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1. Introduction
In this paper we study discretization error estimates for the following Neumann boundary
control problem governed by a semilinear elliptic partial differential equation:

minF (y, u) := 1
2‖y − yd‖

2
L2(Ω) + ν

2‖u‖
2
L2(Γ) (1.1)

−∆y + d(x, y) = 0 in Ω
∂ny = u on Γ

(1.2)

u ∈ Uad := {u ∈ L2(Γ) : ua ≤ u ≤ ub a.e. on Γ}. (1.3)

In all what follows we denote the optimal control problem (1.1)-(1.3) by (P). The precise
conditions on all other given quantities in (P) are collected in the assumptions (A1)-(A4)
below.
We will discuss the full discretization of the optimal control problem combined with

a postprocessing step, i.e., the state and the adjoint state are discretized by linear finite
elements and the control by piecewise constant functions. Afterwards, approximations
of locally optimal controls of the continuous optimal control problem are constructed
which possess superconvergence properties. This concept was established by Meyer and
Rösch in [31] for linear-quadratic optimal control problems with distributed controls and
a convergence order of 2 in the L2(Ω)-norm was proven in convex domains. Using mesh
grading techniques Apel, Rösch and Winkler could prove in [3] the same convergence
order for non convex polygonal domains. In a recent contribution by Mateos and Rösch
[28] this approach was extended to linear quadratic Neumann boundary control prob-
lems and a convergence rate of min(2, 2− 1/p) in the L2(Γ)-norm was proven in convex
domains with some p satisfying 2 < p < 2ω/(2ω − π), where ω denotes the largest inte-
rior angle of the polygonal domain. Furthermore, for non convex domains a convergence
rate of 1/2 + π/ω was proven. This means that the convergence rate is lower than 3/2
in the non convex case and decreases if the largest inner angle of the domain increases.
Appropriately graded meshes in the neighborhood of the reentrant corners were used by
Apel, Pfefferer and Rösch in [1] in order to prove an error bound of ch3/2. This conver-
gence rate was improved to ch2| ln h|3/2 in a very recent contribution of Apel, Pfefferer
and Rösch [2] using a new finite element error estimate on the boundary. Note, that
only domains with interior angles larger than 2π/3 need meshes which are appropriately
graded to get this result. In the present work we combine the results derived in [2] with
techniques used in [4, 11] to prove optimal error estimates as discussed in [2] for the
linear case.
Before we summarize the structure of the paper, let us give an overview on relevant

literature concerning discretization of optimal control problems: we mention the contri-
butions by Falk [16], Geveci [17], Malanowski [27], Arada, Casas and Tröltzsch [4] and
Casas, Mateos and Tröltzsch [11] regarding the approximation by piecewise constant
functions. For the usage of piecewise linear controls we refer to Casas and Tröltzsch [12],
Meyer and Rösch [30], Rösch [33], Casas and Mateos [10] and the references therein.
Convergence results and error estimates for elliptic optimal control problems governed
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by semilinear equations are especially derived in Arada, Casas and Tröltzsch [4], Casas,
Mateos and Tröltzsch [11] and Casas and Mateos [10]. For the variational discretization
concept we refer to Hinze [20] in case of distributed control problems and to Casas and
Mateos [10], Mateos and Rösch [28], Hinze and Matthes [21] and Apel, Pfefferer and
Rösch [2] in case of Neumann boundary control problems. Using this concept in the
context of linear elliptic Neumann boundary control problems one can achieve a dis-
cretization error bound of ch2| ln h|3/2 on quasi-uniform meshes if the largest interior
angle is smaller the 2π/3. For larger interior angles one has to use appropriately graded
meshes to deduce this result, cf. [2]. In case of semilinear elliptic Neumann boundary
control problems a convergence order of about 3/2 is proven in [10] for this concept.
But one can use the finite element error estimates on the boundary of [2] to derive the
improved discretization error estimates as in the linear elliptic case.
The paper is organized as follows: In Section 2 we introduce suitable weighted Sobolev

space prescribing the regularity of solutions of elliptic boundary value problems. More-
over, we present first order necessary and second order sufficient optimality conditions
for a local optimal solution of problem (P). Section 3 concerns the discretization of prob-
lem (P) and the establishment of a known uniform convergence results for solutions of
the fully discretized problem to solutions of the continuous one. In Section 4 we elabo-
rate several auxiliary results that are necessary in order to prove the superconvergence
properties of the fully discrete counterpart of (P) in Section 5. Numerical experiments
in the last section illustrate the proven results of the paper.
In the sequel c denotes a generic constant which is always independent of the mesh

parameter h.

2. Optimality conditions and regularity results for problem (P)
Throughout this paper let Ω be a bounded, two dimensional polygonal domain with
Lipschitz boundary Γ andm corner points x(j), j = 1, . . . ,m, counting counter-clockwise.
In particular, Γj denotes the part of the boundary which connects the corners x(j) and
x(j+1) except that x(1) is the intersection of Γ̄m and Γ̄1. The angle between Γj−1 and
Γj is denoted by ωj with the obvious modification for ω1. Next, let us state some basic
assumptions on the data of problem (P), which we require in the sequel.

Assumption 2.1. (A1) The function yd ∈ C0,σ(Ω̄) is given for some σ > 0.

(A2) The regularization parameter ν > 0 and the bounds ua ≤ ub are fixed real numbers.

(A3) The function d = d(x, y) : Ω × R is measurable with respect to x ∈ Ω for all
fixed y ∈ R, and twice continuously differentiable with respect to y, for almost all
x ∈ Ω. Moreover, we require d(·, 0) ∈ L2(Ω), ∂d∂y (·, 0) ∈ C0,σ(Ω̄)with some σ >

0, ∂2d
∂y2 (·, 0) ∈ L∞(Ω) and

∂d

∂y
(x, y) ≥ 0 for a.a. x ∈ Ω and y ∈ R.
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The derivatives of d w.r.t. y up to order two are uniformly Lipschitz on bounded
sets, i.e. for all M > 0 there exists Ld,M > 0 such that d satisfies∥∥∥∥∥∂2d

∂y2 (·, y1)− ∂2d

∂y2 (·, y2)
∥∥∥∥∥
L∞(Ω)

≤ Ld,M |y1 − y2|

for all yi ∈ R with |yi| ≤M , i = 1, 2.

(A4) There is a subset EΩ ⊂ Ω of positive measure and a constant cΩ > 0 such that
∂d
∂y (x, y) ≥ cΩ in EΩ × R.

To shorten the notation we will abbreviate ∂d
∂y and ∂2d

∂y2 by dy and dyy, respectively.
Now let us begin with the study of the state equation. In general the regularity of the
solution of a semilinear elliptic boundary value problem in polygonal domains is limited
due to the appearance of corner singularities. If one uses classical Sobolev-Slobodetskij
spaces W s,p(Ω) to describe the regularity then this effect is reflected by the dependence
of the parameters s and p on the size of the interior angles of the domain, compare e.g.
[15] and [18]. Instead, we will use weighted Sobolev spaces which incorporate better the
singular behavior caused by the corners. The following exposition follows [2]. Let ΩRj

and ΩRj/2 be circular sectors which have the opening angle ωj and the radii Rj and
Rj/2, respectively. These sectors are centered at the corners x(j) of the domain. The
radii can be chosen arbitrarily with the only restriction that the circular sectors ΩRj

do not overlap. The sides of the circular sectors ΩRj which coincide locally with the
boundary Γ are denoted by Γ+

j (ϕj = ωj) and Γ−j (ϕj = 0) where rj and ϕj are the polar
coordinates located at the corner point x(j). Furthermore, we define Γ±j = Γ+

j ∪ Γ−j and
we set

Ω0 = Ω\
m⋃
j=1

ΩRj/2 and Γ0 = Γ ∩ Ω̄0.

Next, we introduce the weighted Sobolev spaces. Let ~β = (β1, . . . , βm)T be a real-valued
vector. We define for k ∈ N0 and p ∈ [1,∞] the weighted Sobolev spaces W k,p

~β
(Ω) as the

set of all functions on Ω with finite norm

‖v‖
Wk,p
~β

(Ω) = ‖v‖Wk,p(Ω0) +
m∑
j=1
‖v‖

Wk,p
βj

(ΩRj ),

where the Sobolev spaces W k,p(Ω) (= Hk(Ω) for p = 2) are defined as usual. By means
of standard multi-index notation the weighted parts are defined by

‖v‖
Wk,p
βj

(ΩRj ) =

 ∑
|α|≤k

‖rβjj D
αv‖pLp(ΩRj )

1/p

for 1 ≤ p <∞,

‖v‖
Wk,∞
βj

(ΩRj ) =
∑
|α|≤k

‖rβjj D
αv‖L∞(ΩRj ).

