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Abstract

In the paper, we develop a composite version of Mirror Prox algorithm for solving convex-
concave saddle point problems and monotone variational inequalities of special structure, allowing
to cover saddle point/variational analogies of what is usually called “composite minimization”
(minimizing a sum of an easy-to-handle nonsmooth and a general-type smooth convex functions
“as if” there were no nonsmooth component at all). We demonstrate that the composite Mirror
Prox inherits the favourable (and unimprovable already in the large-scale bilinear saddle point
case) O(1/ε) efficiency estimate of its prototype. We demonstrate that the proposed approach can
be successfully applied to Lasso-type problems with several penalizing terms (e.g. acting together
`1 and nuclear norm regularization) and to problems of semi-separable structures considered in
the alternating directions methods, implying in both cases methods with the O(1/ε) complexity
bounds.

Keywords: numerical algorithms for variational problems, composite optimization, minimiza-
tion problems with multi-term penalty, proximal methods
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1 Introduction

1.1 Motivation

Our work is inspired by the recent trend of seeking efficient ways for solving problems with hybrid
regularizations or mixed penalty functions in fields such as machine learning, image restoration, signal
processing and many others. We are about to present two instructive examples (for motivations, see,
e.g., [6, 2, 7]).
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†LJK, Université Grenoble Alpes,, B.P. 53, 38041 Grenoble Cedex 9, France (anatoli.juditsky@imag.fr). Research of

this author was supported by the CNRS-Mastodons project GARGANTUA, and the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025).

1

ar
X

iv
:1

31
1.

10
98

v3
  [

m
at

h.
O

C
] 

 2
1 

M
ay

 2
01

4



Example 1. (Matrix completion) Our first motivating example is matrix completion problem,
where we want to reconstruct the original matrix y ∈ Rn×n, known to be both sparse and low-rank,
given noisy observations of part of the entries. Specifically, our observation is b = PΩy+ ξ, where Ω is
a given set of cells in an n× n matrix, PΩy is the restriction of y ∈ Rn×n onto Ω, and ξ is a random
noise. A natural way to recover y from b is to solve the optimization problem

Opt = min
y∈Rn×n

{
1

2
‖PΩy − b‖22 + λ‖y‖1 + µ‖y‖nuc

}
(1)

where µ, λ > 0 are regularization parameters. Here ‖y‖2 =
√

Tr(yT y) is the Frobenius norm, ‖y‖1 =∑n
i,j=1 |yij | is the `1-norm, and ‖y‖nuc =

∑n
i=1 σi(y) (σi(y) are the singular values of y) is the nuclear

norm of a matrix y ∈ Rn×n.

Example 2. (Image recovery) Our second motivating example is image recovery problem, where
we want to recover an image y ∈ Rn×n from its noisy observations b = Ay + ξ, where Ay is a given
affine mapping (e.g. the restriction operator PΩ defined as above, or some blur operator), and ξ is a
random noise. Assume that the image can be decomposed as y = yL + yS + ysm where yL is of low
rank, ysm is the matrix of contamination by a “smooth background signal”, and yS is a sparse matrix
of “singular corruption.” Under this assumption in order to recover y from b it is natural to solve the
optimization problem

Opt = min
yL,yS,ysm∈Rn×n

{‖A(yL + yS + ysm)− b‖2 + µ1‖yL‖nuc + µ2‖yS‖1 + µ3‖ysm‖TV} (2)

where µ1, µ2, µ3 > 0 are regularization parameters. Here ‖y‖TV is the total variation of an image y:

‖y‖TV = ‖∇iy‖1 + ‖∇jy‖1,
(∇iy)ij = yi+1,j − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n− 1, 1 ≤ j < n,
(∇jy)ij = yi,j+1 − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n, 1 ≤ j < n− 1.

These and other examples motivate addressing the following multi-term composite minimization
problem

min
y∈Y

{
K∑
k=1

[ψk(Aky + bk) + Ψk(Aky + bk)]

}
, (3)

and, more generally, the semi-separable problem

min
[y1;...;yK ]∈Y1×···×YK

{
K∑
k=1

[
ψk(y

k) + Ψk(y
k)
]

:
K∑
k=1

Aky
k = b

}
. (4)

Here for 1 ≤ k ≤ K the domains Yk are closed and convex, ψk(·) are convex Lipschitz-continuous
functions, and Ψk(·) are convex functions which are “simple and fit” Yk.

1

The problem of multi-term composite minimization (3) has been considered (in a somewhat differ-
ent setting) in [21] for K = 2. When K = 1, problem (3) becomes the usual composite minimization
problem:

min
u∈U
{ψ(u) + Ψ(u)} (5)

1The precise meaning of simplicity and fitting will be specified later. As of now, it suffices to give a couple of examples.
When Ψk is the `1 norm, Yk can be the entire space, or the centered at the origin `p-ball, 1 ≤ p ≤ 2; when Ψk is the
nuclear norm, Yk can be the entire space, or the centered at the origin Frobenius/nuclear norm ball.
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which is well studied in the case where ψ(·) is a smooth convex function and Ψ(·) is a simple non-smooth
function. For instance, it was shown that the composite versions of Fast Gradient Method originating
in Nesterov’s seminal work [20] and further developed by many authors (see, e.g., [3, 4, 8, 26, 24] and
references therein), as applied to (5), work as if there were no nonsmooth term at all and exhibit the
O(1/t2) convergence rate, which is the optimal rate attainable by first order algorithms of large-scale
smooth convex optimization. Note that these algorithms cannot be directly applied to problems (3)
with K > 1.

The problem with semi-separable structures (4) for K = 2, has also been extensively studied using
the augmented Lagrangian approach (see, e.g., [25, 5, 23, 27, 11, 12, 16, 22] and references therein). In
particular, much work was carried out on the alternating directions method of multipliers (ADMM, see
[5] for an overview), which optimizes the augmented Lagrangian in an alternating fashion and exhibits
an overall O(1/t) convergence rate. Note that the available accuracy bounds for those algorithms
involve optimal values of Lagrange multipliers of the equality constraints (cf. [22]). Several variants of
this method have been developed recently to adjust to the case for K > 2 (see, e.g.[10]), however, most
of these algorithms require to solve iteratively subproblems of type (5) especially with the presence of
non-smooth terms in the objective.

1.2 Our contribution

In this paper we do not assume smoothness of functions ψk, but, instead, we suppose that ψk are
saddle point representable:

ψk(y
k) = sup

zk∈Zk
[φk(y

k, zk)−Ψk(z
k)], 1 ≤ k ≤ K, (6)

where φk(·, ·) are smooth functions which are convex-concave (i.e., convex in their first and concave in
the second argument), Zk are convex and compact, and Ψk(·) are simple convex functions on Zk. Let
us consider, for instance, the multi-term composite minimization problem (3). Under (6), the primal
problem (3) allows for the saddle point reformulation:

min
y∈Y

max
[z1;...;zk]∈Z1×···×ZK

{
K∑
k=1

[
φk(Aky + bk, z

k)−Ψk(z
k) + Ψk(Aky + bk)

]}
(7)

Note that when there are no Ψk,Ψk’s, problem (7) becomes a convex-concave saddle point problem
with smooth cost function, studied in [14]. In particular, it was shown in [14] that Mirror Prox algo-
rithm originating from [17], when applied to the saddle point problem (7), exhibits the “theoretically
optimal” convergence rate O(1/t). Our goal in this paper is to develop novel O(1/t)-converging first or-
der algorithms for problem (7) (and also the related saddle point reformulation of the problem in (4)),
which appears to be the best rate known, under circumstances, from the literature (and established
there in essentially less general setting than the one considered below).

Our key observation is that composite problem (3), (6) can be reformulated as a smooth linearly
constrained saddle point problem by simply moving the nonsmooth terms into the problem domain.
Namely, problem (3) , (6) can be written as

min
y∈Y, [yk;τk]∈Y+

k
1≤k≤K

max
[zk;σk]∈Z+

k
1≤k≤K

{ K∑
k=1

[
φk(y

k, zk)− σk + τk
]

: yk = Aky + bk, k = 1, ...,K

}

Y +
k =

{
[yk; τk] : yk ∈ Yk, τk ≥ Ψk(y

k)
}
, Z+

k =
{

[zk;σk] : zk ∈ Zk, σk ≥ Ψk(z
k)
}
, k = 1, ...,K.
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We can further approximate the resulting problem by penalizing the equality constraints, thus passing
to

min
y∈Y, [yk;τk]∈Y+

k
1≤k≤K

max
[zk;σk]∈Z+

k
1≤k≤K

{ K∑
k=1

[
φk(y

k, zk)− σk + τk + ρk‖yk −Aky − bk‖2
]}

= min
y∈Y, [yk;τk]∈Y+

k
1≤k≤K

max
wk∈Wk, [zk;σk]∈Z

+
k

1≤k≤K

{ K∑
k=1

[
φk(y

k, zk)− σk + τk + ρk〈yk −Aky − bk, wk〉
]}

, (8)

where ρk > 0 are penalty parameters and Wk = {wk : ‖wk‖2 ≤ 1}, k = 1, . . . ,K.
We solve the convex-concave saddle point problem (8) with smooth cost function by O(1/t)-

converging Mirror Prox algorithm. It is worth to mention that if the functions φk, Ψk are Lipschitz
continuous on the domains AkY +bk, and ρk are selected properly, the saddle point problem is exactly
equivalent to the problem of interest.

The monotone operator F associated with the saddle point problem in (8) has a special structure:
the variables can be split into two blocks u (all y-, z- and w-variables) and v (all τ - and σ-variables) in
such a way that the induced partition of F is F = [Fu(u);Fv] with the u-component Fu depending solely
on u and constant v-component Fv. We demonstrate below that in this case the basic Mirror Prox
algorithm admits a “composite” version which works essentially “as if” there were no v-component at
all. This composite version of Mirror Prox will be the working horse of all subsequent developments.

The main body of this paper is organized as follows. In section 2 we present required background
on variational inequalities with monotone operators and convex-concave saddle points. In section 3 we
present and justify the composite Mirror Prox algorithm. In sections 4 and 5, we apply our approach
to problems (3), (6) and (4), (6). In section 4.4, we illustrate our approach (including numerical
results) as applied to the motivating examples. All proofs missing in the main body of the paper are
relegated to the appendix.

2 Preliminaries: Variational Inequalities and Accuracy Certificates

Execution protocols and accuracy certificates. Let X be a nonempty closed convex set in a
Euclidean space E and F (x) : X → E be a vector field.

Suppose that we process (X,F ) by an algorithm which generates a sequence of search points
xt ∈ X, t = 1, 2, ..., and computes the vectors F (xt), so that after t steps we have at our disposal
t-step execution protocol It = {xτ , F (xτ )}tτ=1. By definition, an accuracy certificate for this protocol
is simply a collection λt = {λtτ}tτ=1 of nonnegative reals summing up to 1. We associate with the
protocol It and accuracy certificate λt two quantities as follows:

• Approximate solution xt(It, λt) :=
∑t

τ=1 λ
t
τxτ , which is a point of X;

• Resolution Res(X ′
∣∣It, λt) on a subset X ′ 6= ∅ of X given by

Res(X ′
∣∣It, λt) = sup

x∈X′

t∑
τ=1

λtτ 〈F (xτ ), xτ − x〉. (9)

The role of those notions in the optimization context is explained next2.

2our exposition follows [18].
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Variational inequalities. Assume that F is monotone, i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X (10)

and let our goal be to approximate a weak solution to the variational inequality (v.i.) vi(X,F )
associated with (X,F ); weak solution is defined as a point x∗ ∈ X such that

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X. (11)

A natural (in)accuracy measure of a candidate weak solution x ∈ X to vi(X,F ) is the dual gap
function

εVI(x
∣∣X,F ) = sup

y∈X
〈F (y), x− y〉 (12)

This inaccuracy is a convex nonnegative function which vanishes exactly at the set of weak solutions
to the vi(X,F ) .

Proposition 2.1 For every t, every execution protocol It = {xτ ∈ X,F (xτ )}tτ=1 and every accuracy
certificate λt one has xt := xt(It, λt) ∈ X. Besides this, assuming F monotone, for every closed
convex set X ′ ⊂ X such that xt ∈ X ′ one has

εVI(x
t
∣∣X ′, F ) ≤ Res(X ′

∣∣It, λt). (13)

Proof. Indeed, xt is a convex combination of the points xτ ∈ X with coefficients λtτ , whence xt ∈ X.
With X ′ as in the premise of Proposition, we have

∀y ∈ X ′ : 〈F (y), xt − y〉 =
t∑

τ=1

λtτ 〈F (y), xτ − y〉 ≤
t∑

τ=1

λtτ 〈F (xτ ), xτ − y〉 ≤ Res(X ′
∣∣It, λt),

where the first ≤ is due to monotonicity of F .

