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Abstract

In this paper, we refine the proof of convergence by Kuno-Buckland [7] for the simplicial

algorithm with ω-subdivision and generalize their ω-bisection rule to establish a class of

subdivision rules, called ω-k-section, which bounds the number of subsimplices gener-

ated in a single execution of subdivision by a prescribed number k. We also report some

numerical results of comparing the ω-k-section rule with the usual ω-subdivision rule.

Key words: Global optimization, strictly convex maximization, branch-and-bound, sim-

plicial algorithm, ω-subdivision.

1 Introduction

The simplicial algorithm is a kind of branch-and-bound algorithm proposed by Horst in 1976

[2] to solve convex maximization problems, and now counted among the most popular algo-

rithms in global optimization [3, 4, 12, 17] along with the conical algorithm developed by

Tuy [15]. In the branching process, whereas the latter uses polyhedral cones, the simplicial

algorithm uses a set of simplices to partition the feasible set; and in the bounding process, the

algorithm computes an upper bound of the objective function by maximizing its concave en-

velope on each simplex, which is subdivided to refine the partition if the upper bound is large
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enough. As a rule for subdivision, Horst used a simple bisection that bisects each simplex

across its longest edge, and gave a convergence proof for his algorithm. Although this proof

contains a flaw, Thoai-Tuy [14] found and fixed it later, and also introduced the concept of

exhaustiveness as a sufficient condition for the convergence. On the other hand, in his conical

algorithm, Tuy utilized a byproduct of the bounding process to subdivide each cone without

a guarantee of convergence. Even for the simplicial algorithm, we can apply a similar rule,

which subdivides each simplex radially outward from the maximum point of the concave en-

velope obtained as a byproduct in the bounding process. This so-called ω-subdivision rule

is not exhaustive, and the convergence of both algorithms according to it remained open until

Jaumard-Meyer [5] and Locatelli [9] proved it for the conical algorithm independently in 1998,

1999, and Locatelli-Raber [10, 11] did for the simplicial algorithm in 2000. Preceding their

proofs by nearly a decade, Tuy showed in [16] that the conical algorithm with ω-subdivision

converges if a certain nondegeneracy condition holds (see also [4, 17]). Kuno-Ishihama [8]

showed that a more moderate condition holds always and guarantees the convergence for the

conical algorithm. In a similar way, Kuno-Buckland [7] proved the convergence for the sim-

plicial algorithm, but instead allowed an error in the feasibility of the algorithm output within

a specified tolerance. They also provided another subdivision rule, called ω-bisection, com-

bining ω-subdivision and bisection, and reported in [7, 8] that it improves the computational

efficiency of both algorithms.

In this paper, we refine the proof of convergence by Kuno-Buckland in [7] for the sim-

plicial algorithm with ω-subdivision and ensure the feasibility of the algorithm output. Fur-

thermore, we generalize the ω-bisection rule and establish a new class of subdivision rules,

called ω-k-section, which bounds the number of subsimplices generated in a single execution

of subdivision by a prescribed number k. In Section 2, we describe the problem settings, char-

acteristics, and outline the simplicial algorithm according to the ω-subdivision rule. In Section

3, we introduce a new linear programming relaxation for the subproblem associated with each

simplex, and investigate some properties of its optimal solution. Based on the findings, we

develop the ω-k-section rule in Section 4, and give a convergence proof for the simplicial al-

gorithm incorporating it. We report some numerical results of comparing the ω-k-section rule

with the usual ω-subdivision rule in Section 5, and make concluding remarks in Section 6.

2 Convex maximization and the simplicial algorithm

The problem considered in this paper is as follows

∣

∣

∣

∣

∣

maximize f (x)

subject to A≤ b,
(1)
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where A ∈ R
m×n, b ∈ R

m, and f is a convex function defined on an open convex set S ⊂ R
n.

Let

D = {x ∈ R
n |Ax≤ b}.

We assume the following throughout the paper:

(A1) There is an n-simplex ∆1 with vertices v1
1, . . ., and v1

n+1 such that D⊂ ∆1 ⊂ S.

(A2) The origin 0 ∈ R
n is an interior point of D.

(A3) The value of f is nonnegative on ∆1.

The essence of these assumptions is that the domain S of f is large enough and the feasible

set D is a bounded polyhedron with nonempty interior. The remaining conditions are imposed

merely for simplicity, and can be satisfied through some elementary transformations.

LIPSCHITZ CONTINUITY OF THE OBJECTIVE FUNCTION

It is known (see, e.g., Theorem 10.4 in [13]) that a convex function is Lipschitzian relative

to any closed bounded subset of its domain, and so is f relative to ∆1. Let us specify the

value of a Lipschitz constant for f on ∆1, since we need it to guarantee the convergence of the

algorithm.

We see from the assumptions (A1) and (A2) that there exists a sufficiently small positive

number δ ∈ (0,1) satisfying

0 ∈ D⊂ ∆1 ⊂ (1+δ )∆1 ⊂ S.

Let

U = max{ f (x) | x ∈ (1+δ )∆1},

where (1+δ )∆1 = {(1+δ )x | x ∈ ∆1}. Then a Lipschitz constant for f on ∆1 is given by

L =
U

δ dist(0,∂∆1)
, (2)

where dist(0,∂∆1) denotes the distance from 0 to the boundary of ∆1.