4



For k ≥ 1 the corresponding trace spaces are denoted by W k−1/p,p
~β

(Γ) and the norm is
given by

‖v‖
W
k−1/p,p
~β

(Γ) = inf{‖u‖
Wk,p
~β

(Ω) : u ∈W k,p
~β

(Ω), u|Γ\C = v},

where we denote with C the set of all corner points. Furthermore, we define the space
W k,p
~β

(Γ) for k ∈ N0 and p ∈ [1,∞] by the norm

‖v‖
Wk,p
~β

(Γ) = ‖v‖Wk,p(Γ0) +
m∑
j=1
‖v‖

Wk,p
βj

(Γ±j )

with

‖v‖
Wk,p
βj

(Γ±j ) =

 ∑
|α|≤k

(
‖rβjj ∂

α
t v‖

p

Lp(Γ+
j ) + ‖rβjj ∂

α
t v‖

p

Lp(Γ−j )

)1/p

if 1 ≤ p <∞,

‖v‖
Wk,∞
βj

(Γ±j ) =
∑
|α|≤k

(
‖rβjj ∂

α
t v‖L∞(Γ+

j ) + ‖rβjj ∂
α
t v‖L∞(Γ−j )

)
.

Note, that ∂tv denotes the tangential derivative of v. The semi-norms

| · |
Wk,p
~β

(Ω) and | · |
Wk,p
~β

(Γ)

are analogously defined to the classical Sobolev semi-norms.
As usual, we denote with Ck(Ω̄) the set of all functions on Ω with bounded and

uniformly continuous derivatives up to order k. The Hölder space Ck,σ(Ω̄) addition-
ally possesses bounded derivatives of order k which are Hölder continuous with Hölder
exponent σ ∈ (0, 1].
We proceed with studying regularity results concerning linear and semilinear elliptic

partial differential equations in classical and weighted Sobolev spaces.

Lemma 2.2. Let EΩ be a subset of Ω with |EΩ| > 0 and let m,M be a constants greater
than zero. Moreover, let α be a function in L∞(Ω) with α(x) ≥ 0 for a.a. x ∈ Ω,
α(x) ≥ m for a.a. x ∈ EΩ and ‖α‖L∞(Ω) ≤M . Then the problem

−∆φ+ αφ = f in Ω
∂nφ = g on Γ

(2.1)

admits a unique solution φ in

(i) H3/2(Ω) for f ∈ L2(Ω) and g ∈ L2(Γ).

(ii) W 2,2
~β

(Ω) for f ∈W 0,2
~β

(Ω) and g ∈W 1/2,2
~β

(Γ) where βj has to satisfy

1 > βj > max(0, 1− λj) or βj = 0 and 1− λj < 0 (2.2)
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with λj = π/ωj for j = 1, . . . ,m. Furthermore, the a priori estimate

‖φ‖
W 2,2
~β

(Ω) ≤ c
(
‖f‖

W 0,2
~β

(Ω) + ‖g‖
W

1/2,2
~β

(Γ)

)
is valid with a constant c which may depend on m and M but is independent of α.

Proof. (i) The existence of a unique solution φ ∈ H1(Ω) of (2.1) can be deduced from the
Lax-Milgram Theorem. The first assertion is then a consequence of [22] or [11, Lemma
2.2] since f − αφ belongs to L2(Ω).
(ii) The functional

F (v) =
∫
Ω

fv dx+
∫
Γ

gv ds

is continuous on H1(Ω) for arbitrary f ∈ W 0,2
~β

(Ω) and g ∈ W 1/2,2
~β

(Γ) with βj satisfy-
ing (2.2) for j = 1, . . . ,m, cf. [29, Lemma 6.3.1]. Thus, the existence of a unique solution
φ ∈ H1(Ω) of (2.1) is again given by the Lax-Milgram Theorem. Furthermore, there
holds, independent of α,

‖f + (1− α)φ‖
W 0,2
~β

(Ω) ≤ ‖f‖W 0,2
~β

(Ω) + c‖φ‖L2(Ω) ≤ ‖f‖W 0,2
~β

(Ω) + c‖φ‖H1(Ω)

≤ c
(
‖f‖

W 0,2
~β

(Ω) + ‖g‖
W

1/2,2
~β

(Γ)

)
.

Combining this with [2, Lemma 2.4] yields the second assertion.

Lemma 2.3. Let the Assumptions (A3)-(A4) be satisfied. Then the problem

−∆φ+ d(x, φ) = f in Ω
∂nφ = g on Γ

has a unique solution φ which belongs to

(i) H3/2(Ω) for f ∈ L2(Ω) and g ∈ L2(Γ).

(ii) W 2,2
~β

(Ω) for f ∈W 0,2
~β

(Ω) and g ∈W 1/2,2
~β

(Γ) with βj satisfying (2.2).

Proof. (i) Due to the Assumptions (A3)-(A4), it is classical to show the existence of a
unique solution φ ∈ H1(Ω) ∩ C0(Ω̄) for right hand sides f ∈ L2(Ω) and g ∈ L2(Γ), see
e.g. [7]. We deduce by Assumption (A3) that f − d(·, φ) + φ belongs to L2(Ω). The
assertion follows now from Lemma 2.2 (i) with α ≡ 1.
(ii) First, we observe that there exist r, t > 1 such that

W 0,2
~β

(Ω) ↪→ Lr(Ω) and W
1/2,2
~β

(Γ) ↪→ Lt(Γ)

provided that βj satisfies (2.2) for j = 1, . . . ,m, cf. [35]. Thus the existence of a unique
solution φ ∈ H1(Ω) ∩ C0(Ω̄) is again given by [7]. Since H1(Ω) ↪→ L2(Ω) ↪→ W 0,2

~β
(Ω)

for βj satisfying (2.2) we obtain f − d(·, φ) + φ ∈ W 0,2
~β

(Ω) from (A3). According to
Lemma 2.2 (ii) we can conclude the stated regularity if we set α ≡ 1.
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Based on the last lemma we can introduce the control-to-state operator

G : L2(Γ)→ H3/2(Ω), G(u) = y, (2.3)

that assigns to every control u the unique solution y of the state equation (1.2). By this
we can reformulate problem (P) and we obtain its reduced formulation

min
u∈Uad

J(u) := F (G(u), u) = 1
2‖G(u)− yd‖2L2(Ω) + ν

2‖u‖
2
L2(Γ).

To indicate the dependence of the state y on the control u we will also write y(u) for G(u)
in the sequel. Note that an extension of the control-to-state operator to the previously
defined weighted Sobolev spaces is not necessary for the formulation of classical optimal-
ity conditions for problem (P). But first, let us discuss the differentiability properties of
the control-to-state mapping.

Theorem 2.4. Let the Assumptions (A3)-(A4) be satisfied. Then the mapping G :
L2(Γ) → H3/2(Ω), defined by (2.3) is of class C2. Moreover, for all u, v ∈ L2(Γ),
yv = G′(u)v is defined as the solution of

−∆yv + dy(x, y)yv = 0 in Ω
∂nyv = v on Γ

Furthermore, for every v1, v2 ∈ L2(Γ), yv1,v2 = G′′(u)[v1, v2] is the solution of

−∆yv1,v2 + dy(x, y)yv1,v2 = −dyy(x, y)yv1yv2 in Ω
∂nyv1,v2 = 0 on Γ,

where yvi = G′(u)vi, i = 1, 2.

The proof of this theorem is based on the implicit function theorem. It can be found
in [13, Theorem 3.1]. We also refer to [8], [11] and [36]. The next theorem is devoted to
the first order optimality conditions and regularity results for locally optimal solutions
of problem (P).

Theorem 2.5. Let Assumption 2.1 be fulfilled. Then problem (P) admits at least one
solution in Uad. For every (local) solution ū ∈ Uad of problem (P) there exists a unique
optimal state ȳ ∈ H3/2(Ω) and optimal adjoint state p̄ ∈ H3/2(Ω) such that

−∆ȳ + d(x, ȳ) = 0 in Ω
∂nȳ = ū on Γ

(2.4)

−∆p̄+ dy(x, ȳ)p̄ = ȳ − yd in Ω
∂np̄ = 0 on Γ

(2.5)

J ′(ū)(u− ū) = (p̄+ νū , u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad. (2.6)

Moreover, let βj satisfy (2.2) for j = 1, . . . ,m. Then there holds for ε < min(1,minj(1−
βj)) that ȳ, p̄ ∈W 2,2

~β
(Ω) ∩ C0,ε(Ω̄), p̄|Γ ∈ H1(Γ) ∩ C0,ε(Γ) and ū ∈ H1(Γ) ∩ C0,ε(Γ).

