 

1.022 

±0.07 

1.064 

±0.09 

DR(0.5) 

1.108 

±0.14 

1.056 

±0.07 

1.02 

±0.08 

0.9375 

±0.07 

0.9807 

±0.06 

0.9755 

±0.06 

1.019 

±0.07 

1.083 

±0.15 

1.036 

±0.09 

DR(0.9) 

1.028 

±0.05 

1.054 

±0.07 

1.025 

±0.10 

0.9802 

±0.08 

1.023 

±0.09 

0.9956 

±0.09 

1.021 

±0.10 

1.081 

±0.09 

1.102 

±0.12 



confidence. In the last objective of this problem, the variables are considered to be 
correlated and therefore, employing model learning to find out this relationships helps 
EDA to obtain better Pareto set approximations under different levels of noise and 
confidence. Considering the values obtained by hypervolume and IGD indicators on 
the one hand and relative maximum spread indicator (see the supplementary Online 
Resource) on the other hand, we can conclude that although the Pareto fronts approx­
imated by EA are better spread, but these fronts are farther from the Pareto optimal 
front than those obtained by EDA. 

Very similar results to those of the previous problem are obtained for WFG3 prob­
lem. The difference in the average performance of the algorithms using PR and DR 
methods are clearer on this problem, and it can be seen that the solution ranking 
provided by PR method completely misguides the algorithms during evolution for 
approaching the Pareto optimal set according to the quality indicators, even with 
small levels of noise and confidence (see Tables 6, 7). The DR method using smaller 
dominance degrees results in relatively better algorithm performance on different lev­
els of noise and confidence with respect to the quality indicators used. The indicators 
values also show that EA obtains relatively better results on WFG3 problem, though 
for larger noise levels the results obtained by EDA are comparable or better than those 
reached by EA. 

The objective functions of WFG7 problem are separable and unimodal, with bias in 
the optimum values for some of the variables. The results obtained with DR method on 
this problem outperform those of PR method with a relatively great margin, although 
the increase in the noise level reduces the effectiveness of this ranking method, espe­
cially when using it with EDA. Again, the Pareto fronts approximated with lower 
dominance degrees for DR method are better. However, it can be seen that when the 
confidence level increases the performance of the algorithms using a high level of 
dominance degree is less affected. In general, the search with EA results in relatively 
better Pareto front approximations comparing with the fronts obtained by EDA-based 
search according to the quality indicators values. Moreover, with the increase in the 
level of noise or confidence, which makes the problem harder, the results obtained by 
the two algorithmic frameworks become comparable. 

The objective functions of WFG9 problem in contrast to those of the previous 
problem are non-separable and multi-modal, with multi-modality being deceptive 
towards local optima for some of the objectives. As a result introducing noise to the 
objectives of this problem will make it very difficult to solve. The indicator values 
computed for the approximated Pareto fronts show that the proposed DR method out­
performs solution ranking based on dominance probability, though with the increase 
in the noise level the difference in the results obtained by the two methods gradually 
diminishes. 

According to the results (Tables 10, 11), lower dominance degrees like α = 0.1 
and α = 0.5 allow a better ranking of solutions in DR method. Moreover, on the 
contrary to the previous problem, when the confidence level is increased DR method 
with higher dominance degree (α = 0.9) is also greatly affected. As it is shown 
in the supplementary Online Resource, for this problem both EDA and EA based 
search with DR method are able to cover a high percentage of the Pareto optimal front 
(more than 80%). Comparing these two algorithmic frameworks, it is observed that 



the Pareto fronts approximated by EDA are comparable or better to those obtained by 
EA, depending on the quality indicator. This better performance can be explained by 
the ability of the proposed EDA to capture the relationships between variables of the 
problem, which is necessary for finding the solutions. 

