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Abstract In this paper we present a method for decomposing a class of convex non­
linear programmes which are frequently encountered in engineering plastic analysis. 
These problems have second-order conic memberships constraints and a single com­
plicating vatiable in the objective function. The method is based on finding the distance 
between the feasible sets of the decomposed problems. and updating the global opti­
mal value according to the value of this distance. The latter is found by exploiting the 
method of averaged alternating reflections, which is here adapted to the optimisation 
problem at hand. The method is specially suited for non-linear problems and as our 
numerical results show, its convergence is independent of the number of variables of 
each sub-domain. We have tested the method with an illustrative example and with 
problems that have more than 10.000 variables. 

Keywords Decomposition· Convex optimisation· Non-linear optimisation· 
Second-order cone program (SOCP) . Averaged alternating reflections (AAR) 

1 Introduction 

The analysis of structures with non-linear plastic materials may be posed as the solution 
of discrete non-linear optimisation problem. The form of this optimisation problem 
depends on the discretisation scheme and the underlying principle considered [8.20-
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22,24]. This approach has attracted considerable attention in lbe last decade due to 
relevance of the results from the engineering standpoint, the accuracy that may be 
obtained, and recent progresses that have been achieved in non-linear optimisation. 
However, the analysis of general three-dimensional structures remains as yet pro­
hibitive due to the size of the resulting optimisation problem, which may attain up 
to 500,000 primal variables. This work aims to propose a decomposition teclmique 
which can alleviate the memory requirements and computational cost of this type of 
problems. 

The development of general decomposition tecluriques has given rise to numerous 
approaches, which include Benders decomposition [13, 16], proximal point strategies 
[10], dual decomposition [7, 15], sub-gradient and smoothing melbods [25,26], or 
block decomposition [23], among mauy albers. In lbe engineering literature, some 
common melbods inherit eilber decomposition melbods for elliptic problems [18], or 
proximal point strategies [19], or melbods lbat couple lbe solutions from overlapping 
domains [28], which reduce lbeir applicability. 

The accuracy of dual decomposition aud sub-gradient techniques strongly depend 
on the step-size control, while the accuracy of proximal point and smoothing tech­
niques depend on the regularisation and smoothing parameters, which are problem 
dependent and not always easy to choose. Also, and from the experience of the authors, 
Benders methods have slow converge rates in non-linear optimisation problems due 
to the outer-linearisation process. These facts have motivated the development of the 
method presented here, which is specially suited for non-linear optimisation, and in 
particular exploits the structure of the problems encountered in engineering appli­
cations. We aim to solve a convex optimisation problems that can be written in the 
following form: 

!1(XI , A)=0 

!2(X2, A) = 0 

gl (Xl) + g2(X2) = 0 

Xl E KI <; JRn 1, X2 E K2 <; JRn2, A E JR . 

(la) 

(lb) 

(lc) 

(ld) 

where II: lRn1 x JR --+ JRm1, 12: lRn2 x lR --+ JRm2, gl : JRnl --+ JRm andg2 : JRn2 --+ 

JRm are given affine functions, and KI, K2 are non-empty closed convex sets. 
The optimisation problem in (1) has one important feature, which is a requirement 

of lbe melbod presented here: lbe objective function contains one scalar (global) vari­
able A, aud olber (local) variables Xl aud X2. We remark lbough lbat olber problems 
with a linear objective function that has more than one variable may be also posed 
in the form given above, and therefore may be also solved with the method proposed 
in this paper. For instance, we consider a new problem with the same constraints as 
in (1), aud whose objective function is equal to hI (Xl, A) + h2(x2, A), i.e. we aim to 
solve lbe following problem 
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(la), (lb), (lc), and (lc), 

where hI and h2 are linear functions. We can convert this problem in the form of 
problem (1) by recasting it in the equivalent form: 

A*= max AO 
Xlo X2.Ao. Al. A2 

/I (Xl, AI) = 0 

AO - Al = 0 

!2(X2, A2) = 0 

AO - A2 = 0 

gI (Xl) + g2(X2) = 0 

AI-hI(XI,AI) -h2(X2,A2) = 0 

Xl E KI,X2 E K2,AO,AI,A2 E lR. 

In this new form, Al and A2 are local variables, while AO plays the role of a global 
variable. 

We also point out that the particular form in (1) is a common feature in some 
problems in engineering such as limit analysis [21,22,24] or general plastic analysis 
[18- 20], where A measures the bearing capacity of a structure or the dissipation power 
when it collapses. The primal problem in (1) is written as a maximisation of the 
objective function, in agreement with the engineering applications, but in contrast to 
the standard notation in optimisation. We will keep the form in (1), but of course, the 
algorithm explained in this paper may be also described using standard notation. 

The main contributions of the paper are: (i) rewriting the constraints in (1) as the 
intersection of appropriate sets, (ii) decomposing this form of the algorithm into a 
master problem and two sub-problems, (iii) applying some results of proximal point 
theory to this new form of the optimisation problem, and (iv) proposing efficient 
algorithmic strategies to iteratively solve the decomposition algorithm. We prove the 
convergence properties of the algorithm, and numerically test its efficiency. 

Section 2 recalls some well-known results from approximation theory and sum­
marises the method of Averaged Alternating Reflections to find the distance between 
two sets. The proposed decomposition method is described in Sect. 3, and Sect. 4 tests 
the method with some representative non-linear problems. 

2 Method of averaged alternating reflections 

2.1 Best approximation operators 

Throughout this paper W and Z are two nonempty closed convex sets in the real space 
lRn, with an inner product and an induced norm II II. Given a point X E lRn, let I 
denote the identity operator on lRn, and let Pw (x) and Pz(x) be the projections (best 
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approximation operators) onto W and Z. The standard best approximation ofx relative 
to W is the solution of the following problem [14]: 

find W E W such that Ilx - wll = in/llx - WII := d(x, W). (2) 

A natural extension of this problem is to find a best approximation pair relative to 
(W, Z). i.e., to 

find (w, z) E W X Z such that Ilw - zll = in/II W - ZII := deW, Z). (3) 

If W = {w), (3) reduces to (2) and its solution is Pz(w). On the other hand, 
when the problem is consistent, i.e., W n Z cF 0, then (3) reduces to the well-known 
convex feasibility problem for two sets [4, 12] and its solution set is {(x, x) E lRn x 
lRn Ix E W n Z). The formulation in (3) captures a wide range of problems in applied 
mathematics and engineering [11 , 17,30]. 

