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Abstract

In this paper, we investigate global convergence properties of the inexact nonsmooth Newton
method for solving the system of absolute value equations (AVE). Global Q-linear convergence
is established under suitable assumptions. Moreover, we present some numerical experiments
designed to investigate the practical viability of the proposed scheme.
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1 Introduction

Recently, the problem of finding a solution of the system of absolute value equations (AVE)
Az~ Ja] = b, (1)

where A € R™™ and b € R” = R™*! has been received much attention from optimization commu-
nity. It is currently an active research topic, due to its broad application to many subjects. For
instance, linear complementarity problem, linear programming or convex quadratic programming
can be equivalently reformulated in the form of (IJ) and thus solved as absolute value equations;
see [8I2LI7L19]. As far as we know, since Mangasarian and Meyer [14] established existence results
for this class of absolute value equations (II), the interest for this subject has increased substantially;
see [111[13L20] and reference therein.

Several algorithms have been designed to solve the systems of AVEs involving smooth, semi-
smooth and Picard techniques; see [1[7,[10,21,22]. In [9], Mangasarian applied the nonsmooth
Newton method for solving AVE obtaining global @Q-linear convergence and showing its numerical
effectiveness. However, each semi-smooth Newton iteration requires the exact solution of a linear
system, which has an undesired effect on the computational performance of this method. The exact
solution of the linear system, at each iteration of the method, can be computational expensive and
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may not be justified. A well known alternative is to solve the linear systems involved approximately.
A bound for the relative error tolerance to solve subproblem guaranteeing global Q-linear conver-
gence will arise very clearly in the present work. Besides, the inexact analysis support the efficient
computational implementations of the exact schemes, for this reason they are important and neces-
saries. Following the ideas of [4] and [9], we use the inexact nonsmooth Newton method for solving
absolute value equations and present some computational experiments designed to investigate its
practical viability.

The paper is organized as follows. The next subsection presents some notations and preliminaries
that will be used throughout the paper. Section [2] devotes the definition of the inexact Newton
method and its global @Q-linear convergence. Section Bl provides an exhaustive discussion of the
computational results of the inexact Newton method when it is compared with the exact one. We
complete the paper with some conclusion for further study.

1.1 Preliminaries

In this section we present the notations and some auxiliary results used throughout the paper.
Let R™ be denote the n-dimensional Euclidean space and || - || a norm. The i-th component of
a vector x € R" is denoted by x; for every i = 1,...,n. For = € R", sgn(x) denotes a vector
with components equal to —1, 0 or 1 depending on whether the corresponding component of the
vector x is negative, zero or positive. Denote |z| the vectors with i-th component equal to |z¢|.
The set of all n x n matrices with real entries is denoted by R™*"™ and R = R™*!. The matrix Id
denotes the n x n identity matrix. If z € R" then diag(z) will denote an n x n diagonal matrix
with (i,4)-th entry equal to 2%, i = 1,...,n. For an M € R™ " consider the norm defined by
|M|| = max{||Mz| : x €R" |z|| =1}. This definition implies

M| <[[Mlllzl,  [[L+M[ <L +[[M], LM <[ L]][M]], (2)

for any matrices L, M € R™"™ and = € R"; see, for instance, Chapter 5 of [6]. The next useful
result was proved in 2.1.1, page 32 of [15].

Lemma 1 (Banach’s Lemma). Let E € R"*". If |E| < 1, then the matriz Id — E is invertible and
Id = E]7Y <1/ (1= [|E]) -

We end this section quoting the following result from combination of Lemma 2 of [9] and Propo-
sition 3 of [I4], which gives us a sufficient condition for the invertibility of matrix A — D(x) for all
x € R™ and existence of solution for AVE in (TI).

Lemma 2. Assume that the singular values of the matrix A € R™™*" exceed 1. Then the matriz
A — D(z) is invertible for all x € R"™. Moreover, AVE in ([Il) has unique solution for any b € R™.