Proposition 2.1. It holds that

| f (x)− f (y)| ≤ L‖x−y‖, ∀x,y ∈ ∆1.

Proof. Let α be a lower bound of f on ∆1. Also let ρ = δ dist(0,∂∆1), and β an upper bound

of f on ∆1 + ρB = {x+ ρy | x ∈ ∆1, y ∈ B}, where B is the unit closed ball. The proof of
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Theorem 10.4 in [13] shows that the following holds if ∆1 +ρB is contained in the domain S

of f :

| f (y)− f (x)| ≤
β −α

ρ
‖x−y‖. (3)

Since δ is chosen such that (1+ δ )∆1 ⊂ S, this proposition follows from (3) for α = 0 and

β =U if ∆1+ρB⊂ (1+δ )∆1. To show this, suppose that ∆1 is represented as the intersection

of n + 1 halfspaces Fj, j = 1, . . . ,n+ 1, and let ρ j = δ dist(0,∂Fj) for each j. Using the

property of similar triangles with a vertex at 0, we see that (1+δ )Fj = Fj +ρ jB, and hence

(1+δ )∆1 =
n+1

∩
j=1

(Fj +ρ jB).

We also have ∆1+ρB⊂ Fj +ρB⊂ Fj +ρ jB. Therefore, ∆1+ρB is a subset of (1+δ )∆1.

Note that L is not difficult to determine if δ is given. In fact, U can be obtained by

evaluating f at n+1 points (1+δ )v1
j , j = 1, . . . ,n+1.

OUTLINE OF THE SIMPLICIAL ALGORITHM

The simplicial algorithm consists of two distinct processes, branching and bounding. In the

branching process, the algorithm subdivides ∆1 into a set of subsimplices ∆i, i ∈I , such that

∆1 = ∪
i∈I

∆i; int∆p∩ int∆q = /0 if p,q ∈I and p 6= q, (4)

where I is an (infinite) index set, and int · denotes the set of interior points. In the bounding

process, the algorithm examines whether ∆i can contain an optimal solution of (1) for each

i ∈ I . This is usually accomplished by using the concave envelope gi of f on ∆i, i.e., the

pointwise infimum over all concave overestimators of f on ∆i. In our case where f is convex,

gi is an affine function which coincides with f at the vertices of ∆i. Since D∩∆i is a polytope,

linear programming finds a maximum point of gi in D∩∆i. Let us denote it by ωωω i. Then we

have

gi(ωωω i)≥ gi(x)≥ f (x), ∀x ∈ D∩∆i.

If gi(ωωω i) ≤ f (x∗) for the best feasible solution x∗ of (1) obtained in the process, then ∆i

is removed from further consideration, because it contains no feasible solution better than

x∗. If not, ∆i is returned to the branching process and again subdivided for re-examination.

Unlike discrete optimization problems, no matter how many times the branching and bounding

processes are repeated, D∩∆i can contain infinitely many feasible solutions. In that case, the

algorithm generates an infinite sequence of simplices in a nested fashion:

∆i = ∆i1 ⊃ ·· · ⊃ ∆ir ⊃ ∆ir+1 ⊃ ·· · . (5)
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where ∆ir+1 is a subsimplex obtained by subdividing ∆ir .

The convergence of the simplicial algorithm depends largely on how to subdivide the sim-

plex ∆i which is given as conv{vi
j | j = 1, . . . ,n+ 1}, the convex hull of n+ 1 vertices. The

simplest subdivision rule is bisection, where the longest edge of ∆i is cut at the midpoint.

Then ∆i itself is divided into two subsimplices of the same volume. According to this rule,

the sequence (5) gradually shrinks to a single point, where f agrees with its concave envelope.

This exhaustiveness guarantees that the incumbent x∗ converges to a globally optimal solution

of (1). Another often-used alternative is ω-subdivision. The simplex ∆i is subdivided radially

from ωωω i into up to n+1 subsimplices. The ω-subdivision rule has been said to be empirically

more efficient than bisection. The theoretical convergence, however, was an open question for

some decades until Locatelli-Raber proved it in 2000 [10, 11].

In either rule, once a subdivision point ui ∈∆i is selected, ∆i is subdivided radially outward

from ui into

∆i
j = conv{vi

1, . . . ,v
i
j−1,u

i,vi
j+1, . . . ,v

i
n+1}, j ∈ Ji, (6)

where Ji is an index set such that j ∈ Ji if ui is affinely independent of vi
1, . . . , vi

j−1, vi
j+1, . . . ,

vi
n+1. In the case of bisection, ui is the midpoint of the longest edge, and obviously ui = ωωω i

under the ω-subdivision rule. We therefore say that ∆i is subdivided via ui into (6). In the next

section, we will discuss how to select this subdivision point ui in order to make the difference

between f and gi at ui converge to zero.

3 Linear programming relaxation

Let us suppose that the simplicial algorithm is infinite and generates a sequence of nested

simplices:

∆1 ⊃ ·· · ⊃ ∆i ⊃ ∆i+1 ⊃ ·· · , (7)

where ∆i+1 is an n-simplex obtained by subdividing ∆i via a point ui ∈ ∆i. Associated with

each ∆i is a subproblem

(P∆i)

∣

∣

∣

∣

∣

maximize f (x)

subject to x ∈ D∩∆i.

