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Abstract. Delamination is a typical failure mode of composite materials caused by
weak bonding. It arises when a crack initiates and propagates under a destructive load-
ing. Given the physical law characterizing the properties of the interlayer adhesive be-
tween the bonded bodies, we consider the problem of computing the propagation of the
crack front and the stress field along the contact boundary. This leads to a hemivaria-
tional inequality, which after discretization by finite elements we solve by a nonconvex
bundle method, where upper-C1 criteria have to be minimized. As this is in contrast
with other classes of mechanical problems with non-monotone friction laws and in other
applied fields, where criteria are typically lower-C1, we propose a bundle method suited
for both types of nonsmoothness. We prove its global convergence in the sense of subse-
quences and test it on a typical delamination problem of material sciences.

Key words. Composite material · delamination · crack front propagation · hemivaria-
tional inequality · Clarke directional derivative · nonconvex bundle method · lower- and
upper-C1 function · convergence.

1. Introduction

We develop a bundle technique to solve nonconvex variational problems arising in con-
tact mechanics and in other applied fields. We are specifically interested in the delam-
ination of composite structures with an adhesive bonding under destructive loading, a
failure mode which is studied in the material sciences. When the properties of the inter-
layer adhesive between the bonded bodies are given in the form of a physical law relating
the normal component of the stress vector to the relative displacement between the upper
and lower boundaries at the crack tip, the challenge is to compute the displacement and
stress fields in order to assess the reactive destructive forces along the contact boundary,
as the latter are difficult to measure in situ. This leads to minimization of an energy
functional, where a specific form of nonsmoothness arises in the boundary integral at
the contact boundary. After discretization via piecewise linear finite elements using the
trapezoidal quadrature rule, this leads to a finite-dimensional nonsmooth optimization
problem of the form

minimize f(x)
subject to Ax ≤ b

(1)

where f is locally Lipschitz and neither smooth nor convex. Depending on the nature of
the frictional forces, the criterion f may be upper-C1 or lower-C1, see e.g. Figure 1. As
these two classes of nonsmooth functions behave substantially differently when minimized,
we are forced to expand on existing bundle strategies and develop an algorithm general
enough to encompass both types of nonsmoothness. We prove its convergence to a critical
point in the sense of subsequences, and show that it provides satisfactory numerical results

† Institut de Mathématiques, Université de Toulouse, France.
∗ Institute of Mathematics, Department of Aerospace Engineering, Universität der Bundeswehr

München, Germany.
1

ar
X

iv
:1

40
1.

68
07

v1
  [

m
at

h.
O

C
] 

 2
7 

Ja
n 

20
14



2 M.N. Dao, J. Gwinner, D. Noll, and N. Ovcharova

in a simulation of the double cantilever beam test [1], one of the most popular destructive
tests to qualify structural adhesive joints.

The difficulty in nonconvex bundling is to provide a suitable cutting plane oracle which
replaces the no longer available convex tangent plane. One of the oldest oracles, discussed
already in Mifflin [2], and used in the bundle codes of Lemaréchal and Sagastizábal [3, 4], or
the BT-codes of Zowe [5, 6], uses the method of downshifted tangents. While these authors
use linesearch with Armijo and Wolfe type conditions, which allows only weak convergence
certificates in the sense that some accumulation point of the sequence of serious iterates is
critical, we favor proximity control in tandem with a suitable backtracking strategy. This
leads to stronger convergence certificates, where every accumulation point of the sequence
of serious iterates is critical. For instance, in [7, 8, 9] a strong certificate for downshifted
tangents with proximity control was proved within the class of lower-C1 functions, but
its validity for upper-C1 criteria remained open. An oracle for upper-C1 functions with
a rigorous convergence theory can be based on the model approach of [7, 8, 10], but the
latter is not compatible with the downshift oracle.

To have two strings to one bow is unsatisfactory, as one could hardly expect practitioners
to select their strategy according to such a distinction, which might not be easy to make
in practice. In this work we will resolve this impasse and present a cutting plane oracle
based on downshifted tangents, which leads to a bundle method with strong convergence
certificate for both types of nonsmoothness. In its principal components our method
agrees with existing strategies for downshifted tangents, like [3, 5, 11, 12], and could
therefore be considered as a justification of this technique for a wide class of applications.
Differences with existing methods occur in the management of the proximity control
parameter, which in our approach has to respect certain rules to assure convergence to a
critical point, without impeding good practical performance.

The structure of the paper is as follows. Section 2 gives some preparatory information
on lower- and upper-C1 functions. Section 4 presents the algorithm and comments on its
ingredients. Theoretical tools needed to prove convergence are presented and employed
in sections 3 and 5. Section 6 gives the main convergence result, while section 7 discusses
practical aspects of the algorithm. In section 8, we discuss the delamination problem,
which we solve numerically using our bundle algorithm.

Numerical results for contact problem with adhesion based on the bundle-Newton
method of L. Lukšan and J. Vlček [13] can be found e.g. in the book of Haslinger et
al. [14], in [11, 12], and in the more recent [15, 16]. Mathematical analysis and numerical
results for quasistatic delamination problems can be found in [17, 18].

2. Lower- and upper-C1 functions

Following Spingarn [19], a locally Lipschitz function f : Rn → R is lower-C1 at x0,
if there exists a compact Hausdorff space K, a neighborhood U of x0, and a mapping
F : U ×K → R such that both F and DxF are jointly continuous and

f(x) = max{F (x, y) : y ∈ K}(2)

is satisfied for x ∈ U . The function f is upper-C1 at x0 if −f is lower-C1 at x0.
In a minimization problem (1), we expect lower- and upper-C1 functions to behave com-

pletely differently. Minimizing a lower-C1 function ought to lead to real difficulties, as on
descending we move into the zone of nonsmoothness, which for lower-C1 goes downward.
In contrast, upper-C1 functions are generally expected to be well-behaved, as intuitively
on descending we move away from the nonsmoothness, which here goes upward. The
present application shows that this argument is too simplistic. Minimization of upper-C1

functions leads to real difficulties, which we explain subsequently. In delamination for
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composite materials we encounter objective functions of the form

f(x) = fs(x) +

∫ 1

0

min
i∈I

fi(x, t) dt,(3)

where fs gathers the smooth part, while the integral term, due to the minimum, is re-
sponsible for the nonsmoothness.

Lemma 1. Suppose fs is of class C1 and the fi are jointly of class C1. Then the function
(3) is upper-C1 and can be represented in the form

f(x) = fs(x) + min
σ∈Σ

∫ 1

0

fσ(t)(x, t) dt,(4)

where Σ is the set of all measurable mappings σ : [0, 1]→ I.

