
ar
X

iv
:1

30
9.

65
53

v3
 [

m
at

h.
O

C
]

 9
 F

eb
 2

01
5

AN ALTERNATING DIRECTION METHOD WITH INCREASING PENALTY FOR
STABLE PRINCIPAL COMPONENT PURSUIT

N. S. AYBAT † AND G. IYENGAR ‡

Abstract. The stable principal component pursuit (SPCP) is a non-smooth convex optimization problem, the solution of
which enables one to reliably recover the low rank and sparse components of a data matrix which is corrupted by a dense noise
matrix, even when only a fraction of data entries are observable. In this paper, we propose a new algorithm for solving SPCP.
The proposed algorithm is a modification of the alternating direction method of multipliers (ADMM) where we use an increasing
sequence of penalty parameters instead of a fixed penalty. The algorithm is based on partial variable splitting and works directly
with the non-smooth objective function. We show that both primal and dual iterate sequences converge under mild conditions
on the sequence of penalty parameters. To the best of our knowledge, this is the first convergence result for a variable penalty
ADMM when penalties are not bounded, the objective function is non-smooth and its sub-differential is not uniformly bounded.
Using partial variable splitting and adopting an increasing sequence of penalty multipliers, together, significantly reduce the
number of iterations required to achieve feasibility in practice. Our preliminary computational tests show that the proposed
algorithm works very well in practice, and outperforms ASALM, a state of the art ADMM algorithm for the SPCP problem with a
constant penalty parameter.

1. Introduction. Suppose a matrix D ∈ R
m×n is of the form D = L0 + S0, where L0 is a low-rank

matrix, i.e. rank(L0) ≪ min{m,n}, and S0 is a sparse matrix. The matrix S0 is interpreted as gross errors
in the measurement of the low rank matrix L0. Wright et al. [31], Candés et al. [8] and Chandrasekaran et
al. [9] proposed recovering the low-rank L0 and sparse S0 by solving the principal component pursuit (PCP)
problem

min
L∈Rm×n

‖L‖∗ + ξ ‖D − L‖1, (1.1)

where ξ = 1√
max{m,n}

. Here the nuclear norm ‖L‖∗ :=
∑r

i=1 σi(L), where {σi(L)}ri=1 denotes the singular

values of L ∈ R
m×n, and the ℓ1-norm ‖L‖1 :=

∑m
i=1

∑n
j=1 |Lij |.

Theorem 1.1. [8] Suppose D = L0 + S0 ∈ R
m×n. Let r = rank(L0) and L0 = UΣV T =

∑r
i=1 σiuiv

T
i

denote the singular value decomposition (SVD) of L0. Suppose there exists µ > 0 such that

max
i

‖UT ei‖22 ≤
µr

m
, max

i
‖V T ei‖22 ≤ µr

n
, ‖UV T ‖∞ ≤

√

µr

mn
, (1.2)

where ei denotes the i-th unit vector, and the non-zero components of the sparse matrix S0 are chosen uni-
formly at random. Then there exist constants c, ρr, and ρs, such that the solution of the PCP problem (1.1)
exactly recovers L0 and S0 with probability of at least 1− cn−10, provided

rank(L0) ≤ ρrmµ−1(log(n))−2 and ‖S0‖0 ≤ ρsmn, (1.3)

where the ℓ0-norm ‖S0‖0 denotes the number of non-zero components of the matrix S0.
Now, suppose the data matrix D is of the form D = L0 + S0 +N0 such that L0 is a low-rank matrix,

S0 is a sparse gross “error” matrix, N0 is a dense noise matrix with ‖N0‖F ≤ δ, where the Frobenius norm

‖Z‖F :=
√

∑m
i=1

∑n
j=1 Z

2
ij . In [32], it was shown that it was still possible to recover the low-rank and sparse

components (L0, S0) of D by solving the stable principal component pursuit (SPCP) problem

min
L,S∈Rm×n

{‖L‖∗ + ξ ‖S‖1 : ‖L+ S −D‖F ≤ δ}. (1.4)

Theorem 1.2. [32] Suppose D = L0 +S0 +N0, where L0 ∈ R
m×n with m < n satisfies (1.2) for some

µ > 0, and the non-zero components of the sparse matrix S0 are chosen uniformly at random. Suppose L0

and S0 satisfy (1.3). Then for any N0 such that ‖N0‖F ≤ δ, the solution (L∗, S∗) to the SPCP problem (1.4)
satisfies ‖L∗ − L0‖2F + ‖S∗ − S0‖2F ≤ Cmnδ2 for some constant C with high probability.

†IE Department, The Pennsylvania State University. Email: nsa10@psu.edu. Supported by NSF grant CMMI-1400217.
‡IEOR Department, Columbia University. Email: gi10@columbia.edu. Supported by NIH R21 AA021909-01, NSF CMMI-

1235023, NSF DMS-1016571 grants.

1

http://arxiv.org/abs/1309.6553v3

In many applications, some of the entries of D in (1.4) may not be available. Let Ω ⊂ {i : 1 ≤ i ≤
m} × {j : 1 ≤ j ≤ n} be the index set of the observable entries of D. Define the projection operator
πΩ : Rm×n → R

m×n as follows
(πΩ(L))ij =

{

Lij , (i, j) ∈ Ω,
0, otherwise.

(1.5)

Note that the adjoint operator π∗
Ω = πΩ. For applications with missing observations, Tao and Yuan [29]

proposed recovering the low rank and sparse components of D by solving

min
L,S∈Rm×n

{‖L‖∗ + ξ‖S‖1 : ‖πΩ(L + S −D)‖F ≤ δ}. (1.6)

PCP and SPCP both have numerous applications in diverse fields such as video surveillance and face recog-
nition in image processing [8], and clustering in machine learning [3] to name a few. (1.1), (1.4) and (1.6) can
be reformulated as semidefinite programming (SDP) problems, and therefore, in theory they can be solved
in polynomial time using interior point algorithms; however, these algorithms require very large amount
of memory, and are, therefore, impractical for solving large instances. Recently, a number of first-order
algorithms have been proposed to solve PCP and SPCP. For existing approaches to solve PCP and SPCP
problems see [1, 2, 8, 15, 22, 23, 29, 31, 32] and references therein.

Our contribution. We propose a new alternating direction method of multipliers (ADMM) with an in-
creasing penalty sequence called ADMIP1 to solve the SPCP problem (1.6). The ADMIP algorithm, detailed
in Figure 1.1, uses partial variable splitting on (1.6), and works directly with the non-smooth objective
function. In the context of method of multipliers, where the primal iterates are computed by minimizing the
augmented Lagrangian function, under assumptions related to strong second-order conditions for optimality,
it was shown in [27, 28] that the primal and dual iterates converge to an optimal pair superlinearly when
the penalty parameters ρk ր ∞, while the rate is only linear when supk ρk < ∞. However, this result has
not been extended to ADMM. In a recent survey, Boyd et al. [6] (see Section 3.4.1) remark that it is difficult to
prove the convergence of ADMM when penalty multipliers change in every iteration. We show that both primal
and dual ADMIP iterates converge to an optimal primal-dual solution for (1.6) under mild conditions on the
penalty multiplier sequence. To the best of our knowledge, this is the first convergence result for a variable
penalty ADMM when penalties are not bounded, the objective function is non-smooth and its subdifferential is
not uniformly bounded.

The work of He et al. [16, 17, 18] on variable penalty ADMM algorithms implicitly assumes that both terms
in the objective function are differentiable; therefore, these results do not extend to non-smooth optimization
problem in (2.1), i.e. to the ADMM formulation of (1.6). The variable penalty ADMM algorithms in [16, 17, 18]
are proposed to solve variational inequalities (VI) of the form:

(x− x∗)⊤F (x∗) + (y − y∗)⊤G(y∗) ≥ 0, ∀(x, y) ∈ Ω := {(x, y) : x ∈ X , y ∈ Y, Ax+By = b},
where A ∈ R

m×n1 , B ∈ R
m×n2 , and b ∈ R

m. The convergence proofs in [16, 17, 18] require that both
F : X → R

n1 and G : Y → R
n2 are continuous point-to-point maps that are monotone with respect

to the non-empty closed convex sets X ⊂ R
n1 and Y ⊂ R

n2 , respectively. When these variable penalty
ADMM methods for VI are applied to the VI reformulation of convex optimization problems of the form
min{f(x) + g(y) : (x, y) ∈ Ω}, the requirement that F and G be continuous point-to-point maps implies
that F (x) = ∇f(x), and G(y) = ∇g(y). On the other hand, if f(x) and g(x) are non-smooth convex
functions, then both F and G should be point-to-set maps, i.e., multi-functions ; therefore, the convergence
proofs for variable penalty ADMM algorithms in [16, 17, 18] do not extend to our problem which is a non-
smooth convex optimization problem – see Assumption A and the following discussion on page 107 in [18].
The ADMM algorithm in [19] can solve min{f(x) + g(y) : (x, y) ∈ Ω} when both f and g are non-smooth
convex functions; however, the convergence proof requires that the penalty sequence {ρk} increases only
finitely many times; i.e., {ρk} is bounded above ([17, 18] also assume bounded {ρk}). Recently, Lin et al. [22]
have proposed an ADMM algorithm for solving PCP problem in (1.1), i.e. (1.6) with δ = 0, and show that the
algorithm converges for a nondecreasing {ρk} such that

∑∞
k=1 ρ

−1
k = ∞. The analysis in [22] relies on the

fact that the subdifferentials of any norm are uniformly bounded. When δ > 0 in (1.6), the results in [22] do
not hold because the subdifferentials of the objective function in the ADMM formulation (2.1) are no longer
uniformly bounded because of the indicator function used to model the constraint.

1In an earlier preprint, we named it as NSA algorithm.

2

In ADMM algorithms [6, 11, 12], the penalty parameter is typically held constant, i.e. ρk = ρ > 0, for all
k ≥ 1. Although convergence is guaranteed for all ρ > 0, the empirical performance of ADMM algorithms is
critically dependent on the choice of penalty parameter ρ – it deteriorates very rapidly if the penalty is set
too large or too small [13, 14, 19]. Moreover, it is discussed in [24] that there exists ρ∗ which optimizes the
convergence rate for the constant penalty ADMM scheme; however, estimating ρ∗ is difficult in practice [17].

The main advantages of adopting an increasing sequence of penalties are as follows:

(i) The algorithm is robust in the sense that there is no need to search for an optimal ρ∗.
(ii) The algorithm is likely to achieve primal feasibility faster. ADMM algorithms can be viewed as inexact

variant of augmented Lagrangian algorithms where one updates the dual iterate after all primal iterates
are updated by taking a single block-coordinate descent step in each block. The primal infeasibility in
augmented Lagrangian methods can be approximated by O

(

ρ−1
k ‖Yk − Y ∗‖

)

, where Yk is an estimate
of optimal dual Y ∗ at the k-th iteration (see, e.g. Section 17.3 in [25]). Consequently, a suitably chosen
increasing sequence of penalties can improve the convergence rate.

(iii) The complexity of initial (transient) iterations can be controlled through controlling the growth in
{ρk}. The main computational bottleneck in ADMIP (see Figure 1.1) is Step 4 that requires an SVD
computation (see (4.1)). Since the optimal L∗ is of low-rank, and Lk → L∗, eventually the SVD
computations are likely to be very efficient. However, since the initial iterates may have large rank, the
complexity of the SVD in the initial iterations can be quite large. From (4.1) it follows that one does
not need to compute singular values smaller than 1/ρk; hence, starting ADMIP with a small ρ0 > 0 will
significantly decrease the complexity of initial iterations.