The following proposition was proved in Proposition 4 of [14].

Proposition 1. Assume that A € R™™"™ is invertible. If HA_IH < 1 then AVE in ([ has unique
solution for any b € R™.

2 Inexact Semi-smooth Newton Method

The exact semismooth Newton method [18] for finding the zero of the semismooth function

F(z) := Az — |z| — b, (3)



with starting point zg € R", is formally defined by
F(z) + Vi (241 — z1) = 0, Vi € OF (xy), kE=0,1,...,
where OF (x) denotes the Clarke generalized subdiferential of F' at € R"; see [2]. Letting
D(x) := diag(sgn(x)), x € R", (4)

we obtain from (3) that A — D(x) € 0F(z). Hence, the exact semi-smooth Newton method for
solving the AVE in (Il), which was proposed by Mangasarian [J], generates a sequence formally
stated as

(A~ D(p)] 241 = b. (5)

To solve (), following the ideas of [4], we propose an inezact semi-smooth Newton method, starting
at g € R™ and residual relative error tolerance 8 > 0, by

I[A = D@ akss — bl <OIF@),  k=0,1,.... (6)
Note that, in absence of errors, i.e., # = 0, the above iteration retrieves (B). In the next section we

analyze the convergence properties of {z} generated by the inexact semi-smooth Newton method.

2.1 Convergence Analysis

To establish convergence of the sequence {zy}, generated by (@), we need some auxiliary results
and basic definitions.

The outcome of an inexact Newton iteration is any point satisfying some error tolerance. Hence,
instead of a mapping for the inexact Newton iteration, we shall deal with a family of mappings
describing all possible inexact iterates.

Definition 1. For 6 > 0, Ny is the family of maps Ny : R™ — R™ such that

I[A = D(@)] No(z) = bl <O||F(x)|,  Va2eR" (7)

If A— D(x) is invertible for all x € R", then the family Ny has a single element, namely, the
exact Newton iteration map Ny : R” — R" defined by

No(x) = [A— D(z)] " b. (8)
Trivially, if 0 < 0 < 6’ then Ny C Ny C Ny. Hence Ny is non-empty for all § > 0.

Remark 1. Let x € R" and A — D(zx) be invertible. For any 0 < 6 < 1 and Ng € Ny, Ny(z) = x if
and only if F(x) = 0. This means that the fixed points of the inexact Newton iteration map Ny are
the same fized points of the exact Newton iteration map.

Lemma 3. Assume that A— D(x) is invertible for allx € R"™. Let @ > 0 and Ny € Ny. If F(z.) =0
then for each x € R™ there holds

INo () — aall < [[A = D(@)] 7 [0 (14 = D(@)[| +2) + 2] flo — ]



Proof. Let x € R™. After simple algebraic manipulations and taking into account that F'(z.) =0
and [A — D(z)] x = Az — |z|, we obtain

No(a) — . = [A = D(@)] "' ([A— D(@)] No(2) — b+ [F(a) — F(x) = [A = D(@)] (2 — )] ).
Taking norm in both side of above equality and using its properties in (), we conclude that
INg(x) = .|| < [[[A = D(@)] 7| (II[A = D(x)] No(z) = bl + | F(ws) = F(2) — [A = D(@)] (w« — 2)[]).
The combination of Definition [I] and last inequality implies

INg(2) = 2.l < [[[A = D@)] 7| (O I1F @) + [F(z.) = F(z) = [A = D(@)] (z = 2)l).  (9)
On the other hand, since F'(x,) = 0, direct algebraic manipulations give us
F(z) = [A— D(@)) (z — 2.) - [F(@.) — F(z) — [A - D(@)] (@, — 2)].
Thus, taking norm in both sides of last equality and by triangular inequality, we have
IE@)| < [[A=D@)|[llz = 2] + [[F(2:) — F(x) = [A = D(2)] (2. — )] (10)