In Sect. 3 we will rewrite problem (1) as a problem of finding the minimum distance 
deW, Z) between two feasibility sets W and Z, as stated in (3). Prior to that though, in 
the remainder of this section, we present a methodology to find the distance between 
two sets which will be eventually employed. 

2.2 Preliminary definitions 

Definition 1 The set of fixed points of an operator T : X -+ X is denoted by Fix T, 
i.e., 

Fix T = {x E XIT(x) = x). (4) 

It is convenient to introduce the following sets, which we will use throughout this 
section: 

c = Z - W = {z - wlz E z, WE W), 

V = PdO), G = W n (Z - v), H = (W + v) n z. 
(5) 

Note also that if W n Z cF 0, then G = H = W n Z. However, even when 
W n Z = 0, the sets G and H may be nonempty and they serve as substitutes for the 
intersection. In words, vector v joins the two sets Z and W at the point that are at the 
minimum distance and Ilvll measures the gap between the sets W and Z. 

Lemma 1 From the definitions in (4)-(5), the/allowing identities hold: 

(i) Ilvll = inf II W - ZII 
(ii) G = Fix (Pw Pz) andH = Fix (Pz Pw). 

(iii) G + v = H. 

The proof can be found in [3], Sect. 5. 

Lemma 2 Suppose that (Wn)nEN and (Zn)nEN are sequences in Wand Z, respectively. 
Then 
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Zn - Wn -+ V <=* Ilzn - wnll -+ Ilvll. 

Also, assume that Zn - Wn -+ v. Then the following identities hold: 

(i) Zn - Pw(zn) -+ V, and Pz(wn) - Wn -+ v. 
(ii) The weak cluster points of (Wn)nEN and (Pw(Zn»nEN (resp.(zn)nEN and 

(PZ(Wn»nEN) belong to G (resp.H). Consequently, the weak cluster points of 
the sequences 

are best approximation pairs relative to (W, Z). 
(iii) If G = 0 or, equivalently, H = 0, then 

These results are proved in [6]. 

Definition 2 Let D be a nonempty subset of JR:n and let T : D -+ JR:n. Then T is 

(i) firmly nonexpansive if 

(Vx ED), (Vy E D): IIT(x)-T(Y)f+II(l-T)(x)-(l-T)(Y)f S Ilx-yf, 

(ii) nonexpansive if 

(Vx ED), (Vy E D): IIT(x) - T(YlII s Ilx - YII. 

Lemma 3 Let W be a nonempty closed convex subset ofJR:n. Then 

(i) the projector Pw is firmly nonexpansive; 
(ii) 2Pw - I is nonexpansive. 

See [5] for a proof of this lemma. The transformation 2Pw - I is named the 
reflection operator with respect to W and will be denoted by Rw. 

Lemma 4 Let Tj : JR:n -+ JR:n and T2 : JR:n -+ JR:n be firmly nonexpansive and set 

(2Tj - I) (2T2 - I) + I 
T= . 

Then the following results hold: 

(i) Tis firmly nonexpansive. 
(ii) Fix T = Fix (2Tj - I)(2T2 - I). 

See [5] for a proof of this lemma. 

2 
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2.3 Averaged alternating reflections (AAR) 

Definition 3 We define the so-called averaged alternating reflections (AAR) operator. 
denoted by T and given by. 

RwRz + 1 
T = --"---::0'--'---

2 
(6) 

where Rw = 2Pw - 1 and Rz = 2Pz - I. In view of Lemmas 3 and 4. and since 
Pz and Pw are firmly nonexpansive, we infer that T is nonexpansive and 

Fix T = Fix Rw Rz. 

Proposition 1 Let Wand Z be nonempty closed convex subsets ofJR:n and let T be 
the operator in (6). Then the following results hold: 

(i) 1 - T = Pz - PwRz · 
(ii) W n Z l' 0 if and only if Fix T l' 0. 

Proof (i) 

RwRz + 1 
T = --"---;0'--'---

2 

2Pw R z - R z + 1 

2 

2PwRz -2Pz +1 + 1 

2 

= PwRz - Pz + 1 '* 1 - T = Pz - PwRz. 

(ii) Assume that x E W n Z. Clearly. we then have that Pw (x) = x and Pz(x) = x. 
which in tum imply that Rw(x) = x and Rz(x) = x. Using the definition in (6). 
it follows that 

T(x) = x, 

so that Fix T l' 0. 
Conversely, if x E Fix T, then T (x) = x, and then according to (i), we have, that 

Pz(x) = PwRz(x), and therefore Pz(x) E Z and Pz(x) E W, which is equivalent 
to Pz (x) E W n z. 0 

We now recall the well known convergence results for the method of Averaged 
Alternating Reflections (AAR). 

Lemma 5 (Convergence of AAR method) Consider the following successive approx­
imation method: Take to E IRn, and set 

tn = Tn(to) = T(tn-l), n = 1,2, ... 

where T is defined in (6), and W, Z are nonempty closed convex subsets of JR:n. Then 
the following results hold 

(i) Fix T l' 0 {==} (Tn (to»nEN converges to some point in Fix T. 



AAR-based decomposition algorithm for non-linear convex ... 

(ii) Fix T = 0 {==} IITn(to)11 -+ 00, when n -+ 00. 

(iii) (II Pz(tn)- Pw Pz(tn) II) converges to inf II W - ZII, and (II Pz(tn)- Pw Rz (tn) II) 
converges to inf II W - ZII. 