In this paper, we propose an algorithm that uses an increasing sequence of penalties. This may appear as
a regressive step that ignores the accumulated numerical experience with penalty and augmented Lagrangian
algorithms. However, we argue that this experience does not immediately carry over to ADMM-type algorithms,
and hence, one should re-examine the role of increasing penalty parameters. The reluctance to use increasing
penalty sequence goes back and is associated with the experience of solving convex optimization problems
of the form P ≡ minx{f(x) : Ax = b} using quadratic penalty methods (QPM). These methods solve P
by inexactly solving a sequence of subproblems Pk ≡ minx{f(x) + ρk‖Ax− bk‖22} with bk = b for all k ≥ 1.
Let xk denote an inexact minimizer of Pk such that the violation in the optimality conditions is within a
specified tolerance. Then the infeasibility ‖Axk − b‖2 is O(1

ρk
); therefore, the penalty parameter ρk must

be increased to infinity in order to ensure feasibility. Traditionally, each inexact solution xk is computed
using a second-order method where the Hessian is of the form ∇2f(x) + 2ρkA

TA. It is important to note
that since the condition number is an increasing function of ρk, one encounters numerical instabilities while
solving Pk for large k values. On the other hand, in augmented Lagrangian methods (ALM), i.e. method of
multipliers, one computes an inexact solution xk to the subproblem Pk with bk = b + yk, and then updates
yk+1 = ρk

ρk+1
(bk − Axk), for all k ≥ 1. In contrast to QPM, ALM guarantees primal convergence for a

constant penalty sequence, i.e. ρk = ρ for all k ≥ 1; hence, obviating the need to choose an increasing
penalty sequence, and avoiding the numerical instability encountered while solving Pk for large k. In this
context, proposing an algorithm, ADMIP, that uses an increasing sequence of penalties would appear to
be contradictory, ignoring the accumulated numerical experience with penalty and augmented Lagrangian
algorithms. However, this experience does not immediately carry over to ADMM-type algorithms; there are
significant differences between ADMIP and the quadratic penalty methods, that suggest that the numerical
issues observed in penalty methods are not likely to arise in ADMIP, and therefore, an increasing sequence
of penalties is worth revisiting. Indeed, ADMIP is a first-order algorithm that only employs shrinkage [10]
type operations in each iteration (see Step 4 and Step 5 of ADMIP displayed in Figure 1.1). Moreover, unlike
quadratic penalty methods that solve the subproblems Pk to an accuracy that increases with k, ADMIP takes
only one step for each Pk; more importantly, each step can be computed in closed form and is not prone to
numerical instability; thus, avoiding the numerical problems associated with quadratic penalty methods due
to use of an increasing penalty sequence. Furthermore, the results of our numerical experiments reported in
Section 4 clearly indicate that using an increasing sequence of penalty multipliers results in faster convergence
in practice; in fact, the performance of ADMIP dominates the performance of ADMM-type algorithms for any
fixed penalty term. The numerical experiments also confirm that ADMIP is significantly more robust to
changes in problem parameters.

3

Organization. We propose ADMIP in Section 2 and prove its convergence in Section 3. In Section 4 we
report the results of our numerical experiments where we compare the performance of ADMIP with ASALM on
a set of synthetic randomly generated problems and on a large-scale problem involving foreground extraction
from a noisy surveillance video.

Algorithm ADMIP(Z0, Y0, {ρk}k∈Z+)

1: input: Z0 ∈ R
m×n, Y0 ∈ R

m×n, {ρk}k∈Z+
⊂ R++ such that ρk+1 ≥ ρk, ρk →∞

2: k ← 0
3: while k ≥ 0 do
4: Lk+1 ← argminL{‖L‖∗ + 〈Yk, L− Zk〉+

ρk
2
‖L− Zk‖

2
F }

5: (Zk+1, Sk+1)← argmin{(Z,S):‖πΩ(Z+S−D)‖F≤δ}

{

ξ‖S‖1 + 〈−Yk , Z − Lk+1〉+
ρk
2
‖Z − Lk+1‖

2
F

}

6: Yk+1 ← Yk + ρk(Lk+1 − Zk+1)
7: k ← k + 1
8: end while

Fig. 1.1. ADMIP: Alternating Direction Method with Increasing Penalty

2. An ADMM algorithm with partial variable splitting and increasing penalty sequence. Let

χ := {(Z, S) ∈ R
m×n × R

m×n : ‖πΩ (Z + S −D) ‖F ≤ δ}
denote the feasible set in (1.6) and let 1χ(·, ·) denote the indicator function of the closed convex set χ ⊂
R

m×n × R
m×n, i.e. if (Z, S) ∈ χ, then 1χ(Z, S) = 0; otherwise, 1χ(Z, S) = ∞. We use partial variable

splitting, i.e. we only split the L variables in (1.4), to arrive at the following equivalent problem

min
L,Z,S∈Rm×n

{‖L‖∗ + ξ ‖S‖1 + 1χ(Z, S) : L = Z}. (2.1)

The augmented Lagrangian function of (2.1) is defined as follows:

Lρ(L,Z, S;Y) = ‖L‖∗ + ξ ‖S‖1 + 1χ(Z, S) + 〈Y, L− Z〉+ ρ

2
‖L− Z‖2F . (2.2)

In each iteration of ADMIP in Figure 1.1, the next iterate Lk+1 is computed by minimizing (2.2) over L ∈ R
m×n

by setting ρ = ρk and (Y, Z, S) = (Yk, Zk, Sk); the next iterate (Zk+1, Sk+1) is computed by minimizing
(2.2) over (Z, S) ∈ χ, by setting ρ = ρk and (Y, L) = (Yk, Lk+1); finally we set the next dual variable
Yk+1 = Yk + ρk(Lk+1 − Zk+1).

The computational complexity of each iteration of ADMIP is determined by the subproblems solved in
Step 4 and Step 5. The subproblem in Step 4 is a matrix shrinkage problem and can be solved efficiently by
computing an SVD of an m × n matrix. The explicit solution of the matrix shrinkage problem is given in
(4.1). The subproblem in Step 5 has the following generic form:

(Pns) : min
{

ξ‖S‖1 +
〈

Q,Z − Z̃
〉

+
ρ

2
‖Z − Z̃‖2F : (Z, S) ∈ χ

}

, (2.3)

where ρ > 0, Q, Z̃ ∈ R
m×n are given problem parameters.

Lemma 2.1. The optimal solution (Z∗, S∗) to problem (Pns) can be written in closed form.
(i) Suppose δ > 0. Then

S∗ = sgn
(

πΩ

(

D − q(Z̃)
))

⊙max

{

∣

∣

∣
πΩ

(

D − q(Z̃)
)∣

∣

∣
− ξ

(ρ+ θ∗)

ρθ∗
E, 0

}

, (2.4)

Z∗ = πΩ

(

θ∗

ρ+ θ∗
(D − S∗) +

ρ

ρ+ θ∗
q(Z̃)

)

+ πΩc

(

q(Z̃)
)

, (2.5)

where q(Z̃) := Z̃ − ρ−1 Q; E and 0 ∈ R
m×n are matrices with all components equal to ones and zeros,

respectively; ⊙ denotes the component-wise multiplication operator. When ‖πΩ(D − q(Z̃))‖F ≤ δ, the
multiplier θ∗ = 0; otherwise, θ∗ is the unique positive solution of the nonlinear equation φ(θ) = δ,
where

φ(θ) := ‖min

{

ξ

θ
E,

ρ

ρ+ θ

∣

∣

∣
πΩ

(

D − q(Z̃)
)∣

∣

∣

}

‖F . (2.6)

The multiplier θ∗ can be efficiently computed in O(|Ω| log(|Ω|)) time.

4

(ii) Suppose δ = 0. Then

S∗ = sgn
(

πΩ

(

D − q(Z̃)
))

⊙max
{∣

∣

∣
πΩ

(

D − q(Z̃)
)∣

∣

∣
− ξρ−1 E, 0

}

, (2.7)

and Z∗ = πΩ (D − S∗) + πΩc

(

q(Z̃)
)

.

Proof. Proof is almost the same with that of Lemma 6.1 in [1]. For the sake of completeness, we included
the proof in Appendix A.1.

Note that Lemma 2.1 also gives the worst case computational complexity of proximal gradient type first-
order methods such as FISTA [4] and Algorithm 2 in [30] applied to the “smoothed” version of the SPCP
problem minL,S∈Rm×n{fµ(L) + ξ ‖S‖1 : (L, S) ∈ χ}, where fµ(L) = maxU∈Rm×n:‖U‖2≤1〈L,U〉 − µ

2 ‖U‖2F .
For µ = Θ(ǫ), Lemma 2.1 implies that FISTA computes an ǫ-optimal solution of problem (1.6) in O(1/ǫ)
iterations.

The following lemma will be used later in Section 3. However, we state it here since it is related to
problem (Pns).

Lemma 2.2. Suppose that δ > 0. Let (Z∗, S∗) be an optimal solution to problem (Pns) and θ∗ be an
optimal Lagrangian multiplier such that (Z∗, S∗) and θ∗ together satisfy the Karush-Kuhn-Tucker (KKT)
conditions. Then (W ∗,W ∗) ∈ ∂1χ(Z

∗, S∗), where W ∗ := −Q+ ρ(Z̃ − Z∗) = θ∗ πΩ (Z∗ + S∗ −D).
Proof. See Appendix A.2 for the proof.

3. Convergence of ADMIP. When ρk = ρ > 0 for all k ≥ 1, the convergence of ADMIP directly follows
from the standard convergence theory of ADMM -see a recent survey paper [6] for the proof of convergence.
In the rest of the paper, we will focus on the case where {ρk}k∈Z+ is a monotonically increasing sequence,
and we prove that ADMIP primal-dual iterate sequence {(Lk, Sk, Yk)}k∈Z+ converges under mild conditions
on the penalty sequence {ρk}k∈Z+ . We first establish a sequence of results that extend the similar results in

[22] to the case of constrained subproblems and partial splitting of variables. Define {Ŷk}k∈Z+ as

Ŷk+1 := Yk + ρk(Lk+1 − Zk). (3.1)

The subproblem in Step 5 of ADMIPis equivalent to

min
Z,S

{

ξ‖S‖1 + 〈−Yk, Z − Lk+1〉+
ρk
2
‖Z − Lk+1‖2F :

1

2
‖πΩ (Z + S −D) ‖2F ≤ δ2

2

}

. (3.2)

In Lemma 2.1 we show that the optimal solution of this problem can be written in closed form in terms of
θ∗ such that φ(θ∗) = δ. Let θk denote the value of θ∗ when Lemma 2.1 is applied to the instance in (3.2).
Then the proof of Lemma 2.1 implies that θk is the optimal dual corresponding to the constraint in (3.2).

Lemma 3.1. Let f(·) := ‖ · ‖∗, g(·) := ξ ‖ · ‖1 and let {Lk, Zk, Sk, Yk}k∈Z+ denote the ADMIP iterates

corresponding to the penalty sequence {ρk}k∈Z+ and let {Ŷk}k∈Z+ denote the sequence defined in (3.1). Then

for all k ≥ 1, −Yk ∈ ∂g(Sk) and −Ŷk ∈ ∂f(Lk). Thus, {Yk}k∈Z+ and {Ŷk}k∈Z+ are bounded sequences.
Moreover, πΩ (Yk) = Yk for all k ≥ 1.

Proof. See Appendix A.3 for the proof.
Before discussing the convergence properties of ADMIP in Theorem 3.3, we need to state a technical result

in Lemma 3.2 which will play a key role in proving the main result of this paper: Theorem 3.3.
Lemma 3.2. Suppose δ > 0. Let {Lk, Zk, Sk, Yk}k∈Z+ denote the ADMIP iterates corresponding to the

non-decreasing sequence of penalty multipliers, {ρk}k∈Z+. Let (L∗, L∗, S∗) ∈ argminL,Z,S{‖L‖∗ + ξ ‖S‖1 :
1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2 , L = Z} denote any optimal solution, Y ∗ ∈ R
m×n and θ∗ ≥ 0 denote any optimal

Lagrangian duals corresponding to the constraints L = Z and 1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2 , respectively. Then

{‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F}k∈Z+ is a non-increasing sequence and

∑

k∈Z+
‖Zk+1 − Zk‖2F < ∞,

∑

k∈Z+
ρ−2
k ‖Yk+1 − Yk‖2F < ∞,

∑

k∈Z+
ρ−1
k 〈−Yk+1 + Y ∗, Sk+1 − S∗〉 < ∞,

∑

k∈Z+
ρ−1
k 〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉 < ∞,

∑

k∈Z+
ρ−1
k 〈Y ∗ − Yk+1, L

∗ + S∗ − Zk+1 − Sk+1〉 < ∞.