Now, using that D(x)z = |z|, D(z)z. = |z.| and definition in (B]), after some algebras, we can
write

Fa.) = F(z) = [A = D(@)] (2 — 2) = = (Jes] = [2]) + D() (24 — @),

Since ||D(z)|| < 1, taking norms on both sides of last equality, and using the triangular inequality
together with properties of the norm, namely, the first one stated in (2]) yields

1F(z4) = F(x) = [A = D(@)] (2 — 2)|| < 2[|zs — x| (11)
Therefore, combining the last inequality and (I0), we conclude that
IF@)| < A= D@)[ |z — 2]l + 2[jzs — 2.
Substituting the last inequality and (II]) into (@), we obtain
INo(2) — 2| < [[[A = D(@)] 7| [0([A = D(@)| & = @ull + 2]z — 2]} + 20|z — 2], (12)

which is equivalent to the desire inequality. O

Let 0 < 6 < 1 and Ny in Definition [l Consider the sequence {z}} defined in (@). Thus, there
exists Ny € Ny such that
Th+1 :Ng(xk), k :0,1,... . (13)

Now, we are ready to prove the two main results of this section.

Theorem 1. Let A € R™™", b e R" and 0 < 0 < 1. Assume that A — D(z) is invertible for all
x € R™. Then, the inexact semi-smooth Newton sequence {xy}, given by (6)), with any starting point
xg € R™ and residual relative error tolerance 0, is well defined. Moreover, if

Jia-p@r| <z veer (1)



then, AVE in (1)) has unique solution. Additionally, if

0< g 1-2|[[A- D)™
- [[A— D)7 (|A = D(@)|| +2)’

vV zeR" (15)

then {xy} converges Q-linearly to x, € R", a unique solution of (), as follows
|2kr1 — 2ol < [|[[A = D)) [0 (14 = D(ax)|| +2) + 2] Jag — ., (16)

forallk=0,1,....

Proof. For any starting point ¢ € R™, by Definition [Il and (@), the well-definedness of {z} follows
from invertibility of A — D(z) for all x € R™. The uniqueness of the solution follows from Propo-
sition [Il by taking x = 0 in (I4]). Since z, is the solution of (1) we have F'(z,) = 0. Hence, using
Lemma [3] and (3], it is immediate to conclude that {x}} also satisfies (I0). On the other hand,
using (I4]) and assumption on 6, i.e, the inequalities in (I5]), we conclude that

lA= D@ A= D@l +2)+2 <1, k=0,1L...,
which, taking into account ([I6l), implies that {x}} converges @Q-linearly to x.. O

Remark 2. In the absence of errors, i.e., § =0, Theorem [ retrieves Lemma 6 of [9] on the exact

semi-smooth Newton method. Emphasizing that our assumption in ([4]) is weaker than the used by
Mangasarian in Lemma 6 of [J], i.e., ||[A — D(z)]""|| < 1/3 for all x € R™.

Theorem 2. Let A € R™™™ be a invertible matriz, b € R"™. Assume that
1
A7Y < <. 17
A7} < 3 (17)

Then, the ineract semi-smooth Newton sequence {xy}, for solving (), with any starting point
xo € R™ and residual relative error tolerance 6 > 0, is well defined. Moreover, if

1-3]A]
0<6< , (18)
A= (L] +3)
then {zy} converges Q-linearly to x, € R™, the unique solution of (), as follows
A1)
[Zh1 — 2| < T— AT [0 (1Al + 3) + 2] [|o — 2], k=0,1,.... (19)

Proof. Let z € R". Since |[A7!|| < 1/3, by @), we have |[A™'D(z)|| < 1/3 < 1. Thus, from
Lemma [Tl it follows that Id — A~ D(z) is invertible. Since A € R™ " is invertible and

A-D(z) =A[ld— A7'D(2)],

we conclude that A — D(z) is invertible. Hence {z} is well defined, for any starting point xg € R™.