7



Proof. Due to the structure the reduced cost functional of problem (1.1)-(1.3) is of class
C2 from L2(Γ) to R, cf. [13, Theorem 3.2 and Remark 3.3]. The convexity of the cost
functional with respect to the control u implies the existence of at least one solution of
problem (P) in Uad under Assumption 2.1, which can be shown by standard arguments,
see e.g. [36, Section 4.4.2]. The first order optimality conditions (2.4)-(2.6) are based on
Theorem 2.4 and can also be derived by standard arguments, see e.g. [36, Section 4.6]. It
remains to prove the regularity assertion. By means of Lemma 2.3 (i) we get ȳ ∈ H3/2(Ω)
for every (local) solution ū ∈ Uad ⊂ L2(Γ). Since ȳ belongs to H3/2(Ω) ↪→ L∞(Ω) and
yd to C0,σ(Ω̄) ↪→ L2(Ω) we can conclude with Assumption 2.1 and Lemma 2.2 (i) that
the adjoint state p̄ is an element of H3/2(Ω). Using Lemma 2.2 (ii) we even obtain that
p̄ belongs to W 2,2

~β
(Ω) if ~β satisfies (2.2). According to [2, Lemma 2.1] the embedding

W 2,2
~β

(Ω) ↪→W 2,q(Ω) (2.7)

is valid for q < min(2,minj(2/(βj + 1))). Since λj = π/ωj > 1/2, we can conclude, that
there is a βj such that 1/2 > βj > 1−λj , which allows the choice q = 4/3 in (2.7). Thus,
Theorem 4.11 of [32] implies p̄ ∈ H1(Γ). Moreover, it is well known that the variational
inequality (2.6) is equivalent to the projection formula

ū = Π[ua,ub]

(
−1
ν
p̄

)
for a.a. x ∈ Γ. (2.8)

with Π[ua,ub]f(x) := max(ua,min(ub, f(x))). Hence, the local optimal control ū belongs
to H1(Γ), cf. [24, Theorem A.1]. Furthermore, there are the embeddings H1(Γ) ↪→
H1/2(Γ) ↪→ W

1/2,2
~β

(Γ) for βj ≥ 0. Thus, we can conclude y ∈ W 2,2
~β

(Ω) for ~β satisfy-
ing (2.2) by means of Lemma 2.3 (ii). Finally, the embedding (2.7) and the Sobolev
inequality imply ȳ, p̄ ∈ C0,ε(Ω̄) and ū ∈ C0,ε(Γ) if ε < min(1,minj(1− βj)).

Actually, the proof of Theorem 2.5 requires only yd ∈ L2(Ω). Due to the additional
assumption yd ∈ C0,σ(Ω̄) the regularity of the adjoint state p̄ can be increased. This
fact is essential for improved finite element error estimates on the boundary and for the
main result of this paper.

Theorem 2.6. Let Assumption 2.1 be satisfied. Furthermore, let βj and γj satisfy the
conditions

1/2 > βj > max(0, 3/4− λj/2) or βj = 0 and 3/4− λj/2 < 0,
2 > γj > max(0, 2− λj) or γj = 0 and 2− λj < 0 (2.9)

with λj = π/ωj for j = 1, . . . ,m. Then the adjoint state p̄ satisfying the adjoint equation
(2.5) belongs to W 2,∞

~γ (Ω) and its restriction to the boundary p̄|Γ to W 2,2
2~β

(Γ) ↪→W 1,∞
~β

(Γ).

Proof. According to Theorem 2.5 there is a ε > 0 such that ȳ and p̄ belong to C0,ε(Ω̄)
and hence ȳ − yd + (1− dy(·, ȳ))p̄ either having regard to Assumption (A3). Therefore,
Lemma 2.6 of [2] implies p̄ ∈ W 2∞

~γ (Ω) and p̄|Γ ∈ W 2∞
~γ (Γ) if ~γ satisfies (2.9). The

stated regularity on the boundary is then a consequence of the Sobolev inequality and
embeddings in weighted Sobolev spaces, cf. [2, Corollary 4.2].
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For the statement of second order sufficient optimality conditions we will count on so
called strongly active sets. We start with the definition of the τ -critical cone associated
to a control ū:

Cτ (ū) := {v ∈ L2(Γ) : v satisfies (2.11)}, (2.10)

where

v(x)


≥ 0, if ū(x) = ua

≤ 0, if ū(x) = ub

= 0, if |p̄(x) + νū(x)| > τ.

(2.11)

Furthermore, straightforward computations using Theorem 2.4 yield the following well
known formulation of the second derivative of the reduced cost functional J(u):

J ′′(u)[v1, v2] =
∫
Ω

yv1yv2 − p(y(u))dyy(x, y(u))yv1yv2 dx+
∫
Γ

νv1v2 ds

with p(y(u)) being the solution of (2.5) with ȳ replaced by y(u). Now, we are in the
position to formulate second order sufficient optimality conditions.

Theorem 2.7. Let Assumption 2.1 be satisfied. Moreover, let ū ∈ Uad be a control
satisfying the first order optimality conditions given in Theorem 2.5. Further, it is
assumed that there are two constants τ > 0 and δ > 0 such that

J ′′(ū)[v, v] ≥ δ‖v‖2L2(Γ) (2.12)

for all v ∈ Cτ (ū). Then, there exist β > 0 and % > 0 such that

J(u) ≥ J(ū) + β‖u− ū‖2L2(Γ)

is satisfied for every u ∈ Uad with ‖u− ū‖L2(Γ) ≤ %.

Proof. For details regarding the proof of the theorem we refer to e.g. [13, Corollary 3.6],
see also [6], [8], [36, Chapter 4.10], and the references therein. Note, that we do not
have to deal with the two-norm discrepancy due to the special structure of the optimal
control problem, cf. the general setting in [13, Section 3].

3. Discretization and fully discrete approximation of (P)
Here, we define a finite element based approximation of the optimal control problem (P).
To this end, we introduce a family of graded triangulations Th of Ω in the sense of Ciarlet
[14], where h denotes the global mesh parameter, which is assumed to be less than 1.
Note, that there is a segmentation Eh of the boundary Γ induced by the triangulation
Th. The vector ~µ ∈ Rm summarizes the grading parameters µj ∈ (0, 1], j = 1, . . . ,m,
regarding the corner points x(j). The distances of the triangle T ∈ Th and edge E ∈ Eh
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to the corner x(j) are defined by rT,j := infx∈T |x − x(j)| and rE,j := infx∈E |x − x(j)|,
respectively. We assume that the mesh size hT of a triangle T ∈ Th satisfies

c1h
1/µj ≤ hT ≤ c2h

1/µj for rT,j = 0,

c1hr
1−µj
T,j ≤ hT ≤ c2hr

1−µj
T,j for 0 < rT,j ≤ Rj ,

c1h ≤ hT ≤ c2h for rT,j > Rj

(3.1)

for j = 1, . . . ,m with the radii Rj that has been introduced in the beginning of Section
2. As a consequence there holds for the mesh size hE of an element E ∈ Eh being an
edge of the triangle T ∈ Th

hE ∼ hT ∀E ⊂ T̄ .

Furthermore, we introduce for j = 1, . . . ,m the sub-triangulations Eh,j of Eh satisfying⋃
E∈Eh,j Ē ⊂ Γ±j and E ∩ Γ±j 6= E for all E /∈ Eh,j . We define Eh,0 = Eh\

⋃m
j=1 Eh,j .

Associated with this triangulation we set

Vh :=
{
yh ∈ C0(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th

}
Uh := {uh ∈ L∞(Γ) : uh|E ∈ P0(E) ∀E ∈ Eh}

Uad,h := Uh ∩ Uad,

where P1(T ) and P0(E) denote the spaces of all polynomials of degree less than or equal
1 on T or 0 on E, respectively. Next, we introduce the discrete counterpart to the
control-to-state operator G in (2.3). For each u ∈ L2(Γ), we denote by yh(u) = Gh(u)
the unique element of Vh that satisfies

a(yh(u), vh) +
∫
Ω

d(x, yh(u))vh dx =
∫
Γ

uvh ds ∀vh ∈ Vh (3.2)

with the bilinear form

a : H1(Ω)×H1(Ω)→ R, a(y, v) =
∫
Ω

∇y · ∇v dx.

The existence and uniqueness of a solution of (3.2) can be deduced in a standard way
using the monotonicity of d. Then the fully discretized version (Ph) of the optimal
control problem (P) reads as follows

min
uh∈Uad,h

Jh(uh) := 1
2‖Gh(uh)− yd‖2L2(Ω) + ν

2‖uh‖
2
L2(Γ).

Since the cost functional Jh is continuous and the admissible set compact, the existence
of at least one solution of problem (Ph) is given. The first order optimality conditions
can be written by

10



Theorem 3.1. Let Assumption 2.1 be satisfied. Furthermore, let ūh ∈ Uad,h be a local
optimal solution of (Ph). Then there exist a discrete optimal state ȳh ∈ Vh and a discrete
optimal adjoint state p̄h ∈ Vh such that

a(ȳh, vh) +
∫
Ω

d(x, ȳh)vh dx =
∫
Γ

ūhvh ds ∀vh ∈ Vh, (3.3)

a(p̄h, vh) +
∫
Ω

dy(x, ȳh)p̄hvh dx =
∫
Ω

(ȳh − yd)vh dx ∀vh ∈ Vh, (3.4)

J ′h(ūh)(uh − ūh) = (p̄h + νūh , uh − ūh)L2(Γ) ≥ 0 ∀uh ∈ Uad,h. (3.5)

For the sake of completeness the second derivative of the cost functional of the fully
discretized problem (Ph) can be formulated by:

J ′′h(uh)[v1, v2] =
∫
Ω

yv1
h y

v2
h − ph(yh(uh))dyy(x, yh(uh))yv1

h y
v2
h dx+

∫
Γ

νv1v2 ds,

where ph(yh(uh)) is the solution of the adjoint equation (3.4) w.r.t. yh(uh) and yvih , i =
1, 2 is the solution of the linearized discrete state equation with respect to vi ∈ L2(Γ),
i.e.,

a(yvih , vh) +
∫
Ω

dy(x, yh(uh))yvih vh dx =
∫
Γ

vivh ds ∀vh ∈ Vh. (3.6)

For the purpose of a compact notation let us set ~λ = (λ1, . . . , λm) = (π/ω1, . . . , π/ωm)
and ~a = (a, . . . , a) ∈ Rm for any a ∈ R, e.g. ~1 = (1, . . . , 1) ∈ Rm. Furthermore, all in-
equalities involving vectorial parameters must be understood component-by-component.
The following lemma is related to finite element error estimates for linear elliptic PDEs
on quasi-uniform and graded meshes that will be useful in the sequel.