5

Proof. See Appendix A.4 for the proof.
The partial split formulation (2.1) is equivalent to

min
L,Z,S∈Rm×n

{

‖L‖∗ + ξ ‖S‖1 : L = Z,
1

2
‖πΩ (Z + S −D) ‖2F ≤ δ2

2

}

.

The Lagrangian function for this formulation is given by

L(L,Z, S;Y, θ) = ‖L‖∗ + ξ ‖S‖1 + 〈Y, L− Z〉+ θ

2

(

‖πΩ (Z + S −D) ‖2F − δ2
)

. (3.3)

Theorem 3.3. Suppose δ > 0. Let {Lk, Zk, Sk, Yk}k∈Z+ denote the ADMIP iterates corresponding to
the penalty multiplier sequence {ρk}k∈Z+. Let {θk}k∈Z+ be the sequence such that θk is the optimal dual
corresponding to the constraint in (3.2).
(i) Suppose {ρk}k∈Z+ is a non-decreasing sequence such that

∑

k∈Z+

1
ρk

= ∞. Then L∗ := limk∈Z+ Zk =

limk∈Z+ Lk and S∗ := limk∈Z+ Sk exist; and (L∗, S∗) are optimal for the SPCP problem.
(ii) Suppose {ρk}k∈Z+ is a non-decreasing sequence such that

∑

k∈Z+

1
ρ2
k

= ∞. Then, in the case that

‖πΩ (D − L∗) ‖F 6= δ, (Y ∗, θ∗) := limk∈Z+(Yk, θk) exists, and (L∗, L∗, S∗, Y ∗, θ∗) is a saddle point of
the Lagrangian function L in (3.3). Otherwise, i.e. when ‖πΩ (D − L∗) ‖F = δ, {Yk, θk}k∈Z+ has a
limit point (Y ∗, θ∗), such that (Y ∗, θ∗) ∈ argmaxY,θ{ L(L∗, L∗, S∗;Y, θ) : θ ≥ 0}.

The condition
∑

k∈Z+

1
ρk

= ∞ is similar to the condition in Theorem 2 in [22] that is needed to show

that algorithm I-ALM converges to an optimal solution of the robust PCA problem. Let Ω = {(i, j) : 1 ≤
i ≤ m, 1 ≤ j ≤ n}, and D = L0 + S0 + N0 be given such that (L0, S0, N0) satisfies the assumptions of
Theorem 1.2 and ‖S0‖F >

√
Cmnδ. Then, with very high probability, ‖D − L∗‖F > δ, where C is the

numerical constant defined in Theorem 1.2. Therefore, in practice, one is unlikely to encounter the case
where ‖D − L∗‖F = δ.

Proof. Lemma 3.2 and the fact that Lk+1 − Zk+1 = 1
ρk

(Yk+1 − Yk) for all k ≥ 1, together imply that

∞ >
∑

k∈Z+

ρ−2
k ‖Yk+1 − Yk‖2F =

∑

k∈Z+

‖Lk+1 − Zk+1‖2F .

Thus, limk∈Z+(Lk − Zk) = 0.

Let (L#, L#, S#) ∈ argminL,Z,S{‖L‖∗ + ξ ‖S‖1 : 1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2 , L = Z} denote any

optimal solution, Y # ∈ R
m×n and θ# ≥ 0 denote any Lagrangian dual optimal solutions corresponding to

L = Z and 1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2 constraints, respectively, and f∗ := ‖L#‖∗ + ξ ‖S#‖1.
Since (Zk, Sk) ∈ χ for all k ≥ 1, or equivalently 1χ(Zk, Sk) = 0 for all k ≥ 1, it follows that

‖Lk‖∗ + ξ ‖Sk‖1
= ‖Lk‖∗ + ξ ‖Sk‖1 + 1χ(Zk, Sk),

≤ ‖L#‖∗ + ξ ‖S#‖1 + 1χ(L
#, S#) + 〈Ŷk, L

− Lk〉+ 〈Yk, S
− Sk〉 − 〈Yk, L

+ S# − Zk − Sk〉,
= f∗ + 〈−Ŷk + Y #, Lk − L#〉+ 〈−Yk + Y #, Sk − S#〉+ 〈Y # − Yk, L

+ S# − Zk − Sk〉
+ 〈Y #, Zk − Lk〉, (3.4)

where the inequality follows from Lemma 3.1 and the fact that (Yk, Yk) ∈ ∂1χ(Zk, Sk) -see Lemma 2.2; and
(3.4) follows from rearranging the terms and the fact that (L#, S#) ∈ χ.

From Lemma 3.2, we have that
∑

k∈Z+

ρ−1
k−1

(

〈−Ŷk + Y #, Lk − L#〉+ 〈−Yk + Y #, Sk − S#〉+ 〈Y # − Yk, L
+ S# − Zk − Sk〉

)

< ∞.

First consider the case where
∑

k∈Z+

1
ρk

= ∞. There exists K ⊂ Z+ such that

lim
k∈K

(

〈−Ŷk + Y #, Lk − L#〉+ 〈−Yk + Y #, Sk − S#〉+ 〈Y # − Yk, L
+ S# − Zk − Sk〉

)

= 0. (3.5)

6

Therefore, (3.4), (3.5) and limk∈Z+(Zk − Lk) = 0 together imply that

lim sup
k∈K

‖Lk‖∗ + ξ ‖Sk‖1 ≤ f∗.

Hence, {‖Lk‖∗ + ξ ‖Sk‖1}k∈K is a bounded sequence. Therefore, there exists K∗ ⊂ K ⊂ Z+ such that
{(Lk, Sk)}k∈K∗ has a limit. Let (L∗, S∗) := limk∈K∗(Lk, Sk). Since limk∈Z+(Zk − Lk) = 0 and (Zk, Sk) ∈ χ
for all k ≥ 1, we have (L∗, S∗) = limk∈K∗(Zk, Sk) ∈ χ. Taking the limit of both sides of (3.4) along K∗ gives

‖L∗‖∗ + ξ ‖S∗‖1 = lim
k∈K∗

‖Lk‖∗ + ξ ‖Sk‖1 ≤ f∗,

and since (L∗, S∗) ∈ χ, we conclude that (L∗, S∗) ∈ argmin{‖L‖∗ + ξ ‖S‖1 : (L, S) ∈ χ}.
Note that

(L∗, L∗, S∗) ∈ argmin
L,Z,S

{‖L‖∗ + ξ ‖S‖1 :
1

2
‖πΩ (Z + S −D) ‖2F ≤ δ2

2
, L = Z}.

Let Ȳ ∈ R
m×n and θ̄ ≥ 0 denote any Lagrangian dual optimal solutions corresponding to L = Z and

1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2 constraints, respectively. Lemma 3.1 implies that {Yk} is a bounded sequence.

Thus, from Lemma 3.2, it follows that {‖Zk − L∗‖2F + ρ−2
k ‖Yk − Ȳ ‖2F}k∈Z+ is a bounded, non-increasing

sequence, and therefore, has a unique limit point; hence, every subsequence of this sequence converges to the
same limit. Combining this result with the facts that limk∈K∗ Zk = L∗ and {Yk}k∈Z+ is a bounded sequence,
it follows that

lim
k∈Z+

‖Zk − L∗‖2F = lim
k∈Z+

‖Zk − L∗‖2F + ρ−2
k ‖Yk − Ȳ ‖2F

= lim
k∈K∗

‖Zk − L∗‖2F + ρ−2
k ‖Yk − Ȳ ‖2F ,

= lim
k∈K∗

‖Zk − L∗‖2F ,
= 0.

Since limk∈Z+ ‖Zk − L∗‖F = 0 and limk∈Z+(Zk − Lk) = 0, it follows that limk∈Z+ Lk = limk∈Z+ Zk = L∗.
Lemma 2.1 applied to the sub-problem in Step 5 of ADMIP corresponding to the k-th iteration gives

Sk+1 = sgn (πΩ (D − q(Lk+1)))⊙max

{

|πΩ (D − q(Lk+1))| − ξ
(ρk + θk)

ρkθk
E, 0

}

, (3.6)

Zk+1 = πΩ

(

θk
ρk + θk

(D − Sk+1) +
ρk

ρk + θk
q(Lk+1)

)

+ πΩc (q(Lk+1)) , (3.7)

where q(Lk+1) :=
(

Lk+1 +
1
ρk

Yk

)

. Here, θk = 0, when ‖πΩ (D − q(Lk+1)) ‖F ≤ δ; otherwise, θk > 0 is the

unique solution of the equation φk(θ) = δ, where

φk(θ) :=

∥

∥

∥

∥

min

{

ξ

θ
E,

ρk
ρk + θ

|πΩ (D − q(Lk+1))|
}
∥

∥

∥

∥

F

. (3.8)

Since limk∈Z+ Lk = L∗, {Yk}k∈Z+ is a bounded sequence and ρk ր ∞, we have that limk∈Z+ q(Lk+1) =
limk∈Z+ Lk+1 +

1
ρk

Yk = L∗. Next, we establish {Sk}k∈Z+ has a unique limit point S∗.

(i) First suppose ‖πΩ (D − L∗) ‖F ≤ δ. Recall that we have shown that there exists a sub-sequence
K∗ ⊂ Z+ such that

lim
k∈K∗

(Lk, Sk) = (L∗, S∗) ∈ argmin
L,S

{‖L‖∗ + ξ‖S‖1 : ‖πΩ (L+ S −D) ‖F ≤ δ}.

Since ‖πΩ (D − L∗) ‖F ≤ δ, (L∗,0) is a feasible solution, it follows ‖L∗‖∗ + ξ‖S∗‖ ≤ ‖L∗‖∗. Conse-
quently, S∗ = 0.

‖Lk‖∗ + ξ ‖Sk‖1
= ‖Lk‖∗ + ξ ‖Sk‖1 + 1χ(Zk, Sk),

≤ ‖L∗‖∗ + ξ ‖0‖1 + 1χ(L
∗,0)− 〈−Ŷk, L

∗ − Lk〉 − 〈−Yk,0− Sk〉 − 〈Yk, L
∗ + 0− Zk − Sk〉,

= ‖L∗‖∗ + 〈Ŷk, L
∗ − Lk〉+ 〈Yk, Zk − L∗〉, (3.9)

7

where the inequality follows from Lemma 3.1 and the fact that (Yk, Yk) ∈ ∂1χ(Zk, Sk) (see Lemma 2.2
for details).
Since the sequences {Yk}k∈Z+ and {Ŷk}k∈Z+ are both bounded and limk∈Z+ Lk = limk∈Z+ Zk = L∗,
taking the limit of both sides of (3.9), we get

‖L∗‖∗ + ξ lim
k∈Z+

‖Sk‖1 = lim
k∈Z+

‖Lk‖∗ + ξ ‖Sk‖1

≤ lim
k∈Z+

‖Lk‖∗ + 〈Ŷk, L
∗ − Lk〉+ 〈Yk, Zk − L∗〉 = ‖L∗‖∗.