Replacing f with its concave envelope gi on ∆i, we have the usual linear programming relax-

ation
∣

∣

∣

∣

∣

maximize gi(x)

subject to x ∈ D∩∆i,
(8)

the optimal value of which is an upper bound for (P∆i).
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SOLUTION PROPERTIES

For the vertices vi
j, j = 1, . . . ,n+1, of ∆i, let

di = [ f (vi
1), . . . , f (vi

n+1)], Vi = [vi
1, . . . ,v

i
n+1].

The concave envelope gi is then given explicitly as

gi(x) = cx+ c0,

in terms of the solution [c,c0] to a linear system:

[c,c0]

[

Vi

e

]

= di,

where e ∈Rn+1 is the all-ones row vector. Without knowing [c,c0], however, we can solve (8)

by solving an equivalent linear programming problem with variables λλλ ∈ R
n+1:

∣

∣

∣

∣

∣

maximize diλλλ

subject to AViλλλ ≤ b, eλλλ = 1, λλλ ≥ 0.
(9)

In this paper, introducing an additional variable τ , we modify (9) and solve instead

(PL)

∣

∣

∣

∣

∣

maximize diλλλ −Mτ

subject to AViλλλ ≤ b, eλλλ + τ = 1, λλλ ≥ 0, τ ≥ 0,

where M is a constant determined by the Lipschitz constant L of f given in (2) and the initial

simplex ∆1 = conv{v1
j | j = 1, . . . ,n+1}, to satisfy

M ≥ Lmax{‖v1
j‖ | j = 1, . . . ,n+1}.

Since (λλλ ,τ) = (0,1) is a feasible solution and the objective function is bounded from above

by

U i = max{ f (vi
j) | j = 1, . . . ,n+1},

problem (PL) always has an optimal solution, which we denote by (λλλ i,τ i).

Lemma 3.1. The optimal value of (PL) is an upper bound for (P∆i), i.e.,

diλλλ i−Mτ i ≥ f (x), ∀x ∈ D∩∆i.

Moreover, D∩∆i = /0 if τ i > δ .

Proof. Assume that D∩∆i 6= /0, and choose any point x in it. Then (9) is feasible and has an
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optimal solution λλλ ′, which satisfies diλλλ ′ ≥ f (x). This implies the first claim because (λλλ ′,0)

is a feasible solution and (λλλ i,τ i) is an optimal solution of (PL). We also have diλλλ i−Mτ i ≥ 0

by assumption (A3), and hence

τ i ≤
diλλλ i

M
≤

U iδ dist(0,∂∆1)

U max{‖v1
j‖ | j = 1, . . . ,n+1}

≤ δ ,

by noting dist(0,∂∆1)≤max{‖v1
j‖ | j = 1, . . . ,n+1} because 0 ∈ ∆1.

Let ωωω i = Viλλλ i
. If τ i = 0, then ωωω i is an optimal solution of (8) and a feasible solution of

(P∆i). If τ i > 0, then ωωω i is a feasible solution of the original problem (1). Although ωωω i might

not be a point in D∩∆i, we can assume

diλ i−Mτ i ≥ f (ωωω i), (10)

because otherwise ∆i contains no feasible solutions better than ωωω i and can be removed from

consideration. Let

∆i
+ = conv{vi

j | j ∈ Ji}, Ji = { j | λ i
j > 0},

both of which we can assume to be nonempty; otherwise, D∩∆i = /0 by Lemma 3.1, and ∆i

can again be removed. By linear programming duality, there is an optimal solution to the dual

of (PL),

(DL)

∣

∣

∣

∣

∣

minimize µµµb+ν

subject to µµµAVi +νe≥ di, ν ≥−M, µµµ ≥ 0.

Let (µµµ i,ν i) be an optimal solution of (DL).

Lemma 3.2. It holds that

µµµ iAx+ν i ≥ gi(x), ∀x ∈ ∆i.

In particular,

µµµ iAx+ν i = gi(x) if x ∈ ∆i
+.

Proof. Let x be any point in ∆i. There exists some λλλ ≥ 0 such that eλλλ = 1 and x = Viλλλ . Since

gi is an affine function, we have

gi(x) = diλλλ ≤ (µµµ iAVi +ν ie)λλλ = µµµ iAx+ν i, (11)

by noting the first set of constraints of (DL). If x∈ ∆i
+, then λ j = 0 for each j 6∈ Ji, and besides

di
j = µµµ iAvi

j +ν i, ∀ j ∈ Ji,

by complementary slackness between (λλλ i,τ i) and (µµµ i,ν i). These, together with (11), imply

the latter assertion.
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Lemma 3.3. If p≤ i, then

µµµ pAx+ν p ≥ µµµ iAx+ν i, ∀x ∈ ∆i
+.

Proof. We see from the preceding lemma that the right-hand side of the inequality coincides

with the concave envelope gi of f on ∆i
+. In contrast, the left-hand side is just an overestimator

of f on ∆i
+ ⊂ ∆p.

Lemma 3.4. There exists a constant C such that

‖µµµ iA‖ ≤C, i = 1,2, . . . .

Proof. If ‖µµµ iA‖= 0 for every i, nothing to prove. Choose any i such that ‖µµµ iA‖> 0. Let

G = {x ∈ R
n | µµµ iAx≤ µµµ ib}.