(iv) ~ -+ inf II W - ZII. 

Proof (i) and (ii) are demonstrated in [2, 9,27] and (iii) in [6], while (iv) is demon­
strated in [29]. 

3 Decomposition algorithm 

3.1 Alteranative definition of global feasibility region 

The objective of this section is to provide a description of a decomposition method 
that exploits the results of the AAR method given above. The method is suitable for 
convex optimisation problems that have the structure given in (1), which we aim to 
transform into the computation of the minimal distance between two feasible sets. 
For this aim, we rewrite problem (1) by introducing a new complicating variable t as 
follows: 

),.* = max),. 
Xl,X2,A,t 

fl (Xl, A) = 0 

h(X2, A) = 0 

gl(Xl) =t 

g2(X2) =-t 

Xl E Kl, X2 E K2, A E lR:. 

(7) 

We next define the feasibility region of this problem with the help of the following 
definitions: 

Definition 4 Consider the following two feasibility regions: 

Xl (A) = {xllfl(Xl,A) = oj n Kl, 

X 2(A) = {x2Ih(x2, A) = oj n K 2 , 
(8) 

and also let A = A be a given real value. Then, we define the following feasibility sets 
for variable t: - - -

ZeAl = gl (Xl (A)) = {gl (xl)lxl E Xl (A)), 
(9) - - -

WeAl = -g2(Xl(A)) = {-g2(x2)lx2 E X2(A)). 

Throughout the subsequent sections, the sets ZeAl and WeAl defined in (9) are 
assumed convex, (which can be ensured through the convexity of gl and g2). 

By using definitions (8) and (9), the optimisation problem in (7) may be recast as, 

),.* = max),. 
A 

ZeAl n WeAl l' 0 
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The algorithm proposed in this paper is based on the form above. In brief, the 
algorithm consists on updating the value of A (master problem) aud analysing in the 
sub-problems whether the intersection between the sets ZeAl and WeAl is empty or 
not. In order to determine this aud compute upper bounds of the global problem in 
(7), we will need the following two propositions: 

Proposition 2 LetAa and A be given real values such that (XOl, Xa2, to, Aa) isafeasible 
solution for problem (7), and Aa < A. After using the definition in (9), the following 
relation holds: 

z(i) n Wei) F 0 {==} i:s A*. 

- - - --

Proof First supyosethat ZeAl n WeAl F 0 and tbelongs to ZeAl n WeAl, thus there 
exist Xl E Xl (A) aud X2_ E_ X2 (A) such that gl (Xl) = t and - g2 (X2) = t. Therefore, 
in view of (8), (Xl, X2, A, t) is a feasible solution for problem (7), and consequently 
X::s A*. 

Conversely, let Aa < i :S A*. Hence, there exists y E (0,1] such that i = 

(1 - Y)Aa + yA*. Since (Xal,Xa2, ta,Aa) aud (x~,x;, t*,A*) are feasible solutions 
for problem (7) aud since the feasible region of problem (7) is convex, it follows that 
the convex combination of these two points is a feasible solution for problem (7). 
Formally, we have that 

(1 - Y)(XOl, X02, to, Aa) + y(x~, x;, t*, A*) 

= ((1- y)XOl + yx~, (1 - Y)Xa2 + yx;, (1 - y)ta + yt*, (1 - y)AO + YA*)) 

= ((1 - y)XOl + yx~, (1 - Y)Xa2 + yx;, (1 - y)ta + yt*, i), 

which shows that (1 - y)to + yt* belongs to Z (i) n W (i), i.e. Z (i) n W (i) F 0. 0 

Proposition 3 Let (t, A) be an arbitrary given vector and L1si be an optimal solution 
of the following optimisation problems: 

max L1si 

fi(xi, A + Llsi) = 0 

gi(Xi) = (_1)i+l(1 + Llwi) 

Xi E Ki, L1Wi E JRn m , L1si E JR. 

with i=1,2. Then A * :S i + Llsi for i = 1,2. 

Proof There exists a real value L1s* and a vector L1w* such that 

A* = i + Lls*; 

t* = 1 + Llw*. 

(10) 

(11) 

Since (x~, x;, t*, A *) is a feasible solution for problem (7), aud in view of (11) we 
have that 
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Since LIs, is an optimal solution of problem (10) and in view of (11 ) then 

o 

It will become convenient to consider the dual form of the global problem (1), 

where 

q(YI, Y2, Y3) = sup YI' fr (Xl, A) + Y2 . !2(X2, A) 
Xl,X2,A 

+ Y3' (gl(XI) +g2(X2)) +A 
Xl E KI, X2 E K2, A E lR:. 

3,2 Definition of sub-problems 

(12) 

(13) 

Let AQ and A be given real values such that (xOl, X02, AQ) is a feasible solution for (1) 
and AO < A, which means that WeAl and ZeAl are nonempty (closed convex) sets. 
Take to and set 

tn = Tn(to) = T(tn-l), n = 1,2,3, ... , 

where 
RwRz + I 

T = 2 = Pw Rz - Pz + I. (14) 

We next define the optimisation sub-problems that will allow us to retrieve the 
projections Pz and Pw, required for computing the transformation T. In view of (2), 
Pz(tn ) can be obtained by solving the following optimisation problem: 

minllz - tn II 
z 

z E ZeAl, 

which is equivalent to the following so-called Sub-problem 1 : 

min Ildlll 
xb d1 _ 

!1(XI,A) = 0 

gl(XI)-dl =tn 
Xl E KI. 

(15) 

From the optimal solution of Sub-problem 1, d~, we can compute the projection 
PZ(tn ) and reflection Rz (tn ) as, 
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I· -
Pz(tn) = gl(Xln) = tn + dn, wlthXln E XI (A), 

Rz(tn) = 2Pz(tn) - tn = tn + 2d~. 
(16) 

From Pz(tn), the point PwRz(tn) = Pw(tn + 2d~) is obtained by solving the 
following optimisation problem: 

minllw - Rz(tn)11 
w 

WE WeAl 

which is equivalent to the following so-called Sub-problem 2: 

h(X2,A) =0 

g2 (X2) + d 2 = - Rz (tn) 
X2 E K2. 