Proof. Let us first prove (4). For σ ∈ Σ and fixed x ∈ Rn the function t 7→ fσ(t)(x, t) is
measurable, and since mini∈I fi(x, t) ≤ fσ(t)(x, t) ≤ maxi∈I fi(x, t), it is also integrable.
Hence F (x, σ) = fs(x) +

∫ 1

0
fσ(t)(x, t) dt is well-defined, and clearly F (x, σ) ≥ f(x), so we

have infσ∈Σ F (x, σ) ≥ f(x).
To prove the reverse estimate, fix x ∈ Rn and consider the closed-valued multifunction

Φ : [0, 1]→ 2I defined by Φ(t) = {i ∈ I : fi(x, t) = mini′∈I fi′(x, t)}. Since the fi(x, ·) are
measurable and I is finite, Φ is a measurable multifunction. Choose a measurable selection
σ, that is, σ ∈ Σ satisfying σ(t) ∈ Φ(t) for every t ∈ [0, 1]. Then clearly F (x, σ) = f(x).
This proves (4).

Let us now show that f is upper-C1. We consider ϕ(x, t) = mini∈I fi(x, t). In view of
[19] ϕ(·, t) is upper-C1 and its Clarke subdifferential ∂ϕ(·, t) is strictly supermonotone
uniformly over t ∈ [0, 1]. By Theorem 2 in [20], ϕ(·, t) is approximately concave uniformly
over t ∈ [0, 1]. Integration with respect to t ∈ [0, 1] then yields an approximately concave
function with respect to x, which by the equivalences in [20] and [19] is upper-C1. �

Note that the minimum (4) is semi-infinite even though I is finite. Minimization of
(3) cannot be converted into a NLP, as would be possible in the min-max case. The
representation (4) highlights the difficulty in minimizing (3). Minimizing a minimum has
a disjunctive character, and due to the large size of Σ this could lead to a combinatorial
situation with intrinsic difficulty.

3. The model concept

The model of a nonsmooth function was introduced in [8] and is a key element in
understanding the bundle concept.

Definition 1 (Compare [8]). A function φ : Rn×Rn → R is called a model of the locally
Lipschitz function f : Rn → R on the set Ω ⊂ Rn if the following axioms are satisfied:

(M1) For every x ∈ Ω the function φ(·, x) : Rn → R is convex, φ(x, x) = f(x) and
∂1φ(x, x) ⊂ ∂f(x).

(M2) For every x ∈ Ω and every ε > 0 there exists δ > 0 such that f(y) ≤ φ(y, x) +
ε‖y − x‖ for every y ∈ B(x, δ).

(M3) The function φ is jointly upper semicontinuous, i.e., (yj, xj) → (y, x) on Rn × Ω
implies lim sup

j→∞
φ(yj, xj) ≤ φ(y, x). �
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We recall that every locally Lipschitz function f has the so-called standard model

φ](y, x) = f(x) + f 0(x, y − x),

where f 0(x, d) is the Clarke directional derivative of f at x in direction d. The same
function f may in general have several models φ, and following [7, 10], the standard φ]
is the smallest one. Every model φ gives rise to a bundle strategy. The question is then
whether this bundle strategy is successful. This depends on the following property of φ.

Definition 2. A model φ of f on Ω is said to be strict at x0 ∈ Ω if axiom (M2) is replaced
by the stronger

(M̂2) For every ε > 0 there exists δ > 0 such that f(y) ≤ φ(y, x) + ε‖y − x‖ for all
x, y ∈ B(x0, δ).

We say that φ is a strict model on Ω, if it is strict at every x0 ∈ Ω. �

Remark 1. We may write axiom (M2) in the form f(y) ≤ φ(y, x0) + o(‖y − x0‖) for
y → x0, and (M̂2) as f(y) ≤ φ(y, x) + o(‖y − x‖) for x, y → x0. Except for the fact that
these concepts are one-sided, this is precisely the difference between differentiability and
strict differentiability. Hence the nomenclature.

Lemma 2 (Compare [7, 10]). Suppose f is upper-C1. Then its standard model φ] is
strict, and hence every model φ of f is strict. �

Remark 2. For convex f the standard model φ] is in general not strict, but f may be
used as its own model φ(·, x) = f . For nonconvex f , a wide range of applications is
covered by composite functions f = g ◦ F with g convex and F differentiable. Here the
so-called natural model φ(y, x) = g(F (x) + F ′(x)(y− x)) can be used, because it is strict
as soon as F is class C1. This includes lower-C2 functions in the sense of [21], lower-C1,α

functions in the sense of [22], or amenable functions in the sense of [23], which allow
representations of the form f = g ◦ F with F of class C1,1.

We conclude with the remark that lower-C1 functions also admit strict models, even
though in that case the construction is more delicate. The strict model in that case cannot
be exploited algorithmically, and for lower-C1 functions we prefer the oracle concept,
which will be discussed in section 5.

4. Elements of the algorithm

In this section we briefly explain the main features of the algorithm. This concerns
building the working model, computing the solution of the tangent program, checking
acceptance, updating the working model after null steps, and the management of the
proximity control parameter.

4.1. Working model. At the current serious iterate x the inner loop of the algorithm
at counter k computes an approximation φk(·, x) of f in a neighborhood of x, called a
first-order working model. The working model is a polyhedral convex function of the form

φk(·, x) = max
(a,g)∈Gk

a+ g>(· − x),(5)

where Gk is a finite set of affine functions y 7→ a+ g>(y− x) satisfying a ≤ f(x), referred
to as planes. The set Gk is updated during the inner loop k. At each step k the following
rules have to be respected when updating Gk into Gk+1:

(R1) One or several cutting planes at the null step yk, generated by an abstract cutting
plane oracle, are added to Gk+1.
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(R2) The so-called aggregate plane (a∗, g∗), which consists of convex combinations of
elements of Gk, is added to Gk+1.

(R3) Some older planes in Gk, which become obsolete through the addition of the ag-
gregate plane, are discarded and not kept in Gk+1.

(R4) Every Gk contains at least one so-called exactness plane (a0, g0), where exactness
plane means a0 = f(x), g0 ∈ ∂f(x). This assures φk(x, x) = f(x), hence the name.

(R5) We have to make sure that each working model φk satisfies ∂1φk(x, x) ⊂ ∂f(x).
Once the first-order working model φk(·, x) has been built, the second-order working model
Φk(·, x) is of the form

Φk(·, x) = φk(·, x) + 1
2
(· − x)>Q(x)(· − x),(6)

where Q(x) = Q(x)> is a possibly indefinite symmetric matrix, depending only on the
current serious iterate x, and fixed during the inner loop k. The second-order term
includes curvature information on f , if available.