The distance from 0 to the boundary of this half space is dist(0,∂G) = µµµ ib/‖µµµ iA‖. Since 0

is an interior point of D, which is a subset of G, the distance between 0 and ∂D is at most

dist(0,∂G). Therefore,

‖µµµ iA‖=
µµµ ib

dist(0,∂G)
≤

µµµ ib

dist(0,∂D)
≤

U i−ν i

dist(0,∂D)
≤

U +M

dist(0,∂D)
,

where the last inequality follows from the constraint ν ≥ −M of (DL). Let C denote the last

term in this chain of inequalities. Then C is a constant for each instance of (1) and satisfies the

inequality in the lemma.

BEHAVIOR OF NESTED SIMPLICES

In the rest of this section, we assume in the sequence (7) that the subdivision point ui of ∆i is

selected in the face ∆i
+ for each i. According to this subdivision rule, vi

j remains in ∆i+1 as a

vertex unless vi
j belongs to ∆i

+. We also have the following convergence result:

Theorem 3.5. If ∆i+1 is obtained by subdividing ∆i via a point ui ∈ ∆i
+ for i = 1,2, . . . , then

liminf
i→∞

(

gi(ui)− f (ui)
)

= 0.

To prove this theorem, we need one more lemma:

Lemma 3.6. If ∆i+1 is obtained by subdividing ∆i via a point ui ∈ ∆i
+ for i = 1,2, . . . , then

there exists a subsequence {ir | r = 1,2, . . .} such that

uir ∈ ∆ir
+∩∆

ir+1
+ , r = 1,2, . . . .
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Proof. We first show that, for all but finitely many i,

∃p(i)> i, ui ∈ ∆
p(i)
+ . (12)

If not, there exists an infinite subsequence {is | s= 1,2, . . .} such that (12) fails for i= is. Since

uis is inherited as a vertex from ∆is+1 to all its descendants, the in+1th simplex ∆in+1 is spanned

only by ui1, . . .uin+1 , at least one of which must be a point in ∆
in+1
+ . This is a contradiction, and

hence there exists an integer q such that (12) holds for every i > q. Choose an index i > q as i1,

and denote by i2 the index p(i1) corresponding to i1. Then denote p(i2) by i3. Repeating this

process yields an infinite subsequence {ir | r = 1,2, . . .}, which satisfies the condition.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Consider the same subsequence {ir | r = 1,2, . . .} as in Lemma 3.6. Let

Hr = {(x,y) ∈ R
n×R | µµµ irAx+ν ir ≥ y},

and let

zr = (uir ,µµµ irAuir +ν ir).

While zr is not a point in Hr+1, we see from Lemma 3.3 that

zr ∈
r

∩
s=1

Hs, r = 1,2, . . . .

As a consequence of the bounded convergence principle (see e.g., Lemma III.2 in [4]), the

distance between zr and Hr+1 converges to zero, and thereby

dist(zr,∂Hr+1)→ 0, as r→ ∞. (13)

Since ∂Hr+1 = {(x,y) ∈ R
n×R | µµµ ir+1Ax+ν ir+1 = y}, we have

dist(zr,∂Hr+1) =
µµµ irAuir +ν ir −µµµ ir+1Auir −ν ir+1

(‖µµµ ir+1A‖2 +1)1/2
. (14)

Also, it follows from Lemmas 3.2 and 3.6 that

µµµ irAuir +ν ir = gir(uir), µµµ ir+1Auir +ν ir+1 = gir+1(uir).

Furthermore, uir is a vertex of ∆ir+1 , and hence gir+1(uir) = f (uir). These, together with (14),

imply

dist(zr,∂Hr+1) =
gir(uir)− f (uir)

(‖µµµ ir+1A‖2 +1)1/2
. (15)
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From (13), (15) and Lemma 3.4, we have the following for some constant C:

gir(uir)− f (uir)≤ (C2 +1)1/2 dist(zr,∂Hr+1)→ 0, as r→ ∞,

Thus, we complete the proof because gi(ui)− f (ui)≥ 0 for every i, and its lower limit cannot

be below zero.

Theorem 3.5 alone is not sufficient to ensure the convergence of the algorithm to an optimal

solution of the target problem (1). To accomplish this, we need to further restrict the selection

of ui for each i. In the next section, we extend the idea used for ω-bisection, a hybrid of ω-

subdivision and bisection proposed in [7], and develop a new class of subdivision rule called

ω-k-section, which bounds the number of subsimplices generated in a single execution of

subdivision by a prescribed integer k ∈ {2, . . . ,n+1}.

4 Simplicial algorithm based on ω-k-section

In establishing the ω-k-section rule, we need to make an additional assumption:

(A4) The objective function f of (1) is strictly convex.

Namely, if x,y ∈ S and x 6= y, we assume

f [(1−λ )x+λy]< (1−λ ) f (x)+λ f (y), ∀λ ∈ (0,1).

This implies that f does not agree with its concave envelope gi on ∆i except at the vertices vi
j,

j = 1, . . . ,n+1.

For a prescribed integer k ∈ {2, . . . ,n+1}, let

ki = min{k, |Ji|}, i = 1,2, . . . .

In the ω-k-section rule, the subdivision point ui of ∆i is selected in a (ki− 1)-face of ∆i
+.

Therefore, we first need to determine a subset Ki ⊂ Ji with |Ki| = ki such that ui ∈ conv{vi
j |

j ∈ Ki}. Before describing it, let us see how the sequence (7) of nested simplices behaves

under the assumption (A4) if such a subdivision rule is applied.