Since HA_l H < 1, the uniqueness follows from Proposition[Il Let z, € R™ be the unique solution
of (). Since A — D(z) is invertible for all x € R", we may apply Lemma [3 to obtain

N () — @l < |[[A = D)) 7| [0 (|4 = D(@p)|| +2) + 2] [log — 2o,  k=0,1,....



On the other hand, it is easy to see that

[[A=D(zp)] || = ||[Id = A" D(zy)] " A7Y| < ||Id = A7'D(@)] M| |47, k=0,1,....
Thus, combining two last inequality we conclude that
[No(zk) — 2| < [|[Id — A7'D (@) Y| JATH[ [0 (JA — D(z)|| +2) + 2] lze—2s],  k=0,1,....

Hence, since || A~ D(zy)|| < [|[A™Y| < 1/3, the inequality (9] follows from Lemma[and considering
that [|[A — D(zk)|| < ||A]| + 1. Finally, we conclude that {z}} converges Q-linearly to z., by taking
into account (I7) and (I8]). O

Remark 3. In the absence of errors, i.e., § = 0, Theorem [2 retrieves Proposition 7 of [9] on the
exact semi-smooth Newton method. Emphasizing that our assumption in (7)) is weaker than the
used by Mangasarian in Proposition 7 of [9], i.e., |A7|| < 1/4.

Note that the quantity in the right hand side in (I8)) is less than 1/cond(A), where cond(A) =
| Al[|A=1||. Hence, for ill conditioned equations, 6 in (I8) has to be chosen small and hence the
precision for solving (6) may be high. It is worth to mention that, all ours results hold for any
matrix norm satisfying (2). Observe that, the upper bound for 6 in (I8]), for the norms ||.||; and
||.||sc are easy to compute.

In next result, we discuss a condition for identify a solution of the AVE throughout the sequence.

Proposition 2. Assume that A — D(x) is invertible for all x € R™. If xx11 = x for some k, then
xy, s solution of ().

Proof. Since xpy1 = xg, it follows from (I3)) that xp = Ng(zx). Thus, from Remark [I] we conclude
that F(xy) = 0, which implies that xj is solution of (IJ). O

If & = 0 then D(xp) = D(zgy1) is a sufficient condition for x4 be solution of (d); see [9].
However, this does not occur in the inexact semi-smooth Newton method defined by (@), as observed
in the next example.

Example 1. Setting the data of problem ([B)) as A = 41d and b = e, where e is the ones vector in
R"™, we obtain F(x) = 4x — |x| —e. Note that x, = (1/3) e is the unique solution of problem (1)) and
I[A— D(z)] 7| < 1/2 for all z € R™ and ||[A~Y|| = 1/4 < 1/3 within the below assumptions () in
Theorem [ and ([IT)) in Theorem [3, respectively. Starting at o = e, the iteration (Q)) leads us

I[A = D(zo)Jx1 — bl| = [|3z1 — ef| < 0[3z0 — €| = |[20¢],
for all 0 < 6 < 1. Thus, we can take x1 = [(20 4+ 1)/3]e, implying D(xg) = D(x1) = Id and
F(z1) =[A—D(x1)]z1 —b=3x; —e=20e #0.
Therefore, x1 is not solution.

The invertibility of A — D(z), for all z € R", is sufficient to the well-definition of the exact and
inexact Newton’s method. However, the next example shows that, for the convergence of these
methods, an additional condition on A must be assumed, for instance, (I4) and (7).



