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Abstract

In this paper, we consider a class of n-person noncooperative games, where the
utility function of every player is given by a homogeneous polynomial defined by
the payoff tensor of that player, which is a natural extension of the bimatrix game
where the utility function of every player is given by a quadratic form defined
by the payoff matrix of that player. We will call such a problem the multilinear
game. We reformulate the multilinear game as a tensor complementarity problem,
a generalization of the linear complementarity problem; and show that finding a
Nash equilibrium point of the multilinear game is equivalent to finding a solu-
tion of the resulted tensor complementarity problem. Especially, we present an
explicit relationship between the solutions of the multilinear game and the ten-
sor complementarity problem, which builds a bridge between these two classes of
problems. We also apply a smoothing-type algorithm to solve the resulted tensor
complementarity problem and give some preliminary numerical results for solving
the multilinear games.
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1 Introduction

The n-person noncooperative game plays a fundamental yet important role in the
development of game theory [3, 36]. Nash [34, 35] proposed a very important concept
of equilibrium, called Nash equilibrium, for n-person noncooperative games, which is a
stable outcome in the sense that a unilateral deviation from a Nash equilibrium point by
one of the players does not increase the payoff of that player. Nash [34, 35] has shown
that every game of this kind has at least one equilibrium point in mixed strategies. The
n-person noncooperative game and its various extensions have been extensively studied,
for example, see [3, 4, 11, 16, 20, 22, 27, 30, 33, 45, 46] and references therein.

A large number of economic models are formulated in terms of some n-person non-
cooperative game [1, 13]. In these applications, one of main concerns is how to find
effectively a Nash equilibrium point, which depends heavily on the good mathematical
description of the problem. For the two-person noncooperative game, one of the most
popular models is the bimatrix game [18, 29], where the utility function of every player
is a quadratic form defined by the payoff matrix of that player. It is well known that the
bimatrix game can be reformulated as a linear complementarity problem [9, 29, 32]. The
first approach for finding Nash equilibrium point of a two-person game was proposed in
[29], which was designed based on the reformulated linear complementarity problem of
the concerned game.

The polymatrix game is an important subclass of n-person noncooperative games,
where the payoff of one player relative to the decisions of any other player is independent
of the remaining players’ choices [21]. The utility function of each player is the sum of
n−1 quadratic forms where every quadratic form is defined by the payoff matrix of this
player with respect to any other player. Obviously, the polymatrix game is an extension
of the bimatrix game. It is well known that the polymatrix game can be reformulated
as a linear complementarity problem [19, 21].

Recently, Song and Qi [39] introduced a class of complementarity problems, called
tensor complementarity problems, where the involved function is defined by some homo-
geneous polynomial of degree n with n > 2. It is known that the tensor complementarity
problem is a generalization of the linear complementarity problem [9]; and a subclass of
nonlinear complementarity problems [12, 19]. The tensor complementarity problem was
studied recently by many scholars [2, 6, 10, 17, 25, 31, 40, 41, 42, 43, 44].

In this paper, we consider a class of n-person noncooperative games, where the utility
function of every player is a homogeneous polynomial of degree n defined by the payoff
tensor of that player. The new model is a natural extension of the bimatrix game;
and we call it the multilinear game in this paper. We will reformulate the multilinear
game as a tensor complementarity problem. We show that finding a Nash equilibrium
point of the multilinear game is equivalent to finding a solution of the resulted tensor
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complementarity problem; and especially, we exhibit an explicit corresponding relation
between the solutions of these two classes of problems. In addition, we also apply a
smoothing-type algorithm to solve the resulted tensor complementarity problem and
give some preliminary numerical results for solving some multilinear games.

2 Preliminaries

In this section, we introduce some notation and give some basic results, which will
be used in the subsequent analysis.

Throughout this paper, we assume that m1, m2, · · · , mn and n are positive integers,
and n > 2 unless specifically stated. For any positive integer n, we denote {1, 2, . . . , n}
by [n] and the n-dimensional vector of ones by en.

A real n-th order m1 × m2 × · · · × mn-dimensional tensor B is a multiple array
in R

m1×m2×···×mn , which can be written as B := (bi1i2···in) where bi1i2···in ∈ R for any
ij ∈ [mj ] and j ∈ [n]. If m1 = m2 = · · · = mn = l, then B is called a real n-th order
l-dimensional tensor. We will denote the set of all real n-th order l-dimensional tensors
by Tn,l.

We will use the following concept, which can be found in [28].

Definition 2.1 The k-mode (vector) product of a tensor B = (bi1i2···in) ∈ R
m1×m2×···×mn

with a vector v ∈ R
mk is denoted by B×̄kv, which is a real (n−1)-th order m1×· · ·mk−1×

mk+1 × · · · ×mn-dimensional tensor with

(B×̄kv)i1···ik−1ik+1···in =

mk
∑

ik=1

bi1i2···invik

for any ij ∈ [mj ] with j ∈ [n] \ {k}.