4.2. Tangent program and acceptance test. Once the second-order working model
(6) is formed and the proximity control parameter τk−1 → τk is updated, we solve the
tangent program

minimize Φk(y, x) + τk
2
‖y − x‖2

subject to Ay ≤ b
(7)

Here the proximity control parameter τk satisfies Q + τkI � 0, which assures that (7)
is strictly convex and has a unique solution, yk, called the trial step. The trial step
is a candidate to become the new serious iterate x+. In order to decide whether yk is
acceptable, we compute the test

ρk =
f(x)− f(yk)

f(x)− Φk(yk, x)

?

≥ γ,(8)

where 0 < γ < 1 is some fixed parameter. If ρk ≥ γ, then x+ = yk is accepted and called
a serious step. In this case the inner loop ends successfully. On the other hand, if ρk < γ,
then yk is rejected and called a null step. In this case the inner loop k continues. This
means we will update working model Φk(·, x) → Φk+1(·, x), adjust the proximity control
parameter τk → τk+1, and solve (7) again.

Note that the test (8) corresponds to the usual Armijo descent condition used in line-
searches, or to the standard acceptance test in trust region methods.

4.3. Updating the working model via aggregation. Suppose the trial step yk fails
the acceptance test (8) and is declared a null step. Then the inner loop has to continue,
and we have to improve the working model at the next sweep in order to perform better.
Since the second-order part of the working model 1

2
(· − x)>Q(x)(· − x) remains invariant,

we will update the first-order part only.
Concerning rule (R2), by the necessary optimality condition for (7), there exists a

multiplier η∗ such that

0 ∈ ∂1Φk(y
k, x) + τk(y

k − x) + A>η∗,

or what is the same,

(Q(x) + τkI)(yk − x)− A>η∗ ∈ ∂1φk(y
k, x).

Since φk(·, x) is by construction a maximum of affine planes, we use the standard descrip-
tion of the convex subdifferential of a max-function. Writing Gk = {(a0, g0), . . . , (ap, gp)}
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for p = card(Gk) + 1, we find non-negative multipliers λ0, . . . , λp summing up to 1 such
that

(Q(x) + τkI)(yk − x)− A>η∗ =

p∑
i=0

λigi,

and in addition, ai + g>i (yk − x) = φk(y
k, x) for all i ∈ {0, . . . , p} with λi > 0. We say

that those planes which are active at yk are called by the aggregate plane. In the above
rule (R3) we allow those to be removed from Gk. We now define the aggregate plane as:

a∗k =

p∑
i=0

λiai, g∗k =

p∑
i=0

λigi.

Note that by construction the aggregate plane m∗k(·, x) = a∗k + g∗>k (· − x) at null step
yk satisfies m∗k(yk, x) = a∗ + g∗>(yk − x) = φk(y

k, x). This construction is standard
and follows the original idea in Kiwiel [24]. It assures in particular that Φk+1(yk, x) ≥
m∗k(y

k, x) + 1
2
(yk − x)>Q(x)(yk − x) = Φk(y

k, x).

4.4. Updating the working model by cutting planes and exactness planes. The
crucial improvement in the first-order working model is in adding a cutting plane which
cuts away the unsuccessful trial step yk according to rule (R1). We shall denote the
cutting plane as mk(·, x) = ak + g>(· − x). The only requirement for the time being
is that ak ≤ f(x), as this assures φk+1(x, x) ≤ f(x). Since we also maintain at least
one exactness plane of the form m0(·, x) = f(x) + g>0 (· − x) with g0 ∈ ∂f(x), we assure
φk+1(x, x) = Φk+1(x, x) = f(x). Later we will also have to check the validity of (R5).

It is possible to integrate so-called anticipated cutting planes in the new working model
Gk+1. Here anticipated designates all planes which are not based on the rules exactness,
aggregation, cutting planes. Naturally, adding such planes can not be allowed in an
arbitrary way, because axioms (R1)− (R5) have to be respected.

Remark 3. It may be beneficial to choose a new exactness planem0(·, x) = f(x)+g>(·−x)
after each null step y, namely the one which satisfiesm0(y, x) = f 0(x, y−x). If x is a point
of differentiability of f , then all these exactness planes are identical anyway, so no extra
work occurs. On the other hand, computing g ∈ ∂f(x) such that g>(y−x) = f 0(x, y−x)
is usually cheap. Consider for instance eigenvalue optimization, where f(x) = λ1 (F (x)),
x ∈ Rn, F : Rn → Sm, and λ1 : Sm → R is the maximum eigenvalue function of Sm.
Then f 0(x, d) = λ′1(X,D) = λ1(Q>DQ), where X = F (x), D = F ′(x)d, and where Q is a
t×m matrix whose columns form an orthogonal basis of the maximum eigenspace of X
of dimension t [25]. Then G = QQ> ∈ ∂λ1(X) attains λ′1(X,D), hence g = F ′(x)∗QQ>

attains f ′(x, d). Since usually t� m, the computation of g is cheap.

4.5. Management of proximity control. The central novelty of the bundle methods
developed in [7, 8, 26] is the discovery that in the absence of convexity the proximity
control parameter τ has to follow certain basic rules to assure convergence of the sequence
xj of serious iterates. This is in contrast with convex bundle methods, where τ could
in principle be frozen once and for all. More precisely, suppose φk(·, x) has failed and
produced only a null step yk. Having built the new model φk+1(·, x), we compute the
secondary test

ρ̃k =
f(x)− Φk+1(yk, x)

f(x)− Φk(yk, x)

?

≥ γ̃,(9)

where 0 < γ < γ̃ < 1 is fixed. Our decision is

τk+1 =

{
2τk if ρ̃k ≥ γ̃
τk if ρ̃k < γ̃

(10)



NONCONVEX BUNDLE METHOD WITH APPLICATION TO A DELAMINATION PROBLEM 7

The rationale of (9) is to decide whether improving the model by adding planes will suffice,
or shorter steps have to be forced by increasing τ .

The denominator in (9) gives the model predicted progress f(x)−φk(yk, x) = φk(x, x)−
φk(y

k, x) > 0 at yk. On the other hand, the numerator f(x)−φk+1(yk, x) gives the progress
over x we would achieve at yk, had we already known the cutting planes drawn at yk. Due
to aggregation we know that φk+1(yk, x) ≥ φk(y

k, x), so that ρ̃k ≤ 1, but values ρ̃k ≈ 1
indicate that little to no progress is achieved by adding the cutting plane. In this case
we decide that the τ -parameter must be increased to force smaller steps, because that
reinforces the agreement between f and φk+1(·, x).