Therefore, limk∈Z+ ‖Sk‖1 = 0, which implies that limk∈Z+ Sk = 0. Hence, S∗ = limk∈Z+ Sk.
(ii) Next, suppose ‖πΩ (D − L∗) ‖F > δ. Since limk∈Z+ ‖πΩ (D − q(Lk+1)) ‖F = ‖πΩ (D − L∗) ‖F > δ,

there exists K ∈ Z+ such that for all k ≥ K, ‖πΩ (D − q(Lk+1)) ‖F > δ. For all k ≥ K, φk(·), defined
in (3.8), is a continuous and strictly decreasing function of θ for θ ≥ 0. Hence, for all k ≥ K, the inverse
function φ−1

k (.) exists in an open neighborhood containing δ. Thus, φk(0) = ‖πΩ (D − q(Lk+1)) ‖F > δ
for all k ≥ K and limθ→∞ φk(θ) = 0 imply that θk = φ−1

k (δ) > 0 for all k ≥ K. Moreover, φk(θ) ≤
φ(θ) := ‖ ξ

θ E‖F implies that for all k ≥ 1,

θk = φ−1
k (δ) ≤ φ−1(δ) =

ξ
√
mn

δ
. (3.10)

Since {θk}k≥K is a bounded sequence, it has a convergent subsequence Kθ ⊂ Z+, i.e., θ
∗ := limk∈Kθ

θk

exists. We also have φk(θ) → φ∞(θ) pointwise for all 0 ≤ θ ≤ ξ
√
mn
δ , where

φ∞(θ) :=

∥

∥

∥

∥

min

{

ξ

θ
E, |πΩ (D − L∗)|

}∥

∥

∥

∥

F

. (3.11)

Since φk(θk) = δ for all k ≥ K, we have

δ = lim
k∈Kθ

φk(θk) = lim
k∈Kθ

∥

∥

∥

∥

min

{

ξ

θk
E,

ρk
ρk + θk

|πΩ (D − q(Lk+1))|
}∥

∥

∥

∥

F

= φ∞(θ∗). (3.12)

Note that φ∞(·) is also a continuous and strictly decreasing function of θ for θ ≥ 0. Moreover,
φ∞(0) = ‖πΩ (D − L∗) ‖F > δ implies that φ∞ is invertible around δ, i.e. φ−1

∞ exists in a neighborhood
containing δ, and φ−1

∞ (δ) > 0. Thus, θ∗ = φ−1
∞ (δ). Since Kθ is an arbitrary subsequence and θ∗ = φ−1

∞ (δ)
does not depend on Kθ, we can conclude that

lim
k∈Z+

θk = φ−1
∞ (δ) = θ∗. (3.13)

Since θ∗ = limk∈Z+ θk, taking the limit on both sides of (3.6), we get

S∗ := lim
k∈Z+

Sk+1 = sgn (πΩ (D − L∗))⊙max

{

|πΩ (D − L∗)| − ξ

θ∗
E, 0

}

, (3.14)

and this completes the first part of the theorem.
Now, suppose {ρk}k∈Z+ is strictly increasing and

∑∞
k=1

1
ρ2
k

= ∞. We need two results in order to

establish the convergence of the duals. From Lemma 3.2, we have
∑

k∈Z+
‖Zk+1 − Zk‖2F < ∞. From the

definition of Ŷk in (3.1), it follows that

∑

k∈Z+

ρ−2
k ‖Ŷk+1 − Yk+1‖2F =

∑

k∈Z+

‖Zk+1 − Zk‖2F < ∞. (3.15)

Since
∑

k∈Z+

1
ρ2
k

= ∞, there exists a sub-sequence K̄ ⊂ Z+ such that limk∈K̄ ‖Ŷk+1 − Yk+1‖2F = 0. Hence,

limk∈K̄ ρ2k‖Zk+1 − Zk‖2F = 0, i.e.

lim
k∈K̄

ρk(Zk+1 − Zk) = 0. (3.16)

8

Using (A.18), (A.19) and (A.20) from the proof of Lemma 3.1 in Appendix A.3, we get

0 ∈ ∂‖Lk+1‖∗ + θkπΩ (Zk+1 + Sk+1 −D) + ρk(Zk+1 − Zk), (3.17)

0 ∈ ξ∂‖Sk+1‖1 + θkπΩ (Zk+1 + Sk+1 −D) . (3.18)

We will establish the convergence of the duals by considering two cases.
(i) Suppose ‖πΩ (D − L∗) ‖F 6= δ. Note that from (A.20), it follows that Yk = θk−1πΩ (Zk + Sk −D) for

all k ≥ 1. First suppose that ‖πΩ (D − L∗) ‖F < δ. Since

lim
k∈Z+

∥

∥

∥

∥

πΩ

(

D − (Lk+1 +
1

ρk
Yk)

)∥

∥

∥

∥

F

= ‖πΩ (D − L∗) ‖F < δ,

there existsK ∈ Z+ such that for all k ≥ K, ‖πΩ

(

D − (Lk+1 +
1
ρk

Yk)
)

‖F < δ. Thus, from Lemma 2.1

for all k ≥ K, θk = 0, Sk+1 = 0, Zk+1 = Lk+1 +
1
ρk

Yk, which implies that θ∗ = limk∈Z+ θk = 0 and,
since S∗ = limk∈Z+ Sk = 0 and limk∈Z+ Zk = L∗,

Y ∗ = lim
k∈Z+

Yk = lim
k∈Z+

θk−1πΩ (Zk + Sk −D) = 0.

Next, suppose that ‖πΩ (D − L∗) ‖F > δ. In this case, we have established in (3.13) that θ∗ =
limk∈Z+ θk exists. Hence,

lim
k∈Z+

Yk = lim
k∈Z+

θk−1πΩ (Zk + Sk −D) = θ∗πΩ (L∗ + S∗ −D) = Y ∗.

exists.
Taking the limit of (3.17) and (3.18) along K̄ ⊂ Z+ defined in (3.16); and using the fact that
limk∈K̄ ρk(Zk+1 − Zk) = 0, we get

0 ∈ ∂‖L∗‖∗ + θ∗πΩ (L∗ + S∗ −D) , (3.19)

0 ∈ ξ∂‖S∗‖1 + θ∗πΩ (L∗ + S∗ −D) . (3.20)

Thus, it follows that the primal variables (L∗, S∗) and dual variables Y ∗ = θ∗πΩ (L∗ + S∗ −D) and θ∗

satisfy KKT optimality conditions for the problem

min
L,Z,S

{‖L‖∗ + ξ ‖S‖1 :
1

2
‖πΩ (Z + S −D) ‖2F ≤ δ2

2
, L = Z}.

Hence, (L∗, L∗, S∗, Y ∗, θ∗) is a saddle point of the Lagrangian function

L(L,Z, S;Y, θ) = ‖L‖∗ + ξ ‖S‖1 + 〈Y, L− Z〉+ θ

2

(

‖πΩ (Z + S −D) ‖2F − δ2
)

.

(ii) Next, consider the case where ‖D−L∗‖F = δ. Fix k > 0. θk = 0 if ‖D−(Lk+1+
1
ρk

Yk)‖F ≤ δ; otherwise,

θk > 0. Also, from (3.10) it follows that θk ≤ ξ
√
mn
δ . Since {θk}k∈Z+ is a bounded sequence, there exists

a further subsequence Kθ of the sequence K̄ defined in (3.16) such that θ∗ := limk∈Kθ
θk−1 and Y ∗ :=

limk∈Kθ
θk−1πΩ (Zk + Sk −D) = θ∗πΩ (L∗ + S∗ −D) exist. Thus, taking the limit of (3.17),(3.18)

along Kθ ⊂ Z+ and using the facts that limk∈K̄ ρk(Zk+1 −Zk) = 0 and L∗ = limk∈Z+ Lk = limk∈Z+ Zk,
S∗ = limk∈Z+ Sk exist, we conclude that (L∗, L∗, S∗, Y ∗, θ∗) is a saddle point of the Lagrangian function
L(L,Z, S;Y, θ).

4. Numerical experiments. We conducted two sets of numerical experiments with ADMIP to solve
SPCP problems. In the first set of experiments we solved randomly generated instances of the SPCP prob-
lem. In this setting, we conducted three different tests. First, we compared ADMIP with ADMM for different
values of the fixed penalty ρ; second, we conducted a set of experiments to understand how ADMIP runtime

9

scales as a function of the problem parameters and size; and third, we compared ADMIP with ASALM [29].
ASALM is an ADMM algorithm, tailored for the SPCP problem, with a fixed penalty ρ. For each dual up-
date, ASALM updates three blocks of primal variables, while ADMIP updates two blocks. In the second set
of experiments, we compared ADMIP and ASALM on the foreground detection problem, where the goal is
to extract the moving objects from a noisy and corrupted airport security video [21]. All the numerical
experiments were conducted on a Dell M620 server computing node running on RedHat Enterprise Linux 6
(RHEL 6). Each numerical test was carried out using MATLAB R2013a (64 bit) with 16 GB RAM available
on a single core of Intel Leon E5-2665 2.40 GHz processor. The MATLAB code for ADMIP2 is available
at http://www2.ie.psu.edu/aybat/codes.html and the code for ASALM is available on request from the
authors of [29].

Algorithm ADMIP(Z0, Y0, {ρk}k∈Z+)

1: input: Z0 ∈ R
m×n, Y0 ∈ R

m×n, {ρk}k∈Z+
⊂ R++ such that ρk+1 ≥ ρk, ρk →∞

2: k ← 0
3: while k ≥ 0 do
4: Compute svd(Zk − Yk/ρk) such that Zk − Yk/ρk = U Diag(σ)V T

5: Lk+1 ← U Diag
(

min
{

σ − 1
ρk

1, 0
})

V T

6: C ← Lk+1 + ρ−1
k Yk

7: θ∗ ←ThetaSearch(|D − C|,Ω, δ, ρk)

8: Sk+1 ← sgn (πΩ (D − C))⊙max
{

|πΩ (D − C)| − ξ
(ρk+θ∗)
ρkθ

∗ E, 0
}

9: Zk+1 ← πΩ

(

θ∗

ρk+θ∗
(D − S∗) + ρk

ρk+θ∗
C
)

+ πΩc (C)

10: Yk+1 ← Yk + ρk(Lk+1 − Zk+1)
11: k ← k + 1
12: end while

Fig. 4.1. Pseudocode for ADMIP

4.1. Implementation details. The optimal solution of the Step 4 subproblem corresponding to the
k-th iteration is given by

Lk+1 = U Diag

(

min

{

σ − 1

ρk
1, 0

})

V T , (4.1)

where q(Zk) = Zk − Yk/ρk = U Diag(σ)V T and 1 denotes a vector of all ones. Computing the full SVD
of q(Zk) is expensive for large instances. However, we do not need to compute the full SVD, because only
the singular values that are larger than 1/ρk and the corresponding singular vectors are needed. In order to
exploit this fact, we used a modified version of LANSVD [20]3 that comes with treshold option to compute
only those singular vectors with singular values greater than a given threshold value τ > 0. Note that we
set τ = 1/ρk in the k-th ADMIP iteration.

The bottleneck step in the k-th iteration of ASALM, which is an ADMM algorithm with constant penalty
ρ > 0, also involves computing a low-rank matrix Lk+1. Indeed, first, a matrix Qk is computed with
complexity comparable to that of computing q(Zk) in ADMIP. Next, Lk+1 is computed as in (4.1), where
U diag(σ)V T denotes the SVD of Qk, and ρk = ρ for all k. Thus, the overall per-iteration complexity of
ASALM is comparable to that of ADMIP. The ASALM code provided by the authors of [29] calls the original
LANSVD function of PROPACK which does not have the threshold option; consequently, the ASALM code
computes Lk+1 by first estimating its rank, say r, and computing the leading r singular values of Qk, i.e.
σ1 ≥ σ2 ≥ . . . ≥ σr. If the r-th singular value σr ≤ 1/ρ, then Lk+1 is computed using singular-value
shrinkage as in (4.1); otherwise, the estimate r is revised by setting r = min{2r, n}, and the leading r
singular values of Qk are computed from scratch, i.e. the first r that were computed previously are simply
ignored. This process is repeated until σr ≤ 1/ρ. In order to improve the efficiency of the ASALM code and
make it comparable to ADMIP, we used the modified LANSVD function with the threshold option in both

2In an earlier preprint, we named it as Non-Smooth Augmented Lagrangian (NSA) algorithm.
3The modified version is available from http://svt.stanford.edu/code.html

10

http://www2.ie.psu.edu/aybat/codes.html
http://svt.stanford.edu/code.html

Subroutine ThetaSearch(A,Ω, δ, ρ)

1: output: θ∗ ∈ R+, input: A ∈ R
m×n
+ , Ω ⊂ {1, . . . , m} × {1, . . . , n}, δ > 0, ρ > 0

2: if ‖πΩ (A) ‖F ≤ δ then
3: θ∗ ← 0
4: else
5: Compute 0 ≤ a(1) ≤ a(2) ≤ . . . ≤ a(|Ω|) by sorting {Aij : (i, j) ∈ Ω}
6: a(0) ← 0

7: k̄ ← max{j : a(j) ≤
ξ
ρ
, 0 ≤ j ≤ |Ω|}

8: if k̄ == |Ω| then

9: θ∗ ← ρ
(

‖πΩ(A)‖F
δ

− 1
)

10: else
11: j∗ ← k̄
12: for j = k̄ + 1, . . . , |Ω| do

13: φj ←

√

(

1− ξ
ρ
a−1
(j)

)2
∑j

i=0 a
2
(i)

+ (|Ω| − j)
(

a(j) −
ξ
ρ

)2

14: if φj ≤ δ then
15: j∗ ← j
16: end if
17: end for
18: if j∗ == |Ω| then

19: θ∗ ← ρ
(

‖πΩ(A)‖F
δ

− 1
)

20: else

21: Compute unique θ∗ > 0 by finding the roots of
(

ρ
ρ+θ∗

)2
∑j∗

i=0 a
2
(i)

+ (|Ω| − 1)
(

ξ
θ∗

)2

22: end if
23: end if
24: end if

Fig. 4.2. ThetaSearch: Subroutine for computing the optimal dual θ∗

ADMIP and ASALM to compute low-rank SVDs more efficiently. This modification significantly reduced the
total number singular values computed by ASALM when compared to the code provided by the authors of [29].