Lemma 3.2. Let φ be the solution of (2.1) and φh ∈ Vh be the solution of

a(φh, vh) +
∫
Ω

αφhvh dx =
∫
Ω

fvh dx+
∫
Γ

gvh ds ∀vh ∈ Vh

with α being the function introduced in Lemma 2.2. Then the following assertions hold:

(i) Let ~µ < ~λ, f ∈W 0,2
~1−~µ(Ω) and g ∈W 1/2,2

~1−~µ (Γ). Then the error estimates

‖φ− φh‖L2(Ω) + h‖φ− φh‖H1(Ω) ≤ ch2(‖f‖
W 0,2
~1−~µ

(Ω) + ‖g‖
W

1/2,2
~1−~µ

(Γ)) (3.7)

hold independent of α.

(ii) Let σ ∈ (0, 1] and M ≥ 0 be given and let α additionally belong to C0,σ(Ω̄) with
‖α‖C0,σ(Ω̄) ≤ M . Moreover, let f ∈ C0,σ(Ω̄) and g ≡ 0. Then the finite element
error on the boundary admits independently of α the estimate

‖φ− φh‖L2(Γ) ≤ ch2| ln h|3/2‖f‖C0,σ(Ω̄) (3.8)

provided that the mesh grading parameters satisfy ~1/4 < ~µ < ~1/4 + ~λ/2.
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Proof. For the proof of (i) and (ii) we refer to [1, Lemma 4.1] and [2, Theorem 3.2],
respectively. In both papers α ≡ 1 is assumed, but it can be extended to the more
general case in a natural way.

Before we are in the position to deal with the superconvergence properties of the fully
discrete optimal control problem (Ph), we have to ensure that every local minimum ū
of (P) can be approximated by a local minimum of (Ph) provided that ū satisfies the
second order sufficient optimality conditions. But first we need to determine the order
of convergence of the solution of the discrete state equation (3.2) to the solution of
the continuous state equation (1.2). An analogous result is of course needed for the
adjoint equation. Forthcoming, we will denote with p(y) and ph(y) the solution of (2.5)
and (3.4) with ȳ and ȳh replaced by y ∈ L∞(Ω), respectively. Note, that y(u) = G(u)
and yh(u) = Gh(u).

Theorem 3.3. Let Assumption 2.1 be satisfied. Then there holds:

(i) For ~µ < ~λ and u ∈W 1/2,2
~1−~µ (Γ) the discretization error estimates

‖y(u)− yh(u)‖L2(Ω) + h‖y(u)− yh(u)‖H1(Ω) ≤ ch2

‖p(y(u))− ph(y(u))‖L2(Ω) + h‖p(y(u))− ph(y(u))‖H1(Ω) ≤ ch2

are valid.

(ii) For u ∈ L2(Γ) there is a ε > 0 arbitrarily small such that

‖y(u)− yh(u)‖L∞(Ω) + ‖p(y(u))− ph(y(u))‖L∞(Ω) ≤ ch1/2−ε. (3.9)

(iii) For every u1, u2 ∈ L2(Γ) and y1, y2 ∈ L∞(Ω) there holds

‖y(u1)− y(u2)‖H1(Ω) + ‖yh(u1)− yh(u2)‖H1(Ω) ≤ c‖u1 − u2‖L2(Γ),

‖p(y1)− p(y2)‖H1(Ω) + ‖ph(y1)− ph(y2)‖H1(Ω) ≤ c‖y1 − y2‖L2(Ω).

(iv) Moreover, if uh ⇀ u weakly in L2(Γ), then yh(uh) → y(u) and ph(yh(uh)) →
p(y(u)) strongly in C0(Ω̄).

Proof. We will prove the theorem for the state. The corresponding proof for the adjoint
state can either be done analogously using the estimates for the states where required
or is simply a consequence of Lemma 3.2.
(i) Due to Assumption (A3) a generalization of Cea’s Lemma to semilinear elliptic

partial differential equations is available, cf. [9, Lemma 2, Theorem 2]. In particular we
have

‖y(u)− yh(u)‖H1(Ω) ≤ c inf
vh∈Vh

‖y − vh‖H1(Ω). (3.10)

By means of Lemma 2.3 (ii) we derive analogously to [1, Lemma 4.1]

‖y(u)− yh(u)‖H1(Ω) ≤ ch‖y‖W 2,2
~1−~µ

(Ω) ≤ ch
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for mesh grading parameters ~µ < ~λ. Following the lines of [9, Lemma 4] and [1, Lemma
4.1] one can double the order of convergence in the L2(Ω)-norm.
(ii) For a control u ∈ L2(Γ) we can only assure that the state belongs to the space

H3/2(Ω), cf. Lemma 2.3 (i). We proceed with

‖y(u)− yh(u)‖L∞(Ω) ≤ ‖y(u)− Ihy(u)‖L∞(Ω) + ‖Ihy(u)− yh(u)‖L∞(Ω),

where Ih denotes the classical nodal interpolation operator. Note that Ihy(u) is well
defined due to the embedding H3/2(Ω) ↪→ C0(Ω̄). Using standard techniques of interpo-
lation error estimates, the first term can be estimated by

‖y(u)− Ihy(u)‖L∞(Ω) ≤ ch1/2|y(u)|H3/2(Ω).

Next, we assume that |Ihy(u)−yh(u)| admits its maximum in an element T ∗. By means
of an inverse estimate, the embedding H1(Ω) ↪→ Lp(Ω) (p < ∞), (3.10) and standard
interpolation error estimates we derive

‖Ihy(u)− yh(u)‖L∞(Ω) = ‖Ihy(u)− yh(u)‖L∞(T ∗) ≤ ch
−2/p
T ∗ ‖Ihy(u)− yh(u)‖Lp(T ∗)

≤ c
(
h
−2/p
T ∗ ‖y(u)− yh(u)‖H1(Ω) + ‖y(u)− Ihy(u)‖L∞(Ω)

)
≤ c

(
h
−2/p
T ∗ ‖y(u)− Ihy(u)‖H1(Ω) + ‖y(u)− Ihy(u)‖L∞(Ω)

)
≤ c(h1/2h

−2/p
T ∗ + h1/2)|y(u)|H3/2(Ω)

≤ ch
1
2−

2
pµ̄ |y(u)|H3/2(Ω)

with µ̄ := minj{µj}. The last estimate is due to the definition (3.1) of the mesh size of
a triangle T . Hence, the assertion follows since p can be chosen arbitrarily large.
(iii) The estimates are obtained in a standard way using the Assumptions (A3) and

(A4), see also [4].
(iv) The proof of the uniform convergence of the state and the adjoint state can be

found in [9].

Now, we can prove the convergence of the discretizations. For the proof we refer to
Theorem 4.4 and Theorem 4.5 in [11] having regard to the results of Theorem 2.5 and
Theorem 3.3.

Theorem 3.4. Let Assumption 2.1 be satisfied. Moreover, let ū be a local minimum of
problem (P) satisfying the second order sufficient optimality conditions given in Theo-
rem 2.7. Then there exist ε > 0 and h0 > 0 such that (Ph) has a local minimum ūh
in the L∞(Γ)-ball around ū with radius ε for every h < h0. Moreover, the following
convergences hold true

lim
h→0

Jh(ūh) = J(ū) and lim
h→0
‖ū− ūh‖L∞(Γ) = 0.
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4. Auxiliary estimates for the postprocessing approach
In the sequel we denote by ū a fixed local solution of (P) satisfying the second order
sufficient optimality conditions and by ūh the associated local solution of (Ph) converging
uniformly to ū. Moreover, the corresponding states and adjoint states are denoted by
ȳ = y(ū), p̄ = p(ȳ) and ȳh = yh(ūh), p̄h = ph(ȳh), respectively. In our error analysis we
will need a discrete control uh, which is admissible for (Ph), close to the optimal control
ū and the direction ūh − uh should belong to the critical cone Cτ (ū), see (2.10), such
that the second order sufficient condition can be applied. An intuitive choice is given by
uh = Rhū, where Rh : C0(Γ)→ Uh denotes the 0-interpolator onto Uh defined by:

(Rhf)(x) = f(SE), x ∈ E, E ∈ Eh

and SE is the midpoint of the edge E. The element Rhū is indeed admissible for (Ph)
and close to ū but ūh−Rhū does not necessarily belong to the critical cone. To overcome
this difficulty, we modify the interpolator Rh. Due to the regularity of the adjoint state,
see Theorem 2.5 and Theorem 2.6, and the fact that the optimal control is given by the
projection formula (2.8), we can distinguish between active points (ū(x) ∈ {ua, ub}) and
inactive points (ū(x) ∈ (ua, ub)). Based on this we can classify the edges E ∈ Eh in the
following two sets K1 and K2 as in Section 2 of [34]:

K1 := {E ∈ Eh : E contains active and inactive points} ,
K2 := {E ∈ Eh : E contains only active points or only inactive points} .