Convex-concave saddle point problems. Now let X = X1 × X2, where Xi is a closed convex
subset in Euclidean space Ei, i = 1, 2, and E = E1×E2, and let Φ(x1, x2) : X1×X2 → R be a locally
Lipschitz continuous function which is convex in x1 ∈ X1 and concave in x2 ∈ X2. X1, X2,Φ give rise
to the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

Φ(x1, x2), (14)

two induced convex optimization problems

Opt(P ) = minx1∈X1

[
Φ(x1) = supx2∈X2

Φ(x1, x2)
]

(P )
Opt(D) = maxx2∈X2

[
Φ(x2) = infx1∈X1

Φ(x1, x2)
]

(D)
(15)

and a vector field F (x1, x2) = [F1(x1, x2);F2(x1, x2)] specified (in general, non-uniquely) by the rela-
tions

∀(x1, x2) ∈ X1 ×X2 : F1(x1, x2) ∈ ∂x1Φ(x1, x2), F2(x1, x2) ∈ ∂x2 [−Φ(x1, x2)].

It is well known that F is monotone on X, and that weak solutions to the vi(X,F ) are exactly the
saddle points of Φ on X1 × X2. These saddle points exist if and only if (P ) and (D) are solvable
with equal optimal values, in which case the saddle points are exactly the pairs (x1

∗, x
2
∗) comprised

by optimal solutions to (P ) and (D). In general, Opt(P ) ≥ Opt(D), with equality definitely taking
place when at least one of the sets X1, X2 is bounded; if both are bounded, saddle points do exist. To
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avoid unnecessary complications, from now on, when speaking about a convex-concave saddle point
problem, we assume that the problem is proper, meaning that Opt(P ) and Opt(D) are reals; this
definitely is the case when X is bounded.

A natural (in)accuracy measure for a candidate x = [x1;x2] ∈ X1 × X2 to the role of a saddle
point of Φ is the quantity

εSad(x
∣∣X1, X2,Φ) = Φ(x1)− Φ(x2)

= [Φ(x1)−Opt(P )] + [Opt(D)− Φ(x2)] + [Opt(P )−Opt(D)]︸ ︷︷ ︸
≥0

(16)

This inaccuracy is nonnegative and is the sum of the duality gap Opt(P )−Opt(D) (always nonnegative
and vanishing when one of the sets X1, X2 is bounded) and the inaccuracies, in terms of respective
objectives, of x1 as a candidate solution to (P ) and x2 as a candidate solution to (D).

The role of accuracy certificates in convex-concave saddle point problems stems from the following
observation:

Proposition 2.2 Let X1, X2 be nonempty closed convex sets, Φ : X := X1 × X2 → R be a locally
Lipschitz continuous convex-concave function, and F be the associated monotone vector field on X.

Let It = {xτ = [x1
τ ;x2

τ ] ∈ X,F (xτ )}tτ=1 be a t-step execution protocol associated with (X,F ) and
λt = {λtτ}tτ=1 be an associated accuracy certificate. Then xt := xt(It, λt) = [x1,t;x2,t] ∈ X.

Assume, further, that X ′1 ⊂ X1 and X ′2 ⊂ X2 are closed convex sets such that

xt ∈ X ′ := X ′1 ×X ′2. (17)

Then
εSad(xt

∣∣X ′1, X ′2,Φ) = sup
x2∈X′2

Φ(x1,t, x2)− inf
x1∈X′1

Φ(x1, x2,t) ≤ Res(X ′
∣∣It, λt). (18)

In addition, setting Φ̃(x1) = supx2∈X′2 Φ(x1, x2), for every x̂1 ∈ X ′1 we have

Φ̃(x1,t)− Φ̃(x̂1) ≤ Φ̃(x1,t)− Φ(x̂1, x2,t) ≤ Res({x̂1} ×X ′2
∣∣It, λt). (19)

In particular, when the problem Opt = minx1∈X′1 Φ̃(x1) is solvable with an optimal solution x1
∗, we

have
Φ̃(x1,t)−Opt ≤ Res({x1

∗} ×X ′2
∣∣It, λt). (20)

Proof. The inclusion xt ∈ X is evident. For every set Y ⊂ X we have

∀[p; q] ∈ Y :

Res(Y
∣∣It, λt) ≥∑t

τ=1 λ
t
τ

[
〈F1(x1

τ ), x1
τ − p〉+ 〈F2(x2

τ ), x2
τ − q〉

]
≥
∑t

τ=1 λ
t
τ

[
[Φ(x1

τ , x
2
τ )− Φ(p, x2

τ )] + [Φ(x1
τ , q)− Φ(x1

τ , x
2
τ )]
]

[by the origin of F and since Φ is convex-concave]

=
∑t

τ=1 λ
t
τ

[
Φ(x1

τ , q)− Φ(p, x2
τ )
]
≥ Φ(x1,t, q)− Φ(p, x2,t)

[by origin of xt and since Φ is convex-concave]

Thus, for every Y ⊂ X we have

sup
[p;q]∈Y

[
Φ(x1,t, q)− Φ(p, x2,t)

]
≤ Res(Y

∣∣It, λt). (21)

Now assume that (17) takes place. Setting Y = X ′ := X ′1 ×X ′2 and recalling what εSad is, (21) yields
(18). With Y = {x̂1} × X ′2 (21) yields the second inequality in (19); the first inequality in (19) is
evident due to x2,t ∈ X ′2.
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3 Composite Mirror Prox Algorithm

3.1 The situation

Let U be a nonempty closed convex domain in a Euclidean space Eu, Ev be a Euclidean space, and X
be a nonempty closed convex domain in E = Eu × Ev. We denote vectors from E by x = [u; v] with
blocks u, v belonging to Eu and Ev, respectively.

We assume that

A1: Eu is equipped with a norm ‖ · ‖, the conjugate norm being ‖ · ‖∗, and U is equipped with
a distance-generating function (d.g.f.) ω(·) (that is, with a continuously differentiable convex
function ω(·) : U → R) which is compatible with ‖ · ‖, meaning that ω is strongly convex,
modulus 1, w.r.t. ‖ · ‖.
Note that d.g.f. ω defines the Bregman distance

Vu(w) := ω(w)− ω(u)− 〈ω′(u), w − u〉 ≥ 1

2
‖w − u‖2, u, w ∈ U, (22)

where the concluding inequality follows from strong convexity, modulus 1, of the d.g.f. w.r.t.
‖ · ‖.
In the sequel, we refer to the pair ‖ · ‖, ω(·) as to proximal setup for U .

A2: the image PX of X under the projection x = [u; v] 7→ Px := u is contained in U .

A3: we are given a vector field F (u, v) : X → E on X of the special structure as follows:

F (u, v) = [Fu(u);Fv],

with Fu(u) ∈ Eu and Fv ∈ Ev. Note that F is independent of v.

We assume also that

∀u, u′ ∈ U : ‖Fu(u)− Fu(u′)‖∗ ≤ L‖u− u′‖+M (23)

with some L <∞, M <∞.

A4: the linear form 〈Fv, v〉 of [u; v] ∈ E is bounded from below on X and is coercive on X w.r.t. v:
whenever [ut; vt] ∈ X, t = 1, 2, ... is a sequence such that {ut}∞t=1 is bounded and ‖vt‖2 →∞ as
t→∞, we have 〈Fv, vt〉 → ∞, t→∞.

Our goal in this section is to show that in the situation in question, proximal type processing F
(say, F is monotone on X, and we want to solve the variational inequality given by F and X) can be
implemented “as if” there were no v-components in the domain and in F .

A generic application we are aiming at is as follows. We want to solve a “composite” saddle point
problem

SadVal = min
u1∈U1

max
u2∈U2

[φ(u1, u2) + Ψ1(u1)−Ψ2(u2)] , (24)

where

• U1 ⊂ E1 and U2 ⊂ E2 are nonempty closed convex sets in Euclidean spaces E1, E2

• φ is a smooth (with Lipschitz continuous gradient) convex-concave function on U1 × U2

7



• Ψ1 : U1 → R and Ψ2 : U2 → R are convex functions, perhaps nonsmooth, but “fitting” the
domains U1, U2 in the following sense: for i = 1, 2, we can equip Ei with a norm ‖ · ‖(i), and Ui
- with a compatible with this norm d.g.f. ωi(·) in such a way that optimization problems of the
form

min
ui∈Ui

[αωi(ui) + βΨi(ui) + 〈ξ, ui〉] [α > 0, β > 0] (25)

are easy to solve.

Our ultimate goal is to solve (24) “as if” there were no (perhaps) nonsmooth terms Ψi. With our
approach, we intend to “get rid” of the nonsmooth terms by “moving” them into the description of
problem’s domains. To this end, we act as follows:

• For i = 1, 2, we set Xi = {xi = [ui; vi] ∈ Ei ×R : ui ∈ Ui, vi ≥ Ψi(ui)} and set

U := U1 × U2 ⊂ Eu := E1 × E2, Ev = R2,
X = {x = [u = [u1;u2]; v = [v1; v2]] : ui ∈ Ui, vi ≥ Ψi(ui), i = 1, 2} ⊂ Eu × Ev,

thus ensuring that PX ⊂ U , where P [u; v] = u;

• We rewrite the problem of interest equivalently as

SadVal = min
x1=[u1;v1]∈X1

max
x2=[u2;v2]∈X2

[Φ(u1, v1;u2, v2) = φ(u1, u2) + v1 − v2] (26)

Note that Φ is convex-concave and smooth. The associated monotone operator is

F (u = [u1;u2], v = [v1; v2]) = [Fu(u) = [∇u1φ(u1, u2);−∇u2φ(u1, u2)];Fv = [1; 1]]

and is of the structure required in A3. Note that F is Lipschitz continuous, so that (23) is
satisfied with properly selected L and with M = 0.

We intend to process the reformulated saddle point problem (26) with a properly modified state-of-the-
art Mirror Prox (MP) saddle point algorithm [17]. In its basic version and as applied to a variational
inequality with Lipschitz continuous monotone operator (in particular, to a convex-concave saddle
point problem with smooth cost function), this algorithm exhibits O(1/t) rate of convergence, which
is the best rate achievable with First Order saddle point algorithms as applied to large-scale saddle
point problems (even those with bilinear cost function). The basic MP would require to equip the
domain X = X1 ×X2 of (26) with a d.g.f. ω(x1, x2) resulting in an easy-to-solve auxiliary problems
of the form

min
x=[u1;u2;v1;v2]∈X

[ω(x) + 〈ξ, x〉] , (27)

which would require to “account nonlinearly” for the v-variables (since ω should be a strongly convex
in both u- and v-variables). While it is easy to construct ω from our postulated “building blocks”
ω1, ω2 leading to easy-to-solve problems (25), this construction results in auxiliary problems (27)
somehow more complicated than problems (25). To overcome this difficulty, below we develop a
“composite” Mirror Prox algorithm taking advantage of the special structure of F , as expressed in
A3, and preserving the favorable efficiency estimates of the prototype. The modified MP operates
with the auxiliary problems of the form

min
x=[u1;u2;v1;v2]∈X1×X2

2∑
i=1

[αiωi(ui) + βivi + 〈ξi, ui〉] , [αi > 0, βi > 0]

8



that is, with pairs of uncoupled problems

min
[ui;vi]∈Xi

[αiωi(ui) + βivi + 〈ξi, ui〉] , i = 1, 2;

recalling that Xi = {[ui; vi] : ui ∈ Ui, vi ≥ Ψi(ui)}, these problems are nothing but the easy-to-solve
problems (25).