5.5 Effect of population size 

In addition to the previous experimentations, to make sure that our findings generalize 
to larger population sizes we have studied the effect of population size on the per­
formance of the algorithms. For this purpose, different combinations of algorithmic 
frameworks and ranking methods are applied for optimization on a specific problem 
instance with different population sizes and the final noiseless Pareto fronts are com­
pared. The experiments are conducted using WFG1 problem with noise level an =0 .1 
and confidence level y = 0.95 while testing the algorithms with the following popu­
lation sizes: N ∈ {50, 100, 150, 200, 250, 300}. Figures 3 and 4 respectively show the 
hypervolume and IGD indicators values for final noiseless Pareto fronts approximated 
with different population sizes. 

As the results show, with larger population sizes better indicator values can be 
reached, although the difference is not significant. The distinction between the quality 
of the fronts approximated by DR and PR methods becomes clearer when the pop­
ulation size increases, showing that with DR method better results can be obtained 
in both algorithmic frameworks and with different values of the dominance degree. 
Indeed with EA, as the population size increases the difference in the quality of the 
fronts approximated with different values of dominance degree almost fade away while 
becoming considerably superior to the fronts approximated with PR method, accord­
ing to the quality indicators used. The results also show that the direct manipulation 
of solutions in EA-based search is more affected by the increase in population size 
comparing with the model learning in the EDA-based search. This can be explained 
by the fact that the model learning method employed in this algorithm (using regular-
ization techniques) is designed to be less sensible to the dimensionality of the training 
data. Furthermore, it can be seen that in this algorithmic framework strict condition 
for accepting solutions as non-dominated (i.e. when a = 0.9) in DR method results 
in better Pareto fronts as the population size increases. 

5.6 Discussion 

The values of the quality indicators for the Pareto sets obtained along the evolution 
path (see the supplementary Online Resource), show how the population of different 
algorithm versions evolve. In general, based on the change in the values of these 
indicators during evolution, we can see that the solution ranking provided by DR 
method guides the optimization in the correct direction through the search space of 
the tested MOPs, with some exceptions like WFG1 and WFG3 when a high level 
of noise exists. On the contrary, when PR method is used for ranking the solutions, 
the algorithm is misguided in the search space of many of the tested problems. In 
probabilistic dominance the probability that a solution dominates another solution is 



9.554 

9.552 

9.55 

9.548 

9.546 

9.544 

9.542 

9.54 

9.538 

X IU 

tf? m 
0 50 

x 10 
9.6 

9.59 

9.58 

9.57 

9.56 

9.55 

^ 

iff 

0 50 

x 10 
9.6 

9.59 

9.58 

9.57 

9.56 

9.55 

TJ 

0 50 

O E A - P R * 

j ^ t ^ 

,V " ^ ~ * 

* •,;j-».-#-*..-I....r> 
: V . ; » A,. V s * " • » - ' 5 ""•.'••;••, 

V-B--p--°--8-s--°-N 
" - •P. -° 

100 150 200 250 300 

Generations 

( a ) j v = 50 

/ 
i . - i - A - A " „'*"V,^ 

A- . * - * ' ' - • ' 

• 

A..A... . » " * • • * , ; ; • . A. . .* * A 
* - T - * > * : - ¥ . . T . . . . . » - T - - f -

"" 0 , - t t . . .„„ . 0 . . .<> . . -a-<>'* ' i '«" i«-4i 

100 150 200 250 300 

Generations 

( C ) JV = 150 

7*' 
V* 
* V — . . V . . . T . . V . . , - - - . , 

* A A. ..A 4 i:.*"'* :* : -;» 

o - « - - 0 " ' 4 > - - o - < » - o - « > - o . . . 0 . . . » . . . 0 

N»-8^ 
^o-*e ^ ©--o--?• ~ 3 - G : ° - • ° - - p 

100 150 200 250 300 

Generations 

( e ) JV = 250 

EA-DR(0.1)AEA-DR(0.5)TEA-DR(0.9) 