For all three algorithms, ADMIP, ADMM, and ASALM, we set the initial iterate (Z0, Y0) = (0,0). For
ADMIP the penalty multiplier sequence {ρk}k∈Z+ was chosen as follows:

ρ0 = ρ1 = 1.25/σmax(πΩ(D)), ρk+1 = min{κ ρk, ρ̄+ k}, k ≥ 1, (4.2)

where κ = 1.25, ρ̄ = 1000 ρ0, and πΩ(·) is defined in (1.5). Note that for ADMM and ASALM, ρk = ρ for some
ρ > 0 for all k ≥ 1.

See Figure 4.1 for an implementable pseudocode for ADMIP: line 5 follows from (4.1), and lines 8 and 9
follow from Lemma 2.1, since θ∗ computed in line 7 satisfies the conditions given in Lemma 2.1 with Q = −Yk,
Z̃ = Lk+1, and ρ = ρk. Subroutine ThetaSearch in Figure 4.2 uses the procedure outlined in the proof of
Lemma 2.1 to compute θ∗ in O(|Ω| log(|Ω|)) time. Also, note that the roots of the quartic equation in line 21
of Figure 4.1 can be computed in closed form using the formula first shown by Lodovico Ferrari, and later
published in Cardano’s Ars Magna in 1545 [7].

4.2. Random SPCP problems. For a given sparsity coefficient cs ∈ {0.05, 0.1} and a rank coefficient
cr ∈ {0.05, 0.1}, the data matrix D = L0 + S0 +N0 was generated as follows:

i. L0 = UV T , with U ∈ R
n×r, V ∈ R

n×r for r = ⌈crn⌉, and for all i, j, Uij , Vij , were independently drawn
from a Gaussian distribution with mean 0 and variance 1.

ii. Λ ⊂ {(i, j) : 1 ≤ i, j ≤ n} := I was chosen uniformly at random such that its cardinality |Λ| = ⌈csn2⌉,
iii. For each i, j, S0

ij was independently drawn from a uniform distribution over the interval
[

−
√

8r
π ,
√

8r
π

]

.

iv. For each i, j, N0
ij was independently drawn from a Gaussian distribution with mean 0 and variance ̺2.

This construction ensures that, on average, the the magnitude of the non-zero entries of the sparse component
S0 is of the same order as the entries of the low-rank component L0, i.e. E[|L0

i1j1
|] = E[|S0

i2j2
|] for all

(i1, j1) ∈ I and for all (i2, j2) ∈ Λ.

11

Let Ω ⊂ {1, . . . , n} × {1, . . . , n} denote the set indices of the observable entries of D, and let SR = |Ω|
n2

denote the sampling ratio of D. Then, the signal-to-noise ratio is given by

SNR = 10 log10

(

E
[

‖πΩ(L
0 + S0)‖2F

]

E [‖πΩ(N0)‖2F]

)

= 10 log10

(

crn + cs
8r
3π

̺2

)

. (4.3)

In all the numerical test problems, the value for the noise variance ̺2 was set to ensure a certain SNR level,

i.e. ̺2 =
(

crn+ cs
8r
3π

)

10−SNR/10. We set δ =
√

(n+
√
8n)̺ (see [29]).

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

600

ADMM iterations vs ρ for c
s
=0.05, c

r
=0.05

ρ

T
o

ta
l I

te
ra

ti
o

n
 #

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
50

100

150

200

250

300

350

ADMM iterations vs ρ for c
s
=0.1, c

r
=0.05

ρ

T
o

ta
l I

te
ra

ti
o

n
 #

0 0.05 0.1 0.15 0.2 0.25 0.3
60

70

80

90

100

110

120

130

140

150

160
ADMM iterations vs ρ for c

s
=0.05, c

r
=0.1

ρ

T
o

ta
l I

te
ra

ti
o

n
 #

0 0.05 0.1 0.15 0.2 0.25 0.3
60

80

100

120

140

160

180

ADMM iterations vs ρ for c
s
=0.1, c

r
=0.1

ρ

T
o

ta
l I

te
ra

ti
o

n
 #

Fig. 4.3. Iteration complexity of ADMM as a function ρ

4.2.1. ADMM vs ADMIP. We created 5 random problem instances of size n = 500, for each of the two
choices of cs and cr such that SNR = 80dB using the procedure described above in Section 4.2. Both
ADMM and ADMIP were terminated when the following primal-dual stopping condition holds

‖Lk+1 − Zk+1‖F
‖D‖F

≤ tolp,
ρk ‖Zk+1 − Zk‖F

‖D‖F
≤ told. (4.4)

See Section 3.3.1 in [5] for a detailed discussion of this stopping condition. In our experiments, we set tolp =
told = 8.9×10−5 for both ADMIP and ADMM. For each cs ∈ {0.05, 0.1}, cr ∈ {0.05, 0.1}, and penalty parameter
ρ ∈ {0.025i : 1 ≤ i ≤ 50} ⊂ [0.025, 1.25], we used ADMM to solve 5 random instances. We plot the performance
of ADMM as a function of ρ in Figure 4.3. The solid line corresponds to the average over the five instances,
and the dashed lines around the solid lines plot the maximum and minimum values over the 5 random

12

instances. The results of our experiments comparing ADMM with ADMIP are summarized in Table 4.1. For
each random problem instance, the reported ADMM performance corresponds to the ρ∗ value that minimizes
the number of iterations required for termination. The last column in Table 4.1 reports the range of ρ∗ over
5 random instances. The column labeled iter (resp. cpu) lists the minimum/average/maximum number
of total number of iterations (resp. computation time in seconds) required to solve the 5 instances. The
columns labeled relL and relS list the average relative error in the estimate of the low-rank component
‖Lsol − L0‖F/‖L0‖F and the estimate of the sparse component ‖Ssol − S0‖F /‖S0‖F , respectively, where
(Lsol, Ssol) is the output of the particular algorithm considered. It is clear from Table 4.1 that ADMIP requires
significantly fewer iterations. Moreover, the range of optimal fixed penalty ρ∗ for ADMM shifts as problem
parameters cs and cr change, making it even harder to estimate ρ∗. On the other hand, ADMIP does not
require tuning of any problem dependent parameter.

Table 4.1

Comparison of ADMIP and ADMM

Parameters Algorithm iter cpu relL relS ρ∗

cs = 0.05

cr = 0.05

ADMIP 13/18.6/26 2.1/5.9/11.8 4.7E-5 2.2E-4 n/a

ADMM 68/88.6/101 16.8/22.5/25.1 3.4E-5 1.6E-4 [0.15, 0.225]

cs = 0.1

cr = 0.05

ADMIP 19/20.4/22 3.3/3.6/3.9 3.5E-5 1.3E-4 n/a

ADMM 63/69.2/77 17.7/20.0/21.7 3.6E-5 1.4E-4 [0.125, 0.15]

cs = 0.05

cr = 0.1

ADMIP 14/14/14 2.2/2.3/2.5 4.9E-5 1.4E-4 n/a

ADMM 61/63/65 18.3/18.7/19.4 4.8E-5 1.8E-4 [0.075, 0.1]

cs = 0.1

cr = 0.1

ADMIP 23/23/23 4.2/4.2/4.3 5.4E-5 1.6E-4 n/a

ADMM 62/65.4/69 19.6/21.5/19.4 5.3E-5 1.9E-4 [0.075, 0.075]

4.2.2. Performance of ADMIP as a function of problem parameters. Table 4.2 and Table 4.3
report the results of the numerical experiments that we conducted to determine how the run times and other
performance measures for ADMIP scale with the problem size n, the rank of the low-rank component ⌈crn⌉,
the number of non-zero entries of the sparse component ⌈csn2⌉, the sampling ratio SR, and the SNR. For
this set of experiments, we set the tolerances in (4.4) to tolp = told = 1× 10−4.

The column labeled iter, lsv, cpu, relL and relS list, respectively, the number of iterations required
to solve the instance, the average number of leading singular values computed per iteration by ADMIP, the
total cpu time in second, the relative error in the low rank component L0, and the relative error in the low
rank component S0, averaged over the 5 random instances. Table 4.2 corresponds to 80dB, and Table 4.3
corresponds to 40dB. The results in Table 4.2 and Table 4.3 show that the number of partial SVDs ranges
from 11 to 29 when SNR is 80dB, and from 20 to 37 when SNR is 40dB. Moreover, the relative error of the
solution depends only on SNR value, and almost independent of all the other parameters.

4.2.3. ASALM vs ADMIP. We created 5 random problem instances of size n = 500, for each of the two
choices of cs, cr, SNR and SR using the procedure described in Section 4.2; and we compared ADMIP with
ASALM [29] on these random problems. In these numerical tests, we set tol = 0.05, and terminated ADMIP using
the stopping condition

‖(Lk+1, Sk+1)− (Lk, Sk)‖F
‖(Lk, Sk)‖F + 1

≤ tol ̺. (4.5)

We terminated ASALM either when it computed a solution with a smaller relative error compared to the ADMIP
solution for the same problem instance or when an iterate satisfied (4.5). Note that this experimental setup
favors ASALM over ADMIP. The results for the two algorithms are displayed in Table 4.4, where the reported
statistics iter, cpu, lsv, relL, and relS are defined in Section 4.2.2. From the results in Table 4.4, we see
that for all of the problem classes, ASALM requires about twice as many iterations for convergence. But, the
cpu time for ASALM is considerably larger; this difference can be explained by the fact that on average ASALM
computes a larger number of leading singular values per iteration as compared to ADMIP. This is clear from
the lsv statistics reported for both algorithms. The results in Table 4.4 also show that although the relative
errors in the low-rank and sparse components produced by ADMIP and ASALM were of the same order, the
error of ADMIP solutions were consistently lower than those of the ASALM solutions.