Example 2. Consider the function F : R? — R? defined by F(x) = Az — |z| — b, where

S P R S

Note that |A~|| = 1,7071... and the matrices A — D(z) are invertible, for all z € R?. Moreover, F
has x. = —e as the unique zero, where e is the ones vector in R?. Applying exact Newton’s method
starting with xg = e, for finding the zero of F', the generated sequence oscillates between the points

N}

3 Computational Results

In order to verify the effectiveness of our approach, we compared the performance of the exact
and inexact semi-smooth Newton methods for solving several AVEs. In a first group of tests, A is
supposed to be a large-scale sparse matrix. The influence of the condition number and density of
A were also investigated. In many considered cases the performance of the inexact semi-smooth
Newton methods is remarkably better than that of the exact one. All codes were implemented in
Matlab 7.11.0.584 (R2010b) and are free available in https://orizon.mat.ufg.br/admin/pages/11432-
codes. The experiments were run on a 3.4 GHz Intel(R) i7 with 4 processors, 8Gb of RAM and
Linux operating system. Following, we enlighten some implementation details.

(i) Convergence criteria: The implemented methods stop at iterate xj reporting “Solution found”
if AVE is solved with accuracy 1078, This means that the 2-norm of Az — |x)| — b is less than or
equal to 1078, In some cases we use a different tolerance that will be opportunely reported. The
methods also stop reporting failure if the number of iterations exceeds 50.

(ii) Generating random problems: To construct matrix A we used the Matlab routine sprand, which
generates a sparse matrix with predefined dimension, density and singular values. Firstly, we defined
the dimension n and random generated the vector of singular values rc from a uniform distribution
on (0 1). To ensure fulfillment of the hypothesis of Theorem 2, we rescale rc¢ by multiplying it by
3 divided by the minimum singular value multiplied by a random number in the interval (0 1).
Finally, we evoke sprand. In this case, A is generated by random plane rotations applied to a
diagonal matrix with the given singular values rc. After that, we chose a random solution z and
initial point xg from a uniform distribution on (—100 100) and computed b = Az — |z|. Note that,
since the singular values of A are known, the calculation of the residual relative error tolerance 6 is
simple. In particular, we defined 6 as the right hand side of (I8) multiplied by 0.9999.

(iii) Solving linear equations: In each iteration of the exact semi-smooth Newton method, the linear
system (B must be exactly solved. In this case, we used the midivide (same as backslash) command
of Matlab. In order to take advantages of the structure of the problem, mldivide performs a study of
the matrix of the linear system. The first distinction the function makes is between dense and sparse
input arrays (sparsity must be informed by the user). Since the random matrix A has no special
structure, mldivide should compute the bandwidth of A and use a banded solver in the case of A is
sparse (band density less than or equal to 0.5), or use LU solver, otherwise. LU factorization can be
used for both (informed) sparse and dense matrices. On the order hand, the inexact semi-smooth
Newton iteration requires to approximately solve the linear system (Bl) in the sense of (6l). Matlab
has several iterative methods for linear equations. In order to choose the most appropriate one,



we performed a preliminary test comparing the performance of all of them. We run the inexact
semi-smooth Newton method with each iterative methods for 50 problems with n = 400 and density
equal to 0.01. The method with the routine lsqr was the most efficient in all considered problems.
Therefore, in all forthcoming tests, we used Isqr as iterative method to approximately solve linear
equations. The routine Isqr is an algorithm for sparse linear equations and sparse least squares
based on [16]. We highlight that xj is used as a starting point by Isgr to solve the linear system
of k 4 1 iteration. In the numerical tests of Section B.I] where the density of A is approximately
equal to 0.003, the matrices of linear systems were reported to be sparse for both exact and inexact
semi-smooth Newton methods. In Section B.2] where we analyzed the influence of higher densities,
linear systems were solved considering full matrices for both methods.

We presented the numerical comparisons using performance profiles graphics; see [5]. Defined
a performance measurement (for example, CPU time), performance profiles are very useful tools
to compare several methods on a large set of test problems. In a simple manner, they allow us
to compare efficiency and robustness. The efficiency of a method is related to the percentage of
problems for which the method was the fastest one, while robustness is related to the percentage of
problems for which the method found a solution. In a performance profile, efficiency and robustness
can be accessed on the extreme left (at 1 in domain) and right of the graphic, respectively. In all
group of tests, we use CPU time as performance measurement. In order to obtain more accurately
the CPU time, we run all test problems in each method ten times and we defined the corresponding
CPU time as the median of these measurements. For each problem, we consider that a method is
the most efficient if its runtime does not exceed in 5% the CPU time of the fastest one.