After solving this problem we have that, 

2 1 2 -
PwRz(tn) = -g2(X2n) = Rz(tn) + dn = tn + 2dn + dn, with X2n E X2(A) 

Rw Rz(tn) = 2Pw(Rz(tn» - Rz(tn) = tn + 2d~ + 2d~, 

and according to (14), (16) and (18), 

(17) 

(18) 

(19) 

with d~ and d~ optimal solutions of (15) and (17), respectively. This iterative process 
and the associated projections and refiections are illustrated in Fig. 1. Since T is 
nonexpansive, and in view of (14), (16), (18) and (19), we have the following results, 

(i) tn+1 - tn = d~ + d~ = T(tn) - tn 

= Pw(Rz(tn» - PZ(tn) = -g2(X2n) - gl (Xln)' (20) 

(ii) Ild~ + d~11 = Iltn+1 - tnll = IIT(tn) - T(tn_I)11 

:S Iitn - tn-III = Ild~_1 + d~_III. (21) 

According to (21), the sequence (1Id~ + d~ll)nEN is decreasing. Therefore 

(i = inf Ild~ + d~11 = lim Ild~ + d~11 E [0,00). 
n2::1 n-+co 

(22) 

The value of (i measures the distance deW (A), ZeAl). The next theorem relates (i 

to the optimal objective A *: 
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Fig. 1 illustration of the 
iterative process 

Theorem 1 Consider Sub-problem 1 and Sub-problem 2 defined in (15) and (17) 
respectively, and A * the optimal solution of the global problem in (1). Then, with CL 

defined in (22), and if A * = q*, i.e. there is no duality gap in (12), the following 
implications hold: 

(i) CL = 0 ifand only if X S A*, 
(ii) CL > o ifand only if X > A*. 

Proof (i): If CL = 0, we have from (20) that 

lim Ild~ + d~11 = lim Ilgl (Xln) + g2(X2n)11 = o. 
n-+co n-+co 

- - -

(23) 

Since (Xln,X2n) E Xl (A) x X2(A), by setting An = A, foralln EN, the vector 
(Xl n , X2n, An) satisfies the following conditions: 

fl (Xln , An) = 0 

!2(X2n,An) = 0 

Xln E Kl, X2n E K2. 

(24) 

Suppose that (Yl, Y2, Y3) is au arbitrary feasible solution for the dual problem in 
(12). Since (Xln, X2n, An) E Xl (X) X X2 (X) X JR:, according to (13) we have that 

q(Yl,Y2,Y3) co- Yl' fl(Xln,An) +Y2' !2(X2n,An) 
+ Y3 . (gl (Xln) + g2 (X2n)) + An 

= Y3' (gl (Xln) + g2(X2n)) + An, 
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and then 

Therefore in view of (23), we have that q (Yr, Y2, Y3) 2' A. On the other hand, 
since (Yr, Y2, Y3) is an arbitrary feasible solution for the dual problem, and due to 
assumption q* = A *, we have the following result: 

A< inf q(Yr,Y2,Y3)=q*=A*=}ASA*. 
Yl ,Y2,Y3 

Conversely, assume A ::s A *. Thus in view of Lemma 5 and Propositions 1 and 2, 
we can infer that the sequence (tn)nEN converges to a point in Fix T, i.e. 

lim tn = t E Fix T. 
n~oo 

Since tn+l - tn = d~ + d~, we deduce that, 

(ii) Since CL 2' 0, the result in (ii) follows from (i). o 

The result of Theorem 1 is illustrated in Fig. 2, which represents the distance of 
the sets Z(A) and W(A) for the cases AS A* and A > A*. Figure 3 also shows the 
same idea but on the (A, t) plane. _ 

Note that for a given value of A, from the result in Theorem l (ii), Proposition 2, 
and Lemma 5, we infer the following corollary : 

Corollary 1 CL > 0 {==} Iitn II -+ 00. 

According to this corollary and Lemma 5(iv), the values of II ~ II and Iitn II could 
be used to monitor the gap between Z (A) and W (A). However, we will use other 
parameters to monitor this distance, as explained in the next section. 

(a) (b) 

Fig. 2 illustration ofthe sets W(~) and Z(~) for the case ~ :S )., * and ~ > )., * 
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t 

W(,X) 

A* 

Fig. 3 illustration ofthe sets W(,l..) and Z(,l..) on the (,l.., t) plane 

3.3 Algorithmic implementation of AAR-based decomposition algorithm 

As it has been explained in the previous sections, the objective is to solve an optimi­
sation problem witb tbe structure in (1). recasted in tbe form in (7). 

The master problem computes at each master iteration k a new value of A k, while 
the sub-problems determine whether this value A k is an upper or lower bound of A *. 
To determine this, a set of nk sub-iterations, n = 1, ... , nk are required at each master 
iteration k. 

The procedure of tbe master and sub-problems are detailed in next paragraphs. 
which use tbe following notation: 

• an = Ild~ +d;;ll, fJn = Ild~11 + Ild;;ll. 
• L1an = an+l - an· 
• a = limn-+co an. 

Also Afb' A~b denote algorithmic lower and upper bounds of A * in the master 
iteration k, respectively. Finally we define LlAk = A~b - A7b' 

3.3.1 Master problem 

The steps tbat define tbe master problem are given in Box 1. 

MO. Find real values A?b and A~b such tbatA * E [A?bA~b]. Set k = 1. 

M1. SetAk = ).t; l1":;;l , Z = ZCAk), W = WCAk), Ck = 1,2,···). 

M3. Solve Sub-problems in Box 2 to determine whetber Ak S A * or A * < Ak. 