The modified interpolation operator is now defined by

(Rūhf)(x) :=
{

(Rhf)(x), for x ∈ E, E ∈ K2
f(xK), for x ∈ E, E ∈ K1

(4.1)

with xK ∈ E such that either ū(xK) = ua or ū(xK) = ub. We make the following
assumption on the measure of the set K1 which is valid in many practical applications.

Assumption 4.1. We suppose that meas(K1) ≤ ch.

Remark 4.2. Compared to linear elliptic optimal control problems the Assumption 4.1
is slightly stronger, cf. [28, 1, 2]. In the linear case the set K1 is only the union of
all elements E ∈ Eh where the optimal control has kinks, whereas the present definition
of the set K1 also admits elements where the optimal control intersects smoothly the
control constraints. However, the definition of the modified interpolation operator Rūh
makes the stronger assumption necessary to prove the superconvergence properties of the
postprocessed control in Section 5.

Now we collect approximation properties of the introduced interpolator Rūh that will
be intensively used in the sequel of the paper.
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Lemma 4.3. (i) Let S = {1, . . . ,m} and j ∈ {0} ∪ S. For E ∈ Eh,j ∩K1 the following
estimates hold true∣∣∣∣∣∣

∫
E

(f −Rūhf) ds

∣∣∣∣∣∣ ≤
ch|E||f |W 1,∞

1−µj
(E) if j ∈ S, µj ∈ (0, 1], f ∈W 1,∞

1−µj (E)

ch|E||f |W 1,∞(E) if j = 0, f ∈W 1,∞(E)
.

For E ∈ Eh,j ∩K2 the following estimates are valid∣∣∣∣∣∣
∫
E

(f −Rūhf) ds

∣∣∣∣∣∣ ≤
ch

2|E|1/2|f |
W 2,2

2(1−µj)(E) if j ∈ S, µj ∈ (1/4, 1], f ∈W 2,2
2(1−µj)(E)

ch2|E|1/2|f |W 2,2(E) if j = 0, f ∈W 2,2(E)
.

(ii) Let E ∈ Eh and f ∈ H1(E). Then the estimate

‖f −Rūhf‖L2(E) ≤ ch|f |H1(E)

holds.

Proof. (i) The proofs given in [2, Section 6] for the interpolator Rh can easily be adopted
to the modified interpolator Rūh by observing that

Rūhp = p ∀p ∈ P0(E), ∀E ∈ Eh, (4.2)∫
E
Rūhpds =

∫
E
p ds ∀p ∈ P1(E), ∀E ∈ Eh ∩K2.

(ii) Based on (4.2) the estimate is a direct consequence of the Deny-Lions Lemma.

In the sequel the following estimates regarding the second derivative of the cost func-
tional J and its discrete counterpart Jh will be useful.

Lemma 4.4. Suppose Assumption 2.1 is satisfied.

(i) Let u ∈ L2(Γ) be given. Then there holds for all v ∈ L2(Γ)

|
(
J ′′(u)− J ′′h(u)

)
[v, v]| ≤ ch1/2−ε‖v‖2L2(Γ)

with some ε > 0.

(ii) Let u1, u2 ∈ L2(Γ) be given. Then there is the estimate

|
(
J ′′h(u1)− J ′′h(u2)

)
[v, v]| ≤ c‖u1 − u2‖L2(Γ)‖v‖2L2(Γ)

for all v ∈ L2(Γ).

Proof. (i) Based on Assumption 2.1, several finite element error estimates, particularly
(3.9), the assertion can be obtained by straightforward calculations. For details regarding
a similar problem see e.g. [4, Lemma 6.2].
(ii) Again the estimate is straightforward using the local Lipschitz continuity of the

second derivatives of d, see also [4, Lemma 6.3] for a comparable result.
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Lemma 4.5. Suppose that Assumption 2.1 is fulfilled. Then there exist δ′ > 0 and a
mesh size h0 > 0 such that for all h < h0

δ′‖ūh −Rūhū‖2L2(Γ) ≤ (J ′h(ūh)− J ′h(Rūhū))(ūh −Rūhū).

Proof. We proceed similar to the proof of Lemma 4.6. in [11]. Let us set

d̄(x) = p̄(x) + νū(x) and d̄h(x) = p̄h(x) + νūh(x)

and take δ and τ as in Theorem 2.7. By means of Theorem 3.4 and Theorem 3.3(iv), we
know that d̄h converges uniformly to d̄ on Γ. On that account, there exists a mesh size
hτ such that

‖d̄− d̄h‖L∞(Γ) <
τ

4 . (4.3)

For every E ∈ Eh we define
IE =

∫
E

d̄h ds.

Due to the discrete variational inequality (3.5), we obtain

ūh|E =
{
ua, if IE > 0
ub, if IE < 0

.

Now, we take 0 < h1 ≤ hτ such that |d̄(x1)− d̄(x2)| < τ
4 if |x1 − x2| < h1. Due to (4.3),

we derive

if ξ ∈ E and d̄(ξ) > τ ⇒ d̄h(x) > τ

2 ∀x ∈ E, ∀E ∈ Eh, ∀h < h1.

Thus, we have IE > 0 and therefore ūh|E = ua. Moreover, the continuous variational
inequality (2.6) implies ū(ξ) = ua. By definition (4.1) of the operator Rūh, we also
have (Rūhū)(ξ) = ua. Then (ūh − Rūhū)(ξ) = 0 whenever d̄(ξ) > τ . We obtain the
analogous result for all ξ with d̄(ξ) < −τ . Since ua ≤ ūh(x) ≤ ub, one can easily see
(ūh − Rūhū)(x) ≥ 0 if ū(x) = ua and (ūh − Rūhū)(x) ≤ 0 if ū(x) = ub. Thus, we proved
that ūh −Rūhū belongs to the τ -critical cone Cτ (ū) and (2.12) is applicable:

J ′′(ū)[ūh −Rūhū, ūh −Rūhū] ≥ δ‖ūh −Rūhū‖2L2(Γ) ∀h < h1 (4.4)

Due to the mean value theorem, we obtain for some 0 < θ < 1 and û = ūh+θ(Rūhū− ūh)

(J ′h(ūh)− J ′h(Rūhū))(ūh −Rūhū) = J ′′h(û)[ūh −Rūhū, ūh −Rūhū]
≥ J ′′(ū)[ūh −Rūhū, ūh −Rūhū]− |(J ′′h(û)− J ′′h(ū))[ūh −Rūhū, ūh −Rūhū]|
− |(J ′′h(ū)− J ′′(ū))[ūh −Rūhū, ūh −Rūhū]|

By means of (4.4) and the estimates in Lemma 4.4 we arrive at

(J ′h(ūh)− J ′h(Rūhū))(ūh −Rūhū) ≥
(
δ − c‖û− ū‖L2(Γ) − ch1/2−ε

)
‖ūh −Rūhū‖2L2(Γ)
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Thanks to the uniform convergence of ūh to ū and the approximation properties of the
operator Rūh, see Lemma 4.3, we derive the existence of a mesh size 0 < h0 ≤ h1 and
δ′ > 0 such that

δ′‖ūh −Rūhū‖2L2(Γ) ≤ (J ′h(ūh)− J ′h(Rūhū))(ūh −Rūhū)

is valid for all h < h0.

In the following we introduce the L2-projection into the space of piecewise constant
functions on the boundary. Furthermore, we will state some useful properties. It is well-
known that the L2-projection Qhf of a function f ∈ L2(Γ) into the space Uh satisfies

Qhf ≡
1
|E|

∫
E

f(x) ds for every element E ∈ Eh.

The following approximation property of Qh is proven in Corollary 4.8 of [1].

Lemma 4.6. For any element E ∈ Eh and any function f ∈ H1(E) and v ∈ Hs(E),
s ∈ [0, 1], the estimate

(f −Qhf , v)L2(E) ≤ chs+1
E |f |H1(E)|v|Hs(E)

is valid.

Lemma 4.7. Suppose that Assumptions 2.1 and 4.1 hold. Then there exists a mesh size
h0 > 0 such that for all h < h0 and mesh parameters ~1/2 < ~µ < ~1/4 + ~λ/2 the estimate

‖yh(ū)− yh(Rūhū)‖L2(Ω) ≤ ch2

holds true.

Proof. First note, that yh(ū) and yh(Rūhū) are the solutions of the discrete state equation
(3.2) with respect to the right hand sides ū and Rūhū, respectively. Initially we introduce
a dual problem and its discrete counterpart following the ideas of [10, Appendix]: let
φ ∈ H1(Ω) be the unique solution of

a(φ, v) +
∫
Ω

αφv dx =
∫
Ω

(yh(ū)− yh(Rūhū))v dx ∀v ∈ H1(Ω),

with

α(x) =


d(x, yh(ū)(x))− d(x, yh(Rūhū)(x))

yh(ū)(x)− yh(Rūhū)(x) , if yh(ū)(x)− yh(Rūhū)(x) 6= 0

0, otherwise
.