Lemma 4.1. Let ∆i+1 be obtained by subdividing ∆i via a point ui ∈ conv{vi
j | j ∈ Ki} for

i = 1,2, . . . . Then there exists a subsequence {ir | r = 1,2, . . .} such that Kir = K0 for every r,

and

v
ir
j → v0

j , j ∈ K0, uir → u0 ∈ {v0
j | j ∈ K0}, as r→ ∞.

Proof. Since ki can take only k integral values, there exists a positive integer p ≤ k such that

ki = p for infinitely many i. The number of (p− 1)-faces of ∆i is also finite. Passing to a
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suitable subsequence {ir | r = 1,2, . . .} and renumbering, we have Kir = K0 = {1, . . . , p} for

every r, and besides

v
ir
j → v0

j ∈ ∆1, j = 1, . . . , p, uir → u0 ∈ conv{v0
j | j = 1, . . . , p},

because ui and vi
j are generated in the compact set ∆1. If the value of min{‖vir

j −uir‖ | j =

1, . . . , p} converges to zero, we have u0 ∈ {v0
j | j = 1, . . . , p}, by taking a further subsequence

if necessary. Suppose on the contrary that there exists a number σ > 0 such that for any r,

∃s > r, min{‖vis
j −uis‖ | j = 1, . . . , p} ≥ σ . (16)

Note that the subdivision discussed here is a special case of that in Theorem 3.5, and we can

assume that

gir(uir)− f (uir)→ 0, as r→ ∞. (17)

Consider the following problem with variables y j ∈ R
n, j = 1, . . . , p, and ζζζ ∈ R

p:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

minimize

p

∑
j=1

ζ j f (y j)− f

(

p

∑
j=1

ζ jy j

)

subject to ‖y j−
p

∑
ℓ=1

ζℓyℓ‖ ≥ σ , y j ∈ ∆1, j = 1, . . . , p

eζζζ = 1, ζζζ ≥ 0.

(18)

Under assumption (A4), the value of the objective function vanishes if and only if ζ j = 1

for some j. However, such a solution is excluded from the feasible set by the constraint

‖y j−∑
p
ℓ=1 ζℓyℓ‖ ≥ σ . As a consequence, if (18) is feasible, it has an optimal solution with

positive optimal value, say η > 0. Since uis ∈ conv{vis
j | j ∈ K0}, there exists some ζζζ

′
≥ 0

such that eζζζ
′
= 1 and uis = ∑

p
j=1 ζ ′jv

is
j . It follows from (16) that (vis

1 , . . . ,v
is
p ,ζζζ

′
) is a feasible

solution of (18), and hence

gis(uis)− f (uis) =
p

∑
j=1

ζ ′j f (vis
j )− f

(

p

∑
j=1

ζ ′jv
is
j

)

≥ η > 0.

This is a contradiction to (17). Thus, (16) is false, and u0 ∈ {v0
j | j = 1, . . . , p}.
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ESTABLISHMENT OF THE ω-k-SECTION RULE

Let us establish the ω-k-section rule based on the observation in Lemma 4.1. For each subset

K ⊂ Ji with |K|= ki, let

ui
K = ∑

j∈K

λ i
jv

i
j, λ i

j = λ i
j/ ∑

ℓ∈K

λ i
ℓ, j ∈ K. (19)

Then λ i
j > 0 for each j ∈ K and ∑ j∈K λ i

j = 1; and therefore ui
K lies in the relative interior of

the (ki−1)-face conv{vi
j | j ∈ K} of ∆i

+. Also let

ρK = min{‖vi
j−ui

K‖ | j ∈ K}. (20)

Among ui
K’s, we select as the subdivision point ui the one with the largest ρK , i.e., indexed by

Ki ∈ argmax{ρK | K ⊂ Ji, |K|= ki}. (21)

Then ∆i is subdivided via ui = ui
Ki in the (ki−1)-face conv{vi

j | j ∈ Ki} into

∆i
j = conv{vi

1, . . . ,v
i
j−1,u

i,vi
j+1, . . . ,v

i
n+1}, j ∈ Ki, (22)

some one of which is adopted as the successor ∆i+1 of ∆i.

If the sequence (7) of nested simplices is generated under this ω-k-section rule, we have

the following results.

Lemma 4.2. Let ∆i+1 be obtained by subdividing ∆i according to (19)–(22) for i = 1,2, . . . .

There exists a subsequence {ir | r = 1,2, . . .} such that Jir = J0 for every r, and

λλλ ir → λλλ 0, τ ir → τ0, as r→ ∞,

for some λλλ 0
and τ0 satisfying

∑
j∈J0

λ 0
j + τ0 = 1, λλλ 0 ≥ 0, 0≤ τ0 ≤ δ .

Moreover, for each K ⊂ J0 with |K|= min{k, |J0|},

v
ir
j → v0

j , j ∈ K, u
ir
K → u0

K ∈ {v
0
j | j ∈ K}, as r→ ∞.

In particular, for each j ∈ K, if λ 0
j > 0, then v0

j = u0
K .