M4. If IA~p - A~b I S EA 

.A*SJAk , 

• Stop. 
Else 

• k = k + 1, 
• GotoMl, 

End. 
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Box 1. Master problem 

In step Ml, A?b is a feasible solution for problem (7), which meaus that it exists 

a vector t such that t E Z(A?b) n W(A?b)' with W(A?b) and Z(A?b) defined in (9). 
A~b is au arbitrary upper bound for A * that cau be obtained via auy possible way. 
In this article, we use Proposition 3 to obtain an upper bound of A *: we solve two 
sub-problems defined in (10), and we obtain two upper bounds A?Ub and Agub , Then 

we set A~b = min(A1ub' A~Ub)' 
In step Ml, if Xl (A~b1) l' 0 and X2(A~b1) l' 0 defined in (8), we clearly have 

that Xl (Ak) l' 0 audX2(Ak) l' 0, since f1, /2, gl, g2 are affine functions audK1, K2 
are convex sets. 

3.3.2 Sub-problems 

The iterative process of each sub-problem is summarised in Box 2. 

S1. Sed. = Ak, t~ = tk- 1, n = O. 
S2. Solve Sub-problem 1 defined in (15). Obtain d~ aud set t~ = t~ + 2d~. 
S3. Solve Sub-problem 2 defined in (17). Obtain d~ aud set t~ = t~ + 2d~. 
S4. Set,8n = Ild~11 + Ild~11 aud"n = Ild~ + d~ll. 
S5. If ,8n < ,8n-1 or "n S EO 

,k ,k,k ,k-1 
• Alb = A , Aub = Aub ' 

• Go to Box I.M1. 
Else if ,8n > ,8n-1 and"n > -k11LlAkl aud l,1u, 1 < E1 lanl 

,k ,k-1,k ,k 
• Alb = Alb ,Aub = A , 

• Go to Box I.M1. 
Else 

k t~_ l +t~ 1 • tn = -2-' n = n + , 
• GotoS2. 

End 

Box 2. Sub-problem 

The algorithm in Box 2 uses the control parameter ,8n to detect whether Ak is 
an upper bound or a lower bound of A * . Indeed, the numerical results show that f3n 
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decreases when),.k is a lower bound of),. *. The values of f3n satisfy in fact the following 
corollary: 

- --

Corollary 2 Assume that A is a given real value and W = W (A), Z = Z (A) defined 
in (9). Then the following relations hold. 

(i) If 0 E int(W n Z) then limn~co fJn = O. 
(ii) If limn~co fJn = a then W n Z # 0. 

Proof (i) Since 0 E int(W n Z), then W n Z # 0, and it follows that Fix Pw # 
0, Fix Pz # 0, and then we have that W n Z = Fix Pw n Fix Pz = Fix Pw Pz 
(see [5], p. 71). 

According to the AAR method, since W n Z # 0, we have that 

lim In = I E Fix T. 
n~co 

On the other hand, since 0 E int(W n Z), then Fix T = W n Z [6], and therefore 
we have that in tum, 

-- -- - ---

Pz(l) = I, Pw(I) = I, Rz(l) = 2Pz(l) - I = I. (25) 

In view of (16) , (19) and (25) , the following results can be derived: 

1 - -
lim dn = lim Pz(ln ) - In = Pz(l) - I = 0 

n-+co n-+co 
(26) 

lim d~ = lim tn+l - tn - d~ = o. 
n-+co n-+co 

Consequently, in view of (26), we infer that 

lim fJn = lim Ild~ II + Ild~ II = O. 
n-+co n-+co 

(27) 

(ii) For each iteration n we have that "n = Ild~ + d~ II S Ild~ II + Ild~ II = fJn. Therefore, 

o = lim f3n:=: lim an = a :=: 0, (28) 
n-+co n-+co 

which implies that a = O. Consequently, in view of Proposition 2 and Theorem 1, we 
infer that W n Z # 0. 0 

We note that the update of Ak in step M 1 of the master problem mimics the update 
process of the bisection method. Other faster updates could be envisaged, but at the 
expense of estimating more accurately the distance between the sets W (Ak) and Z (Ak). 
Iu our implementation of the sub-problems, we just detect from the trends of fJn and 
"n whether the set WeAk) n Z(Ak) is empty or not, but do not actually compute the 
distance d (W (Ak), Z (Ak». The accurate computation of the distance would require far 
more sub-iterations, and in the authors experience, this extra cost does not compensate 
the gain when more sophisticated updates for),. k are implemented. 

The algorithms in Box 1 and 2 use three tolerance parameters: EA, EO and EI. Their 
meaning is the following: 
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• EA : this is the desired tolerance fortheobjectiveA, and it is such that A * E [Alb, AubJ, 
with IAub - Albl < EA' 

• EO: is a tolerance for deW (Ak), Z(Ak». If deW (Ak), Z(Ak» < EO, we will consider 
that WeAk) n Z(Ak) l' 0. 

• EI is used to detect when the sequence an has converged 

4 Numerical results 

In all our numerical tests, we have used the values (EA, EO, EI) = (IE - 3, 5E -
4, 3E - 2). The vectors (tk, x~, x~) resulting from the sub-problems for the highest 
(latest) value of Atb foumish the algorithmic approximations of (t*, x;, x;). 

4.1 Illustrative example 

We illustrate the AAR-based decomposition teclmique explained in previous section 
with a toy non-linear convex problem given by, 

AIXI + AFI = b l 

A2X2 + AF2 = b2 

GIXI + G2X2 = b 

Xl E KI, X2 E K2, A E JR, 

(29) 

where Xl E JR4, X2 E JR4, and KI and K2 are second-order cones, which are defined 
next. 

Definition 5 The second-order (convex) cone of dimension n > 1 is defined as 

K = {(t,x): (t,x) E JR: x JR:n-l, Ilxll s t) 

which is also called the quadratic, ice-cream or Lorentz cone. For n 
the unit second-order cone as 

K = {t : t E JR:, 0 S t). 