In the test (10) we replace ρ̃k ≈ 1 by ρ̃k ≥ γ̃ for some fixed 0 < γ < γ̃ < 1. If ρ̃k < γ̃,
then the quotient if far from 1 and we decide that adding planes has still the potential to
improve the situation. In that event we do not increase τ .

Let us next consider the management of τ in the outer loop. Since τ can only increase
or stay fixed in the inner loop, we allow τ to decrease between serious steps x → x+,
respectively, xj → xj+1. This is achieved by the test

ρkj =
f(xj)− f(xj+1)

f(xj)− Φkj(x
j+1, xj)

?

≥ Γ,(11)

where 0 < γ ≤ Γ < 1 is fixed. In other words, if at acceptance we have not only ρkj ≥ γ,
but even ρkj ≥ Γ, then we decrease τ at the beginning of the next inner loop j + 1,
because we may trust the model. On the other hand, if γ ≤ ρkj < Γ at acceptance, then
we memorize the last τ -parameter used, that is τkj at the end of the jth inner loop.

Remark 4. We should compare our management of the proximity control parameter τ
with other strategies in the literature. For instance Mäkelä et al. [11] consider a very
different management of τ , which is motivated by the convex case.

4.6. Statement of the algorithm. We are now ready to give our formal statement of
algorithm 1.

5. Nonconvex cutting plane oracles

In the convex cutting plane method [27, 28] unsuccessful trial steps yk are cut away
by adding a tangent plane to f at yk into the model. Due to convexity, the cutting
plane is below f and can therefore be used to construct an approximation (5) of f . For
nonconvex f , cutting planes are more difficult to construct, but several ideas have been
discussed. We mention [29, 2]. In [7] we have proposed an axiomatic approach, which
has the advantage that it covers the applications we are aware of, and allows a convenient
convergence theory. Here we use this axiomatic approach in the convergence proof.

Definition 3 (Compare [7]). Let f be locally Lipschitz. A cutting plane oracle for f on
the set Ω is an operator O which, with every pair (x, y), x a serious iterate in Ω, y ∈ Rn

a null step, associates an affine function my(·, x) = a+ g>(· − x), called the cutting plane
at null step y for serious iterate x, so that the following axioms are satisfied:

(O1) For y = x we have a = f(x) and g ∈ ∂f(x).
(O2) Let yj → x. Then there exist εj → 0+ such that f(yj) ≤ myj(yj, x) + εj‖yj − x‖.
(O3) Let xj → x and yj, y+

j → y. Then there exists z ∈ Rn such that
lim sup
j→∞

my+
j

(yj, xj) ≤ mz(y, x). �

As we shall see, these axioms are aligned with the model axioms (M1) − (M3). Not
unexpectedly, there is also a strict version of (O2).
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Algorithm 1. Proximity control algorithm for (1).
Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q <∞, q < T <∞.
1: Initialize outer loop. Choose initial guess x1 with Ax1 ≤ b and an initial matrix
Q1 = Q>1 with −qI � Q1 � qI. Fix memory control parameter τ ]1 such that Q1+τ ]1I �
0. Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂f(xj)+A>η∗ for some multiplier
η∗ ≥ 0. Otherwise goto inner loop.

3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ -parameter using
the memory element, i.e., τ1 = τ ]j . Choose initial convex working model φ1(·, xj),
possibly recycling some planes from previous sweep j−1, and let Φ1(·, xj) = φ1(·, xj)+
1
2
(· − xj)>Qj(· − xj).

4: Trial step generation. At inner loop counter k solve tangent program
min
Ay≤b

Φk(y, x
j) + τk

2
‖y − xj‖2.

The solution is the new trial step yk.
5: Acceptance test. Check whether

ρk =
f(xj)− f(yk)

f(xj)− Φk(yk, xj)
≥ γ.

If this is the case put xj+1 = yk (serious step), quit inner loop and goto step 8. If this
is not the case (null step) continue inner loop with step 6.

6: Update working model. Build new convex working model φk+1(·, xj) based on null
step yk by adding an exactness plane m]

k(·, xj) satisfying m]
k(y

k, xj) = f 0(xj, yk−xj),
a downshifted tangent m↓k(·, xj), and the aggregate plane m∗k(·, xj). Apply rule (R3)
to avoid overflow. Build Φk+1(·, xj), and goto step 7.

7: Update proximity parameter. Compute

ρ̃k =
f(xj)− Φk+1(yk, xj)

f(xj)− Φk(yk, xj)
.

Put

τk+1 =

{
τk, if ρ̃k < γ̃ (bad)
2τk, if ρ̃k ≥ γ̃ (too bad)

Then increase counter k and continue inner loop with step 4.
8: Update Qj and memory element. Update matrix Qj → Qj+1, respecting Qj+1 =
Q>j+1 and −qI � Qj+1 � qI. Then store new memory element

τ ]j+1 =

 τk, if γ ≤ ρk < Γ (not bad)

1
2
τk, if ρk ≥ Γ (good)

Increase τ ]j+1 if necessary to ensure Qj+1 + τ ]j+1I � 0.
9: Large multiplier safeguard rule. If τ ]j+1 > T then re-set τ ]j+1 = T . Increase outer

loop counter j by 1 and loop back to step 2.

Definition 4. A cutting plane oracle O for f is called strict at x0 if the following strict
version of (O2) is satisfied:

(Ô2) Suppose yj, xj → x. Then there exist εj → 0+ such that f(yj) ≤ myj(yj, xj) +
εj‖yj − xj‖. �
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We now discuss two versions of the oracle which are of special interest for our applica-
tions.

Example 5.1 (Model-based oracle). Suppose φ is a model of f . Then we can generate a
cutting plane for serious iterate x and trial step y by taking g ∈ ∂1φ(y, x) and putting

my(·, x) = φ(y, x) + g>(· − y) = φ(y, x) + g>(x− y) + g>(· − x).

Oracles generated by a model φ in this way will be denoted Oφ. Note that Oφ coincides
with the standard oracle if f is convex and φ(·, x) = f , i.e., if the convex f is chosen as
its own model. In more general cases, the simple idea of this oracle is that in the absence
of convexity, where tangents to f at y are not useful, we simply take tangents of φ(·, x)
at y. Note that the model-based oracle Oφ is strict as soon as the model φ is strict. �

Example 5.2 (Standard oracle). A special case of the model-based oracle is obtained
by choosing the standard model φ]. Due to its significance for our present work we call
this the standard oracle. The standard cutting plane for serious step x and null step y
is m]

y(·, x) = f(x) + g>(· − x), where the Clarke subgradient g ∈ ∂f(x) is one of those
that satisfy g>(y − x) = f 0(x, y− x). The standard oracle is strict iff φ] is strict. As was
observed before, this is for instance the case when f is upper-C1. Note a specificity of the
standard oracle: every standard cutting plane m]

y(·, x) is also an exactness plane at x. �

Example 5.3 (Downshifted tangents). Probably the oldest oracle used for nonconvex
functions are downshifted tangents, which we define as follows. For serious iterate x and
null step y let t(·) = f(y) + g>(· − y) be a tangent of f at y. That is, g ∈ ∂f(y). Then
we shift t(·) down until it becomes useful for the model (5). Fixing a parameter c > 0,
this is organized as follows: We define the cutting plane as m↓y(·, x) = t(·)− s, where the
downshift s ≥ 0 satisfies

s = [t(x)− f(x) + c‖y − x‖2]+.