3.2 Composite Mirror-Prox algorithm

Given the situation described in section 3.1, we define the associated prox-mapping: for ξ = [η; ζ] ∈ E
and x = [u; v] ∈ X,

Px(ξ) ∈ Argmin
[s;w]∈X

{
〈η − ω′(u), s〉+ 〈ζ, w〉+ ω(s)

}
≡ Argmin

[s;w]∈X
{〈η, s〉+ 〈ζ, w〉+ Vu(s)} (28)

Observe that Px([η; γFv]) is well defined whenever γ > 0 – the required Argmin is nonempty due to
the strong convexity of ω on U and assumption A4 (for verification, see item 0o in Appendix A). Now
consider the process as follows:

x1 := [u1; v1] ∈ X;
yτ := [u′τ ; v′τ ] = Pxτ (γτF (xτ )) = Pxτ (γτ [Fu(uτ );Fv])

xτ+1 := [uτ+1; vτ+1] = Pxτ (γτF (yτ )) = Pxτ (γτ [Fu(u′τ );Fv]),
(29)

where γτ > 0; the latter relation, due to the above, implies that the recurrence (29) is well defined.

Theorem 3.1 In the setting of section 3.1, assuming that A1–A4 hold, consider the Composite
Mirror Prox recurrence (29) (CoMP) with stepsizes γτ > 0, τ = 1, 2, ... satisfying the relation:

δτ := γτ 〈Fu(u′τ )− Fu(uτ ), u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ ) ≤ γ2
τM

2. (30)

Then the corresponding execution protocol It = {yτ , F (yτ )}tτ=1 admits accuracy certificate λt = {λtτ =
γτ/

∑t
i=1 γi} such that for every X ′ ⊂ X it holds

Res(X ′
∣∣It, λt) ≤ Θ[X ′] +M2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
, Θ[X ′] = sup

[u;v]∈X′
Vu1(u). (31)

Relation (30) is definitely satisfied when 0 < γτ ≤ (
√

2L)−1, or, in the case of M = 0, when γτ ≤ L−1.

Invoking Propositions 2.1, 2.2, we arrive at the following

Corollary 3.1 Under the premise of Theorem 3.1, for every t = 1, 2, ..., setting

xt = [ut; vt] =
1∑t

τ=1 γτ

t∑
τ=1

γτyτ .

we ensure that xt ∈ X and that
(i) In the case when F is monotone on X, we have

εVI(x
t
∣∣X,F ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ

]
. (32)
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(ii) Let X = X1×X2, and let F be the monotone vector field associated with the saddle point problem
(14) with convex-concave locally Lipschitz continuous cost function Φ. Then

εSad(xt
∣∣X1, X2,Φ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ

]
. (33)

In addition, assuming that problem (P ) in (15) is solvable with optimal solution x1
∗ and denoting by

x1,t the projection of xt ∈ X = X1 ×X2 onto X1, we have

Φ(x1,t)−Opt(P ) ≤
[∑t

τ=1
γτ

]−1 [
Θ[{x1

∗} ×X2] +M2
∑t

τ=1
γ2
τ

]
. (34)

Remark 3.1 When F is Lipschitz continuous (that is, (23) holds true with some L > 0 and M = 0),
the requirements on the stepsizes imposed in the premise of Theorem 3.1 reduce to δτ ≤ 0 for all τ and
are definitely satisfied with the constant stepsizes γτ = 1/L. Thus, in the case under consideration we
can assume w.l.o.g. that γτ ≥ 1/L, thus ensuring that the upper bound on Res(X ′

∣∣It, λt) in (31) is
≤ Θ[X ′]Lt−1. As a result, (34) becomes

Φ(x1,t)−Opt(P ) ≤ Θ[{x1
∗} ×X2]Lt−1. (35)

3.3 Modifications

In this section, we demonstrate that in fact our algorithm admits some freedom in building approximate
solutions, freedom which can be used to improve to some extent solutions’ quality. Modifications to
be presented originate from [19]. We assume that we are in the situation described in section 3.1, and
assumptions A1 – A4 are in force. In addition, we assume that

A5: The vector field F described in A3 is monotone, and the variational inequality given by (X,F )
has a weak solution:

∃x∗ = [u∗; v∗] ∈ X : 〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X (36)

Lemma 3.1 In the situation from section 3.1 and under assumptions A1 – A5, for R ≥ 0 let us set

Θ̂(R) = max
u,u′∈U

{
Vu(u′) : ‖u− u1‖ ≤ R, ‖u′ − u1‖ ≤ R

}
(37)

(this quantity is finite since ω is continuously differentiable on U), and let

{xτ = [uτ ; vτ ] : τ ≤ N + 1, yτ : τ ≤ N}

be the trajectory of the N -step Mirror Prox algorithm (29) with stepsizes γτ > 0 which ensure (30) for
τ ≤ N . Then for all u ∈ U and t ≤ N + 1,

0 ≤ Vut(u) ≤ Θ̂(max[RN , ‖u− u1‖]), RN := 2

(
2Vu1(u∗) +M2

N−1∑
τ=1

γ2
τ

)1/2

, (38)

with u∗ defined in (36).

Proposition 3.1 In the situation of section 3.1 and under assumptions A1 – A5, let N be a positive
integer, and let IN = {yτ , F (yτ )}Nτ=1 be the execution protocol generated by N -step Composite Mirror
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Prox recurrence (29) with stepsizes γτ ensuring (30). Let also λN = {λ1, ..., λN} be a collection of
positive reals summing up to 1 and such that

λ1/γ1 ≤ λ2/γ2 ≤ ... ≤ λN/γN . (39)

Then for every R ≥ 0, with XR = {x = [u; v] ∈ X : ‖u− u1‖ ≤ R} one has

Res(XR|IN , λN ) ≤ λN
γN

Θ̂(max[RN , R]) +M2
N∑
τ=1

λτγτ , (40)

with Θ̂(·) and RN defined by (37) and (38).

Invoking Propositions 2.1, 2.2, we arrive at the following modification of Corollary 3.1.

Corollary 3.2 Under the premise and in the notation of Proposition 3.1, setting

xN = [uN ; vN ] =

N∑
τ=1

λτyτ .

we ensure that xN ∈ X. Besides this,
(i) Let X ′ be a closed convex subset of X such that xN ∈ X ′ and the projection of X ′ on the u-space
is contained in ‖ · ‖-ball of radius R centered at u1. Then

εVI(x
N
∣∣X ′, F ) ≤ λN

γN
Θ̂(max[RN , R]) +M2

N∑
τ=1

λτγτ . (41)

(ii) Let X = X1 × X2 and F be the monotone vector field associated with saddle point problem (14)
with convex-concave locally Lipschitz continuous cost function Φ. Let, further, X ′i be closed convex
subsets of Xi, i = 1, 2, such that xN ∈ X ′1 × X ′2 and the projection of X ′1 × X ′2 onto the u-space is
contained in ‖ · ‖-ball of radius R centered at u1. Then

εSad(xN
∣∣X ′1, X ′2,Φ) ≤ λN

γN
Θ̂(max[RN , R]) +M2

∑N

τ=1
λτγτ . (42)

4 Multi-Term Composite Minimization

In this section, we focus on the problem (3), (6) of multi-term composite minimization.

4.1 Problem setting

We intend to consider problem (3), (6) in the situation as follows. For a nonnegative integer K and
0 ≤ k ≤ K we are given

1. Euclidean spaces Ek and Ek along with their nonempty closed convex subsets Yk and Zk, re-
spectively;

2. Proximal setups for (Ek, Yk) and (Ek, Zk), that is, norms pk(·) on Ek, norms qk(·) on Ek, and
d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R compatible with pk(·) and qk(·), respectively;

3. Affine mappings y0 7→ Aky
0 + bk : E0 → Ek, where y0 7→ A0y

0 + b0 is the identity mapping on
E0;

11



4. Lipschitz continuous convex functions ψk(y
k) : Yk → R along with their saddle point represen-

tations

ψk(y
k) = sup

zk∈Zk
[φk(y

k, zk)−Ψk(z
k)], 0 ≤ k ≤ K, (43)

where φk(y
k, zk) : Yk × Zk → R are smooth (with Lipschitz continuous gradients) functions

convex in yk ∈ Yk and concave in zk ∈ Zk, and Ψk(z
k) : Zk → R are Lipschitz continuous

convex functions such that the problems of the form

min
zk∈Zk

[
ωk(z

k) + 〈ξk, zk〉+ αΨk(z
k)
]

[α > 0] (44)

are easy to solve;

5. Lipschitz continuous convex functions Ψk(y
k) : Yk → R such that the problems of the form

min
yk∈Yk

[
ωk(y

k) + 〈ξk, yk〉+ αΨk(y
k)
]

[α > 0] (45)

are easy to solve;

6. For 1 ≤ k ≤ K, the norms π∗k(·) on Ek are given, with conjugate norms πk(·), along with d.g.f.’s
ω̂k(·) : Wk := {wk ∈ Ek : πk(w

k) ≤ 1} → R which are strongly convex, modulus 1, w.r.t. πk(·)
such that the problems

min
wk∈Wk

[
ω̂k(w

k) + 〈ξk, wk〉
]

(46)

are easy to solve.

The outlined data define the sets

Y +
k = {[yk; τk] : yk ∈ Yk, τk ≥ Ψk(y

k)} ⊂ E+
k := Ek ×R, 0 ≤ k ≤ K,

Z+
k = {[zk;σk] : zk ∈ Zk, σk ≥ Ψk(z

k)} ⊂ E+
k := Ek ×R, 0 ≤ k ≤ K.

The problem of interest (3), (6) along with its saddle point reformulation in the just defined
situation read

Opt = min
y0∈Y0

{
f(y0) :=

K∑
k=0

[
ψk(Aky

0 + bk) + Ψk(Aky
0 + bk)

]}
(47a)

= min
y0∈Y0

{
f(y0) = max

{zk∈Zk}Kk=0

K∑
k=0

[
φk(Aky

0 + bk, z
k) + Ψk(Aky

0 + bk)−Ψk(z
k)
]}

(47b)

which we rewrite equivalently as

Opt = min
{[yk;τk]}K

k=0

∈Y+
0 ×···×Y

+
K

max
{[zk;σk]}K

k=0

∈Z+
0 ×···×Z

+
K

{
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

: yk = Aky
0 + bk, 1 ≤ k ≤ K

}
. (47c)

From now on we make the following assumptions

B1: We have AkY0 + bk ⊂ Yk, 1 ≤ k ≤ K;
B2: For 0 ≤ k ≤ K, the sets Zk are bounded. Further, the functions Ψk are below bounded
on Yk, and the functions fk = ψk + Ψk are coercive on Yk: whenever ykt ∈ Yk, t = 1, 2, ...,
are such that pk(y

k
t )→∞ as t→∞, we have fk(y

k
t )→∞.

Note that B1 and B2 imply that the saddle point problem (47c) is solvable; let {[yk∗ ; τk∗ ]}0≤k≤K ; {[zk∗ ;σk∗ ]}0≤k≤K
be the corresponding saddle point.
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4.2 Course of actions

Given ρk > 0, 1 ≤ k ≤ K, we approximate (47c) by the problem

Ôpt = min
{[yk;τk]}K

k=0

∈Y+
0 ×···×Y

+
K

max
{[zk;σk]}K

k=0

∈Z+
0 ×···×Z

+
K

{
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

+
K∑
k=1

ρkπ
∗
k(y

k −Aky0)

}
. (48a)

= min
x1∈X1

:=Y+
0 ×···×Y

+
K

max
x2∈X2

:=Z+
0 ×···×Z

+
K
×W1×···WK

Φ

(
{[yk; τk]}Kk=0︸ ︷︷ ︸

x1

,
[
{[zk;σk]}Kk=0; {wk}Kk=1

]
︸ ︷︷ ︸

x2

)
(48b)

where

Φ(x1, x2) =
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

+
K∑
k=1

ρk〈wk, yk −Aky0 − bk〉.

Observe that the monotone operator F (x1, x2) = [F1(x1, x2);F2(x1, x2)] associated with the saddle
point problem in (48b) is given by

F1(x1, x2) =

[
∇y0φ0(y0, z0)−

K∑
k=1

ρkA
T
kw

k; 1;
{
∇ykφk(yk, zk) + ρkw

k; 1
}K
k=1

]
,

F2(x1, x2) =

[{
−∇zkφk(yk, zk); 1

}K
k=0

;
{
−ρk[yk −Aky0 − bk]

}K
k=1

]
.

(49)

Now let us set

• U =

{
u = [y0; ...; yK ; z0; ...; zK ;w1; ...;wK ] : yk ∈ Yk, zk ∈ Zk, 0 ≤ k ≤ K,

πk(w
k) ≤ 1, 1 ≤ k ≤ K

}

• X =

{
x =

[
u = [y0; ...; yK ; z1; ...; zK ;w1; ...;wK ]; v = [τ0; ...; τK ;σ0; ...;σK ]

]
:

u ∈ U, τk ≥ Ψk(y
k), σk ≥ Ψk(z

k), 0 ≤ k ≤ K

}
,

so that PX ⊂ U , cf. assumption A2 in section 3.1.