(30) 

1 we define 

The values of matrix Ai, Gi and vectors Fi, bi and b are given in the Appendix. 
The optimal value of this problem is A * '" 1.1965, which has been computed by 
solving the global problem in (29) with package MOSEK. 
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By selecting arbitrary vectors b3 and b4 such that b = b3 + b4 and introducing a 
new variable t, the problem (29) is written in the following form, 

max A 
A,Xl,X2,At 

AIXI + AFI = bl 

GIXI - b3 = t 

A2x2 + AF2 = b2 

G2X2 - b4 = -t 

Xl E KI, X2 E K2, fi.. E JR., t E JR.m . 

(31) 

In view of (31 ), for any given A = A, we have the two feasible sets defined in (9), 
which now take the following form: 

- -

ZeAl = {t IGlxl - b3 = t, AIXI + AFI = bl for some Xl E KrJ, 
- -

WeAl = {t IG2x2 - b4 = -t, A2x2 + AF2 = b2 for some X2 E K2)' 

For solving this problem we first take (APb' t) = (0,0) and, according to Proposi­
tion 3, after solving the two optimisation problem in (10), we obtain two upper bounds 
(Alub, A2ub) = (1.2000,3.2000). Then we set A~b = min{Alub, A2ub) = 1.2000, and 
consequently A * E [APb' A~b] = [0, 1.2000]. The algorithm comes to an end when 

ILlAkl = IA~p - A~bl < fA = IE - 3. 
The numerical results of the algorithm are reported in Table 1,where k indicates 

the number of master iterations, and nk is the number of iterations taken by the sub­
problems at each master iteration k. The second and third column indicate the highest 
lower bound and lowest upper bound at each master iteration, in such a way that 
A* E [Ak- l Ak- l] andAk = (Ak- l + Ak- I)/2 is an estimate ofA* Numbers in bold lb'ub' lb ub . 

font indicate thaUk is an upper bound, and LlAk- 1 = A~bl - Arb-I It can be observed 
that after a total of 24 sub-iterations (sum of all iterations nk), the gap between the A * 
and the approximate value of A * is 3E - 4. Figure 4 shows the optimal solution of 
the toy problem and the evolution of Ak, which converges towards the optimal value 
A* = 1.1965. 

We note that the choice of b3 and b4 is arbitrary, but that the same optimal optimum 
is obtained for different choices, even of the feasibility sets W (Ak) and Z(Ak) depend 
on these choices. 

4.2 Example 2 

We consider an optimisation problem with the same structure in (29): 

fi..*= maxfi.. 
A,Xl,X2 

AIXI + AFI = bl 

A2x2 + AF2 = b2 

GIXI + G2X2 = 0 

Xl E KI, X2 E K2, fi.. ~ o. 

(32) 
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Table 1 Results of toy problem by using AAR-based decomposition method 

Toy problem 

A * = 1.1965 

k Ak- 1 
Ib 

Ak- 1 
,b J.k 'Aivf' nk 

0 1.2000 0.6000 0.4985 2 

2 0.6000 1.2000 0.9000 0.2478 2 

3 0.9000 1.2000 1.0500 0.1224 2 

4 1.0500 1.2000 1.1250 0.0597 2 

5 1.1250 1.2000 1.1625 0.0284 2 

6 1.1625 1.2000 1.1812 0.0127 3 

7 1.1812 1.2000 1.1906 0.0049 2 

8 1.1906 1.2000 1.1953 0.0010 2 

9 1.1953 1.2000 1.1977 0.0010 2 

10 1.1953 1.1977 1.1965 0.0000 2 

11 1.1965 1.1977 1.1971 0.0005 3 

12 1.1965 1.1971 A*~1.1968 0.0003 Ll~l nk = 24 

Numbers in bold font indicate upper bounds of A * 

1.3 

1.2 --------------------

1.1 

':'< 0.9 

0.8 

0.7 

0.6 -
0.5 a 5 

Fig. 4 Evolution of Ak for the toy problem 

10 

I'-A', k=1,2,3, ... ,11 I 
I---Optimal value = 1.19651 

15 20 

Number of iterations 

25 

L1Ak-l 

1.2000 

0.6000 

0.3000 

0.1500 

0.0750 

0.0375 

0.0187 

0.0094 

0.0047 

0.0023 

0.0012 

0.0007 

but with increasing sizes of the constraint matrices and the number of variables, as 
indicated in Table 2. In Ibis case, Kl and K2 are given by 

Kl = lR:n1 
x kl1 X k12 X ... X kIp, P 2' 1, 

K2 = lR:n2 
x k21 X k22 X ... x k2q, q 2' 1, 

where kij are three-dimensional second-order cones, and matrices Ai, and vectors 
F i, hi are those resulting from a discretised limit analysis problem with finite elements, 
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Table 2 Size, total CPU time and total number of sub-iterations of each problem solved using MOSEK 
[11 and SDPT3 [311 

Problem n m CPU time (s) Lk=l nk 

SDPT3 MOSEK SDPTI MOSEK 

2240 2401 163 30 45 45 

2 4368 4705 281 84 43 42 

3 8880 9601 913 243 40 42 

4 12768 13825 1754 543 47 49 

5 14979 16225 , 707 , 48 

* In Problem 5, SDPT3 failed to give accurate results at iteration k = 2 

similar to those in [21,24]. The variables Xi correspond to nodal stresses and A is 
the load factor which multiplies the applied extemalloads aud which is maximised. 
The constraint equations correspond to equilibrium conditions (i) inside each finite 
element, (ii) between adjacent elements, aud (iii) with the applied loads. The cones 
represent admissibility values of the stresses, as it is required for plastic materials. The 
reader is referred for instauce to [21, 24] for further details on how the optimisation 
problem is obtained. 