3.1 Large-Scale Sparse AVEs

It is well-known that direct methods to solve linear systems can be impractical if the associated
matrix is large and sparse. Basically, there are two reasons. First, the factorization of the matrix
can cause fill-in, losing the sparsity structure and generating additional computational cost. Second,
a floating-point error made in one step spreads further in all following ones. Therefore, it is rarely
true in applications that direct methods give the exact solution of linear systems and, in some
cases, they are not able to find the solution with a desired accuracy. In the forthcoming numerical
results, this phenomenon will appear very clearly. It is opportune to mention that there are many
direct methods for large-scale sparse linear systems that seek to alleviate these drawbacks; see, for
example, [3]. On the other hand, iterative methods do not exhibit these disadvantages because they
do not work with matrix factorization and they are self-correcting, in the sense that, if floating-point
errors affect zp during the k-th iteration, x; can be considered as a new starting point, not affecting
the convergence of the method. Consequently, iterative methods are, in general, more robust than
the direct ones.

Seeking to solve an AVE, the exact and inexact Newton iterates deal with a large-scale sparse
linear system when matrix A has these characteristics. The previous discussion allows us to con-
jecture that, in this case, the inexact Newton method is better than the exact one. In an attempt
to confirm this intuition, in the first group of tests, we generated 200 AVEs with n = 10000 and
density of A approximately equal to 0.003. This means that, only about 0.3% of the elements of
A are non null. In this set of problems, the average condition number of A is approximately 40
(lowest and largest values is 1.87 and 1610, respectively), while the average  is of order of 1072
Figure [l shows a comparison, using performance profiles, between exact and inexact semi-smooth
Newton methods in this set of test problems.
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Figure 1: Performance profile comparing Inexact versus Exact semi-smooth Newton method for
large-scale sparse AVEs with well conditioned matrices.

Analyzing Figure[Il we see that, as expected, the inexact method is more efficient than the exact
one. However, it may be surprising that the difference is so stark. Efficiencies of the methods are
97,5% and 5%, respectively, for the inexact and exact versions. The robustness is 98% for both
ones. The methods failed to solve the same four problems. Nevertheless, it is interesting to point
out that, for this four problems, both methods reached a very close accuracy from the required one
to report “Solution found”. In this first set of problems, the exact Newton method was faster in
just one problem (21.4s against 35.6s of the inexact method). Curiously, this is the problem for
which the condition number of A is the highest value among all considered ones. Considering only
the others solved problems, the methods spent in total 201s and 4541s for the inexact and exact
versions, respectively. The inexact method solves a typical problem of this set in less than a second
while the exact one takes about 20s (in average, the exact method demands 57 times the runtime
of the inexact one). The average number of iterations was, respectively, 9.6 and 3.4, showing that,
as expected, the exact iteration requests greater computational effort than the inexact one.

Since average condition number of the matrices of the first set problems are relatively small
(consequently, in average, the matrices are well conditioned), we investigated the performance of
the methods in sets of ill-conditioned matrices. This analysis is pertinent because, as observed, the
right hand side of (I8]) is less than the inverse of condition number. So, for ill-conditioned matrices,
the iterative solver for linear equations needs to be much required. It is not reasonable to set a
value for the condition number to claim a matrix as “ill-conditioned”. Therefore, in this second
phase, we generated two sets of 200 AVEs. In the first one, the condition numbers of all matrices
A are greater than or equal to 10? (the average is 4.73 x 10%) while, in the second one, are greater
than or equal 10° (the average is 1.72 x 10°). We emphasize that in these second phase, we keep
n = 10000 and the density of A approximately equal to 0.3%. Figure[2lshows a comparison between
exact and inexact semi-smooth Newton methods in this two sets of test problems.