The variational inequality associated with the saddle point problem in (48b) can be treated as the
variational inequality on the domain X with the monotone operator

F (x = [u; v]) = [Fu(u);Fv],

where

Fu([y0; ...; yK ; z0; ...; zK ; w1; ...;wK ]︸ ︷︷ ︸
u

) =


∇yφ0(y0, z0)−

K∑
k=1

ρkA
T
kw

k{
∇yφk(yk, zk) + ρkw

k
}K
k=1{

−∇zφk(yk, zk
}K
k=0{

−ρk[yk −Aky0 − bk]
}K
k=1


Fv([τ

0; ...; τK ;σ0; ...;σK ]︸ ︷︷ ︸
v

) = [1; ...; 1].

(50)

This operator meets the structural assumptions A3 and A4 from section 3.1 (A4 is guaranteed by
B2). We can equip U and its embedding space Eu with the proximal setup ‖ · ‖, ω(·) given by

‖u‖ =
√∑K

k=0[αkp
2
k(y

k) + βkq
2
k(z

k)] +
∑K

k=1 γkπ
2
k(w

k),

ω(u) =
∑K

k=0[αkωk(y
k) + βkωk(z

k)] +
∑K

k=1 γkω̂k(w
k),

(51)
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where αk, βk, 0 ≤ k ≤ K, and γk, 1 ≤ k ≤ K, are positive aggregation parameters. Observe that
carrying out a step of the CoMP algorithm presented in section 3.2 requires computing F at O(1)
points of X and solving O(1) auxiliary problems of the form

min
[y0;...;yK ;z0;...;zK ],

[;w1;...;wK ;τ0;...;τK ;σ0;...σK ]

{
K∑
k=0

[
akωk(y

k) + 〈ξk, yk〉+ bkτ
k
]

+
K∑
k=0

[
ckωk(z

k) + 〈ηk, zk〉+ dkσ
k
]

+
K∑
k=1

[
ekω̂k(w

k) + 〈ζk, wk〉
]}

:

yk ∈ Yk, τk ≥ Ψk(y
k), zk ∈ Zk, σk ≥ Ψk(y

k), 0 ≤ k ≤ K, πk(wk) ≤ 1, 1 ≤ k ≤ K,

with positive ak, ..., ek, and we have assumed that these problems are easy to solve.

4.3 “Exact penalty”

Let us make one more assumption:

C: For 1 ≤ k ≤ K,

• ψk are Lipschitz continuous on Yk with constants Gk w.r.t. π∗k(·),
• Ψk are Lipschitz continuous on Yk with constants Hk w.r.t. π∗k(·).

Given a feasible solution x = [x1;x2], x1 := {[yk; τk] ∈ Y +
k }

K
k=0 to the saddle point problem (48b), let

us set
ŷ0 = y0; ŷk = Aky

0 + bk, 1 ≤ k ≤ K; τ̂k = Ψk(ŷ
k), 0 ≤ k ≤ K,

thus getting another feasible (by assumption B1) solution x̂ =
[
x̂1 = {[ŷk; τ̂k]}Kk=0; x2

]
to (48b). We

call x̂1 correction of x1. For 1 ≤ k ≤ K we clearly have

ψk(ŷ
k) ≤ ψk(y

k) +Gkπ
∗
k(ŷ

k − yk) = ψk(y
k) +Gkπ

∗
k(y

k −Aky0 − bk),
τ̂k = Ψk(ŷ

k) ≤ Ψk(y
k) +Hkπ

∗
k(ŷ

k − yk) ≤ τk +Hkπ
∗
k(y

k −Aky0 − bk),

and τ̂0 = Ψ0(y0) ≤ τ0. Hence for Φ(x1) = max
x2∈X2

Φ(x1, x2) we have

Φ(x̂1) ≤ Φ(x1) +
K∑
k=1

[Hk +Gk]π
∗
k(y

k −Aky0 − bk)−
K∑
k=1

ρkπ
∗
k(y

k −Aky0 − bk).

We see that under the condition
ρk ≥ Gk +Hk, 1 ≤ k ≤ K, (52)

correction does not increase the value of the primal objective of (48b), whence the saddle point value

Ôpt of (48b) is ≥ the optimal value Opt in the problem of interest (47a). Since the opposite inequality
is evident, we arrive at the following

Proposition 4.1 In the situation of section 4.1 let assumptions B1, B2, C and (47a) hold true.
Then

(i) the optimal value Ôpt in (48a) coincides with the optimal value Opt in the problem of interest
(47a);
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(ii) consequently, if x = [x1;x2] is a feasible solution of the saddle point problem in (48b), then the
correction x̂1 = {[ŷk; τ̂k]}Kk=0 of x1 is a feasible solution to the problem of interest (47c), and

f(ŷ0)−Opt ≤ εSad(x
∣∣X1, X2,Φ), (53)

where ŷ0(= y0(x̂1)) is the “y0-component” of x̂1;

As a corollary, under the premise of Proposition 4.1, when applying to the saddle point problem
(48b) the CoMP algorithm induced by the above setup and passing “at no cost” from the approximate
solutions xt = [x1,t;x2,t] generated by CoMP to the corrections x̂1,t of x1,t’s, we get feasible solutions
to the problem of interest (47a) satisfying the error bound

f(y0(x̂1,t))−Opt ≤ Θ[x1
∗ ×X2]L

t
, t = 1, 2, ... (54)

where L is the Lipschitz constant of Fu(·) induced by the norm ‖ · ‖ given by (51), and Θ[·] is induced
by the d.g.f. given by the same (51) and the u = [y0; ...; yK ; z0; ...zK ;w1; ...;wK ] -component of the
starting point. Note that Wk and Zk are compact, whence Θ[x1

∗ ×X2] is finite.

Remark. Note that the value of the penalty in (52) which guarantees the validity of correction
(the bound (53) of Proposition 4.1) may be very conservative. When implementing the algorithm
the coefficients ρk of penalization can be adjusted on-line. Indeed, let Φ(x1) = supx2∈X2

Φ(x1, x2) (cf

(15)). We always have Ôpt ≤ Opt. It follows that independently of how ρk are selected, we have

f(ŷ0)−Opt ≤ [f(ŷ0)− Φ(x1)]︸ ︷︷ ︸
ε1

+
[
Φ(x1)− Ôpt

]
︸ ︷︷ ︸

ε2

(55)

for every feasible solution x1 = {[yk; τk]}Kk=0 to (48b) and the same inequality holds for its correction
x̂1 = {[ŷk; τ̂k]}Kk=0. When x1 is a component of a good (with small εSad) approximate solution to
the saddle point problem (48b), ε2 is small. If ε1 also is small, we are done; otherwise we can either
increase in a fixed ratio the current values of all ρk, or only of those ρk for which passing from [yk; τk]
to [ŷk; τ̂k] results in “significant” quantities

[ψk(ŷ
k) + τ̂k]− [ψk(y

k) + τk + ρkπ
∗
k(y

k −Aky0 − bk)]

and solve the updated saddle point problem (48b).

4.4 Numerical illustrations

4.4.1 Matrix completion

Problem of interest. In the experiments to be reported, we applied the just outlined approach to
Example 1, that is, to the problem

Opt = min
y0∈Rn×n

[
υ(y0) =

1

2
‖PΩy

0 − b‖22︸ ︷︷ ︸
ψ0(y0)

+λ‖y0‖1︸ ︷︷ ︸
Ψ0(y0)

+µ‖y0‖nuc︸ ︷︷ ︸
Ψ1(y0)

]
.

(56)

where Ω is a given set of cells in an n× n matrix, and PΩy is the restriction of y ∈ Rn×n onto Ω; this
restriction is treated as a vector from RM , M = Card(Ω). Thus, (56) is a kind of matrix completion
problem where we want to recover a sparse and low rank n × n matrix given noisy observations b of
its entries in cells from Ω. Note that (56) is a special case of (47b) with K = 1, Y0 = Y1 = E0 = E1 =
Rn×n, the identity mapping y0 7→ A1y

0, and φ0(y0, z0) ≡ ψ0(y0), φ1 ≡ 0 (so that Zk can be defined
as singletons, and Ψk(·) set to 0, k = 0, 1).
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Implementing the CoMP algorithm. When implementing the CoMP algorithm, we used the
Frobenius norm ‖ · ‖F on Rn×n in the role of p0(·), p1(·) and π1(·), and the function 1

2‖ · ‖
2
F in the role

of d.g.f.’s ω0(·), ω1(·), ω̂1(·).
The aggregation weights in (51) were chosen as α0 = α1 = 1/D and γ1 = 1, where D is a guess

of the quantity D∗ := ‖y0
∗‖F , where y0

∗ is the optimal solution (56). With D = D∗, our aggregation
would roughly optimize the right hand side in (54), provided the starting point is the origin.

The coefficient ρ1 in (48b) was adjusted dynamically as explained at the end of section 4.3. Specif-
ically, we start with a small (0.001) value of ρ1 and restart the solution process, increasing by factor
3 the previous value of ρ1, each time when the x1-component x of current approximate solution and
its correction x̂ violate the inequality υ(y0(x̂)) ≤ (1 + κ)Φ(x) for some small tolerance κ (we used
κ = 1.e-4), cf. (55).

The stepsizes γt in the CoMP algorithm were adjusted dynamically, specifically, as follows. At a
step τ , given a current guess γ for the stepsize, we set γτ = γ, perform the step and check whether
δτ ≤ 0. If this is the case, we pass to step τ + 1, the new guess for the stepsize being 1.2 times the old
one. If δτ is positive, we decrease γτ in a fixed proportion (in our implementation – by factor 0.8),
repeat the step, and proceed in this fashion until the resulting value of δτ becomes nonpositive. When
it happens, we pass to step τ + 1, and use the value of γτ we have ended up with as our new guess for
the stepsize.

In all our experiments, the starting point was given by the matrix ŷ := P ∗Ωb (“observations of entries
in cells from Ω and zeros in all other cells”) according to y0 = y1 = ŷ, τ0 = λ‖ŷ‖1, τ1 = µ‖ŷ‖nuc,
w1 = 0.

Lower bounding the optimal value. When running the CoMP algorithm, we at every step t
have at our disposal an approximate solution y0,t to the problem of interest (59); y0,t is nothing but
the y0-component of the approximate solution xt generated by CoMP as applied to the saddle point
approximation of (59) corresponding to the current value of ρ1, see (49). We have at our disposal
also the value υ(y0,t) of the objective of (56) at y0,t; this quantity is a byproduct of checking whether
we should update the current value of ρ1

3. As a result, we have at our disposal the best found
so far value υt = min1≤τ≤t υ(y0,τ ), along with the corresponding value y0,t

∗ of y0: υ(y0,t
∗ ) = υt. In

order to understand how good is the best generated so far approximate solution y0,t
∗ to the problem

of interest, we need to upper bound the quantity υt − Opt, or, which is the same, to lower bound
Opt. This is a nontrivial task, since the domain of the problem of interest is unbounded, while the
usual techniques for online bounding from below the optimal value in a convex minimization problem
require the domain to be bounded. We are about to describe a technique for lower bounding Opt
utilizing the structure of (56).

Let y0
∗ be an optimal solution to (56) (it clearly exists since ψ0 ≥ 0 and λ, µ > 0). Assume that at

a step t we have at our disposal an upper bound R = Rt on ‖y0
∗‖1, and let

R+ = max[R, ‖y0,t‖1].

Let us look at the saddle point approximation of the problem of interest

Ôpt = min
x1=[y0;τ0;y1;τ1]∈X̂1

max
x2∈X2

[
Φ(x1, x2) := ψ0(y0) + τ0 + τ1 + ρ1〈y1 − y0, x2〉

]
,

X1 = {[y0; τ0; y1; τ1] : τ0 ≥ λ‖y0‖1, τ1 ≥ µ‖y1‖nuc}, X2 = {x2 : ‖x2‖F ≤ 1}.
(57)

associated with current value of ρ1, and let

X̂1 = {[y0; τ0; y1; τ1] ∈ X1 : τ0 ≤ λR+, τ1 ≤ µR+}.
3With our implementation, we run this test for both search points and approximate solutions generated by the

algorithm
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Observe that the point x1,∗ = [y0
∗;λ‖y0

∗‖1; y0
∗;µ‖y0

∗‖nuc] belongs to X̂1 (recall that ‖ · ‖nuc ≤ ‖ · ‖1) and
that

Opt = υ(y0
∗) ≥ Φ(x1,∗), Φ(x1) = max

x2∈X2

Φ(x1, x2).