Due to the approximation properties of Rūh and the monotonicity of d according to
Assumption 2.1 one can easily check that there is a h0 such that the problem is well-
posed for all h < h0. The corresponding discrete counterpart φh ∈ Vh is the unique
solution of the problem

a(φh, vh) +
∫
Ω

αφhvh dx =
∫
Ω

(yh(ū)− yh(Rūhū))vh dx ∀vh ∈ Vh.
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By means of yh(ū), yh(Rūhū) ∈ Vh as solutions of (3.2) and the definition of α, we derive

‖yh(ū)− yh(Rūhū)‖2L2(Ω) = a(φh, yh(ū)− yh(Rūhū)) +
∫
Ω

αφh(yh(ū)− yh(Rūhū)) dx

= a(yh(ū)− yh(Rūhū), φh) +
∫
Ω

(d(x, yh(ū))− d(x, yh(Rūhū))φh dx

=
∫
Γ

(ū−Rūhū)φh ds. (4.5)

Next, we split the last term in two terms and estimate them separately:

(ū−Rūhū , φh)L2(Γ) = (ū−Rūhū , φh − φ)L2(Γ) + (ū−Rūhū , φ)L2(Γ). (4.6)

For the first term, we derive

(ū−Rūhū , φh − φ)L2(Γ) ≤ c‖ū−Rūhū‖L2(Γ)‖φh − φ‖H1(Ω)

≤ ch2|ū|H1(Γ)‖yh(ū)− yh(Rūhū)‖L2(Ω)
(4.7)

using the Cauchy-Schwarz inequality, a standard trace theorem, Lemma 4.3 and Lemma
3.2. The second term in (4.6) is again split into two terms:

(ū−Rūhū , φ)L2(Γ) = (ū−Qhū , φ)L2(Γ) + (Qhū−Rūhū , φ)L2(Γ).

According to Lemma 2.2 the solution φ of the previously introduced dual problem be-
longs to W 2,2

~β
(Ω) for ~β satisfying (2.2) since yh(ū) − yh(Rūhū) ∈ L2(Ω) ↪→ W 0,2

~β
(Ω).

Furthermore, the a priori estimate

‖φ‖
W 2,2
~β

(Ω) ≤ c‖yh(ū)− yh(Rūhū)‖L2(Ω) (4.8)

is valid. Thus, Lemma 4.6, the trace theorem and embeddings in classical and weighted
Sobolev spaces yield

(ū−Qhū , φ)L2(Γ) ≤ ch2|ū|H1(Γ)|φ|H1(Γ)

≤ ch2|ū|H1(Γ)‖yh(ū)− yh(Rūhū)‖L2(Ω),
(4.9)

cf. the proof of Theorem 2.5 or the proof of Lemma 7.4. in [2] for details. We proceed
with

(Qhū−Rūhū , φ)L2(Γ) ≤ ‖Qhū−Rūhū‖L1(Γ)‖φ‖L∞(Γ)

≤ c‖Qhū−Rūhū‖L1(Γ)‖yh(ū)− yh(Rūhū)‖L2(Ω)

applying again embeddings in classical and weighted Sobolev spaces and (4.8). Since
Rūhū is constant on every element E, we derive

‖Qhū−Rūhū‖L1(Γ) = ‖Qh
(
ū−Rūhū

)
‖L1(Γ) =

∑
E∈Eh

∣∣∣∣∫
E

(
ū−Rūhū

)
ds

∣∣∣∣
=

m∑
j=0

 ∑
E∈Eh,j∩K1

∣∣∣∣∫
E

(
ū−Rūhū

)
ds

∣∣∣∣+ ∑
E∈Eh,j∩K2

∣∣∣∣∫
E

(
ū−Rūhū

)
ds

∣∣∣∣
 .
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By means of Lemma 4.3 we obtain

‖Qhū−Rūhū‖L1(Γ) ≤ c

 ∑
E∈Eh,0∩K1

h|E||ū|W 1,∞(E) +
m∑
j=1

∑
E∈Eh,j∩K1

h|E||ū|
W 1,∞

1−µj
(E)

+
∑

E∈Eh,0∩K2

h2|E|1/2|ū|W 2,2(E) +
m∑
j=1

∑
E∈Eh,j∩K2

h2|E|1/2|ū|
W 2,2

2(1−µj)(E)


≤ ch|K1|

|ū|W 1,∞(K1∩Γ0) +
m∑
j=1
|ū|

W 1,∞
1−µj

(K1∩Γ±j )


+ ch2|K2|1/2

|ū|W 2,2(K2∩Γ0) +
m∑
j=1
|ū|

W 2,2
2(1−µj)(K2∩Γ±j )


≤ ch2

(
|ū|

W 1,∞
~1−~µ

(K1) + |ū|
W 2,2

2(~1−~µ)
(K2)

)
, (4.10)

where we applied the discrete Cauchy-Schwarz inequality and Assumption 4.1. Hence,
we end up with

(Qhū−Rūhū , φ)L2(Γ) ≤ ch2(|ū|
W 1,∞

1−µ (K1) + |ū|
W 2,2

2(1−µ)(K2))‖yh(ū)− yh(Rūhū)‖L2(Ω). (4.11)

Collecting the intermediate estimates from (4.5)-(4.11), we derive

‖yh(ū)− yh(Rūhū)‖L2(Ω) ≤ ch2(|ū|H1(Γ) + |ū|
W 1,∞

1−µ (K1) + |ū|
W 2,2

2(1−µ)(K2))

According to Theorem 2.5 the optimal control ū is bounded in the space H1(Γ). Taking
into account that the optimal control ū is given by the projection formula (2.8), we can
split the boundary Γ in an “active” part A (ū = ua or ū = ub) and an “inactive part” I
(ū = −p̄/ν). Hence, we can estimate

|ū|
W 1,∞
~1−~µ

(K1) + |ū|
W 2,2

2(~1−~µ)
(K2) = |p̄|

W 1,∞
~1−~µ

(K1∩I) + |p̄|
W 2,2

2(~1−~µ)
(K2∩I) ≤ c

by using Theorem 2.6 with ~1/2 < ~µ < ~1/4 + ~λ/2. This ends the proof.

We will continue with a supercloseness result for ‖ūh −Rūhū‖L2(Γ).

Lemma 4.8. Let Assumption 2.1 and 4.1 be satisfied. Then there exists a mesh size
h0 > 0 such that for all h < h0 the estimate

‖ūh −Rūhū‖L2(Γ) ≤ ch3/2

is valid for mesh grading parameters ~1/2 < ~µ < ~1/4 + ~λ/2.
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Proof. We start with the pointwise a.e. version of the variational inequality (2.6):

(p̄(x) + νū(x)) · (u− ū(x)) ≥ 0 ∀u ∈ [ua, ub].

We apply this formula for x = SE , E ∈ K2 and u = ūh(SE) and arrive at

(p̄(SE) + νū(SE)) · (ūh(SE)− ū(SE)) ≥ 0 ∀SE , E ∈ K2.

Analogously, we can apply this formula to elements E of the subset K1 using xK instead
of the midpoint SE , where xK ∈ E is a point satisfying either ū(xK) = ua or ū(xK) = ub.
Integrating these formulas over E, summing up over all E ∈ Eh and taking into account
the definition of Rūh in (4.1), we find

(Rūhp̄+ νRūhū , ūh −Rūhū)L2(Γ) ≥ 0.

Next we test the discrete variational inequality (3.5) with the function Rūhū ∈ Uad,h and
get

(p̄h + νūh , R
ū
hū− ūh)L2(Γ) ≥ 0.

Adding the last two inequalities and inserting appropriate intermediate functions yields

0 ≤ (Rūhp̄− p̄h + ν(Rūhū− ūh) , ūh −Rūhū)L2(Γ)

= (Rūhp̄− p̄ , ūh −Rūhū)L2(Γ) + (p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(Γ)

+ (ph(yh(Rūhū))− p̄h + ν(Rūhū− ūh) , ūh −Rūhū)L2(Γ)

(4.12)

Note, that ph(yh(Rūhū)) denotes the solution of the discrete adjoint equation (3.4) w.r.t.
the state yh(Rūhū). The last term in the previous estimate can be formulated as

(J ′h(Rūhū)− J ′h(ūh))(ūh −Rūhū)

such that Lemma 4.5 can be applied and we obtain that there is a h1 > 0 such that

δ′‖ūh −Rūhū‖2L2(Γ) ≤ (Rūhp̄− p̄ , ūh −Rūhū)L2(Γ) + (p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(Γ)
(4.13)

for all h < h1. The first term can be written as

(Rūhp̄− p̄ , ūh −Rūhū)L2(Γ) =
∑
E∈K1

(ūh −Rūhū)|E
∫
E

(Rūhp̄− p̄) ds

+
∑
E∈K2

(ūh −Rūhū)|E
∫
E

(Rūhp̄− p̄) ds.