In the first set of the second phase, analyzing Figure [2(a), we see that the inexact Newton method
is more efficient than the exact one (efficiencies are 79% and 9%, respectively), while robustness rates
are 84% and 88%), respectively. The robustness difference corresponds to 8 problems that were solved
by exact method and failed to be solved by the inexact one. Reciprocally, there is no problem. In
others 24 problems, both methods failed. However, in all cases of failure, regardless of the method,
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Figure 2: Performance profile comparing Inexact versus Exact semi-smooth Newton method for
large-scale sparse AVEs with “ill-conditioned” matrices: (a) cond(A) ~ 102 and (b) cond(A) ~ 10°.

the achieved accuracy was close to the desired one (typically, order of 107%). This allows us to
conclude that both methods were equivalently robust. In terms of processing time, comparing with
the set of problems of the first phase, the exact Newton method showed a considerable improvement.
Note by Figure 2[(a) that the performance functions intersect each other approximately at 7 in the
domain, while in Figure [ the intersection takes place approximately at 160. Consequently, the
difference between the two methods is much smaller in the case that the condition number of A is
order of 102 than in the case where it is order of 10°.

Consider now the second set of problems where the condition numbers of A are of order of 10°.
Both methods were not able to solve with accuracy 10~8 an AVE that belongs to this set of ill-
conditioned problems. So, in this specific case, we used the accuracy equal to 107°. For the inexact
method, the average value of 6 is 2.85 x 1075, Figure Bi(b) shows the performance of the methods.
As we can note, the exact Newton method achieved much higher performance compared with the
inexact one. The exact method was the faster one in all problems that were solved by both methods.
The robustness is 59% and 97% for the inexact and exact method, respectively. The high efficiency
of the exact Newton method is connected with the ability of this method to solve a problem with
a moderate accuracy (107°) in a few iterations. The exact method did not need more than three
iterations in order to solve a problem of this set: 166 problems were solved with 2 iterations, while
28 with 3 iterations. On the other hand, since 6 is oder of 1079, the iterative linear equations solver
is much required in an early iteration of the inexact method, generating additional runtime. The
poor robustness of the inexact method can be related with the lack of robustness of the lsqr routine
to deal with ill-conditioned matrices. It is appropriate to mention that no preconditioner was used
in Isqr.

Table [I] summarizes the results of the numerical experiments of the current section. The column
“cond(A)” informs the (average) order of the condition number of the matrices A, while column
“tol” reports the considered accuracy to solve an AVE.
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Inexact Newton method Exact Newton method

cond(A)  tol | Efficiency (%) Robustness (%) | Efficiency (%) Robustness (%)
10° 1078 97.5 98.0 5.0 98.0
102 1078 79.0 84.0 9.0 88.0
10° 1075 0.0 59.0 97.0 97.0

Table 1: Efficiency and robustness rates of the Inexact and Exact Newton methods for three sets
of large-scale sparse AVEs varying the condition number of the matrices.

The numerical experiments of this section allow us to conclude that the inexact Newton method
is much more efficient than the exact one when A is a large-scale sparse matrix with a “moderate”
condition number. For matrices with higher condition numbers (order of 10%), both methods failed
to solve the AVE problem with accuracy 10~®. Considering a greater tolerance (107?), the exact
method was the most efficient and robust. This indicates that, at least in our implementation, the
inexact Newton method is more sensitive to the increase of the condition number than the exact
one.

3.2 Influence of Density

The iterative linear equations solvers are suitable for large and sparse matrices, particularly for the
routine [sqr. Therefore, in this section, we investigated the influence of the density of matrix A on the
performance of the exact and inexact semi-smooth Newton methods. In this third phase, we decided
to deal only with relatively “well-conditioned” matrices because, according to the experiments of the
previous section, both methods presented greater robustness on this class of problems. Theoretically,
it is expected that the huge efficiency difference presented in Figure [l be reduced.