It follows that
Ôpt := min

x1∈X̂1

Φ(x1) ≤ Opt.

Further, by Proposition 2.2 as applied to X ′1 = X̂1 and X ′2 = X2 we have4

Φ(x1,t)− Ôpt ≤ Res(X̂1 ×X2

∣∣It, λt),
where It is the execution protocol generated by CoMP as applied to the saddle point problem (57)
(i.e., since the last restart preceding step t till this step), and λt is the associated accuracy certificate.
We conclude that

`t := Φ(x1,t)− Res(X̂1 ×X2

∣∣It, λt) ≤ Ôpt ≤ Opt,

and `t is easy to compute (since the resolution is just the maximum of a readily given by It, λt affine
function over X̂1 ×X2). Setting υt = maxτ≤t `τ , we get nondecreasing with t lower bounds on Opt.
Note that this component of our lower bounding is independent of the particular structure of ψ0.

It remains to explain how to get an upper bound R on ‖y0
∗‖1, and this is where the special structure

of ψ0(y) = 1
2‖PΩy − b‖22 is used. Recalling that b ∈ RM , let us set

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : ‖v‖1 ≤ r

}
, r ≥ 0,

It is immediately seen that replacing the entries in b by their magnitudes, ϑ(·) remains intact, and
that for b ≥ 0 we have

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : v ≥ 0,

∑
i

vi ≤ r

}
,

so that ϑ(·) is an easy to compute nonnegative and nonincreasing convex function of r ≥ 0. Now, by
definition of PΩ, the function ϑ+(‖y0‖1) where

ϑ+(r) = λr + ϑ(r)

is a lower bound on υ(y0). As a result, given an upper bound υt on Opt = υ(y∗), the easy-to-compute
quantity

Rt := max{r : ϑ+(r) ≤ υt}

is an upper bound on ‖y0
∗‖1. Since υt is nonincreasing in t, Rt is nonincreasing in t as well.

Generating the data. In the experiments to be reported, the data of (56) were generated as
follows. Given n, we build “true” n × n matrix y# =

∑k
i=1 eif

T
i , with k = bn/4c and vectors

ei, fi ∈ Rn sampled, independently of each other, as follows: we draw a vector from the standard
Gaussian distribution N (0, In), and then zero out part of the entries, with probability of replacing a
particular entry with zero selected in such a way that the sparsity of y# is about a desired level (in
our experiments, we wanted y# to have about 10% of nonzero entries). The set Ω of “observed cells”
was built at random, with probability 0.25 for a particular cell to be in Ω. Finally, b was generated

4note that the latter relation implies that what was denoted by Φ̃ in Proposition 2.2 is nothing but Φ.
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as PΩ(y# + σξ), where the entries of ξ ∈ Rn×n were independently of each other drawn from the
standard Gaussian distribution, and

σ = 0.1

∑
i,j |[y#]ij |
n2

.

We used λ = µ = 10σ.5 Finally, our guess for the Frobenius norm of the optimal solution to (56)
is defined as follows. Note that the quantity ‖b‖22 −Mσ2 is an estimate of ‖PΩy#‖22. We define the
estimate D of D∗ := ‖y∗‖F “as if” the optimal solution were y#, and all entries of y# were of the
same order of magnitude

D =

√
n2

M
max[‖b‖22 −Mσ2, 1], M = Card(Ω).

Numerical results. The results of the first series of experiments are presented in Table 1. The
comments are as follows.

In the “small” experiment (n = 128, the largest n where we were able to solve (56) in a reasonable
time by CVX [13] using the state-of-the-art mosek [1] Interior-Point solver and thus knew the “exact”
optimal value), CoMP exhibited fast convergence: relative accuracies 1.1e-3 and 6.2e-6 are achieved
in 64 and 4096 steps (1.2 sec and 74.9 sec, respectively, as compared to 4756.7 sec taken by CVX).

In larger experiments (n = 512 and n = 1024, meaning design dimensions 262,144 and 1,048,576,
respectively), the running times look moderate, and the convergence pattern of the CoMP still looks
promising6. Note that our lower bounding, while somehow working, is very conservative: it overesti-
mates the “optimality gap” υt − υt by 2-3 orders of magnitude for moderate and large values of t in
the 128 × 128 experiment. More accurate performance evaluation would require a less conservative
lower bounding of the optimal value (as of now, we are not aware of any alternative).

In the second series of experiments, the data of (56) were generated in such a way that the true
optimal solution and optimal value to the problem were known from the very beginning. To this end
we take as Ω the collection of all cells of an n× n matrix, which, via optimality conditions, allows to
select b making our “true” matrix y# the optimal solution to (56). The results are presented in Table
2.

It should be mentioned that in these experiments the value of ρ1 resulting in negligibly small, as
compared to ε2, values of ε1 in (55) was found in the first 10-30 steps of the algorithm, with no restarts
afterwards.

Remarks. For the sake of simplicity, so far we were considering problem (56), where minimization
is carried out over y0 running through the entire space Rn×n of n× n matrices. What happens if we
restrict y0 to reside in a given closed convex domain Y0?

It is immediately seen that the construction we have presented can be straightforwardly modified
for the cases when Y0 is a centered at the origin ball in the Frobenius or ‖ ·‖1 norm, or the intersection
of such a set with the space of symmetric n × n matrices. We could also handle the case when Y0 is
the centered at the origin nuclear norm ball (or intersection of this ball with the space of symmetric
matrices, or with the cone of positive semidefinite symmetric matrices), but to this end one needs to

5If the goal of solving (56) were to recover y#, our λ and µ would, perhaps, be too large. Our goal, however, was
solving (56) as an “optimization beast,” and we were interested in “meaningful” contribution of Ψ0 and Ψ1 to the
objective of the problem, and thus in not too small λ and µ.

6Recall that we do not expect linear convergence, just O(1/t) one.
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t 8 16 32 64 128 256 512 1024 2048 4096

CPU, sec 0.1 0.3 0.6 1.2 2.3 4.7 9.4 18.7 37.5 74.9

υt −Opt 2.0e-2 1.8e-2 1.8e-2 1.4e-2 5.3e-3 5.0e-3 1.3e-3 7.8e-4 3.2e-4 8.3e-5
υt − υt 4.8e0 4.5e0 4.2e0 3.7e0 2.1e0 6.3e-1 2.1e-1 1.3e-1 6.0e-2 3.4e-2

υt−Opt
Opt

1.5e-3 1.3e-3 1.3e-3 1.1e-3 4.0e-4 3.7e-4 9.5e-5 5.8e-5 2.4e-5 6.2e-6

υt−υt
υ4096

3.6e-1 3.4e-1 3.2e-1 2.8e-1 1.5e-1 4.7e-2 1.6e-2 9.4e-3 4.5e-3 2.6e-3

υ1−Opt
υt−Opt

4.8e1 5.4e1 5.4e1 6.7e1 1.8e2 1.9e2 7.5e2 1.2e3 2.9e3 1.1e4

υ1−υ1
υt−υt

3.0e0 3.2e0 3.7e0 3.9e0 6.9e0 2.3e1 6.7e1 1.1e2 2.4e2 4.1e2

(a) n = 128, Opt = 13.28797 (CVX CPU 4756.7 sec)

t 8 16 32 64 128 256 512 1024 2048
CPU, sec 3.7 7.5 15.0 29.9 59.8 119.6 239.2 478.4 992.0
υt − υt 4.4e1 4.4e1 4.3e1 4.2e1 4.1e1 3.7e1 2.3e1 1.2e1 5.1e0
υt−υt
υ1024

2.4e-1 2.4e-1 2.4e-1 2.4e-1 2.2e-1 2.0e-1 1.3-1 6.4e-2 2.8e-2

υ1−υ1
υt−υt

4.4e0 4.4e0 4.5e0 4.6e0 4.8e0 5.5e0 8.5e0 1.7e1 3.8e1

(b) n = 512, υ2048 = 175.445 ≤ Opt ≤ υ2048 = 180.503 (CVX not tested)

t 8 16 32 64 128 256 512 1024
CPU, sec 23.5 46.9 93.8 187.6 375.3 750.6 1501.2 3002.3
υt − υt 1.5e2 1.5e2 1.3e2 1.2e2 1.1e2 8.0e1 1.6e1 5.4e0
υt−υt
υ1024

2.4e-1 2.2e-1 2.2e-1 1.9e-1 1.7e-01 1.2e-1 2.4e-2 8.1e-3

υ1−υ1
υt−υt

4.6e0 4.8e0 5.3e0 5.7e0 6.3e0 8.9e0 4.5e1 1.3e2

(c) n = 1024, υ1024 = 655.422 ≤ Opt ≤ υ1024 = 660.786 (CVX not tested)

Table 1: Composite Mirror Prox algorithm on problem (56) with n × n matrices. υt are the best
values of υ(·), and υt are lower bounds on the optimal value found in course of t steps. Platform:
MATLAB on 3.40 GHz Intel Core i7-3770 desktop with 16 GB RAM, 64 bit Windows 7.
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t 1 7 8 12 128 256 512 1024
CPU, sec 1.3 8.3 9.3 11.0 65.9 125.0 244.7 486.0
υt −Opt 92.9 1.58 0.30 0.110 0.095 0.076 0.069 0.069
υt − υt 700.9 92.4 69.5 54.6 52.8 44.2 21.2 3.07
υt−Opt

Opt
0.153 2.6e-3 5.0e-4 1.8e-4 1.6e-4 1.3e-4 1.1e-4 1.1e-4

υt−υt
Opt

1.153 0.152 0.114 0.090 0.087 0.073 0.035 0.005

(a) n = 512, Opt = 607.9854

t 1 7 8 128 256 512
CPU, sec 8.9 48.1 51.9 392.7 752.1 1464.9
υt −Opt 371.4 3.48 0.21 0.21 0.19 0.16
υt − υt 2772 241.7 201.2 147.3 146.5 122.9
υt−Opt

Opt
0.154 1.5e-3 9e-5 9e-5 8e-5 7e-5

υt−υt
Opt

1.155 0.101 0.084 0.061 0.061 0.051

(b) n = 1024, Opt = 2401.168

Table 2: Composite Mirror Prox algorithm on problem (56) with n× n matrices and known optimal
value Opt. υt are the best values of υ(·), and υt are lower bounds on the optimal value found in
course of t steps. Platform: MATLAB on 3.40 GHz Intel Core i7-3770 desktop with 16 GB RAM, 64 bit
Windows 7.

“swap the penalties” – to write the representation (47c) of problem (56) as

min
{yk;τk]}1

k=0

∈Y+
0 ×Y

+
1

{
Υ(y0, y1, τ0, τ1) :=

1

2
‖PΩy

0 − b‖22︸ ︷︷ ︸
ψ0(y0)

+τ0 + τ1 : y0 = y1

}
,

Y +
0 = {[y0; τ0] : y0 ∈ Y0, τ

0 ≥ µ‖y0‖nuc}, Y +
1 = {[y1; τ1] : y1 ∈ Y1, τ

1 ≥ λ‖y1‖1},

where Y1 ⊃ Y0 “fits” ‖ ·‖1 (meaning that we can point out a d.g.f. ω1(·) for Y1 which, taken along with
Ψ1(y1) = λ‖y1‖1, results in easy-to-solve auxiliary problems (45)). We can take, e.g. ω1(y1) = 1

2‖y
1‖2F

and define Y1 as the entire space, or a centered at the origin Frobenius/‖ · ‖1 norm ball large enough
to contain Y0.

4.4.2 Image decomposition

Problem of interest. In the experiments to be reported, we applied the just outlined approach to
Example 2, that is, to the problem

Opt = min
y1,y2,y3∈Rn×n

{
‖A(y1 + y2 + y3)− b‖2 + µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖y3‖TV

}
. (58)

where A(y) : Rn×n → RM is a given linear mapping.