Adapting the estimates of (4.10) and using the formula

‖ūh −Rūhū‖L2(E) = |E|1/2|(ūh −Rūhū)|E |,

we obtain

(Rūhp̄− p̄ , ūh −Rūhū)L2(Γ) ≤ ch|K1|1/2‖ūh −Rūhū‖L2(K1)|p̄|W 1,∞
~1−~µ

(K1)

+ ch2‖ūh −Rūhū‖L2(K2)|p̄|W 2,2
2(~1−~µ)

(K2).
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Due to Assumption 4.1 and Theorem 2.6 we derive for ~1/2 < ~µ < ~1/4 + ~λ/2

(Rūhp̄− p̄ , ūh −Rūhū)L2(Γ) ≤ ch3/2‖ūh −Rūhū‖L2(Γ)

For the second term in (4.13) we first find

(p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(Γ) ≤ ‖p̄− ph(yh(Rūhū))‖L2(Γ)‖ūh −Rūhū‖L2(Γ)

such that we continue by applying the triangle inequality

‖p̄− ph(yh(Rūhū))‖L2(Γ) ≤ ‖p̄− ph(ȳ)‖L2(Γ) + ‖ph(ȳ)− ph(yh(ū))‖L2(Γ)

+ ‖ph(yh(ū))− ph(yh(Rūhū))‖L2(Γ),
(4.14)

where ph(ȳ) and ph(yh(ū)) denote the solution of the discrete adjoint state equation (3.4)
w.r.t. the states ȳ and yh(ū), respectively. Thus the first error on the right side in (4.14)
is a finite element error on the boundary for the adjoint states and we apply Lemma
3.2(ii) and Theorem 2.6 such that

‖p̄− ph(ȳ)‖L2(Γ) ≤ ch2| ln h|3/2

for ~1/4 < ~µ < ~1/4 + ~λ/2. For the second and the third term in (4.14) one can prove by
a standard trace theorem, Theorem 3.3(iii) and (i), Theorem 2.5, and Lemma 4.7 with
h < h0 ≤ h1 that

‖ph(ȳ)− ph(yh(ū))‖L2(Γ)+‖ph(yh(ū))− ph(yh(Rūhū))‖L2(Γ)

≤ c(‖ȳ − yh(ū)‖L2(Ω) + ‖yh(ū)− yh(Rūhū)‖L2(Ω))
≤ ch2

provided that ~1/2 < ~µ < ~1/4 + ~λ/2. Summarizing the previous estimates yields the
assertion.

We announced in the introduction of this paper, that we want to carry over the
results for linear quadratic problems to optimal control problems governed by semilinear
equations. Unfortunately, the supercloseness result derived in the previous lemma cannot
be improved. The reason is that on the set K1 the integration formula∫

E
(Rūhf − f) ds = 0, E ∈ K1

induced by our modified interpolator Rūh is in general only exact for constant polynomials
f on the element E, since the interpolation point is in general not the midpoint SE of
the element E. This is different to the linear quadratic case considered in [2]. However,
if we restrict to the set K2, we can improve the estimate.

Lemma 4.9. Let Assumption 2.1 and Assumption 4.1 be satisfied. Then there exists a
mesh size h0 > 0 such that for all h < h0 the estimate

‖ūh −Rūhū‖L2(K2) ≤ ch2| ln h|3/2

is valid for mesh grading parameters ~1/2 < ~µ < ~1/4 + ~λ/2.
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Proof. We can follow the lines of the proof of Lemma 4.8 up to formula (4.12) considering
only the set K2, i.e., we find

0 ≤ (Rūhp̄− p̄h + ν(Rūhū− ūh) , ūh −Rūhū)L2(K2)

= (Rūhp̄− p̄ , ūh −Rūhū)L2(K2) + (p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(K2)

+ (ph(yh(Rūhū))− p̄h + ν(Rūhū− ūh) , ūh −Rūhū)L2(K2).

(4.15)

Introducing the characteristic functions χKi w.r.t. to the set Ki, i = 1, 2, the last scalar
product in the previous formula can be interpreted as

(J ′h(Rūhū)− J ′h(ūh))(χK2(ūh −Rūhū)). (4.16)

Unfortunately, the result of Lemma 4.5 is not directly applicable. Analogously to the
proof of Lemma 4.5, we obtain for some 0 < θ < 1 and û = ūh + θ(Rūhū− ūh)

(J ′h(ūh)− J ′h(Rhū))(χK2(ūh −Rūhū)) = J ′′h(û)[ūh −Rūhū, χK2(ūh −Rūhū)] (4.17)

due to the mean value theorem. We continue by inserting appropriate intermediate
terms

Jh
′′(û)[ūh −Rūhū, χK2(ūh −Rūhū)] ≥ J ′′(ū)[χK2(ūh −Rūhū), χK2(ūh −Rūhū)]
− |(J ′′h(ū)− J ′′(ū))[χK2(ūh −Rūhū), χK2(ūh −Rūhū)]|
− |(J ′′h(û)− J ′′h(ū))[χK2(ūh −Rūhū), χK2(ūh −Rūhū)]|
− |J ′′h(û)[ūh −Rūhū, χK2(ūh −Rūhū)]− J ′′h(û)[χK2(ūh −Rūhū), χK2(ūh −Rūhū)]|.

The first three addends can be estimated by means of the second order sufficient optimal-
ity conditions and further estimates regarding second derivatives of the cost functional
as in the proof of Lemma 4.5. Thus, there is a constant δ′ > 0 and a mesh size h0 > 0
such that for all h < h0

J ′′h(û)[ūh −Rūhū, χK2(ūh −Rūhū)] ≥ δ′‖ūh −Rūhū‖2L2(K2) − |J
′′
h(û)[v1, v2]| (4.18)

where we introduced the abbreviations v1 := χK1(ūh −Rūhū) and v2 := χK2(ūh −Rūhū).
We obtain for the last term in the previous estimate

|J ′′h(û)[v1, v2]| =

∣∣∣∣∣∣
∫
Ω

yv1
h y

v2
h − ph(yh(û))dyy(x, yh(û))yv1

h y
v2
h dx+ ν

∫
Γ

v1v2 ds

∣∣∣∣∣∣ , (4.19)

where the last term vanishes by construction. We continue by∣∣∣∣∣∣
∫
Ω

yv1
h y

v2
h − ph(yh(û))dyy(x, yh(û))yv1

h y
v2
h dx

∣∣∣∣∣∣ ≤ c‖yv1
h ‖L2(Ω)‖yv2

h ‖L2(Ω)

≤ c‖v1‖L1(Γ)‖v2‖L1(Γ)

(4.20)

22



due to the Cauchy-Schwarz inequality, the uniform boundedness of the discrete variables
ph(yh(û)) and yh(û), and Lemma A.2. Combining (4.15)-(4.20), we derive

δ′‖ūh −Rūhū‖2L2(K2) ≤ (Rūhp̄− p̄ , ūh −Rūhū)L2(K2)

+ (p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(K2)

+ c‖ūh −Rūhū‖L1(K1)‖ūh −Rūhū‖L1(K2).

Now, the first term can be estimated by

(Rūhp̄− p̄ , ūh −Rūhū)L2(K2) ≤ ch2‖ūh −Rūhū‖L2(K2),

following the lines of the proof of the previous lemma. Furthermore, the second term
was already estimated in a similar form in the proof of Lemma 4.8 such that

(p̄− ph(yh(Rūhū)) , ūh −Rūhū)L2(K2) ≤ ch2| ln h|3/2‖ūh −Rūhū‖L2(K2),

provided that the mesh grading parameters satisfy ~1/2 < ~µ < ~1/4 + ~λ/2. Applying the
Hölder inequality, Assumption 4.1 and Lemma 4.8, we further obtain

‖ūh −Rūhū‖L1(K1) ≤ |K1|1/2‖ūh −Rūhū‖L2(K1) ≤ ch2.

Summarizing, we can prove the assertion

‖ūh −Rūhū‖L2(K2) ≤ ch2| ln h|3/2

if the mesh grading parameters satisfy ~1/2 < ~µ < ~1/4 + ~λ/2.

5. Main result
This section is concerned with the error estimates for the postprocessing approach. As
introduced in Section 3 the control is approximated by piecewise constant functions.
Afterwards the control ũh is calculated by a projection of the discrete adjoint state p̄h
to the admissible set Uad:

ũh := Π[ua,ub]

(
−1
ν
p̄h

)
.

This projection is piecewise linear and continuous, but the constructed control does not
belong to the discrete admissible set in general. However, we will prove that ũh possesses
superconvergence properties.

Theorem 5.1. Suppose that Assumption 2.1 and Assumption 4.1 are fulfilled. Then
there exists a mesh size h0 > 0 such that for all h < h0 the estimate

‖ȳ − ȳh‖L2(Ω) + ‖p̄− p̄h‖L2(Γ) + ‖ū− ũh‖L2(Γ) ≤ ch2| ln h|3/2

is valid provided that ~1/2 < ~µ < ~1/4 + ~λ/2.
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Proof. We introduce intermediate functions and apply the triangle inequality such that

‖ȳ − ȳh‖L2(Ω) ≤ ‖ȳ − yh(ū)‖L2(Ω) + ‖yh(ū)− yh(Rūhū)‖L2(Ω) + ‖yh(Rūhū)− ȳh‖L2(Ω).