In other words, m↓y(·, x) = a+g>(·−x), where a = min{t(x), f(x)−c‖y−x‖2}. Note that
this procedure aways satisfies axioms (O1) and (O3), whereas axioms (O2), respectively,
(Ô2), are satisfied if f is lower-C1 at x0. In other words, see [7], for f lower-C1 this is an
oracle, which is automatically strict. �

Motivated by the previous examples, we now define an oracle which works for both
lower-C1 and upper-C1.

Example 5.4 (Modified downshift). Let x be the current serious iterate, y a null step in
the inner loop belonging to x. Then we form the downshifted tangent m↓y(·, x) := t(·)− s,
that is, the cutting plane we would get from the downshift oracle, and we form the
standard oracle plane m]

y(·, x) = f(x)+g>(·−x), where the Clarke subgradient g satisfies
f 0(x, y − x) = g>(y − x). Then we define

my(·, x) =

{
m↓y(·, x) if m↓y(y, x) ≥ m]

y(y, x)

m]
y(·, x) else

In other words, among the two candidate cutting planes m↓y(·, x) and m]
y(·, x), we take

the one which has the larger value at the null step y.
Note that this is the oracle we use in our algorithm. Theorem 1 clarifies when this

oracle is strict. �

Given an operator O which with every pair (x, y) of serious step x and null step y
associates a cutting plane my(·, x) = a + g>(· − x), we fix a constant M > 0 and define
what we call the upper envelope function of the oracle

φ↑(·, x) = sup{my(·, x) : ‖y − x‖ ≤M}.
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The crucial property of φ↑ is the following

Lemma 3. Suppose O : (x, y) 7→ my(·, x) is a cutting plane oracle satisfying axioms
(O1) − (O3). Then φ↑ is a model of f . Moreover, if the oracle satisfies (Ô2), then φ↑ is
strict. �

The proof can be found in [7]. We refer to φ↑ as the upper envelope model associated
with the oracle O. Since in turn every model φ gives rise to a model-based oracle, Oφ, it
follows that having a strict oracle and having a strict model are equivalent properties of
f . Note, however, that the model φ↑ is in general not practically useful. It is a theoretical
tool in the convergence proof.

Remark 5. If we start with a model φ, then build Oφ, and go back to φ↑, we get back
to φ, at least locally.

On the other hand, going from an oracle O to its envelope model φ↑, and then back to
the model based oracle Oφ↑ does not necessarily lead back to the oracle O.

We are now in the position to check axiom (R5).

Corollary 1. All working models φk constructed in our algorithm satisfy ∂1φk(x, x) ⊂
∂f(x). �

6. Main convergence result

In this section we state and prove the main result of this work and give several conse-
quences.

Theorem 1. Let f be locally Lipschitz and suppose for every x ∈ Rn, f is either lower-C1

or upper-C1 at x. Let x1 be such that Ax1 ≤ b and {x ∈ Rn : f(x) ≤ f(x1), Ax ≤ b} is
bounded. Then every accumulation point x∗ of the sequence xj of serious iterates generated
by algorithm 1 is a KKT-point of (1).

Proof. The result will follow from [7, Theorem 1] as soon as we show that downshifted
tangents as modified in Example 5.4 and used in the algorithm is a strict cutting plane
oracle in the sense of definition 4. The remainder of the proof is to verify this.

1) Let us denote cutting planes arising from the standard model φ] by m]
y(·, x), cutting

planes obtained by downshift asm↓y(·, x) = t(·)−s, and the true cutting plane of the oracle
as my(·, x). Then as we know my(·, x) = m↓y(·, x) if m↓y(y, x) ≥ m]

y(y, x), and otherwise
my(·, x) = m]

y(·, x). We have to check (O1), (Ô2), (O3).
2) The validity of (O1) is clear, as both oracles provide Clarke tangent planes to f at

x for y = x.
3) Let us now check (O3). Consider xj → x, and yj, y

+
j → y. Here y+

j is a null
step at serious step xj. Passing to a subsequence, we may distinguish case I, where
my+

j
(·, xj) = m]

y+
j

(·, xj) for every j, and case II, where my+
j

(·, xj) = m↓
y+
j

(·, xj) for every j.

Consider case I first. Let m]

y+
j

(yj, xj) = f(xj) + g>j (yj − xj), where gj ∈ ∂f(xj) satisfies

f 0(xj, y
+
j − xj) = g>j (y+

j − xj). Passing to yet another subsequence, we may assume
gj → g, and upper semi-continuity of the Clarke subdifferential gives g ∈ ∂f(x). Therefore
my+

j
(yj, xj) = f(xj) + g>j (yj − xj) → f(x) + g>(y − x) ≤ m]

y(y, x) ≤ my(y, x). So here
(O3) is satisfied with z = y.

Newt consider case II. Here we have my+
j

(yj, xj) = tgj(yj)− sj, where tgj(·) is a tangent
to f at y+

j with subgradient gj ∈ ∂f(y+
j ), and sj is the corresponding downshift

sj =
[
tgj(xj)− f(xj) + c‖y+

j − xj‖2
]