Problem reformulation. We first rewrite (58) as a saddle point optimization problem

Opt = min
y1,y2,y3∈Rn×n

{
‖A(y1 + y2 + y3)− b‖2 + µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖Ty3‖1

}
= min

y1,y2,y3∈Rn×n

{
max
‖z‖2≤1

〈z,A(y1 + y2 + y3)− b〉+ µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖Ty3‖1
}
, (59)
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where T : Rn×n → R2n(n−1) is the mapping y 7→ Ty =

[
{(∇iy)n(j−1)+i}i=1,...,n−1, j=1,...,n

{(∇jy)n(i−1)+j)}i=1,...,n, j=1,...,n−1

]
.

Next we rewrite (59) as a linearly constrained saddle-point problem with “simple” penalties:

Opt = min
y3∈Y3

[yk;τk]∈Y
+
k
, 0≤k≤2

max
z∈Z

{
〈z,A(y1 + y2 + y3)− b〉+ τ1 + τ2 + τ0, y

0 = Ty3
}
,

where

Y +
0 = {[y0; τ0] : y0 ∈ Y0 = R2n(n−1) : ‖y0‖1 ≤ τ0/µ3},
Y +

1 = {[y1; τ1] : y1 ∈ Y1 = Rn×n : ‖y1‖nuc ≤ τ1/µ1},
Y +

2 = {[y2; τ2] : y2 ∈ Y2 = Rn×n : ‖y2‖1 ≤ τ2/µ2}
Y3 = Rn×n, Z = {z ∈ RM : ‖z‖2 ≤ 1},

and further approximate the resulting problem with its penalized version:

Ôpt = min
y3∈Y3

[yk;τk]∈Y
+
k
, 0≤k≤2

max
z∈Z
w∈W

{
〈z,A(y1 + y2 + y3)− b〉
+τ1 + τ2 + τ0 + ρ〈w, y0 − Ty3〉

}
, (60)

with
W = {w ∈ R2n(n−1), ‖w‖2 ≤ 1}.

Note that the function ψ(y1, y2, y3) := ‖A(y1 + y2 + y3) − b‖2 = max‖z‖2≤1〈z, A(y1 + y2 + y3) −
b〉 is Lipschitz continuous in y3 with respect to the Euclidean norm on Rn×n with corresponding
Lipschitz constant G = ‖A‖2,2, which is the spectral norm (the principal singular value) of A. Further,
Ψ(y0) = µ3‖y0‖1 is Lipschitz-continuous in y0 with respect to the Euclidean norm on R2n(n−1) with
the Lipschitz constant H ≤ µ3

√
2n(n− 1). With the help of the result of Proposition 4.1 we conclude

that to ensure the “exact penalty” property it suffices to choose ρ ≥ ‖A‖2,2 + µ3

√
2n(n− 1). Let us

denote

U =

{
u = [y0; ...; y3; z;w] : yk ∈ Y k, 0 ≤ k ≤ 3,

z ∈ RM , ‖z‖2 ≤ 1, w ∈ R2n(n−1), ‖w‖2 ≤ 1

}
We equip the embedding space Eu of U with the norm

‖u‖ =

(
α0‖y0‖22 +

3∑
k=1

αk‖yk‖22 + β‖z‖22 + γ‖w‖22

)1/2

,

and U with the proximal setup (‖ · ‖, ω(·)) with

ω(u) =
α0

2
‖y0‖22 +

3∑
k=1

αk
2
‖yk‖22 + 1

2‖z‖
2
2 + 1

2‖w‖
2
2

Implementing the CoMP algorithm. When implementing the CoMP algorithm, we use the
above proximal setup with adaptive aggregation parameters α0 = · · · = α4 = 1/D2 where D is our
guess for the upper bound of ||y∗||2, that is, whenever the norm of the current solution exceeds 20%
of the guess value, we increase D by factor 2 and update the scales accordingly. The penalty ρ and
stepsizes γt are adjusted dynamically the same way as explained in the last experiment.
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Numerical results. In the first series of experiments, we build the n × n observation matrix b
by first generating a random matrix with rank r = b

√
nc and another random matrix with sparsity

p = 0.01, so that the observation matrix is a sum of these two matrices and of random noise of level
σ = 0.01; we take y 7→ Ay as the identity mapping. We use µ1 = 10σ, µ2 = σ, µ3 = σ. The very
preliminary results of this series of experiments are presented in Table 3. Note that unlike the matrix
completion problem, discussed in section 4.4.1, here we are not able to generate the problem with
known optimal solutions. Better performance evaluation would require good lower bounding of the
true optimal value, which is however problematic due to unbounded problem domain.

In the second experiment we implemented the CoMP algorithm to decompose real images and
extract the underlying low rank/sparse singular distortion/smooth background components. The
purpose of these experiments is to illustrate how the algorithm performs with the choice of small
regularization parameters which is meaningful from the point of view of applications to image recovery.
Image decomposition results for two images are provided on figures 1 and 2. On figure 1 we present the
decomposition of the observed image of size 256× 256. We apply the model (59) with regularization
parameters µ1 = 0.03, µ2 = 0.001, µ3 = 0.005. We run 2 000 iterations of CoMP (total of 393.5 sec
MATLAB, Intel i5-2400S @2.5GHz CPU). The first component y1 has approximate rank ≈ 1; the relative
error of the reconstruction ‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 2.8× 10−4.

Figure 2 shows the decomposition of the observed image of size 480× 640 after 1 000 iterations of
CoMP (CPU 873.6 sec). The regularization parameters of the model (59) were set to µ1 = 0.06, µ2 =
0.002, µ3 = 0.005. The relative error of the reconstruction ‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 8.4× 10−3.

5 Semi-Separable Convex Problems

5.1 Preliminaries

Our problem of interest in this section is problem (4), (6), namely,

Opt = min
[y1;...;yK ]∈Y1×···×YK

{
f([y1; . . . ; yK ]) :=

∑K
k=1[ψk(y

k) + Ψk(y
k)] :

∑K
k=1Aky

k = b
}

= min
[y1;...;yK ]∈Y1×···×YK

{
K∑
k=1

[
ψk(y

k) + Ψk(y
k)
]

: g([y1; ...; yK ]) ≤ 0

}
,

g([y1; ...; yK ]) = π∗
(

K∑
k=1

Aky
k − b

)
= max

π(w)≤1

K∑
k=1

〈Akyk − b, w〉,

(61)

where π(·) is some norm and π∗(·) is the conjugate norm. A straightforward approach to (61) would
be to rewrite it as a saddle point problem

min
[y1;...;yK ]∈Y1×···×YK

max
w

{
K∑
k=1

[ψk(y
k) + Ψk(y

k)] + 〈
K∑
k=1

Akz
k − b, w〉

}
(62)

and solve by the mirror-prox algorithm from section 3.2 adjusted to work with an unbounded domain
U , or, alternatively, we could replace maxw with maxw: π(w)≤R with “large enough” R and use the
above algorithm “as is.” The potential problem with this approach is that if the w-component w∗

of the saddle point of (62) is of large π-norm (or “large enough” R is indeed large), the (theoretical)
efficiency estimate would be bad since it is proportional to the magnitude of w∗ (resp., to R). To
circumvent this difficulty, we apply to (61) the sophisticated policy originating from [15]. This policy
requires the set Y = Y1 × ...× YK to be bounded, which we assume below.
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Course of actions. Note that our problem of interest is of the generic form

Opt = min
y∈Y
{f(y) : g(y) ≤ 0} (63)

where Y is a convex compact set in a Euclidean space E, f and g : Y → R are convex and Lipschitz
continuous functions. For the time being, we focus on (63) and assume that the problem is feasible
and thus solvable.

We intend to solve (63) by the generic algorithm presented in [15]; for our now purposes, the
following description of the algorithm will do:

1. The algorithm works in stages. Stage s = 1, 2, ... is associated with working parameter αs ∈ (0, 1).
We set α1 = 1

2 .

2. At stage s, we apply a first order method B to the problem

(Ps) Opts = min
y∈Y
{fs(y) = αsf(y) + (1− αs)g(y)} (64)

The only property of the algorithm B which matters here is its ability, when run on (Ps), to

produce in course of t = 1, 2, ... steps iterates ys,t, upper bounds f
t
s on Opts and lower bounds

f
s,t

on Opts in such a way that

(a) for every t = 1, 2, ..., the t-th iterate ys,t of B as applied to (Ps) belongs to Y ;

(b) the upper bounds f
t
s are nonincreasing in t (this is “for free”) and “are achievable,” that

is, they are of the form

f
t
s = fs(y

s,t),

where ys,t ∈ Y is a vector which we have at our disposal at step t of stage s;

(c) the lower bounds f
s,t

should be nondecreasing in t (this again is “for free”);

(d) for some nonincreasing sequence εt → +0, t→∞, we should have

f
t
s − f s,t ≤ εt

for all t and s.

Note that since (63) is solvable, we clearly have Opts ≤ αsOpt, implying that the quantity
f
s,t
/αs is a lower bound on Opt. Thus, at step t of stage s we have at our disposal a number of

valid lower bounds on Opt; we denote the best (the largest) of these bounds Opt
s,t

, so that

Opt ≥ Opt
s,t
≥ f

s,t
/αs (65)

for all s, t, and Opt
s,t

is nondecreasing in time7.

3. When the First Order oracle is invoked at step t of stage s, we get at our disposal a triple
(ys,t ∈ Y, f(ys,t), g(ys,t)). We assume that all these triples are somehow memorized. Thus, after
calling First Order oracle at step t of stage s, we have at our disposal a finite set Qs,t on the 2D
plane such that for every point (p, q) ∈ Qs,t we have at our disposal a vector ypq ∈ Y such that

7in what follows, we call a collection as,t of reals nonincreasing in time, if as′,t′ ≤ as,t whenever s′ ≥ s, same as
whenever s = s′ and t′ ≥ t. “Nondecreasing in time” is defined similarly.
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f(ypq) ≤ p and g(ypq) ≤ q; the set Qs,t (in today terminology, a filter) is comprised of all pairs
(f(ys′,t′), g(ys′,t′)) generated so far. We set

hs,t(α) = min(p,q)∈Qs,t

[
α(p−Opt

s,t
) + (1− α)q

]
: [0, 1]→ R,

Gap(s, t) = max
0≤α≤1

hs,t(α).
(66)

4. Let ∆s,t = {α ∈ [0, 1] : hs,t(α) ≥ 0}, so that ∆s,t is a segment in [0, 1]. Unless we have arrived
at Gap(s, t) = 0 (i.e., got an optimal solution to (63), see (67)), ∆s,t is not a singleton (since
otherwise Gap(s, t) were 0). Observe also that ∆s,t are nested: ∆s′,t′ ⊂ ∆s,t whenever s′ ≥ s,
same as whenever s′ = s and t′ ≥ t.
We continue iterations of stage s while αs is “well-centered” in ∆s,t, e.g., belongs to the mid-
third of the segment. When this condition is violated, we start stage s + 1, specifying αs+1 as
the midpoint of ∆s,t.

The properties of the aforementioned routine are summarized in the following statement (cf. [15]).

Proposition 5.1

(i) Gap(s, t) is nonincreasing in time. Furthermore, at step t of stage s, we have at our disposal a
solution ŷs,t ∈ Y to (63) such that

f(ŷs,t) ≤ Opt + Gap(s, t), and g(ŷs,t) ≤ Gap(s, t), (67)

so that ŷs,t belongs to the domain Y of problem (63) and is both Gap(s, t)-feasible and Gap(s, t)-
optimal.

(ii) For every ε > 0, the number s(ε) of stages until a pair (s, t) with Gap(s, t) ≤ ε is found obeys the
bound

s(ε) ≤
ln
(
3Lε−1

)
ln (4/3)

, (68)

where L < ∞ is an a priori upper bound on maxy∈Y max[|f(y)|, |g(y)|]. Besides this, the number of
steps at each stage does not exceed

T (ε) = min{t ≥ 1 : εt ≤
ε

3
}+ 1. (69)

5.2 Composite Mirror Prox algorithm for Semi-Separable Optimization

We are about to apply the approach above to the semi-separable problem (61), (6).