9.59 

9.58 

9.57 

9.56 

9.55 

9.54 

> 

>. A - * ^x—• A - A - , . ' * 

•w 

0 50 

x 10 
9.6 

9.59 

9.58 

9.57 

9-56 

9.55 

/ 

0 50 

x 10 
9.61 

9.6 

9.59 

9.58 

^-57 

9.56 

9.55 

^ 
• / 7 

° « - - a „ ..a. 
• - - e - - o - - » - . ; * ' - t ) ^ t ^ 

100 150 200 250 300 

Generations 

( b ) j v = 100 

^ A 

•r 

,* .* : :*"• y •.•-•;.:-*,,)#'»*,ijs* 

100 150 200 250 300 

Generations 

( d ) JV = 200 

IF- - • » * ' 

: * * 

b • » - » - » - » - a - . t , . . . . 0 . . . - o . . 

- • o - - o - H 3 . , _ _ e _ _ - - o - - o - e - « - - o - - o - - a 

0 50 

EDA-PR* EDA-DR(0.1) 

100 150 200 250 300 

Generations 

( f ) N = 300 

A EDA-DR(0.5) • EDA-DR(0.9) 
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ulation sizes when noise level is on =0 .1 and confidence level is y = 0.95 

computed based on the distribution of corresponding intervals of the two solutions. In 
a multi-objective scenario, when these probabilities are summed up in Eq. (10) and due 
to the complex combinations that the distributions might have, the ranks generated for 
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the solutions can be very close or even equal, increasing the possibility of discarding 
good solutions in the selection process. 

Moreover, the approximation used in Eq. (12) to compute probabilistic dominance 
because of the high computational complexity of the original formulation naturally 
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produces small probability values, which in turn can increase the previous effect (gen­
eration of similar ranks). It is worth mentioning that even computing the approximation 
of dominance probability requires considerably more time than deciding dominance 
between solutions using α-degree Pareto dominance. Furthermore, our experimental 
results show that since confidence level is not considered in probabilistic dominance, 
with the increase in confidence level the ranking provided based on dominance prob­
abilities is not able to correctly guide the search. 

When using DR method, the Pareto fronts approximated with smaller to medium 
values of dominance degree α are better on most of the tested problems with different 
levels of noise and confidence. On the one hand, smaller values of α allow higher 
degrees of overlapping between intervals, meaning that the solutions can dominate 
each other easier. With small values of α, according to Corollary 2 the ratio of domi­
nated solutions increases and therefore more solutions become comparable, resulting 
in a finer ordering of the solutions by the employed α-degree non-dominated sorting 
algorithm. This increase in the number of comparable solutions seems to compensate 
for the lack of strict decisions on the quality of the solutions. On the other hand, 
strict decisions about solution dominance allow only very good solutions to enter the 
α-degree non-dominated set, while causing many solutions to become incomparable. 
Based on the experimental results, with a combination of the previous two effects 
which is achieved when using medium values of dominance degree (e.g. α = 0.5), 
better Pareto set can be approximated on many of the tested MOPs and for different 
levels of noise and confidence. When the population size increases and more solu­
tions are available in the ranking step, the latter effect (strict decisions) becomes 
more usable, enhancing the elitism selection in α-degree non-dominated sorting 
algorithm. 

Similarly, as the confidence level of the intervals (i.e. the values of the objective 
functions) decreases, more and more solutions become dominated (Corollary 1), and 
thus the solutions will be ordered in a larger number of α-degree non-dominated sets 
during the first step of Algorithm 1, essentially leading to better solution ranking. 
Therefore, when DR method is used in the optimization, the Pareto sets approximated 
for lower confidence levels are usually better, according to the quality indicator values. 
Taking more strict decisions by using high dominance degrees (e.g. α = 0.9) when the 
confidence level increases, reduces the number of α-degree non-dominated sets found 
in the first step of Algorithm 1, and thus the ordering of the solutions will depend more 
on their crowding distance computed in the second step of α-degree non-dominated 
sorting algorithm. For some of the tested problems (e.g. WFG1 and WFG7), such 
an ordering with high α values seems to be less affected as the confidence level 
increases. 