The first error term is a usual finite element error for semilinear elliptic PDEs and we rely
on results given in Theorem 3.3(i) and Theorem 2.5. The second term was estimated
separately in Lemma 4.7 for all h < h0. By means of Lemma A.1 the third term is
estimated as follows

‖yh(Rūhū)− ȳh‖L2(Ω) ≤ c(‖Rūhū− ūh‖L1(K1) + ‖Rūhū− ūh‖L1(K2))

≤ c(|K1|1/2‖Rūhū− ūh‖L2(K1) + ‖Rūhū− ūh‖L2(K2))

≤ c(h2 + h2| ln h|3/2),

using Assumption 4.1 and the results derived in the Lemmata 4.8 and 4.9, respectively.
Thus we can conclude

‖ȳ − ȳh‖L2(Ω) ≤ ch2| ln h|3/2

provided that the mesh grading parameters satisfy ~1/2 < ~µ < ~1/4 + ~λ/2. For the error
in the adjoint states we obtain

‖p̄− p̄h‖L2(Γ) ≤ ‖p̄− ph(ȳ)‖L2(Γ) + ‖ph(ȳ)− p̄h‖L2(Γ)

introducing the intermediate adjoint state ph(ȳ) as the solution of the discrete adjoint
state equation (3.4) w.r.t. the state ȳ. Hence, the first error is a finite element error on
the boundary for the adjoint states and we apply Lemma 3.2(ii) and Theorem 2.5 such
that

‖p̄− ph(ȳ)‖L2(Γ) ≤ ch2| ln h|3/2

for ~1/2 < ~µ < ~1/4 + ~λ/2. Theorem 3.3(iii) yields the following estimate for the second
term

‖ph(ȳ)− p̄h‖L2(Γ) ≤ c‖ȳ − ȳh‖L2(Ω).

Thus, the proven error estimate for the state gives the overall error estimate

‖p̄− p̄h‖L2(Γ) ≤ ch2| ln h|3/2

for ~1/2 < ~µ < ~1/4+~λ/2. Since the projection operator is Lipschitz continuous we obtain

‖ū− ũh‖L2(Γ) =
∥∥∥∥Π[ua,ub]

(
−1
ν
p̄

)
−Π[ua,ub]

(
−1
ν
p̄h

)∥∥∥∥
L2(Γ)

≤ c‖p̄− p̄h‖L2(Γ) ≤ ch2| ln h|3/2,

where we used the error estimate for the adjoint states proven in the step before for
~1/2 < ~µ < ~1/4 + ~λ/2.
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Remark 5.2. The same convergence rates can also be proven for the concept of vari-
ational discretizations if one takes into account the improved finite element error esti-
mates on the boundary. This concept was first introduced in [20] for linear elliptic control
problems with distributed control and in [10] for semilinear Neumann boundary control
problems.

Remark 5.3. A convergence order of two can analogously be proven for distributed
control problems. In that case the condition ~µ < ~λ is sufficient since one only needs
error estimates in the domain.

6. Numerical example
In this section we present a numerical example that illustrates the proven error estimates
of the previous section. The example is a slightly modified version of the one presented
in [28]. Let r, ϕ be the polar coordinates located at the origin. For ω ∈ (0, 2π) we
define the circular sector Sω := {x ∈ R2 : (r(x), ϕ(x)) ∈ (0,

√
2] × [0, ω]}. Moreover,

let Ωω = (−1, 1)2 ∩ Sω with the boundary Γω. We are interested in the optimal control
problems (QP)

min Fω(y, u) := 1
2

∫
Ωω

(y − yd)2 dx+ 1
2

∫
Γω

u2 ds+
∫

Γω

g2y ds

−∆y + y + y3 = f in Ωω

∂ny = u+ g1 on Γω
ua ≤ u ≤ ub a.e. on Γω.

Again we set λ = π/ω. Let us define the functions

f(x) = rλ(x) cos(λϕ(x)) + r3λ(x) cos3(λϕ(x)) in Ωω,

yd(x) = 2rλ(x) cos(λϕ(x) + 3r3λ(x) cos3(λϕ(x)) in Ωω

and

g1(x) = ∂n(rλ(x) cos(λϕ(x)))−Π[ua,ub](r
λ(x) cos(λϕ(x))) on Γω,

g2(x) = −∂n(rλ(x) cos(λϕ(x))) on Γω.

Furthermore, let us set ua = −0.8 and ub = 0.8. One can easily check, that

ȳ(x) = rλ(x) cos(λϕ(x)),
p̄(x) = −rλ(x) cos(λϕ(x)),

ū(x) = Π[ua,ub]
(
rλ(x) cos(λϕ(x))

)
satisfy the respective first order optimality conditions. Moreover, the second order suf-
ficient optimality condition (2.12) is fulfilled by construction. The functions ȳ, p̄ and
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Figure 1: Ω3π/2 with ungraded and graded mesh (µ = 0.5, R = 0.5)
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Figure 2: ũh and ȳh on a graded mesh (µ = 0.5, R = 0.5)

ū have exactly the singular behavior discussed in Theorem 2.5. For the solution of
the optimal control problems (QP), a standard SQP method was implemented, see e.g.
Heinkenschloss and Tröltzsch [19], Kelley and Sachs [23] or Kunisch and Sachs [26]. The
resulting quadratic subproblems were solved by applying a primal dual active set strat-
egy according to Bergonioux, Ito and Kunisch [5]. We also refer to Kunisch and Rösch
[25]. The discrete solutions of the PDEs have been computed using a finite element
method on graded meshes as introduced in the beginning of Section 3, see Figure 1.
Figure 2 shows the postprocessed control ũh and the state ȳh as the solution of the fully
discretized optimal control problem (QPh).
In Table 1 one can find the computed errors ‖ū− ũh‖L2(Γ3π/2) and the experimental or-
ders of convergence (EOC) once for uniform meshes (µ = 1) and for graded meshes with
µ = 0.5. According to Theorem 6.2. in [28], we expect on uniform meshes a convergence
rate 1/2 + λ = 1.16 which is illustrated by our numerical results. Moreover, we can see
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degrees of freedom µ = 0.5 µ = 1
Ω Γ ‖ū− ũh‖ EOC ‖ū− ũh‖ EOC

133 48 1.23e− 2 1.90 2.75e− 2 1.10
481 92 3.64e− 3 1.92 1.37e− 2 1.12

1825 192 1.02e− 3 1.94 6.58e− 3 1.13
7105 384 2.76e− 4 1.95 3.07e− 3 1.13

28033 768 7.27e− 5 1.96 1.42e− 3 1.14
111361 1536 1.88e− 5 1.97 6.46e− 4 1.14
443905 3072 4.83e− 6 1.97 2.93e− 4 1.15

1772545 6144 1.23e− 6 - 1.32e− 4 -

Table 1: L2(Γ3π/2)-error of the postprocessed control ũh

that the numerical example confirms for a grading parameter µ = 0.5 < 1/4+λ/2 ≈ 0.58
the results proven in Theorem 5.1.

A. Appendix
Lemma A.1. Let Assumption 2.1 be satisfied. Furthermore, let ȳh = yh(ūh) and
yh(Rūhū) be the solutions of (3.2) w.r.t ūh and Rūhū, respectively. Then there exists
a mesh size h0 > 0 such that for all h < h0 the estimate

‖ȳh − yh(Rūhū)‖L2(Ω) ≤ c‖ūh −Rūhū‖L1(Γ)

is valid.

Proof. Analogously to the beginning of the proof of Lemma 4.7, we introduce a dual
auxiliary problem and its discrete counterpart by: let φ ∈ H1(Ω) be the unique solution
of

a(φ, v) +
∫
Ω

αφv dx =
∫
Ω

(ȳh − yh(Rūhū))v dx ∀v ∈ H1(Ω),

with

α(x) =


d(x, ȳh(x))− d(x, yh(Rūhū)(x))

ȳh(x)− yh(Rūhū)(x) , if ȳh(x)− yh(Rūhū)(x) 6= 0

0, otherwise
.

Due to the approximation properties of Rūh, the uniform convergence of ūh to ū and the
monotonicity of d according to Assumption 2.1 one can easily check that there exists a
h0 > 0 such that the problem is well-posed for all h < h0. The corresponding discrete
counterpart φh ∈ Vh is the unique solution of the problem

a(φh, vh) +
∫
Ω

αφhvh dx =
∫
Ω

(ȳh − yh(Rūhū))vh dx ∀vh ∈ Vh.
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By means of ȳh(ū), yh(Rūhū) ∈ Vh being solutions of (3.2) and the definition of α, we
derive

‖ȳh(ū)− yh(Rūhū)‖2L2(Ω) = a(φh, ȳh(ū)− yh(Rūhū)) +
∫
Ω

αφh(ȳh(ū)− yh(Rūhū)) dx

= a(ȳh(ū)− yh(Rūhū), φh) +
∫
Ω

(d(x, ȳh(ū))− d(x, yh(Rūhū))φh dx

=
∫
Γ

(ūh −Rūhū)φh ds.

We continue by the estimates∫
Γ

(ūh −Rūhū)φh ds ≤ ‖ūh −Rūhū‖L1(Γ)‖φh‖L∞(Γ)

≤ ‖ūh −Rūhū‖L1(Γ)(‖φh − φ‖L∞(Ω) + ‖φ‖L∞(Ω))

≤ c‖ūh −Rūhū‖L1(Γ)
(
h1/2−ε + 1

)
‖ȳh − yh(Rūhū)‖L2(Ω),

where a standard L∞(Ω)-error estimate (see e.g. (3.9)) and Lemma 2.2 together with
the embedding H3/2(Ω) ↪→ L∞(Ω) were used. Thus, the assertion is proven.

Lemma A.2. Suppose that the assumptions (A3) and (A4) are fulfilled. Moreover, let
yvh ∈ Vh be the unique solution of (3.6) for a given discrete state yh w.r.t. the right hand
side v. Then the estimate

‖yvh‖L2(Ω) ≤ c‖v‖L1(Γ)

holds true.

Proof. The proof can be done analogously to the proof of Lemma A.1 introducing an
appropriate dual problem.
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