Problem setup we consider now is as follows (cf. section 4.1). For every k, 1 ≤ k ≤ K, we are
given

1. Euclidean spaces Ek and Ek along with their nonempty closed and bounded convex subsets Yk
and Zk, respectively;

2. proximal setups for (Ek, Yk) and (Ek, Zk), that is, norms pk(·) on Ek, norms qk on Ek, and
d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R, which are compatible with pk(·) and qk(·), respectively;

3. linear mapping yk 7→ Aky
k : Ek → E, where E is a Euclidean space;
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4. Lipschitz continuous convex functions ψk(y
k) : Yk → R along with their saddle point represen-

tations

ψk(y
k) = sup

zk∈Zk
[φk(y

k, zk)−Ψk(z
k)], 1 ≤ k ≤ K, (70)

where φk(y
k, zk) : Yk × Zk → R are smooth (with Lipschitz continuous gradients) functions

convex in yk ∈ Yk and concave in zk ∈ Zk, and Ψk(z
k) : Zk → R are Lipschitz continuous

convex functions such that the problems of the form

min
zk∈Zk

[
ωk(z

k) + 〈ξk, zk〉+ αΨk(z
k)
]

[α > 0] (71)

are easy to solve;

5. Lipschitz continuous convex functions Ψk(y
k) : Yk → R such that the problems of the form

min
yk∈Yk

[
ωk(y

k) + 〈ξk, yk〉+ αΨk(y
k)
]

[α > 0]

are easy to solve;

6. a norm π∗(·) on E, with conjugate norm π(·), along with a d.g.f. ω̂(·) : W := {w ∈ E : π(w) ≤
1} → R compatible with π(·) and is such that problems of the form

min
w∈W

[ω̂(w) + 〈ξ, w〉]

are easy to solve.

The outlined data define the sets

Y +
k = {[yk; τk] : yk ∈ Yk, τk ≥ Ψk(y

k)} ⊂ E+
k := Ek ×R, 1 ≤ k ≤ K,

Z+
k = {[zk;σk] : zk ∈ Zk, σk ≥ Ψk(z

k)} ⊂ E+
k := Ek ×R, 1 ≤ k ≤ K.

The problem of interest here is problem (61), (70):

Opt = min
[y1;...;yK ]

max
[z1;...;zK ]

{∑K
k=1[φk(y

k, zk) + Ψk(y
k)−Ψk(z

k)] : π∗
(

K∑
k=1

Aky
k − b

)
≤ 0,

[y1; . . . ; yK ] ∈ Y1 × · · · × YK , [z1; . . . ; zk] ∈ Z1 × · · · × ZK
}

= min
{[yk;τk]}Kk=1

max
{[zk;σk]}Kk=1

{∑K
k=1[φk(y

k, zk) + τk − σk] : max
w∈W

K∑
k=1

〈Akyk − b, w〉 ≤ 0,

{[yk; τk] ∈ Y +
k }

K
k=1, {[zk;σk] ∈ Z

+
k }

K
k=1, w ∈W

}
.

(72)

Solving (72) using the approach in the previous section amounts to resolving a sequence of problems
(Ps) as in (64) where, with a slight abuse of notation,

Y =
{
y = {[yk; τk]}Kk=1 : [yk; τk] ∈ Y +

k , τ
k ≤ Ck, 1 ≤ k ≤ K

}
;

f(y) = max
z={[zk;σk]}Kk=1

{
K∑
k=1

[φk(y
k, zk) + τk − σk] : z ∈ Z = {[zk;σk] ∈ Z+

k }
K
k=1

}
;

g(y) = max
w

{
K∑
k=1

〈Akyk − b, w〉 : w ∈W

}
.
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Here Ck ≥ maxyk∈Yk Ψk(y
k) are finite constants introduced to make Y compact, as required in the

premise of Proposition 5.1; it is immediately seen that the magnitudes of these constants (same as
their very presence) does not affect the algorithm B we are about to describe.

The algorithm B we intend to use will solve (Ps) by reducing the problem to the saddle point
problem

Opt = min
y

max
[z;w]

{
Φ(y, [z;w]) := α

∑K
k=1[φk(y

k, zk) + τk − σk] + (1− α)
∑K

k=1〈Akyk − b, w〉 :

y = {[yk; τk]}Kk=1 ∈ Y, [z = {[zk;σk]}Kk=1 ∈ Z; w ∈W ]
}
,

(73)

where α = αs.
Setting

U = {u = [y1; ...; yK ; z1; ...; zK ;w] : yk ∈ Yk, zk ∈ Zk, 1 ≤ k ≤ K,w ∈W},
X = {[u; v = [τ1; ...; τK ;σ1; ...σK ]] : u ∈ U, Ψk(y

k) ≤ τk ≤ Ck, Ψk(z
k) ≤ σk, 1 ≤ k ≤ K},

X can be thought of as the domain of the variational inequality associated with (73), the monotone
operator in question being

F (u, v) = [Fu(u);Fv],

Fu(u) =


{
α∇yφk(yk, zk) + (1− α)ATkw

}K
k=1{

−α∇zφk(yk, zk)
}K
k=1

(1− α)[b−
∑K

k=1Aky
k]

 ,
Fv = α[1; ...; 1].

(74)

By exactly the same reasons as in section 4, with properly assembled norm on the embedding space
of U and d.g.f., (73) can be solved by the Mirror Prox algorithm from section 3.2. Let us denote

ζs,t =
[
ŷs,t = {[ŷk; τ̂k]}Kk=1 ∈ Y ;

[
zs,t ∈ Z;ws,t ∈W

]]
the approximate solution obtained in course of t = 1, 2, ... steps of CoMP when solving (Ps), and let

f̂ ts := max
z∈Z,w∈W

Φ(ŷs,t, [z;w]) = α
K∑
k=1

[ψk(ŷ
k) + τ̂k] + (1− α)π∗

(
K∑
k=1

Akŷ
k − b

)

be the corresponding value of the objective of (Ps). It holds

f̂ ts −Opt ≤ εSad(ζs,t
∣∣Y, Z ×W,Φ) ≤ εt := O(1)L/t, (75)

where L < ∞ is explicitly given by the proximal setup we use and by the related Lipschitz constant
of Fu(·) (note that this constant can be chosen to be independent of α ∈ [0, 1]). We assume that
computing the corresponding objective value is a part of step t (these computations increase the

complexity of a step by factor at most O(1)), and thus that f
t
s ≤ f̂ ts. By (75), the quantity f̂ ts − εt

is a valid lower bound on the optimal value of (Ps), and thus we can ensure that f
s,t
≥ f̂ ts − εt. The

bottom line is that with the outlined implementation, we have

f
t
s − fs,t ≤ εt
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for all s, t, with εt given by (75). Consequently, by Proposition 5.1, the total number of CoMP steps
needed to find a belonging to the domain of the problem of interest (61) ε-feasible and ε-optimal
solution to this problem can be upper-bounded by

O(1) ln

(
3L

ε

)(
L
ε

)
,

where L and L are readily given by the smoothness parameters of φk and by the proximal setup we
use.

5.3 Numerical illustration: `1-minimization

Problem of interest. We consider the simple `1 minimization problem

min
x∈X
{‖x‖1 : Ax = b} (76)

where x ∈ Rn, A ∈ Rm×n and m < n. Note that this problem can also be written in the semi-separable
form

min
x∈X

{∑K
k=1 ‖xk‖1 :

∑K
k=1Akxk = b

}
if the data is partitioned into K blocks: x = [x1;x2; . . . ;xK ] and A = [A1, A2, . . . , AK ].

Our main purpose here is to test the approach described in 5.1 and compare it to the sim-
plest approach where we directly apply CoMP to the (saddle point reformulation of the) problem
minx∈X [‖x‖1 + R‖Ax − b‖2] with large enough value of R. For the sake of simplicity, we work with
the case when K = 1 and X = {x ∈ Rn : ‖x‖2 ≤ 1}.

Generating the data. In the experiments to be reported, the data of (76) were generated as follows.
Given m,n, we first build a sparse solution x∗ by drawing random vector from the standard Gaussian
distribution N (0, In), zeroing out part of the entries and scaling the resulting vector to enforce x∗ ∈ X.
We also build a dual solution λ∗ by scaling a random vector from distribution N (0, Im) to satisfy
‖λ∗‖2 = R∗ for a prescribed R∗. Next we generate A and b such that x∗ and λ∗ are indeed the optimal
primal and dual solutions to the `1 minimization problem (76), i.e. ATλ∗ ∈ ∂

∣∣
x=x∗
‖x‖1 and Ax∗ = b.

To achieve this, we set
A = 1√

n
F̂n + pqT , b = Ax∗

where p = λ∗

‖λ∗‖22
, q ∈ ∂

∣∣
x=x∗
‖x‖1 − 1√

n
F̂nλ

∗, and F̂n is a m× n submatrix randomly selected from the

DFT matrix Fn. We expect that the larger is the ‖ · ‖2-norm R∗ of the dual solution, the harder is
problem (76).

Implementing the algorithm. When implementing the algorithm from section 5.2, we apply at
each stage s = 1, 2, ... CoMP to the saddle point problem

(Ps) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{αsτ + (1− αs)〈Ax− b, w〉} .

The proximal setup for CoMP is given by equipping the embedding space of U = {u = [x;w] : x ∈
X, ‖w‖2 ≤ 1} with the norm ‖u‖2 =

√
1
2‖x‖

2
2 + 1

2‖w‖
2
2 and equipping U with the d.g.f. ω(u) =

1
2‖x‖

2
2 + 1

2‖w‖
2
2. In the sequel we refer to the resulting algorithm as sequential CoMP. For comparison,

we solve the same problem by applying CoMP to the saddle point problem

(PR) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{τ +R〈Ax− b, w〉}
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with R = R∗; the resulting algorithm is referred to as simple CoMP. Both sequential CoMP and simple
CoMP algorithms are terminated when the relative nonoptimality and constraint violation are both
less than ε = 10−5, namely,

ε(x) := max
{
‖x‖1−‖x∗‖1
‖x∗‖1 , ‖Ax− b‖2

}
≤ 10−5.

Numerical results are presented in Table 4. One can immediately see that to achieve the desired
accuracy, the simple CoMP with R set to R∗, i.e., to the exact magnitude of the true Lagrangian
multiplier, requires almost twice as many steps as the sequential CoMP. In more realistic examples,
the simple CoMP will additionally suffer from the fact that the magnitude of the optimal Lagrange
multiplier is not known in advance, and the penalty R in (PR) should be somehow tuned “online.”
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A Proof of Theorem 3.1

0o. Let us verify that the prox-mapping (28) indeed is well defined whenever ζ = γFv with γ > 0.
All we need is to show that whenever u ∈ U , η ∈ Eu, γ > 0 and [wt; st] ∈ X, t = 1, 2, ..., are such that
‖wt‖2 + ‖st‖2 →∞ as t→∞, we have

rt := 〈η − ω′(u), wt〉+ ω(wt)︸ ︷︷ ︸
at

+ γ〈Fv, st〉︸ ︷︷ ︸
bt

→∞, t→∞.

Indeed, assuming the opposite and passing to a subsequence, we make the sequence rt bounded. Since
ω(·) is strongly convex, modulus 1, w.r.t. ‖·‖, and the linear function 〈Fv, s〉 of [w; s] is below bounded
on X by A4, boundedness of the sequence {rt} implies boundedness of the sequence {wt}, and since
‖[wt; st]‖2 → ∞ as t → ∞, we get ‖st‖2 → ∞ as t → ∞. Since 〈Fv, s〉 is coercive in s on X by A4,
and γ > 0, we conclude that bt →∞, t→∞, while the sequence {at} is bounded since the sequence
{wt ∈ U} is so and ω is continuously differentiable. Thus, {at} is bounded, bt →∞, t→∞, implying
that rt →∞, t→∞, which is the desired contradiction

1o . Recall the well-known identity [9]: for all u, u′, w ∈ U one has

〈V ′u(u′), w − u′〉 = Vu(w)− Vu′(w)− Vu(u′). (77)

Indeed, the right hand side is

[ω(w)− ω(u)− 〈ω′(u), w − u〉]− [ω(w)− ω(u′)− 〈ω′(u′), w − u′〉]− [ω(u′)− ω(u)− 〈ω′(u), u′ − u〉]
= 〈ω′(u), u− w〉+ 〈ω′(u), u′ − u〉+ 〈ω′(u′), w − u′〉 = 〈ω′(u′)− ω′(u), w − u′〉 = 〈V ′u(u′), w − u′〉.