+
.
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Passing to a subsequence, we may assume gj → g, and by upper semi-continuity of ∂f
we have g ∈ ∂f(y). Therefore sj → [tg(x)− f(x) + c‖y − x‖2]+ =: s, where uniform
convergence tgj(yj)→ tg(y) occurs due to the boundedness of ∂f . But now we see that s
is the downshift for the pair (x, y) when g ∈ ∂f(y) is used. Hence my+

j
(yj, xj)→ m↓y(y, x),

and since m↓y(y, x) ≤ my(y, x), we are done. So again the z in (O3) equals y here.
4) Let us finally check axiom (Ô2). Let xj, yj → x be given. We first consider the

case when f is upper-C1 at x. We have to find εj → 0+ such that f(yj) ≤ myj(yj, xj) +
εj‖yj − xj‖ as j → ∞, and by the definition of the oracle, it clearly suffices to show
f(yj) ≤ m]

yj
(yj, xj) + εj‖yj − xj‖. By Spingarn [19], or Daniilidis and Georgiev [20], −f ,

which is lower-C1 at x, has the following property: For every ε > 0 there exists δ > 0
such that for all 0 < t < 1 and y, z ∈ B(x, δ),

f(y) ≤ f(z) + t−1 (f(z + t(y − z))− f(z)) + ε(1− t)‖z − y‖.
Taking the limit superior t→ 0+ implies

f(y) ≤ f(z) + f ′(z, y − z) + ε‖y − z‖ ≤ f(z) + f 0(z, y − z) + ε‖y − z‖.
Choosing z = xj, y = yj, δj = ‖yj − zj‖ → 0, we can find εj → 0+ such that f(yj) ≤
f(xj)+f 0(xj, yj−xj)+εj‖yj−xj‖, hence f(yj) ≤ m]

yj
(yj, xj)+εj‖yj−xj‖ by the definition

of m]
yj

(·, xj). That settles the upper-C1 case.
Now consider the case where f is lower-C1 at x. We have to find εj → 0+ such

that f(yj) ≤ myj(yj, xj) + εj‖yj − xj‖ as j → ∞, and it suffices to show f(yj) ≤
m↓yj(yj, xj) + εj‖yj − xj‖. Since m↓yj(yj, xj) ≥ f(yj) − sj, where sj is the downshift
sj = [t(xj)− f(xj) + c‖yj − xj‖2]+, and t(·) = f(yj) + g>j (· − yj) for some gj ∈ ∂f(yj), it
suffices to exhibit εj → 0+ such that f(yj) ≤ f(yj)−sj + εj‖yj−xj‖, or what is the same,
sj ≤ εj‖yj−xj‖. For that it suffices to arrange [t(xj)− f(xj)]+ ≤ εj‖yj−xj‖, because once
this is verified, we get sj ≤ [t(xj)− f(xj)]+ + c‖yj − xj‖2 ≤ (εj + c‖yj − xj‖)‖yj − xj‖ =:
ε̃j‖yj − xj‖. Note again that by [19, 20] f has the following property at x: For every
ε > 0 there exists δ > 0 such that f(tz+ (1− t)y) ≤ tf(z) + (1− t)f(y) + εt(1− t)‖z− y‖
for all y, z ∈ B(x, δ). Dividing by t > 0 and passing to the limit t → 0+ gives
f 0(y, z − y) ≤ f(z)− f(y) + ε‖y − z‖, using the fact that f is locally Lipschitz. But for
every g ∈ ∂f(y), g>(z − y) ≤ f 0(y, z − y). Using ‖yj − xj‖ =: δj → 0 and taking y = yj,
z = xj, this allows us to find εj → 0+ such that g>j (xj − yj) ≤ f(xj)− f(yj) + εj‖yj −xj‖.
Substituting this above gives t(xj)− f(xj) = f(yj)− f(xj) + g>j (xj − yj) ≤ εj‖yj − xj‖ as
desired. That settles the lower-C1 case. �

7. Practical aspects of the algorithm

In this section we discuss several technical aspects of the algorithm, which are important
for its performance.

7.1. Stopping. The stopping test in step 2 of the algorithm is stated in this form for the
sake of the convergence proof. In practice we delegate stopping to the inner loop using
the following two-stage procedure.

If the inner loop at serious iterate xj finds the new serious step xj+1 such that

‖xj+1 − xj‖
1 + ‖xj‖ < tol1,

|f(xj+1)− f(xj)|
1 + |f(xj)| < tol2,

then we decide that xj+1 is optimal. In consequence, the (j + 1)st inner loop will not be
executed. On the other hand, if the inner loop has difficulties terminating and produces
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five consecutive null steps yk where

‖yk − xj‖
1 + ‖xj‖ < tol1,

|f(yk)− f(xj)|
1 + |f(xj)| < tol2,

or if a maximum number kmax of allowed steps in the inner loop is reached, then we decide
that xj is optimal. In our experiments we use tol1 = 10−5, tol2 = 10−5, and kmax = 50.

7.2. Recycling of planes. At the beginning of a new inner loop at serious step xj+1,
we do not want to start building the working model φ1(·, xj+1) from scratch. It is more
efficient to recycle some of the planes (a, g) ∈ Gkj in the latest working model φkj(·, xj).
In the convex cutting plane method, this is self-understood, as cutting planes are affine
minorants of f , and can at leisure stay on in the sets G at all times j, k. Without convexity,
we need the following recycling procedure:

Given a planem(·, xj) = a+g>(·−xj) in the latest set Gkj , we form the new downshifted
plane

m(·, xj+1) = m(·, xj)− s,
where the downshift is organized as

s =
[
m(xj+1, xj)− f(xj+1) + c‖xj+1 − xj‖2

]
+
.

In other words, we treat m(·, xj) like a tangent to f at null step xj with respect to the
serious step xj+1 in the downshift oracle. We put

m(·, xj+1) = a+ g>(· − xj)− s = a− s+ g>(xj+1 − xj) + g>(· − xj+1),

and we accomodate (a− s+ g>(xj+1− xj), g) ∈ G1 at the beginning of the (j + 1)st inner
loop. In the modified version we only keep a plane of this type in G1 after comparing it
to the exactness plane m0(·, xj+1) = f(xj+1) + g>(· − xj+1), g ∈ ∂f(xj+1), which satisfies
g>(xj − xj+1) = f 0(xj+1, xj − xj+1). Indeed, when m(xj, xj+1) ≥ m0(xj, xj+1), then we
keep the downshifted plane, otherwise we add m0(·, xj+1) as additional exactness plane.

8. The delamination benchmark problem

The interface behavior of laminated composite materials is modeled by a non-monotone
multi-valued function ∂j, characteristic of the interlayer adhesive placed at the contact
boundary Γc. In more precise terms, ∂j is the physical law which holds between the
normal component −Sn(s)|Γc of the stress vector and the relative displacement u2(s)|Γc,
or jump, between the upper and lower boundaries. A typical law ∂j for an interlayer
adhesive is shown in Figure 1 (left). In the material sciences, the knowledge of ∂j is
crucial for the understanding of the basic failure modes of the composite material.