13

Table 4.2

Performance of ADMIP on random test problems with missing data, SNR(D)=80dB

SR=100% SR=90% SR=80%

n (cs, cr) iter lsv cpu relL relS iter lsv cpu relL relS iter lsv cpu relL relS

500

(0.05,0.05) 11.6 35.2 2.2 4.1E-5 1.6E-4 13.2 35.1 2.4 4.0E-5 1.3E-4 29.0 78.5 9.7 7.2E-5 4.1E-4

(0.1,0.05) 17.2 34.8 2.9 4.3E-5 1.8E-4 17.8 34.8 2.9 4.8E-5 1.7E-4 19.0 34.7 2.7 5.6E-5 1.6E-4

(0.05,0.1) 13.0 58.0 2.2 5.8E-5 1.8E-4 15.6 58.0 2.5 7.0E-5 1.9E-4 19.8 58.0 2.9 8.3E-5 2.0E-4

(0.1,0.1) 21.2 58.0 3.6 6.4E-5 2.2E-4 23.0 58.0 4.1 7.2E-5 2.2E-4 25.0 58.0 4.2 1.3E-4 3.6E-4

1000

(0.05,0.05) 11.0 61.4 6.7 4.5E-5 1.7E-4 12.0 61.1 6.7 5.4E-5 1.6E-4 14.0 60.6 6.8 4.9E-5 1.4E-4

(0.1,0.05) 17.0 60.2 11.3 4.2E-5 1.7E-4 17.8 60.1 9.9 4.6E-5 1.6E-4 18.8 60.0 9.3 5.5E-5 1.6E-4

(0.05,0.1) 13.4 105.0 8.5 5.6E-5 1.7E-4 15.0 105.0 7.6 7.5E-5 2.0E-4 19.0 105.0 9.3 8.3E-5 1.9E-4

(0.1,0.1) 21.4 105.0 13.0 6.3E-5 2.2E-4 23.0 105.0 12.0 7.0E-5 2.1E-4 25.0 105.0 13.0 8.8E-5 2.2E-4

1500

(0.05,0.05) 11.0 86.6 13.2 4.5E-5 1.7E-4 12.0 86.2 17.9 5.2E-5 1.6E-4 14.0 85.4 17.9 4.9E-5 1.3E-4

(0.1,0.05) 17.0 84.6 21.1 4.2E-5 1.7E-4 17.6 84.5 26.0 4.7E-5 1.7E-4 18.4 84.4 26.5 5.9E-5 1.7E-4

(0.05,0.1) 13.4 153.0 22.2 5.5E-5 1.6E-4 15.0 153.0 24.5 7.2E-5 1.9E-4 19.0 153.0 36.3 8.0E-5 1.9E-4

(0.1,0.1) 21.0 153.0 34.5 6.3E-5 2.2E-4 23.0 153.0 35.6 7.0E-5 2.2E-4 25.0 153.0 47.8 8.7E-5 2.2E-4

Table 4.3

Performance of ADMIP on random test problems with missing data, SNR(D)=40dB

SR=100% SR=90% SR=80%

n (cs, cr) iter lsv cpu relL relS iter lsv cpu relL relS iter lsv cpu relL relS

500

(0.05,0.05) 29.8 178.2 19.2 6.7E-3 3.6E-2 27.2 153.2 14.6 6.8E-3 3.8E-2 30.4 136.9 13.8 7.0E-3 4.1E-2

(0.1,0.05) 34.0 161.3 19.1 7.5E-3 2.8E-2 31.2 137.7 14.9 7.6E-3 3.0E-2 34 124.1 14.8 7.9E-3 3.2E-2

(0.05,0.1) 26.2 168.1 14.6 8.1E-3 4.1E-2 28 148.4 13.4 8.9E-3 4.4E-2 33 129.8 13.4 1.0E-2 5.0E-2

(0.1,0.1) 29.8 152.4 14.9 9.4E-3 3.4E-2 32 139.7 15.0 1.0E-2 3.7E-2 36.8 130.5 15.3 1.2E-2 4.2E-2

1000

(0.05,0.05) 20.0 279.8 52.8 6.8E-3 3.6E-2 21.0 250.5 48.4 6.8E-3 3.8E-2 23.0 228.3 50.7 7.0E-3 4.1E-2

(0.1,0.05) 25.0 251.8 62.3 7.6E-3 2.8E-2 26.0 229.8 56.8 7.6E-3 3.0E-2 27.0 200.7 49.9 7.9E-3 3.2E-2

(0.05,0.1) 21.8 290.1 55.1 8.1E-3 4.1E-2 23.0 255.6 50.5 8.9E-3 4.4E-2 26.0 220.2 42.4 1.0E-2 5.0E-2

(0.1,0.1) 26.8 269.7 63.0 9.4E-3 3.4E-2 28.0 245.3 61.6 1.0E-2 3.6E-2 29.0 214.1 48.3 1.2E-2 4.1E-2

1500

(0.05,0.05) 20.0 417.2 174.0 6.8E-3 3.7E-2 21.0 374.9 165.0 6.8E-3 3.8E-2 21.0 314.8 130.4 7.1E-3 4.1E-2

(0.1,0.05) 25.0 376.8 198.1 7.6E-3 2.9E-2 26.0 343.6 189.1 7.7E-3 3.0E-2 26.0 287.0 148.4 8.0E-3 3.2E-2

(0.05,0.1) 22.2 440.1 190.0 8.1E-3 4.1E-2 23.0 381.7 170.2 8.8E-3 4.5E-2 26.0 329.1 150.6 1.0E-2 5.0E-2

(0.1,0.1) 27.0 412.9 211.3 9.4E-3 3.4E-2 28.0 365.4 204.5 1.0E-2 3.7E-2 29.0 318.7 164.4 1.2E-2 4.1E-2

1
4

Table 4.4

Comparison of ADMIP and ASALM

SR=100% SR=90% SR=80%

SNR (cs, cr) Algorithm iter lsv cpu relL relS iter lsv cpu relL relS iter lsv cpu relL relS

80dB

(0.05, 0.05)
ADMIP 12 86.2 12.5 3.5E-5 1.3E-4 13 85.8 12.8 3.9E-5 1.3E-4 15 85.1 13.7 4.1E-5 1.3E-4

ASALM 28.4 123.9 68.7 4.6E-5 4.8E-4 29.6 138.3 76.9 5.0E-5 5.1E-4 33.4 146.1 50.4 5.5E-5 4.7E-4

(0.1, 0.05)
ADMIP 18 84.4 17.7 3.7E-5 1.4E-4 18 84.4 17.1 4.4E-5 1.5E-4 19.2 84.2 16.9 4.9E-5 1.4E-4

ASALM 32.4 177.6 109.9 4.7E-5 3.2E-4 37.2 187.1 127.0 4.8E-5 2.9E-4 42 194.0 83.8 5.6E-5 2.9E-4

(0.05, 0.1)
ADMIP 14.2 153.0 15.9 4.9E-5 1.4E-4 16 153.0 18.6 5.8E-5 1.6E-4 19 153.0 20.4 8.0E-5 1.9E-4

ASALM 29.2 203.2 86.2 7.7E-5 6.6E-4 32.8 220.0 112.5 8.6E-5 6.6E-4 41 228.4 79.1 9.3E-5 5.6E-4

(0.1, 0.1)
ADMIP 21 153.0 26.0 6.3E-5 2.2E-4 23 153.0 26.5 7.0E-5 2.2E-4 25 153.0 27.1 8.7E-5 2.2E-4

ASALM 34.8 272.0 148.4 8.0E-5 4.6E-4 43 282.5 197.1 8.3E-5 3.9E-4 55 285.6 138.5 9.5E-5 3.6E-4

40dB

(0.05, 0.05)
ADMIP 7 89.9 10.5 3.5E-3 1.4E-2 8 88.8 7.7 3.7E-3 1.5E-2 8 88.8 7.7 4.3E-3 1.6E-2

ASALM 15 205.3 42.1 4.6E-3 3.0E-2 18 210.3 45.1 5.1E-03 3.3E-02 20 207.1 45.8 5.8E-3 3.7E-2

(0.1, 0.05)
ADMIP 9 87.9 12.1 3.8E-3 1.5E-2 9.8 87.3 9.1 4.1E-3 1.5E-2 10 87.2 9.2 4.7E-3 1.6E-2

ASALM 20 292.2 78.4 6.1E-3 2.7E-2 24 296.6 81.4 6.8E-03 2.9E-02 28 285.5 85.5 7.4E-3 3.1E-2

(0.05, 0.1)
ADMIP 8 153.0 12.5 5.1E-3 1.9E-2 8.2 153.0 9.0 6.0E-3 2.1E-2 9 153.0 9.4 7.6E-3 2.5E-2

ASALM 16 267.3 47.1 5.7E-3 3.2E-2 20 280.5 53.5 6.9E-03 3.7E-02 24 289.7 65.0 8.2E-3 4.0E-2

(0.1, 0.1)
ADMIP 9 153.0 14.6 6.1E-3 2.0E-2 10 153.0 10.9 6.9E-3 2.2E-2 11 153.0 11.9 8.2E-3 2.5E-2

ASALM 23 364.6 96.7 7.0E-3 2.9E-2 28 373.5 102.1 7.8E-03 3.1E-02 35.8 370.7 124.1 8.9E-3 3.2E-2

1
5

D(t):

Lsol(t):

Ssol(t):

Ssol
post(t):

Fig. 4.4. Background extraction from a video with SNR = 20dB and SR = 100% using ADMIP

D(t):

Lsol(t):

Ssol(t):

Ssol
post(t):

Fig. 4.5. Background extraction from a video with SNR = 20dB and SR = 60% using ADMIP

16

4.3. Foreground detection problem. Extracting the almost still background from a sequence of
frames in a noisy video is an important task in video surveillance, and it can be formulated as SPCP
problem. Let Xt denote the t-th video frame, and xt ∈ R

R is obtained by stacking the columns of Xt, where
R is the resolution. Suppose the background is completely stationary, and there is no measurement noise.
Then xt = b + ft, where b denotes the background and ft denotes the sparse foreground in the t-th frame.
Let D = [x1, . . . , xT] = b1⊤+[f1, . . . , fT], i.e. rank 1 matrix + sparse matrix. In real videos, the background
is never completely stationary, and there is always measurement noise; therefore, we expect that D can be
decomposed into the sum of three matrices D = L0 + S0 + N0, where L0 is a low rank and S0 is a sparse
matrix that represent the background and the foreground, respectively, and N0 is a dense noise matrix.

Table 4.5

ADMIP vs ASALM: Recovery statistics for foreground detection on a noisy video, SNR = 20dB

ASALM ADMIP (κ = 1.5) ADMIP (κ = 1.25)

SR svd lsv cpu svd lsv cpu svd lsv cpu

100% 91 64.7 198.8 16 142.5 105.9 26 63.3 192.2

60% 154 6.5 152.2 15 15.6 63.2 24 14.8 110.3

We used ADMIP and ASALM to extract the foreground in an airport surveillance video consisting of T = 201
grayscale 144 × 176 frames [21], i.e R = 25, 344. In order to test the reconstruction performance of both
algorithms under missing data, we created a test video by masking some of the pixels, i.e. we assumed that
the sensors corresponding to these positions were malfunctioning, and therefore, not acquiring the signal.
We also injected artificial white noise to the remaining pixels in order to create a video with prescribed SNR.
Let SR denote the fraction of observed pixels. The locations Ω of the observed pixels were chosen uniformly
at random from the set {1, . . . , T } × {1, . . . , R} such that the cardinality |Ω| = ⌈SR T R⌉. We created a
noisy test video with SNR = 20dB by setting ̺ = ‖πΩ(D)‖F /(

√

|Ω| 10SNR/20), and then for all (i, j) ∈ Ω
by resetting Dij = Dij +Nij , where each Nij were independently drawn from a Gaussian distribution with
mean zero and variance ̺2. ADMIP and ASALM were terminated according to (4.5), where tol is 5× 10−6 for
both ADMIP and ASALM.