Proof. Let {ir | r = 1,2, . . .} be a subsequence as in Lemma 4.1. Then Kir is the same set

K0 with |K0| = p ≤ k for every r. The superset Jir of Kir is also drawn from the finite set,
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and hence we can assume Jir = J0 for every r. Since λ ir
j > 0 if and only if j ∈ J0, we have

∑ j∈J0 λ ir
j + τ ir = 1; and besides τ ir ≤ δ by Lemma 3.1. These observations lead to the first

assertion.

For each K ⊂ J0 with |K|= p, we have

v
ir
j → v0

j ∈ ∆1, j ∈ K, u
ir
K → u0

K ∈ conv{v0
j | j ∈ K}.

While (20) and (21) imply min{‖vir
j − u

ir
K‖ | j ∈ K} ≤ ρKir , we see from Lemma 4.1 that

ρKir → 0. Therefore, u0
K lies in {v0

j | j ∈ K}. To prove the rest, suppose ∑ j∈K λ 0
j > 0 and

u0
K = v0

q for some q ∈ K. Since gir(vir
q ) = f (vir

q ) for each r, we have

|gir(uir
K)− f (uir

K)| ≤ |g
ir(uir

K)−gir(vir
q )|+ | f (v

ir
q )− f (uir

K)| → 0. (23)

However, by the continuity of f , we have

gir(uir
K) = ∑

j∈K

λ ir
j f (vir

j )→ ∑
j∈K

λ 0
j f (v0

j)

f (uir
K) = f

(

∑
j∈K

λ ir
j v

ir
j

)

→ f

(

∑
j∈K

λ 0
jv

0
j

)

,

where λ 0
j = λ 0

j /∑ℓ∈K λ 0
ℓ . Therefore, if λ 0

j > 0, it is necessary for (23) that v0
j = u0

K under

assumption of (A4).

Lemma 4.3. Let ∆i+1 be obtained by subdividing ∆i according to (19)–(22) for i = 1,2, . . . .

Then

liminf
i→∞

(

diλλλ i−Mτ i− f (ωωω i)
)

= 0.

Proof. Let {ir | r = 1,2, . . .} be the same sequence used in the previous lemmas. Then we

have Jir = J0 for each r. After renumbering, we can assume that J0 = {1, . . . ,q} for some

integer q ∈ [p,n+1], where p = kir for every r. First, we will show that for ℓ= p+1, . . . ,q, if

w
ir
ℓ−1 =

ℓ−1

∑
j=1

λ ir
j v

ir
j →

(

ℓ−1

∑
j=1

λ 0
j

)

v0
s

for some s ∈ {1, . . . , ℓ−1}, then

w
ir
ℓ =

ℓ

∑
j=1

λ ir
j v

ir
j →

(

ℓ

∑
j=1

λ 0
j

)

v0
t (24)

for some t ∈ {ℓ,s}. Note that (24) follows immediately from Lemma 4.2 when ℓ= p.

13



Suppose λ 0
ℓ > 0, because (24) is obvious when λ 0

ℓ = 0. If λ 0
j = 0 for j = 1, . . . , ℓ−1, then

∥

∥

∥

∥

∥

w
ir
ℓ −

(

ℓ

∑
j=1

λ ir
j

)

v0
ℓ

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

ℓ−1

∑
j=1

λ ir
j

(

v
ir
j −v

ir
ℓ

)

∥

∥

∥

∥

∥

→ 0, (25)

and we have w
ir
ℓ → (∑ℓ

j=1 λ 0
j )v

0
ℓ . Even if λ 0

j > 0 for some j, we see from Lemma 4.2 that

v0
j = v0

ℓ = u0
K for some K ⊂ J0 such that j, ℓ ∈ K and |K| = p, and again (25) holds. By

induction, there exists an index t ∈ J0 such that

ωωω ir = wir
q = ∑

j∈J0

λ ir
j v

ir
j → ωωω0 =

(

∑
j∈J0

λ 0
j

)

v0
t = (1− τ0)v0

t .

For each r, let

ωωω ir =
1

1− τ ir
ωωω ir .

Since ωωω ir and ωωω ir both belong to ∆1 = conv{v1
j | j = 1, . . . ,n+ 1}, we see from Proposition

2.1 that

| f (ωωω ir)− f (ωωω ir)| ≤ L‖ωωω ir −ωωω ir‖= Lτ ir‖ωωω ir‖

≤ Lτ ir max{‖v1
j‖ | j = 1, . . . ,n+1} ≤Mτ ir ,

and hence

f (ωωω ir)≥ f (ωωω ir)−Mτ ir .

Taking limits of both sides yields

f (ωωω0)≥ f (v0
t )−Mτ0. (26)

We also have

dirλλλ ir = ∑
j∈J0

f (vir
j )λ

ir
j → d0λλλ 0 = ∑

j∈J0

f (v0
j)λ

0
j = f (v0

t ) ∑
j∈J0

λ 0
j ,

by noting v0
j = v0

t if λ 0
j > 0. This, together with (26), implies that

f (ωωω0)≥ d0λλλ 0−Mτ0,

because 1−δ ≤∑ j∈J0 λ 0
j ≤ 1 and f (v0

t )≥ 0. In addition to this, the inequality (10) is assumed

for every i, and hence the assertion follows.
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ALGORITHM AND ITS CONVERGENCE

Let us incorporate the ω-k-section rule into the simplicial algorithm for solving (1). For a

given tolerance ε ≥ 0, the algorithm is described as follows.