The adhesive law ∂j is usually determined experimentally using the double cantilever
beam test [1] or other destructive testing methods. The result of a typical experiment
is shown schematically in Figure 3 from [1], where three probes with different levels of
contamination have been exposed. While the intact material shows stable propagation
of the crack front (dashed curve), the 10% contaminated specimen shows a typical zig-
zag profile (bold solid curve), indicating unstable crack front propagation. Indeed, when
reaching the critical load P = 140N, the crack starts to propagate. Since by the growth
of the crack-elongation, the compliance of the structure increases, the crack propagation
slows down and the crack is "caught", i.e., stops at u2 = 0.25mm and the load P in
the structure drops from P = 140N to P = 40N. Thereafter, due to the continuously
increased load, the crack starts again to propagate until reaching another critical load
level at P = 90N and u2 = 5mm. This phenomenon occurs five to six times, as seen in
Figure 3.
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Figure 1. Left image shows non-monotone delamination law ∂j, leading
to an upper-C1 objective. Right image shows non-monotone friction law,
leading to a lower-C1 objective.

The 50% contaminated specimens (dotted curve) shows micro-cracks that appear at a
finer level and are not visible in the Figure 3. The lower level of the adhesive energy,
which is represented by the area below the load-displacement curve, indicates now that
this specimen is of minor resistance.

Even though the displacement u2 in Figure 3 can only be measured at the crack tip,
in order to proceed one now stipulates the law ∂j all along s ∈ Γc by assuming that the
normal stresses Sn(s)|Γc follow the measured behavior

− Sn(s) ∈ ∂j(s, u2(s)), s ∈ Γc.(12)

Under this hypothesis one now solves the variational inequality for the unknown displace-
ment field u = (u1, u2), and then validates (12). Note that Sn(s)|Γc is the truly relevant
information, as it indicates the action of the destructive forces along Γc, explaining even-
tual failure of the composite. In current practice in the material sciences, this information
cannot be assessed by direct measurement, and is therefore estimated by heuristic for-
mulae [1]. Our approach could be interpreted as one such estimation technique based on
mathematical modeling.

Γu ΓF1
ΓF2Γc

F2

Figure 2. Schematic view of cantilever beam testing. Under applied trac-
tion force F2 the crack front propagates to the left. In program (16) traction
force F2 and crack front length are given, while the corresponding displace-
ment u and reactive forces −Sn|Γc along the contact boundary Γc have to
be computed.

8.1. Delamination study. Within the framework of plane linear elasticity we consider
a symmetric laminated structure with an interlayer adhesive under loading (see Fig. 2).
Because of the symmetry of the structure, it suffices to consider only the upper half of
the specimen, represented by Ω ⊂ R2. The Lipschitz boundary Γ of Ω consists of four
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disjoint parts Γu, Γc, ΓF1 and ΓF2 . The body is fixed on Γu, i.e.,

ui = 0 on Γu, i = 1, 2.

On ΓF1 the traction forces F are constant and given as

F = (0, F2) on ΓF1 .

The part ΓF2 is load-free. We adopt standard notation from linear elasticity and introduce
the bilinear form of linear elasticity

(13) a(u,v) =

∫
Ω

ε(u) : σ(v) dx,

where u = (u1, u2) is the displacement vector, ε(u) = 1
2
(∇u + (∇u)T ) the linearized

strain tensor, and σ(v) = C : ε(v) the stress tensor. Here, C is the elasticity tensor with
symmetric positive L∞ coefficients. The bilinear form is symmetric and due to the first
Korn inequality, coercive. The linear form 〈g, ·〉 is defined by

〈g,v〉 = F2

∫
ΓF1

v2 ds.

On the contact boundary Γc we have the unilateral constraint

u2 ≥ 0 a.e. on Γc

and we apply the non-monotone multi-valued adhesive law

− Sn(s) ∈ ∂j(s, u2(s)) for a.a. s ∈ Γc.(14)

Here Sn = σijnjni, where n = (n1, n2) is the outward unit normal vector to Γc.
A typical non-monotone law ∂j(s, ·) for delamination, describing the behavior of the

adhesive, is shown in Fig. 1. This law is derived from a nonconvex and a nonsmooth locally
Lipschitz super-potential j expressed in terms of a minimum function. In particular, j(s, ·)
is a minimum of four convex quadratic and one linear function.

We also assume that tangental traction can be neglected on Γc, i.e., St(s) = 0. The weak
formulation of the delamination problem is then given by the following hemivariational
inequality: Find u ∈ K such that

(15) a(u,v − u) +

∫
Γc

j0(s, u2(s); v2(s)− u2(s)) ds ≥ 〈g,v − u〉 ∀v ∈ K,

where j0(s, u; d) is the Clarke directional derivative of j(s, ·) at u in direction d, K is the
nonempty, closed convex set of all admissible displacements defined by

K = {v ∈ V : v2 ≥ 0 on Γc},
contained in the function space

V = {v ∈ H1(Ω;R2) : v = 0 on Γu}.
The potential energy of the problem is

Π(v) =
1

2
a(v,v) + J(v)− 〈g,v〉,

where J : V → R defined by

J(v) =

∫
Γc

j(s, v2(s)) ds
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is the term responsible for the nonsmoothness. Using the potential energy, the hemi-
variational inequality (15) can be transformed to the following nonsmooth, nonconvex
constrained optimization problem of the form (1)

minimize Π(u)
subject to u ∈ K(16)

where the objective is upper-C1, because the super-potential j(s, ·) is a minimum. In
particular, we have an objective of the form (3), where the smooth part fs comprises
1
2
a(v,v) − 〈g,v〉, while the nonsmooth part J(v) =

∫
Γc
j(s, v2(s)) ds has the form (3)

with a finite index set I once the boundary integral is suitably parametrized.
According to the existence theory in [30], problem (16) has at least one Clarke critical

point u∗ satisfying the necessary optimality condition

0 ∈ ∂ Π(u∗) +NK(u∗),

where NK(u) is the normal cone to K at u, and vice versa, by a result in [12] every critical
point of Π on K is a solution of (15) (see also [11]).

0
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160

0 5 10 15 20 25

displacement u2 [mm]

no contamination

10% contaminated

50% contaminated

Figure 3. Load-displacement curve determined by double cantilever beam
test. Dashed curve shows stable behavior for material without contamina-
tion. The 10% contaminated specimen (bold solid curve) shows unstable
crack growth. After initial linear growth, when the critical load P = 140N
is reached, the crack starts to propagate. But then the propagation speed
slows down, since by the crack the compliance of the specimen increases, and
the crack is "caught" at u2 = 0.25mm. The load P drops from P = 140N to
P = 40N. Then, by the constantly applied traction force, there is a linear
growth of the load P from P = 40N to the critical load P = 90N, where the
crack propagates again and stops at u2 = 5mm, with the load now reduced
to P = 30N. The 50% contaminated specimen exhibits micro-cracks not
visible at the chosen scale.