We compared the performance of ADMIP with ASALM on the video problem with full data SR = 100%,
and with partial data SR = 60%. On each problem instance, we ran ADMIP with κ = 1.5 and κ = 1.25, where
κ is the parameter that controls of the rate of growth of ρk in (4.2). The frames recovered by ASALM were
very similar to those of ADMIP due to same stopping condition used; therefore, we only show the frames
recovered by ADMIP. The first rows in Figure 4.4 and Figure 4.5 display the 35-th, 100-th and 125-th frames
of the noisy surveillance video [21] for SR = 100% and SR = 60%, respectively. The second and third
rows display the recovered background and foreground images of the selected frames, respectively, using
ADMIP. Both ADMIP and ASALM were able to recover the foreground and the background fairly accurately with
only 60% of the pixels functioning. Even though the visual quality of recovered background and foreground
are very similar for both algorithms, the statistics reported in Table 4.5 shows that both iteration count
and cpu time of ADMIP are smaller than those of ASALM. Note that, although ADMIP with κ = 1.5 has
the least cpu time, the values for the lsv statistic for ADMIP with κ = 1.5 is significantly higher than the
corresponding values for ASALM and ADMIP with κ = 1.25. Indeed, for large problem sizes, ADMIP has two
different computational bottleneck. The first one is the computation of the low rank term Lk+1. For larger
values of κ, the parameter ρk grows faster; therefore, it follows from (4.1) that the number of leading singular
values computed in each iteration grows. On the other hand, in order to compute Sk+1, we need to sort |Ω|
numbers. This sorting operation with O(|Ω| log(|Ω|)) complexity becomes a computational bottleneck when
|Ω| is large, especially when SR = 100%. Moreover, large values for κ reduces the number of iterations, and
consequently, the number of sortings required. From the numerical experiments, it appears that the sorting
is a computationally more critical step; therefore, κ = 1.5 reduces the overall cpu time in comparison to
κ = 1.25.

In our preliminary numerical experiments, we noticed that the recovered background frames are almost
noise free even when the input video was very noisy, and all the noise shows up in the recovered foreground
images. This was observed for both ADMIP and ASALM. Hence, in order to eliminate the noise seen in the

17

recovered foreground frames and enhance the quality of the recovered frames, we post-process (Lsol, Ssol) of
ADMIP as follows:

Ssol
post := argmin

S
{‖S‖1 : ‖S + Lsol −D‖F ≤ δ}. (4.6)

The fourth rows of Figure 4.4 and Figure 4.5 show the post-processed foreground frames.

5. Conclusions. In this paper, we propose an alternating direction method of multipliers with increas-
ing penalty parameter sequence, ADMIP, for solving stable PCA problems. We prove that primal-dual iterate
sequence converges to an optimal pair when the sequence of penalty parameters {ρk} in non-decreasing,
and unbounded. We also report numerical results comparing ADMIP with constant penalty ADMM on synthetic
random test problems and on foreground-background separation problems. The results clearly show that
ADMIP is able to solve huge problems involving million variables much more effectively when compared to
the constant penalty ADMM. To the best of our knowledge, ADMIP is the first variable penalty ADMM that is
guaranteed to converge to a primal-dual optimal pair when penalties are not bounded, the objective func-
tion is non-smooth and its subdifferential is not uniformly bounded. However, the proof of convergence of
ADMIP iterates heavily leverages the problem structure. In future work, we plan to extend ADMIP to solve
a more general set of convex optimization problems of the form min{f(x) + g(y) : Ax + By = b}, where
f and g are non-smooth closed convex functions, and investigate the growth rate conditions on unbounded
{ρk} that guarantee primal and dual convergence.

6. Acknowledgements. We would like to thank to Min Tao for providing the code ASALM.

Appendix A. Proofs.

A.1. Proof of Lemma 2.1. Suppose δ > 0. Let (Z∗, S∗) be an optimal solution to problem (Pns), θ
∗

denote the optimal Lagrangian multiplier for the constraint (Z, S) ∈ χ written as 1
2‖πΩ (Z + S −D) ‖2F ≤ δ2

2
and π∗

Ω denotes the adjoint operator of πΩ. Note that π∗
Ω = πΩ. Then the KKT conditions for this problem

are given by

Q+ ρ(Z∗ − Z̃) + θ∗ πΩ (Z∗ + S∗ −D) = 0, (A.1)

ξG+ θ∗ πΩ (Z∗ + S∗ −D) = 0, G ∈ ∂‖S∗‖1, (A.2)

‖πΩ (Z∗ + S∗ −D) ‖F ≤ δ, (A.3)

θ∗ ≥ 0, (A.4)

θ∗ (‖πΩ (Z∗ + S∗ −D) ‖F − δ) = 0, (A.5)

where (A.1) and (A.2) follow from the fact that πΩπΩ = πΩ.
From (A.1) and (A.2), we get

πΩc (Z∗) = πΩc

(

q(Z̃)
)

, πΩc (G) = 0 (A.6)

and

[

(ρ+ θ∗)I θ∗I
θ∗I θ∗I

] [

πΩ (Z∗)
πΩ (S∗)

]

=

[

πΩ

(

θ∗ D + ρ q(Z̃)
)

πΩ (θ∗ D − ξG)

]

, (A.7)

where q(Z̃) = Z̃ − ρ−1 Q. From (A.7) it follows that

[

(ρ+ θ∗)I θ∗I

0
(

ρθ∗

ρ+θ∗

)

I

]

[

πΩ (Z∗)
πΩ (S∗)

]

=

πΩ

(

θ∗ D + ρ q(Z̃)
)

ρθ∗

ρ+θ∗ πΩ

(

D − q(Z̃)
)

− ξπΩ (G)

 . (A.8)

From the second equation in (A.8), we get

ξ
(ρ+ θ∗)

ρθ∗
πΩ (G) + πΩ (S∗) + πΩ

(

q(Z̃)−D
)

= 0. (A.9)

18

The equation (A.9) and πΩc (G) = 0 are precisely the first-order optimality conditions for the “shrinkage”
problem

min
S∈Rm×n

{

ξ
(ρ+ θ∗)

ρθ∗
‖S‖1 +

1

2
‖S + πΩ

(

q(Z̃)−D
)

‖2F
}

.

The expression for S∗ in (2.4) is the optimal solution to this “shrinkage” problem, and Z∗ given in (2.5)
follows from the first equation in (A.6) and the first row of (A.8). Hence, given optimal Lagrangian dual θ∗,
S∗ and Z∗ computed from equations (2.4) and (2.5), respectively, satisfy KKT conditions (A.1) and (A.2).

Next, we show how to compute the optimal dual θ∗. We consider two cases.

(i) Suppose ‖πΩ

(

D − q(Z̃)
)

‖F ≤ δ. In this case, let θ∗ = 0. Setting θ∗ = 0 in (2.4) and (2.5), we find

S∗ = 0 and Z∗ = q(Z̃). By construction, S∗, Z∗ and θ∗ satisfy conditions (A.1) and (A.2). It is easy
to check that this choice of θ∗ = 0 trivially satisfies the rest of the conditions as well. Hence, θ∗ = 0 is
an optimal lagrangian dual.

(ii) Next, suppose ‖πΩ

(

D − q(Z̃)
)

‖F > δ. From (2.5), we have

πΩ (Z∗ + S∗ −D) =
ρ

ρ+ θ∗
πΩ

(

S∗ + q(Z̃)−D
)

. (A.10)

Therefore,

‖πΩ (Z∗ + S∗ −D) ‖F =
ρ

ρ+ θ∗
‖πΩ

(

S∗ + q(Z̃)−D
)

‖F ,

=
ρ

ρ+ θ∗

∥

∥

∥

∥

πΩ

(

max

{

|D − q(Z̃)| − ξ
(ρ+ θ∗)

ρθ∗
E, 0

}

− |D − q(Z̃)|
)
∥

∥

∥

∥

F

,

=
ρ

ρ+ θ∗
‖πΩ

(

min

{

ξ
(ρ+ θ∗)

ρθ∗
E, |D − q(Z̃)|

})

‖F ,

= ‖min

{

ξ

θ∗
E,

ρ

ρ+ θ∗

∣

∣

∣
πΩ

(

D − q(Z̃)
)∣

∣

∣

}

‖F , (A.11)

where the second equation is obtained after substituting (2.4) for S∗ and then componentwise dividing

the resulting expression inside the norm by sgn
(

D − q(Z̃)
)

. Define φ : R+ → R,

φ(θ) := ‖min

{

ξ

θ
E,

ρ

ρ+ θ

∣

∣

∣
πΩ

(

D − q(Z̃)
)∣

∣

∣

}

‖F . (A.12)

It is easy to show that φ is a strictly decreasing function of θ. Since φ(0) = ‖πΩ

(

D − q(Z̃)
)

‖F > δ

and limθ→∞ φ(θ) = 0, there exists a unique θ∗ > 0 such that φ(θ∗) = δ. Moreover, since θ∗ > 0 and
φ(θ∗) = δ, (A.11) implies that Z∗, S∗ and θ∗ satisfy the rest of KKT conditions (A.3), (A.4) and (A.5)
as well. Thus, the unique θ∗ > 0 that satisfies φ(θ∗) = δ is the optimal Lagrangian dual.

We now show that θ∗ can be computed in O(|Ω| log(|Ω|)) time. Let A := |πΩ

(

D − q(Z̃)
)

| and

0 ≤ a(1) ≤ a(2) ≤ ... ≤ a(|Ω|) be the |Ω| elements of the matrix A corresponding to the indices
(i, j) ∈ Ω sorted in increasing order, which can be done in O(|Ω| log(|Ω|)) time. Defining a(0) := 0 and
a(|Ω|+1) := ∞, we then have for all j ∈ {0, 1, ..., |Ω|} that

ρ

ρ+ θ
a(j) ≤

ξ

θ
≤ ρ

ρ+ θ
a(j+1) ⇔

1

ξ
a(j) −

1

ρ
≤ 1

θ
≤ 1

ξ
a(j+1) −

1

ρ
. (A.13)

Let k̄ := max
{

j : a(j) ≤ ξ
ρ , 0 ≤ j ≤ |Ω|

}

, and for all k̄ < j ≤ |Ω| define θj := 1
1
ξ

a(j)− 1
ρ

. Then for all

k̄ < j ≤ |Ω|, we have

φ(θj) =

√

√

√

√

(

ρ

ρ+ θj

)2 j
∑

i=0

a2(i) + (|Ω| − j)

(

ξ

θj

)2

. (A.14)

19

Also define θk̄ := ∞ and θ|Ω|+1 := 0 so that φ(θk̄) := 0 and φ(θ|Ω|+1) = φ(0) = ‖A‖F > δ. Note
that {θj}{k̄<j≤|Ω|} contains all the points at which φ(θ) may not be differentiable for θ ≥ 0. Define

j∗ := max{j : φ(θj) ≤ δ, k̄ ≤ j ≤ |Ω|}. Then θ∗ is the unique solution of the system

√

√

√

√

(

ρ

ρ+ θ

)2 j∗
∑

i=0

a2(i) + (|Ω| − j∗)

(

ξ

θ

)2

= δ and θ > 0, (A.15)

since φ(θ) is continuous and strictly decreasing in θ for θ ≥ 0. Solving the equation in (A.15) requires
finding the roots of a fourth-order polynomial (also known as a quartic function). Lodovico Ferrari
showed in 1540 that the roots of quartic functions can be solved in closed form. Thus, it follows that
θ∗ > 0 can be computed in O(1) operations.
Note that if k̄ = |Ω|, then θ∗ is the solution of the equation

√

√

√

√

(

ρ

ρ+ θ∗

)2 |Ω|
∑

i=1

a2(i) = δ, (A.16)

i.e. θ∗ = ρ
(

‖A‖F

δ − 1
)

= ρ

(

‖πΩ(D−q(Z̃))‖F

δ − 1

)

.

Hence, we have proved that problem (Pns) can be solved efficiently when δ > 0.
Now, suppose δ = 0. Since πΩ (Z∗ + S∗ −D) = 0, problem (Pns) can be written as

minZ,S∈Rm×n ξρ−1‖πΩ(S)‖1 + 1
2‖πΩ

(

D − S − q(Z̃)
)

+ πΩc

(

Z − q(Z̃)
)

‖2F . (A.17)

Then (2.7) and Z∗ = πΩ (D − S∗)+πΩc

(

q(Z̃)
)

trivially follow from first-order optimality conditions for the

above problem.