For x = [u; v] ∈ X, ξ = [η; ζ], let Px(ξ) = [u′; v′] ∈ X. By the optimality condition for the problem
(28), for all [s;w] ∈ X,

〈η + V ′u(u′), u′ − s〉+ 〈ζ, v′ − w〉 ≤ 0,

which by (77) implies that

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ 〈V ′u(u′), s− u′〉 = Vu(s)− Vu′(s)− Vu(u′). (78)

2o. When applying (78) with [u; v] = [uτ ; vτ ] = xτ , ξ = γτF (xτ ) = [γτFu(uτ ); γτFv], [u′; v′] =
[u′τ ; v′τ ] = yτ , and [s;w] = [uτ+1; vτ+1] = xτ+1 we obtain:

γτ [〈Fu(uτ ), u′τ − uτ+1〉+ 〈Fv, v′τ − vτ+1〉] ≤ Vuτ (uτ+1)− Vu′τ (uτ+1)− Vuτ (u′τ ); (79)

and applying (78) with [u; v] = xτ , ξ = γτF (yτ ), [u′; v′] = xτ+1, and [s;w] = z ∈ X we get:

γτ [〈Fu(u′τ ), uτ+1 − s〉+ 〈Fv, vτ+1 − w〉] ≤ Vuτ (s)− Vuτ+1(s)− Vuτ (uτ+1). (80)

Adding (80) to (79) we obtain for every z = [s;w] ∈ X

γτ 〈F (yτ ), yτ − z〉 = γτ [〈Fu(u′τ ), u′τ − s〉+ 〈Fv, v′τ − w〉]
≤ Vuτ (s)− Vuτ+1(s) + γτ 〈Fu(u′τ )− Fu(uτ ), u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ )︸ ︷︷ ︸

δτ

. (81)

Due to the strong convexity, modulus 1, of Vu(·) w.r.t. ‖·‖, Vu(u′) ≥ 1
2‖u−u

′‖2 for all u, u′. Therefore,

δτ ≤ γτ‖Fu(u′τ )− Fu(uτ )‖∗‖u′τ − uτ+1‖ − 1
2‖u
′
τ − uτ+1‖2 − 1

2‖uτ − u
′
τ‖2

≤ 1
2

[
γ2
τ‖Fu(u′τ )− Fu(uτ )‖2∗ − ‖uτ − u′τ‖2

]
≤ 1

2

[
γ2
τ [M + L‖u′τ − uτ‖]2 − ‖uτ − u′τ‖2

]
,
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where the last inequality is due to (23). Note that γτL < 1 implies that

γ2
τ [M + L‖u′τ − uτ‖]2 − ‖u′τ − uτ‖2 ≤ max

r

[
γ2
τ [M + Lr]2 − r2

]
=

γ2
τM

2

1− γ2
τL

2
.

Let us assume that the stepsizes γτ > 0 ensure that (30) holds, meaning that δτ ≤ γ2
τM

2 (which, by
the above analysis, is definitely the case when 0 < γτ ≤ 1√

2L
; when M = 0, we can take also γτ ≤ 1

L).

When summing up inequalities (81) over τ = 1, 2, ..., t and taking into account that Vut+1(s) ≥ 0, we
conclude that for all z = [s;w] ∈ X,

t∑
τ=1

λtτ 〈F (yτ ), yτ − z〉 ≤
Vu1(s) +

∑t
τ=1 δτ∑t

τ=1 γτ
≤
Vu1(s) +M2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
, λtτ = γτ/

t∑
i=1

γi.

B Proof of Lemma 3.1

Proof. All we need to verify is the second inequality in (38). To this end note that when t = 1, the
inequality in (38) holds true by definition of Θ̂(·). Now let 1 < t ≤ N+1. Summing up the inequalities
(81) over τ = 1, ..., t− 1, we get for every x = [u; v] ∈ X:

t−1∑
τ=1

〈F (yτ ), yτ−[u; v]〉 ≤ Vu1(u)−Vut(u)+
t−1∑
τ=1

δτ ≤ Vu1(u)−Vut(u)+
t−1∑
τ=1

δτ ≤ Vu1(u)−Vut(u)+M2
t−1∑
τ=1

γ2
τ

(we have used (30)). When [u; v] is z∗, the left hand side in the resulting inequality is ≥ 0, and we
arrive at

Vut(u∗) ≤ Vu1(u∗) +M2
t−1∑
τ=1

γ2
τ ,

whence
1

2
‖ut − u∗‖2 ≤ Vu1(u∗) +M2

t−1∑
τ=1

γ2
τ

whence also

‖ut − u1‖2 ≤ 2‖ut − u∗‖2 + 2‖u∗ − u1‖2 ≤ 4[Vu1(u∗) +M2
t−1∑
τ=1

γ2
τ ] + 4Vu1(u∗)

and therefore

‖ut − u1‖ ≤ 2

√√√√2Vu1(u∗) +M2

t−1∑
τ=1

γ2
t = RN , (82)

and (38) follows.

C Proof of Proposition 3.1

Proof. From (81) and (30) it follows that

∀(x = [u; v] ∈ X, τ ≤ N) : λτ 〈F (yτ ), yτ − x〉 ≤
λτ
γτ

[Vuτ (u)− Vuτ+1(u)] +M2λτγτ .
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Summing up these inequalities over τ = 1, ..., N , we get ∀(x = [u; v] ∈ X):

N∑
τ=1

λτ 〈F (yτ ), yτ − x〉

≤ λ1
γ1

[Vu1(u)− Vu2(u)] + λ2
γ2

[Vu2(u)− Vu3(u)] + ...+ λN
γN

[VuN (u)− VuN+1(u)] +M2
N∑
τ=1

λτγτ

=
λ1

γ1︸︷︷︸
≥0

Vu1(u) +

[
λ2

γ2
− λ1

γ1

]
︸ ︷︷ ︸

≥0

Vu2(u) + ...+

[
λN
γN
− λN−1

γN−1

]
︸ ︷︷ ︸

≥0

VuN (u)− λN
γN

VuN+1(u)︸ ︷︷ ︸
≥0

+M2
N∑
τ=1

λτγτ

≤ λ1
γ1

Θ̂(max[RN , ‖u− u1‖]) +
[
λ2
γ2
− λ1

γ1

]
Θ̂(max[RN , ‖u− u1‖]) + ...

+
[
λN
γN
− λN−1

γN−1

]
Θ̂(max[RN , ‖u− u1‖]) +M2

N∑
τ=1

λτγτ ,

= λN
γN

Θ̂(max[RN , ‖u− u1‖]) +M2
N∑
τ=1

λτγτ ,

where the concluding inequality is due to (38), and (40) follows.

D Proof of Proposition 5.1

1o. hs,t(α) are concave piecewise linear functions on [0, 1] which clearly are pointwise nonincreasing
in time. As a result, Gap(s, t) is nonincreasing in time. Further, we have

Gap(s, t) = max
α∈[0,1]

min
λ

∑
(p,q)∈Qs,t

λpq[α(p−Opt
s,t

) + (1− α)q] : λpq ≥ 0,
∑

(p,q)∈Qs,t

λpq = 1


= max

α∈[0,1]

∑
(p,q)∈Qs,t

λ∗pq[α(p−Opt
s,t

) + (1− α)q]

= max

 ∑
(p,q)∈Qs,t

λ∗pq(p−Opt
s,t

),
∑

(p,q)∈Qs,t

λ∗pqq

 ,
where λ∗pq ≥ 0 and sum up to 1. Recalling that for every (p, q) ∈ Qs,t we have at our disposal ypq ∈ Y
such that p ≥ f(ypq) and q ≥ g(ypq), setting ŷs,t =

∑
(p,q)∈Qs,t

λ∗pqypq and invoking convexity of f, g, we

get

f(ŷs,t) ≤
∑

(p,q)∈Qs,t

λ∗pqp ≤ Opt
s,t

+ Gap(s, t), g(ŷs,t) ≤
∑

(p,q)∈Qs,t

λ∗pqq ≤ Gap(s, t);

and (67) follows, due to Opt
s,t
≤ Opt.

2o. We have f
t
s = αsf(ys,t) + (1−αs)g(ys,t) for some ys,t ∈ Y which we have at our disposal at step

t, implying that (p̂ = f(ys,t), q̂ = g(ys,t)) ∈ Qs,t. Hence by definition of hs,t(·) it holds

hs,t(αs) ≤ αs(p̂−Opt
s,t

) + (1− αs)q̂ = f
t
s − αsOpt

s,t
≤ f ts − fs,t,

where the concluding inequality is given by (65). Thus, hs,t(αs) ≤ f
t
s−fs,t ≤ εt. On the other hand, if

stage s does not terminate in course of the first t steps, αs is well-centered in the segment ∆s,t where
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the concave function hs,t(α) is nonnegative. We conclude that 0 ≤ Gap(s, t) = max0≤α≤1 hs,t(α) =
maxα∈∆s,t hs,t(α) ≤ 3hs,t(αs). Thus, if a stage s does not terminate in course of the first t steps, we
have Gap(s, t) ≤ 3εt, which implies (69). Further, αs is the midpoint of the segment ∆s−1 = ∆s−1,ts−1 ,
where tr is the last step of stage r (when s = 1, we should define ∆0 as [0, 1]), and αs is not well-centered
in the segment ∆s = ∆s,ts ⊂ ∆s−1,ts−1 , which clearly implies that |∆s| ≤ 3

4 |∆
s−1|. Thus, |∆s| ≤

(
3
4

)s
for all s. On the other hand, when |∆s,t| < 1, we have Gap(s, t) = maxα∈∆s,t hs,t(α) ≤ 3L|∆s,t| (since
hs,t(·) is Lipschitz continuous with constant 3L 8 and hs,t(·) vanishes at (at least) one endpoint of
∆s,t). Thus, the number of stages before Gap(s, t) ≤ ε is reached indeed obeys the bound (68).

8we assume w.l.o.g. that |Opt
s,t
| ≤ L

33



t 8 16 32 64 128 256 512 1024 2048

CPU, sec 0.1 0.2 0.4 0.8 1.6 3.1 6.3 12.6 25.2

υt − υ2048 1.5e1 2.8e0 6.2e-1 2.3e-1 1.1e-1 4.2e-2 1.5e-2 4.4e-3 0.0e0
υt−υ2048
υ2048

9.5e-1 1.8e-1 4.0e-2 1.5e-2 7.0e-3 2.7e-3 9.9e-4 2.8e-4 0.0e0

υt −Opt 1.5e1 2.8e0 6.2e-1 2.3e-1 1.1e-1 4.5e-2 1.8e-2 6.6e-3 2.2e-3
υt−Opt

Opt
9.5e-1 1.8e-1 4.0e-2 1.5e-2 7.1e-3 2.9e-3 1.1e-3 4.2e-4 1.4e-4

(a) n = 64, Opt = 15.543 (CVX CPU 4525.5 sec)

t 8 16 32 64 128 256 512 1024 2048

CPU, sec 6.2 12.3 24.7 49.3 98.6 197.2 394.4 788.9 1577.8

υt − υ2048 1.1e2 5.8e1 2.7e1 1.3e1 6.2e0 2.9e0 1.2e0 3.9e-1 0.0e0
υt−υ2048
υ2048

9.0e-1 4.9e-1 2.3e-1 1.1e-1 5.2e-2 2.5e-2 1.0e-2 3.3e-3 0.0e0

(b) n = 512 (CVX not tested)

Table 3: Composite Mirror Prox algorithm on problem (58) with n × n matrices. υt are the best
values of υ(·) in course of t steps. Platform: MATLAB on Intel i5-2400S @2.5GHz CPU, 4GB RAM,
64-bit Windows 7.

(a) observation b (b) recovery y1 + y2 + y3

(c) low-rank component (d) sparse component (e) smooth component

Figure 1: Observed and reconstructed images (size 256× 256).
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(a) observation b (b) low-rank component

(c) sparse component (d) smooth component

Figure 2: Observed and decomposed images (size 480× 640)

n m c sequential CoMP simple CoMP
(R∗ = c · n) steps CPU(sec) steps CPU(sec)

1024 512 1 7653 18.68 31645 67.78
5 43130 44.66 90736 90.67
10 48290 49.04 93989 93.28

4096 2048 1 28408 85.83 46258 141.10
5 45825 199.96 93483 387.88
10 52082 179.10 98222 328.31

16384 8192 1 43646 358.26 92441 815.97
5 48660 454.70 93035 784.05
10 55898 646.36 101881 1405.80

65536 32768 1 45153 3976.51 92036 4522.43
5 55684 4138.62 100341 8054.35
10 69745 6214.18 109551 9441.46

262144 131072 1 46418 6872.64 96044 14456.99
5 69638 10186.51 109735 16483.62
10 82365 12395.67 95756 13634.60

Table 4: `1-minimization. Platform: ISyE Condor Cluster
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