We generated four sets of 200 AVEs varying the density of matrix A. The density of the matrices
in each set is approximately equal to: (a) 10%, (b) 40%, (¢) 80% and (d) 100%. The Matlab routine
sprand is efficient to generate sparse matrices. When the input density is high, sprand requires
much processing time. In order to alleviate this cost, we decided to decrease the dimension of the
matrices. In each set of AVEs we adopted n equal to 3000 for the first two sets and 1500 for the
other two. The average condition number of the matrices in each set is approximately equal to
11, 35, 17 and 18, respectively. Figure Bl shows the performance profiles, while Table 2 shows the
efficiency and robustness rates of the Inexact and Exact Newton methods in this four sets of test
problems.

Inexact Newton method Exact Newton method

n density (%) | Efficiency (%) Robustness (%) | Efficiency (%) Robustness (%)
3000 10 70.5 99.5 34.5 98.0
3000 40 73.5 99.0 30.0 87.0
1500 80 50.5 99.5 53.5 88.5
1500 100 55.0 99.0 46.0 79.5

Table 2: Efficiency and robustness rates of the Inexact and Exact Newton methods for four sets of
AVEs varying the density of the matrices.

Analyzing Figure Bl and Table Bl we see that, as expected, the difference between the methods
was decreased compared to the case where problems are sparse, see Figure [ For a moderate
density (10% and 40%), the inexact Newton method is more efficient than the exact one (efficiency
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Figure 3: Performance profile comparing Inexact versus Exact semi-smooth Newton method for

dense AVEs with well-conditioned matrices. Density of A is approximately equal to: (a) 10%,
(b) 40%, (c) 80% and (d) 100%.
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rate is 70.5% and 73.5% against 34.5% and 30.0%, respectively). Considering full matrices (density
80% and 100%) both methods showed equivalent efficiency rates: 50.5% and 55.0% for the inexact
method against 53.5% and 46.0% for the exact one, respectively. Independently of density, the
robustness rate of the inexact Newton method is greater than or equal to 99.0%. On the other
hand, as we can see in Table [, the robustness rate of the exact method decreases according to
the increase of the density. This phenomenon is clearly connected with the fact that the greater
the density, the more operations are required by the direct method to to solve a linear equation.
Consequently, the exact Newton method is most affected by the accumulation of floating-point
errors resulting in lower robustness. Obviously, the number of operations to solve a linear equation
also depends on the dimension n. So, considering the exact Newton method, the robustness rate of
87.0%, in the set of problems where n = 3000 and the density is approximately 40%, is consistent
with robustness rate of 88.5% where the dimension and density are 1500 and approximately 80%,
respectively.

The numerical experiments of this section allow us to conclude that, at least in problems where
A is a “well-conditioned” matrix, the inexact Newton method proved to be competitive (in terms
of efficiency) with the exact method even if A is a full matrix. Considering robustness, while the
inexact Newton method did not lose performance, the exact method was found to be sensitive with
density increase.

4 Final Remarks

In this work we dealt with the global Q-linear convergence of the inexact semi-smooth Newton
method for solving AVE in (). In particular, a bound for the relative error tolerance to solve
subproblem arises very clearly in the presented results. The inexact analysis support the efficient
computational implementations of the exact schemes. Our implementation shows the advantage
over the exact method in many considered cases, for instance, sparse and large scale problems.
We hope that this study serves as a basis for future research on other more efficient variants for
solving AVE. We intend to study the semi-smooth Newton method from the point of view of actual
implementations and provide comparisons with alternative approaches. Additional numerical tests
indicate that our sufficient condition for convergence can be relaxed, which also deserver to be
investigate.
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