A.2. Proof of Lemma 2.2. Let W ∗ := −Q + ρ(Z̃ − Z∗). Then (A.1), (A.4) and (A.5) in the proof
of Lemma 2.1 imply that W ∗ = θ∗ πΩ (Z∗ + S∗ −D). From the first-order optimality conditions of (Pns)
in (2.3), we have that (W ∗,W) ∈ ∂1χ(Z

∗, S∗) for some W ∈ ∂ξ‖S∗‖1. From (A.1) and (A.2), it follows
that W ∗ ∈ ∂ξ‖S∗‖1. The definition of χ, chain rule on subdifferential (see Theorem 23.9 in [26]), and
W ∗ ∈ ∂ξ‖S∗‖1 together imply that (W ∗,W ∗) ∈ ∂1χ(Z

∗, S∗).

A.3. Proof of Lemma 3.1. Since Lk+1 is the optimal solution to the subproblem in Step 4 of
ADMIP corresponding to the k-th iteration, it follows that

0 ∈ ∂‖Lk+1‖∗ + Yk + ρk(Lk+1 − Zk). (A.18)

Let θk ≥ 0 denote the optimal Lagrange multiplier for the quadratic constraint in Step 5 sub-problem in the
k-th iteration. Since (Zk+1, Sk+1) is the optimal solution, the first-order optimality conditions imply that

0 ∈ ξ∂‖Sk+1‖1 + θk πΩ (Zk+1 + Sk+1 −D) , (A.19)

−Yk + ρk(Zk+1 − Lk+1) + θk πΩ (Zk+1 + Sk+1 −D) = 0. (A.20)

From (A.18), it follows that −Ŷk+1 ∈ ∂‖Lk+1‖∗. From (A.19) and (A.20), it follows that −Yk+1 ∈
ξ ∂‖Sk+1‖1. Since ∂‖L‖∗ and ∂‖S‖1 are uniformly bounded sets for all L, S ∈ R

m×n, it follows that
{Ŷk}k∈Z+ and {Yk}k∈Z+ are bounded sequences. Moreover, (A.20) implies that πΩ (Yk) = Yk for all k ≥ 1.

A.4. Proof of Lemma 3.2. For all k ≥ 0, since Yk+1 = Yk + ρk(Lk+1 − Zk+1) and and Ŷk+1 :=
Yk + ρk(Lk+1 − Zk), we have that Yk+1 − Ŷk+1 = ρk(Zk − Zk+1). Using these relations, we obtain the
following equality

ρ−1
k 〈Yk+1 − Yk, Yk+1 − Y ∗〉
= ρk〈Lk+1 − L∗, Zk − Zk+1〉+ 〈Lk+1 − L∗, Ŷk+1 − Y ∗〉+ 〈L∗ − Zk+1, Yk+1 − Y ∗〉. (A.21)

20

Moreover, we also have

‖Zk+1 − L∗‖2F + ρ−2
k ‖Yk+1 − Y ∗‖2F

= ‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F − ‖Zk+1 − Zk‖2F − ρ−2

k ‖Yk+1 − Yk‖2F
+ 2〈Zk+1 − L∗, Zk+1 − Zk〉+ 2ρ−2

k 〈Yk+1 − Yk, Yk+1 − Y ∗〉, (A.22)

= ‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F − ‖Zk+1 − Zk‖2F − ρ−2

k ‖Yk+1 − Yk‖2F ,
+ 2〈Zk+1 − Lk+1, Zk+1 − Zk〉 − 2ρ−1

k

(

〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉+ 〈−Yk+1 + Y ∗, L∗ − Zk+1〉
)

,

= ‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F − ‖Zk+1 − Zk‖2F − ρ−2

k ‖Yk+1 − Yk‖2F ,
−2ρ−1

k

(

〈Yk+1 − Yk, Zk+1 − Zk〉+ 〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉+ 〈−Yk+1 + Y ∗, L∗ − Zk+1〉
)

, (A.23)

where the second equality follows from rewriting the last term in (A.22) using (A.21), and the last equality
follows from the relation Lk+1 − Zk+1 = ρ−1

k (Yk+1 − Yk).

Since Y ∗ and θ∗ are optimal Lagrangian dual variables, we have

(L∗, L∗, S∗) = argmin
L,Z,S

‖L‖∗ + ξ ‖S‖1 + 〈Y ∗, L− Z〉+ θ∗

2

(

‖πΩ (Z + S −D) ‖2F − δ2
)

.

From first-order optimality conditions, we get

0 ∈ ∂‖L∗‖∗ + Y ∗,

0 ∈ ξ ∂‖S∗‖1 + θ∗ πΩ (L∗ + S∗ −D) ,

0 = −Y ∗ + θ∗ πΩ (L∗ + S∗ −D) .

Hence, −Y ∗ ∈ ∂‖L∗‖∗ and −Y ∗ ∈ ξ ∂‖S∗‖1. Moreover, from Lemma 3.1, we also have that −Yk ∈ ∂ξ ‖Sk‖1
for all k ≥ 1. Since ξ ‖.‖1 is convex, it follows that

〈−Yk+1 + Yk, Sk+1 − Sk〉 ≥ 0, (A.24)

〈−Yk+1 + Y ∗, Sk+1 − S∗〉 ≥ 0. (A.25)

Since ρk+1 ≥ ρk for all k ≥ 1, first adding (A.24) to (A.23), then adding and subtracting (A.25), we get

‖Zk+1 − L∗‖2F + ρ−2
k+1‖Yk+1 − Y ∗‖2F

≤ ‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F − ‖Zk+1 − Zk‖2F − ρ−2

k ‖Yk+1 − Yk‖2F
− 2ρ−1

k

(

〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉+ 〈−Yk+1 + Y ∗, Sk+1 − S∗〉
)

− 2ρ−1
k (〈Yk+1 − Yk, Zk+1 + Sk+1 − Zk − Sk〉+ 〈−Yk+1 + Y ∗, L∗ + S∗ − Zk+1 − Sk+1〉) . (A.26)

Lemma 2.2 applied to the Step 5 sub-problem corresponding to the k-th iteration gives (Yk+1, Yk+1) ∈
∂1χ(Zk+1, Sk+1). Using an argument similar to that used in the proof of Lemma 2.2, one can also show
that (Y ∗, Y ∗) ∈ ∂1χ(L

∗, S∗). Moreover, since −Y ∗ ∈ ∂ξ ‖S∗‖1, −Y ∗ ∈ ∂‖L∗‖∗, and −Yk ∈ ∂ξ ‖Sk‖1,
−Ŷk ∈ ∂‖Lk‖∗ for all k ≥ 1, we have that for all k ≥ 0,

〈Yk+1 − Yk, Zk+1 + Sk+1 − Zk − Sk〉 ≥ 0,

〈−Yk+1 + Y ∗, L∗ + S∗ − Zk+1 − Sk+1〉 ≥ 0,

〈−Yk+1 + Y ∗, Sk+1 − S∗〉 ≥ 0,

〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉 ≥ 0.

This set of inequalities and (A.26) together imply that {‖Zk−L∗‖2F+ρ−2
k ‖Yk−Y ∗‖2F }k∈Z+ is a non-increasing

21

sequence. Using this fact, rewriting (A.26) and summing over k ∈ Z+, we get

∑

k∈Z+

‖Zk+1 − Zk‖2F + ρ−2
k ‖Yk+1 − Yk‖2F

+ 2
∑

k∈Z+

ρ−1
k

(

〈−Ŷk+1 + Y ∗, Lk+1 − L∗〉+ 〈−Yk+1 + Y ∗, Sk+1 − S∗〉
)

+ 2
∑

k∈Z+

ρ−1
k (〈Yk+1 − Yk, Zk+1 + Sk+1 − Zk − Sk〉+ 〈−Yk+1 + Y ∗, L∗ + S∗ − Zk+1 − Sk+1〉)

≤
∑

k∈Z+

(

‖Zk − L∗‖2F + ρ−2
k ‖Yk − Y ∗‖2F − ‖Zk+1 − L∗‖2F − ρ−2

k+1‖Yk+1 − Y ∗‖2F
)

< ∞.

This inequality is sufficient to prove the rest of the lemma.

REFERENCES

[1] N. S. Aybat, D. Goldfarb, and S. Ma, Efficient algorithms for robust and stable principal component pursuit problems,
Computational Optimization and Applications, 58 (2014), pp. 1–29.

[2] N. S. Aybat and G. Iyengar, A unified approach for minimizing composite norms, Mathematical Programming, Series
A, 144 (2014), pp. 181–226.

[3] N. S. Aybat, S. Zarmehri, and S. Kumara, An ADMM algorithm for clustering partially observed networks, Pro-
ceedings of the 2015 SIAM International Conference on Data Mining, to appear, (2015). Preprint available at
http://arxiv.org/abs/1410.3898.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal
on Imaging Sciences, 2 (2009), pp. 183–202.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the
alternating direction method of multipliers, Foundations and Trends in Machine Learning, (2011).

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Foundations and Trends in Machine Learning, vol. 3, 2011,
ch. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, pp. 1–122.

[7] C.B. Boyer and U.C. Merzbach, A History of Mathematics, Wiley, New York, 2 ed., 1991, pp. 286–287.
[8] E. J. Candès, X. Li, Y. Ma, and Wright J., Robust principle component analysis?, Journal of ACM, 58 (2011), pp. 1–37.
[9] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky, Rank-sparsity incoherence for matrix decomposition,

SIAM Journal on Optimization, 21 (2011), pp. 572–596.
[10] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a

sparsity constraint, Communications in Pure and Applied Mathematics, 57 (2004), pp. 1413–1457.
[11] J. Eckstein, Augmented lagrangian and alternating direction methods for convex optimization: A tutorial and some

illustrative computational results, Rutcor Research Report RRR 32-2012, Rutgers Center for Operations Research,
December 2012.

[12] J. Eckstein and D. P. Bertsekas, On the douglas-rachford splitting method and the proximal point algorithm for
maximal monotone operators, Math. Program., 55 (1992), pp. 293–318.

[13] M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,
Computational Optimization and Applications, 1 (1992), pp. 93–111.

[14] R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems,
Studies in Mathematics and its Applications, Elsevier Science, 2000.

[15] D. Goldfarb, S. Ma, and K. Scheinberg, Fast alternating linearization methods for minimizing the sum of two convex
functions., Mathematical Programming, Series A., 141 (2013), pp. 349–382.

[16] B. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational
inequalities, Operations Research Letters, 23 (1998), pp. 151–161.

[17] B.S. He, H. Yang, and S.L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone
variational inequalities, Journal of Optimization Theory and Applications, 106 (2000), pp. 337–356.

[18] B. S. He, L. Z. Liao, D. R. Han, and H. Yang, A new inexact alternating directions method for monontone variational
inequalities, Mathematical Programming, Series A, 92 (2002), pp. 103–118.

[19] S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating direction method for convex optimization, Mathe-
matical Programming, 83 (1998), pp. 29–53.

[20] R.M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Technical report DAIMI PB-357, Department
of Computer Science, Aarhus University, 1998.

[21] L. Li, W. Huang, I. Gu, and Q. Tian, Statistical modeling of complex backgrounds for foreground object detection, IEEE
Trans. on Image Processing, 13 (2004), pp. 1459–1472.

[22] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank
matrices, arXiv:1009.5055v2, (2011).

[23] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, Fast convex optimization algorithms for exact recovery
of a corrupted low-rank matrix, tech. report, UIUC Technical Report UILU-ENG-09-2214, 2009.

22

[24] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical
Analysis, 16 (1979), pp. 964–979.

[25] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[26] R.T. Rockafellar, Convex Analysis, Convex Analysis, Princeton University Press, 1997.
[27] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming,

Math. Oper. Res., 1 (1976), pp. 97–116.
[28] , Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976),

pp. 877–898.
[29] M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations,

SIAM Journal on Optimization, 21 (2011), pp. 57–81.
[30] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, submitted to SIAM Journal on

Optimization, (2008).
[31] J. Wright, Y. Peng, Y. Ma, A. Ganesh, and S. Rao, Robust principal component analysis: Exact recovery of cor-

rupted low-rank matrices via convex optimization, in Proceedings of Neural Information Processing Systems (NIPS),
December 2009.

[32] Z. Zhou, X. Li, J. Wright, E. Candès, and Y. Ma, Stable principle component pursuit, Proceedings of International
Symposium on Information Theory, (2010).

23