algorithm simplicial omega(D, f ,ε,k)

determine a simplex ∆1 = conv{v1
j | j = 1, . . . ,n+ 1} ⊃ D and a constant δ ∈ (0,1) such

that D⊂ ∆1 ⊂ (1+δ )∆1 ⊂ S for the domain S of f ;

determine a constant M ≥ Lmax{‖v1
j‖ | j = 1, . . . ,n+1} for the Lipschitz constant L of f

on ∆1;

P ← /0; T ←{∆1}; x1← 0; α1← f (0); i← 1; stop← false;

while stop = false do

for each ∆ = conv{v j | j = 1, . . . ,n+1} ∈ T do

let d← [ f (v1), . . . , f (vn+1)], V← [v1, . . . ,vn+1], and define the relaxed problem (PL)

of the subproblem (P∆);

solve (PL) and obtain an optimal solution (λλλ ∆,τ∆);

if τ∆ ≤ δ then

ωωω∆← Vλλλ ∆; β∆← dλλλ ∆−Mτ∆;

if f (ωωω∆)> α i then

xi← ωωω∆; α i← f (xi);

end if

else

T ←T \{∆};

end if

end for

P ←{∆ ∈P ∪T | β∆−α i ≥ ε};

if P = /0 then

stop← true;

else

select ∆ with the largest β∆ from P , and let P ←P \{∆};

∆i← ∆; β i← β∆; λλλ i← λλλ ∆; τ i← τ∆; ωωω i← ω∆;

Ji←{ j | λ i
j > 0}; ki←min{k, |Ji|}

determine Ki ⊂ Ji with |Ki|= ki and ui ∈ conv{vi
j | j ∈ Ki} according to (19)– (21);

subdivide ∆i via ui into ki subsimplices ∆i
j, j ∈ Ki;

T ←{∆i
j | j ∈ Ki}; xi+1← xi; α i+1← α i; i← i+1;

end if

end while

x∗← xi;

end.
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Theorem 4.4. Suppose ε = 0. If the algorithm simplicial omega terminates after finitely many

iterations, then x∗ is an optimal solution of (1). Even if not, every accumulation point of the

sequence {xi | i = 1,2, . . .} is an optimal solution.

Proof. If the algorithm terminates, the claim is obvious. Consider the case where simpli-

cial omega does not terminate. Then it generates at least one infinite sequence of nested

simplices. Selecting any one and renumbering, we denote it as {∆i | i = 1,2, . . .}. Since α i is

nondecreasing in i and bounded from above by U1, it converges to some α0 ∈ [0,U1]. Passing

to a suitable subsequence {ir | r = 1,2, . . .}, we also have β ir → β 0, ωωω ir → ωωω0, as r→ ∞, and

β 0 = f (ωωω0) by Lemma 4.3. However, f (ωωω i)≤ α i ≤ β i for every i, and hence f (ωωω ir) and β ir

both converge to α0.

In order to show

α0 ≥ f (x), ∀x ∈ D, (27)

suppose f (y)> α0 for some y ∈ D. At iteration ir for each r, this feasible solution y belongs

to some simplex ∆ ∈P , and we have

α0 < f (y)≤ β∆ ≤ β ir ,

by noting that ∆ir has been selected from P . However, β ir → α0, and hence f (y) = α0. This

is a contradiction and (27) holds. On the other hand, since {xi | i = 1,2, . . .} is generated in

D⊂ ∆1, any accumulation point, say x0, belongs to D. For any subsequence {is | s = 1,2, . . .}

such that xis → x0, we have

f (xis) = α is → α0, as s→ ∞,

because {α i | i = 1,2, . . .} is a convergent sequence. This, together with (27), implies that x0

is an optimal solution of (1).

Corollary 4.5. If ε > 0, the algorithm simplicial omega terminates with an ε-optimal solution

x∗ of (1) after finitely many iterations.

Proof. As seen in the proof of Theorem 4.4, if ε = 0 and simplicial omega does not terminate,

then

liminf
i→∞

(

β i−α i
)

= 0.

For each ∆ ∈P , we have α i ≤ β∆ ≤ β i. Therefore, β∆−α i < ε holds at some iteration i

and the algorithm terminates if ε > 0. Since α i = f (xi), this termination criterion implies the

ε-optimality of x∗ = xi for (1).
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5 Numerical results

In this section, we report the numerical results of comparing ω-bisection, ω-trisection and ω-

quadsection, i.e., ω-k-section for k = 2,3,4, respectively, with the usual ω-subdivision. The

test problem solved using the algorithm simplicial omega is a convex quadratic maximization

problem of the form
∣

∣

∣

∣

∣

maximize f (x)+θcyy

subject to Ax+By≤ b, [x,y]≥ 0,
(28)

where

f (x) =
1

2
xTQx+ cxx.

To make the feasible set bounded, the vector b ∈ R
m was fixed to [1, . . . ,1,n]T and all compo-

nents of the last row of A ∈ R
m×q and B ∈ R

m×(n−q) were set to ones. Other entries of [A,B],

together with components of [cx,cy] ∈ R
q×R

n−q, were generated randomly in the interval

[−0.5,1.0], so that the percentages of zeros and negative numbers were about 20% and 10%,

respectively. The matrix Q ∈ R
q×q was symmetric, tridiagonal, and the tridiagonal entries

were random numbers in [0.0,1.0].