8.2. Discrete problem. We consider a regular triangulation {Th} of Ω, where we first
divide Ω into small squares of size h and then each square by its diagonal into two triangles.
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To approximate V and K we use a piecewise linear finite element approximation and set

Vh = {vh ∈ C(Ω;R2) : vh|T ∈ (P1)2, ∀T ∈ Th, vh|Γu = 0},

Kh = {vh ∈ Vh : vh2(sν) ≥ 0 ∀ sν ∈ Γc\Γu}.
Similar to low order finite element approximations of nonsmooth convex contact problems
[37, 39], we use the trapezoidal quadrature rule to approximate the functional J by

Jh(vh) =
1

2

∑
sν∈Γc\Γu

|sνsν+1|
[
j(sν , vh2(sν)) + j(sν+1, vh2(sν+1))

]
,(17)

where we are summing over the nodes sν on the contact boundary Γc\Γu, with sν+1 being
the neighbor of node sν on Γc in the sense of integration. This can be regrouped as

Jh(vh) =
∑

sν∈Γc\Γu

cνj(sν , vh2(sν)) =
∑

sν∈Γc\Γu

cν min
i∈I

ji(sν , vh2(sν))

with appropriate weights cν > 0. Here, I is the set of zig-zags in the graph of ∂j.
The bundle algorithm is applied to minimize the discrete functional

(18) Πh(vh) =
1

2
a(vh, vh) + Jh(vh)− 〈g, vh〉 on Kh.

Introducing an index set N for the nodes sν on the contact boundary Γc, we may pull out
the minimum from under the sum, which leads to the expression

Πh(vh) =
1

2
a(vh, vh) + min

i(·)∈IN

∑
ν∈N

cνji(ν)(sν , vh2(sν))− 〈g, vh〉.

This is the discrete version of (4), where 1
2
a(vh, vh) − 〈g, vh〉 is the smooth term fs, and

Jh the nonsmooth part.
While computation of Clarke subgradients is straightforward here, we still have to

explain how the matrix Q = Q(v) in the second-order working model (6) is chosen.
Discretizing the quadratic form of linear elasticity as a(vh, vh) = v>hAvh with the sym-
metric stiffness matrix A, and observing that 〈g, vh〉 = g>vh is linear, we choose Q(v) =
A +

∑
ν∈N ∇2ji(ν)(sν , vh(sν)), where i(ν) ∈ I is one of those indices, where the minimum

mini∈I ji(sν , vh2(sν)) is attained.
For convergence of the lowest-order finite element approximation used here we refer

to the results in [31]. Higher-order approximations with no limitation in the polynomial
degree, which lead to nonconforming approximation of unilateral constraints, have only
recently been analyzed for monotone contact problems, see [40].

8.3. Numerical results. We present numerical results obtained in a delamination sim-
ulation with modulus of elasticity E = 210 GPa and Poisson ratio ν = 0.3 corresponding
to a steel specimen. In all examples we use the benchmark model of [35] with geomet-
rical characteristics (0, 100) × (0, 10) in [mm] and thickness 5mm. We apply our bundle
method to (16) and compare the results to those obtained by the regularization technique
in [31, 33]. All computations use piecewise linear functions and the discretization 40× 4
corresponding to h = 0.25cm. In this case, the number of the unknowns in the discrete
problem (18) is 80.
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Figure 4. Upper: regularization method of [31, 33]. Lower: optimization
method. Left image shows vertical displacement u2 for 5 different values of
F2. Right image shows vertical component of reactive force along contact
boundary for same 5 scenarios.

Table 1. Regularization. Vertical displacement [mm] at 4 intermediate
points for same 5 scenarios.

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 4.154500e-06 1.394500e-05 2.601700e-05 3.858700e-05
0.4 8.308100e-06 2.788800e-05 5.202800e-05 7.716600e-05
0.6 1.633200e-05 5.622700e-05 1.080000e-04 1.640000e-04
0.8 2.792500e-05 9.663100e-05 1.860000e-04 2.810000e-04
1.0 4.600600e-05 1.590000e-04 3.080000e-04 4.660000e-04

Table 2. Optimization. Vertical displacement [mm] at four intermediate
points for same 5 scenarios.

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 4.022500e-06 1.345400e-05 2.499300e-05 3.691900e-05
0.4 8.069300e-06 2.698800e-05 5.013300e-05 7.404900e-05
0.6 1.564800e-05 5.373900e-05 1.030000e-04 1.550000e-04
0.8 2.691300e-05 9.297200e-05 1.790000e-04 2.700000e-04
1.0 4.414000e-05 1.530000e-04 2.940000e-04 4.470000e-04

Conclusion

We have presented a bundle method based on the mechanism of downshifted tangents
which is suited to optimize upper- and lower-C1 functions. Our method allows to in-
tegrate second-order information, if available, and gives a convergence certificate in the
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Table 3. Regularization. Horizontal displacement [mm] at four interme-
diate points for same 5 scenarios.

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 1.481900e-06 2.251300e-06 2.474400e-06 2.499500e-06
0.4 2.963600e-06 4.502200e-06 4.948300e-06 4.998500e-06
0.6 5.918500e-06 9.400600e-06 1.077100e-05 1.097500e-05
0.8 1.015200e-05 1.625600e-05 1.866400e-05 1.904000e-05
1.0 1.674400e-05 2.690100e-05 3.100500e-05 3.167000e-05

Table 4. Optimization. Horizontal displacement [mm] at four intermedi-
ate points for same 5 scenarios.

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 1.432200e-06 2.161500e-06 2.356100e-06 2.368400e-06
0.4 2.872700e-06 4.335000e-06 4.724700e-06 4.748800e-06
0.6 5.663400e-06 8.957000e-06 1.023200e-05 1.041100e-05
0.8 9.777300e-06 1.561000e-05 1.787700e-05 1.822600e-05
1.0 1.606400e-05 2.578000e-05 2.970700e-05 3.034700e-05
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Figure 5. Comparison of regularization (bold solid curves) and optimiza-
tion (dashed) for 3 different values of F2. Left vertical displacement, right
reactive force.

Table 5. Comparison of optimal valued obtained by regularization and optimization

F2[N/m2] Πhreg[Nm] Πhopt [Nm]
200000 -1.32894 -1.29271
400000 -2.35224 -2.30025
600000 -3.83972 -3.74609
800000 -5.08164 -5.05389
1000000 -5.66771 -5.66770

sense of subsequences. Every accumulation point of the sequence of serious iterates with
an arbitrary starting point is critical. We have successfully applied our method to a de-
lamination problem arising in the material sciences, where upper-C1 functions have to be
minimized. Results obtained by optimization were compared to results obtained by the
regularization technique of [31, 33], and both methods are in good agreement.
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