The problem (32) cau be written in the general staudard form: 

A* = max cT X 
x 

Ax =b 

X E K, 

(33) 

whereK is a convex cone and X = (Xl, X2, A) E lR.n1 xlR.n2 xlR., with 1200::s nl, n2 ::s 
8112. The optimal solution A * for each problem has been computed solving the global 
problem in (32) with MaSEK. 

Now we apply the AAR-based decomposition method for the following fivenonlin­
ear convex problems with the same structures defined in (32). The size of the problems 
are given in Table 2, where n, m denote the number of rows and columns of matrix A 
in (33), aud Lbl nk is the total number of sub-iterations. 

Each one of the sub-problems has been solved using the optimisation software 
MaSEK [1] aud SPT3 [31]. In all the cases, the the total CPU time employed by using 
MaSEK was lower aud yielded more accurate results (smaller gap between primal 
aud dual problems). For the larger Problem 5, SDPT3 failed to give accurate results 
after the master iteration k = 2. The exact value has been computed by solving the 
global problem (32) with the MaSEK package. 

Like in the toy problem, we have used Proposition 3 in order to obtain an upper 
bound of A * at the master iteration zero A~b' The numerical results of problems 1-5 
are reported in Tables 3, 4, 5, 6 aud 7, respectively. It cau be observed that when 
Ak is a lower bound, the number of sub-iterations is very low, while in those cases 
that A k is an upper bound (indicated in bold font), the number of iterations increases 
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Table 3 Numerical results of Problem I 

Problem I L1)..k- 1 

,l.. * = 0.5008 nk 

k ,l..k-l 
Ib 

,l..k-l 
,b Ak 1)..*./,.1:1 

lie I SDPT3 MOSEK 

0 0.7071 0.3536 0.2940 2 2 0.7071 

2 0.3536 0.7071 0.5303 0.0589 13 13 0.3536 

3 0.3536 0.5303 0.4419 0.1176 2 2 0.1768 

4 0.4419 0.5303 0.4861 0.0293 2 2 0.0884 

5 0.4861 0.5303 0.5082 0.0148 5 4 0.0442 

6 0.4861 0.5082 0.4972 0.0073 2 2 0.0221 

7 0.4972 0.5082 0.5027 0.0038 10 10 0.0110 

8 0.4972 0.5027 0.4999 0.0017 2 2 0.0055 

9 0.4999 0.5027 0.5013 0.0010 5 6 0.0028 

10 0.4999 0.5013 0.5006 0.0004 2 2 0.0014 

0.5006 0.5013 ,l.. * ~ 0.5010 0.0003 45 45 0.0007 

Table 4 Numerical results of Problem 2 

Problem 2 nk L1,l..k-l 

k ,l..k-l 
Ib 

,l..k-l 
,b Ak IAjVfl SDPT3 MOSEK 

0 0.7071 0.3536 0.2990 2 2 0.7071 

2 0.3536 0.7071 0.5303 0.0514 14 14 0.3536 

3 0.3536 0.5303 0.4419 0.1238 2 2 0.1768 

4 0.4419 0.5303 0.4861 0.0362 2 2 0.0884 

5 0.4861 0.5303 0.5082 0.0076 6 6 0.0442 

6 0.4861 0.5082 0.4972 0.0143 2 2 0.0221 

7 0.4972 0.5082 0.5027 0.0033 2 2 0.0110 

8 0.5027 0.5082 0.5055 0.0021 5 5 0.0055 

9 0.5027 0.5055 0.5041 0.0006 2 2 0.0028 

10 0.5041 0.5055 0.5048 0.0008 6 5 0.0014 

0.5041 0.5048 ,l.. * ~ 0.5044 0.0001 43 42 0.0007 

notoriously. Figure 5 shows A *, A k and fJn related to Problem 3 as a function of number 
of sub-iterations. For the other problems, similar trends of these variables have been 
obtained. It can be observed that when Ak is a lower bound (below the doted line in 
Fig. Sa), fJn decreases steadily, and whenAk is an upper bound (above the dotted line in 
Fig. 5b), fJn increases. The increase of fJ does not necessarily make Ak an upper bound. 
However, when fJ increases and a converges to a positive value, then A is detected as 
an upper bound. 
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Table 5 Numerical results of Problem 3 

Problem 3 L1)..k - 1 

,l.. * = 0.5063 nk 

k ,l..k-l 
Ib 

,l..k-l 
, b Ak !)..*--.)..I:! 

lie I SDPT3 MOSEK 

0 0.7071 0.3536 0.3017 2 2 0.7071 

2 0.3536 0.7071 0.5303 0.0475 14 15 0.3536 

3 0.3536 05303 0.4419 0.1271 2 2 0.1768 

4 0.4419 05303 0.4861 0.0398 2 2 0.0884 

5 0.4861 05303 0.5082 0.0039 8 7 0.0442 

6 0.4861 05082 0.4972 0.0180 2 2 0.0221 

7 0.4972 05082 05027 0.0071 2 2 0.0110 

8 05027 05082 05055 0.0016 2 2 0.0055 

9 05055 05082 0.5069 0.0011 4 6 0.0028 

10 05055 050569 05062 0.0002 2 2 0.0014 

05062 05069 ,l.. * ~ 0.5065 0.0004 40 42 0.0007 

Table 6 Numerical results of Problem 4 

Problem 4 L1,l..k-l 

,l.. * = 0.5071 nk 

k ,l..k-l 
Ib 

,l..k-l 
, b Ak !)..jvf! SDPT3 MOSEK 

0 0.7071 0.3536 0.3028 2 2 0.7071 

2 0.3536 0.7071 0.5303 0.0458 14 15 0.3536 

3 0.3536 05303 0.4419 0.1285 2 2 0.1768 

4 0.4419 05303 0.4861 0.0414 2 2 0.0884 

5 0.4861 05303 0.5082 0.0022 15 16 0.0442 

6 0.4861 05082 0.4972 0.0196 2 2 0.0221 

7 0.4972 05082 05027 0.0087 2 2 0.0110 

8 05027 05082 05055 0.0032 2 2 0.0055 

9 05055 05082 05069 0.0005 2 2 0.0028 

10 05069 05082 0.5075 0.0008 4 4 0.0014 

05069 05075 A' c> 050721 0.0002 47 49 0.0007 

Figure 6 shows the relative error of the resulting values A k for each master iterations 
k. The Figure shows that A k converges linearly towards the exact solution A * . The linear 
convergence trend is characteristic of the bisection method employed for the update 
of Ak in step MI , Box 1. We have also tested to the update of master problem using the 
secant method. This consists on computing the new estimate A k from the two lowest 
upper bounds A~b and A~b and the corresponding distances a~b and a~b as 
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Table 7 Numerical results of Problem 5 