Note that the objective function of (28) can be linearized by replacing only the nonlinear

part f with its concave envelope. Therefore, we may implement the branching process in the

x-space of dimension q ≤ n, instead of in the whole space of dimension n. Based on this

decomposition principle [4], we programmed simplicial omega in GNU Octave [1], a numer-

ical computing environment similar to MATLAB, and tested it on one core of Intel Core i7

(3.70GHz). In preprocessing, we computed the Lipschitz constant L of f according to (2) with

δ = 10−10, and used it to determine the constant M needed for defining the relaxed problem

(PL). As the procedure for solving (PL), we used the revised simplex algorithm, which was

not an optimization toolbox procedure but coded from scratch in Octave. Furthermore, we

replaced the bounding criterion β∆−α i ≥ ε in simplicial omega with

β∆− (1+ ε)α i ≥ 0,

where ε was set to 10−5, in order to prevent the convergence from being affected by the magni-

tude of the optimal value. Let us denote by 2-sec, 3-sec, 4-sec and subdiv the program codes of

simplicial omega incorporating ω-bisection, ω-trisection, ω-quadsection and ω-subdivision,

respectively. As varying m,n,q and θ , we solved ten instances of (28) and measured the

average performance of each code for each set of the parameters.

Figures 1 and 2 plot the changes in the average number of iterations and the average

CPU time in seconds, respectively, taken by each program code when the dimensionality q

of x increased from 30 to 60, with (m,n,θ) fixed at (60,100,5.0). Figures 3 and 4 show

the results when the weight θ in the objective function changed between 3.0 and 10.0, with
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Figure 1: Number of iterations when (m,n,θ) = (60,100,5.0).
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Figure 2: CPU time in seconds when (m,n,θ) = (60,100,5.0).
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Figure 3: Number of iterations when (m,n,q) = (60,100,30).

Weight (θ)

 0.1

 1

 10

 100

lo
g(

 C
PU

 s
ec

on
ds

 )

 5.0  10.03.0 3.5 4.0 6.0 8.0

subdiv
4-sec
3-sec
2-sec

Figure 4: CPU time in seconds when (m,n,q) = (60,100,30).
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Table 1: Computational results of simplicial omega when θ = 5.0.

q = 0.3n q = 0.4n q = 0.5n

m×n # time # time # time

60×150 2-sec 5.6 0.201 13.6 0.511 74.8 2.967

3-sec 3.8 0.150 30.5 0.895 236.2 7.397

subdiv 3.8 0.149 55.2 1.554 109.5 3.515

90×150 2-sec 3.0 0.234 89.6 5.207 47.8 3.465

3-sec 2.8 0.220 88.1 4.289 78.1 4.490

subdiv 2.8 0.228 89.1 4.489 125.6 6.746

90×200 2-sec 4.6 0.429 21.4 1.917 29.2 3.137

3-sec 5.5 0.435 19.8 1.600 75.8 6.570

subdiv 7.9 0.540 23.2 1.760 194.5 15.55

120×200 2-sec 2.6 0.488 8.4 1.339 13.6 2.458

3-sec 2.5 0.493 8.9 1.237 17.1 2.616

subdiv 2.5 0.492 9.4 1.256 19.3 2.728

120×250 2-sec 1.8 0.581 4.4 1.197 37.0 8.449

3-sec 1.9 0.574 3.5 0.953 112.7 19.61

subdiv 1.9 0.572 3.5 0.947 193.4 30.95

150×250 2-sec 1.2 0.763 26.4 7.554 88.8 27.75

3-sec 1.2 0.770 96.0 21.63 122.4 31.76

subdiv 1.2 0.783 176.7 37.82 262.8 64.18

(m,n,q) = (60,100,30). We see from these figures that each code behaves very similarly in

response to changes in both q and θ . For each particular q and θ , however, the performance of

2-sec is slightly superior to the others. This tendency is more pronounced when q increases and

θ decreases. The computational results on larger-scale instances are summarized in Table 1,

where the column labeled ‘#’ shows the average number of iterations and the column labeled

‘time’ the average CPU time in seconds when (m,n,q) ranged up to (150,250,125), with θ

fixed at 5.0. Since those average values are strongly affected by rare ill-conditioned instances,

they do not always respond properly to changes in (m,n,q). For each particular (m,n,q),

again, 2-sec performs better than 3-sec and subdiv, especially when the proportion of nonlinear

variables q/n is relatively large.
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6 Concluding remark

In our previous paper [7], we attempted to prove the convergence of the simplicial algorithm

with ω-subdivision along the lines suggested in [4, 17]. We achieved our aim by relaxing

the feasible set D of the target problem (1), but instead allowed an error in the feasibility

of the algorithm output within a specified tolerance. In this paper, we have relaxed each

simplex ∆ used for subdivision rather than D itself, and consequently managed to ensure the

feasibility of the output without much departing from the lines of the convergence proof in

[7]. In addition, we have generalized the ω-bisection rule proposed in [7], and established the

ω-k-section rule, which subdivides ∆ into at most k subsimplices for a prescribed number k.

We have shown through numerical comparison that the algorithm incorporating ω-k-section

performs as well as the one with the usual ω-subsection when k = 2,3 and 4. In particular,

the performance of ω-bisection, i.e., ω-k-section for k = 2, is superior to others, including

the usual ω-subdivision. However, we have yet to find a satisfactory explanation for this

superiority of ω-bisection, which is a subject for further study.
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