Based on our analysis and experimental results obtained with different values of 
dominance degree, we can say that when working with low levels of noise and confi­
dence that result in smaller interval values and in small populations, smaller values of 
the α parameter can cause the algorithm to advance better in the noise-affected search 
space. However, with larger intervals as the values of objective functions and when 
larger population sizes are available, setting α to larger values can help to faster reach 
better solutions during the search. 



6 Conclusions 

In real-world multi-objective optimization, the value of objective functions may 
involve noise and thus do not correctly represent the quality of solutions. Population-
based EAs, which are one of the most successful methods in solving MOPs, have 
inherent abilities to deal with small levels of noise in objective values. However, with 
larger noise levels, especially when there are several conflicting objectives to be opti­
mized, specific considerations are needed to perform successful optimization. 

We considered noisy objective values given as intervals and proposed a-degree 
Pareto dominance to deal with this type of values for the objective functions. This 
relation allowed to determine the dominance between solutions even when there is a 
specific degree of overlapping between some of the interval values, which is controlled 
by parameter a. The similarity between this dominance relation and the conventional 
Pareto dominance allowed related terminology, like Pareto optimal set, to be easily 
defined. Assuming confidence intervals with a specific confidence level as the values 
of the noisy objective functions, we studied some of the properties of a-degree Pareto 
dominance. It was shown that the a-degree dominance relations defined between 
solutions are unaffected when the confidence level y or dominance degree a are 
reduced, and that such a reduction decreases the size of Pareto optimal set. 

Based on this relation, a-degree Pareto non-dominated sorting algorithm, an adap­
tation of the well-known non-dominated sorting algorithm in noisy domains with 
interval values, was proposed and integrated into a multi-objective EDA based on 
joint probabilistic modeling of variables and objectives to find the solutions of noisy 
MOPs. The algorithm was tested on a set of MOPs where noisy objective values are 
given as intervals, and its solution ranking and search space exploration were respec­
tively compared with a reference ranking method based on dominance probability and 
standard EA operators for continuous optimization. 

The analysis of the approximated Pareto sets with five different quality indicators 
based on the corresponding noiseless Pareto fronts showed that the proposed solution 
ranking method based on a-degree Pareto dominance relation allows the algorithms 
to achieve considerably better results comparing with the well-known probabilistic 
ranking method on the tested problems and for increasing levels of noise and confi­
dence. We discussed how the change in the dominance degree and confidence level 
changes comparability of the solutions using a-degree Pareto dominance relation and 
saw that small to medium degrees of dominance allow better ranking of the solutions 
on most of the tested instances. Moreover, depending on the specific properties of 
the MOPs, the quality indicator values showed that the joint probabilistic modeling 
of variables and objectives allowed MBN-EDA to find Pareto set approximations for 
some of the tested problems that are superior to those approximated by the standard 
multi-objective EA in different levels of noise. 

As future works, other forms of degree function deg, (•, •) can be studied for deter­
mining the overlapping between intervals by for example taking into account the 
distribution of the values in the intervals. Moreover, it would be worth considering 
the correlations between objectives and their noise values in the ranking procedure. A 
starting point for this line of research is to use the model learning similar to the one 
used in MBN-EDA. Dynamic adjustment of the dominance control parameter, a, is 



also an interesting future research. We also intend to apply the developed methodol­
ogy on a real-world problem. Specifically, we are considering the application of the 
proposed approach to the feature subset selection problem in machine learning and 
data mining tasks. The objectives of this problem are uncertain and can very naturally 
be represented as intervals. This would also require adapting the joint probabilistic 
modeling to domains with discrete variables and objective values given as intervals. 
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