Problem 5 L1)..k - 1 

'A * = 0.5074 nk 

k 'Ak- 1 
Ib 

'Ak- 1 
, b Ak 1)..*--.)..1:1 

I" 1 
MOSEK 

0 0.7071 0.3536 0.3032 2 0.7071 

2 0.3536 0.7071 0.5303 0.0452 14 0.3536 

3 0.3536 0.5303 0.4419 0.1290 2 0.1768 

4 0.4419 0.5303 0.4861 0.0419 2 0.0884 

5 0.4861 0.5303 0.5082 0.0017 16 0.0442 

6 0.4861 0.5082 0.4972 0.0201 2 0.0221 

7 0.4972 0.5082 0.5027 0.0092 2 0.0110 

8 0.5027 0.5082 0.5055 0.0038 2 0.0055 

9 0.5055 0.5082 0.5069 0.0011 2 0.0028 

10 0.5069 0.5082 0.5075 0.0003 4 0.0014 

0.5069 0.5075 'A * c::::: 0.5072 0.0004 48 0.0007 

(34) 

that is, to use a linear interpolation of the relation between A and a and set a = O. 
This update may become more efficient if the values of a~b and a~b are sufficiently 
accurate. Otherwise, it may be found that the new value Ak computed in (34) may 
fall outside of the smallest bracketing interval [Alb, Aub], in which case we have used 
the bisection method. We have implemented the secant update in (34) and applied it 
to Problem 3. The results are shown in Table 8. It can be observed that for the same 
tolerances, the number of master iterations has reduced from 10 to 8, and that nk is 
also slightly lower (from 40 and 42 to 35 when using both, SDPT3 andMOSEK). This 
reduction cannot be automatically extrapolated for all cases, but shows that other more 
sophisticated updates may further reduce the number of iterations, assuming that the 
values of a~b and a~b are accurate enough, that is, if enough iterations are employed 
in the sub-problems when A k is an upper bound. 

We note that the use of Benders decomposition, and for the same convergence 
tolerance, these non-linear problems required more than 200 iterations in all cases, 
and for example, Problem 3 needed more than 800 iterations. Furthermore, and in 
contrast to our method, the number of iterations of the Benders implementation scaled 
with the problem size. 

The CPU time for solving an optimisation problem grows quadratically with 
respect to the number of variables. Therefore, given the total number of iterations 
shown in the previous tables, the direct solution of the global problem in (1) requires 
less CPU time than the sequential solution of the proposed strategy using the master 
problem and the sub-problems (which contain approximately one half of the total 
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Fig. 5 a Evolution of Ak for Problem 3, and b f3n as. a function of the total number of sub-iterations 

number of variables). Current research on further reducing the number of iterations 
in the sub-problems is being undertaken. Nonetheless, we point out that the memory 
requirements are halved when using our decomposed approach, and that a parallel 
implementation of the master iterations for different values of A k may reduce substan­
tially the total number of iterations nk. 

5 Conclusions 

In the paper we have proposed a method to decompose convex non-linear problems 
that contain only one complicating variable in the objective function. This type of 
problems includes many engineering applications in plastic structural analysis. 

The method consists on interpreting the optimisation problem as the maximisation 
(or minimisation) of the variable subjected to a non-empty intersection set. The numer­
ical results show that the total number of iterations does not scale with the number of 
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Table 8 Numerical results of Problem 3 using the secant method instead of the bisection method in the 
master problem 

Problem 3 (Secant method) L1)..k - 1 

A * = 0.5063 nk 

k J. k 1 
Ib 

J.k 1 
, b J.k 'Ai)A~' SDPTI MOSEK 

0 0.7071 0.3536 0.3017 2 2 0.7071 

2 0.3536 0.7071 0.5303 0.0475 14 15 0.3536 

3 0.3536 0.5303 0.4419 0.1271 2 2 0.1768 

4 0.4419 0.5303 0.4861 0.0398 2 2 0.0884 

5 0.4861 0.5303 0.5082 0.0038 8 7 0.0442 

6 0.4861 0.5082 0.5055 0.0015 2 2 0.0221 

7 0.5055 0.5082 0.5069 0.0011 3 3 0.0027 

8 0.5055 0.5069 0.5062 0.0002 2 2 0.0014 

0.5062 0.5069 A * c:::: 0.5065 0.0005 35 35 0.0007 

variables. The extension of the method for a larger number of sub-problems requires 
the application of the AAR method for a larger number of sets, as explained in [6], p. 
189. This approach is currently being investigated. 

Acknowledgments The authors acknowledge the financial support of the Spanish Ministry of Economy 
and Competitiveness, under the Grant Nr. DPI2013-43727-R. 

Matrices and vectors in the toy problem 

The explicit expressions of the matrices and vectors employed in the toy problem in 
(29) are the following: 
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A l F l b l 
~ ~~ 

[; ~1 ~ ~] Xl + A {;} = {;;} 

A2 F2 b 2 
~ ~~ 

[~1 ~ ~~]X2+A g} = g;} 
G l G2 b b3 b4 

,--"-.. ,--"-.. ,--"-..,--"-..,-A-, 

[~ ; ~ ~] Xl + [~ ; ~ ;] X2 = g;} = { -;°n + m 
Xl E K1,X2 E K2,A E R 
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