For any tensor B = (bi1i2···in) ∈ R
m1×m2×···×mn and any vector uk ∈ R

mk with k ∈ [n],
we will use Bu1u2 · · ·un to denote B×̄1u

1×̄2u
2×̄3 · · · ×̄nu

n and use Bu2 · · ·un to denote
B×̄2u

2×̄3 · · · ×̄nu
n for simplicity. Then, by using Definition 2.1, we have

Bu1u2 · · ·un =

m1
∑

i1=1

m2
∑

i2=1

· · ·

mn
∑

in=1

bi1i2···inu
1
i1
u2
i2
· · ·un

in

and

Bu2 · · ·un =













m2
∑

i2=1

· · ·
mn
∑

in=1

b1i2···inu
2
i2
· · ·un

in

...
m2
∑

i2=1

· · ·
mn
∑

in=1

bm1i2···inu
2
i2
· · ·un

in













.
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For any k ∈ [n], it is easy to see that

∂

∂uk
Bu1u2 · · ·un

=















m1
∑

i1=1

· · ·
mk−1
∑

ik−1=1

mk+1
∑

ik+1=1

· · ·
mn
∑

in=1

bi1···ik−11ik+1···inu
1
i1
· · ·uk−1

ik−1
uk+1
ik+1

· · ·un
in

...
m1
∑

i1=1

· · ·
mk−1
∑

ik−1=1

mk+1
∑

ik+1=1

· · ·
mn
∑

in=1

bi1···ik−1mkik+1···inu
1
i1
· · ·uk−1

ik−1
uk+1
ik+1

· · ·un
in















=















m1
∑

i1=1

· · ·
mk−1
∑

ik−1=1

mk+1
∑

ik+1=1

· · ·
mn
∑

in=1

b̄1i1···ik−1ik+1···inu
1
i1
· · ·uk−1

ik−1
uk+1
ik+1

· · ·un
in

...
m1
∑

i1=1

· · ·
mk−1
∑

ik−1=1

mk+1
∑

ik+1=1

· · ·
mn
∑

in=1

b̄mki1···ik−1ik+1···inu
1
i1
· · ·uk−1

ik−1
uk+1
ik+1

· · ·un
in















.

We introduce the following tensors.

Definition 2.2 For any tensor B = (bi1i2···in) ∈ R
m1×m2×···×mn and any k ∈ [n], we

define tensor
B̄

k := (b̄i1i2···in) ∈ R
mk×m1×···×mk−1×mk+1×···×mn

with
b̄i1i2···in = biki1···ik−1ik+1···in , ∀ij ∈ [mj ] and j ∈ [n].

Then, the following results can be easily obtained.

Proposition 2.1 For any tensor B = (bi1i2···in) ∈ R
m1×m2×···×mn and any k ∈ [n], let

B̄
k be defined by Definition 2.2. Then, B̄

1 = B and any k ∈ [n],

∂

∂uk
Bu1u2 · · ·un = B̄

ku1 · · ·uk−1uk+1 · · ·un

and
〈uk, B̄ku1 · · ·uk−1uk+1 · · ·un〉 = Bu1u2 · · ·un

hold for any k ∈ [n].

For any tensor B = (bi1i2···in) ∈ Tn,m and any vector u ∈ R
m, we will use Bun−1 to

denote the vector B×̄2u×̄3 · · · ×̄nu ∈ R
m for simplicity. Then, by using Definition 2.1,

we have

Bun−1 =













m
∑

i2=1

· · ·
m
∑

in=1

b1i2···inui2 · · ·uin

...
m
∑

i2=1

· · ·
m
∑

in=1

bmi2···inui2 · · ·uin













. (2.1)
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In fact, such a notation has been extensively used in the literature [37].

In the following, we denote m :=
∑n

j=1mj . We will use x =
(

(xk)k∈[n]
)

∈ R
m and

x∗ =
(

(xk∗)k∈[n]
)

∈ R
m to mean that

x =











x1

x2

...
xn











, x∗ =











x1∗

x2∗

...
xn∗











∈ R
m1 × R

m2 × · · · × R
mn = R

m.

3 Description of the multilinear game

The so-called multilinear game is a noncooperative game with a finite number of
players, each with a finite number of pure strategies, which is specified as follows.

(I) There are n players: player 1, player 2, · · ·, player n, i.e., the set of players is [n].

(II) For any k ∈ [n], player k has mk pure strategies, i.e., the pure strategy set of player
k is [mk].

(III) For any k ∈ [n], let A
k = (aki1i2···in) be payoff tensor of player k, that is to say, for

any ij ∈ [mj ] with any j ∈ [n], if player 1 plays his i1-th pure strategy, player 2
plays his i2-th strategy, · · ·, player n plays his in-th strategy, then the payoffs of
player 1, player 2, · · ·, player n are a1i1i2···in , a

2
i1i2···in , · · ·, a

n
i1i2···in, respectively.

(IV) For any k ∈ [n], let xk = (xk
ij
) ∈ R

mk represent a mixed strategy of player k, where

xk
ij

≥ 0 is the relative probability that player k plays his ij-th pure strategy for

any ij ∈ [mk], i.e., x
k ∈ Ωk := {x ∈ R

mk : x ≥ 0 and eTmk
x = 1}.

Thus, the utility function of player k is

A
kx1x2 · · ·xn =

m1
∑

i1=1

m2
∑

i2=1

· · ·

mn
∑

in=1

aki1i2···inx
1
i1
x2
i2
· · ·xn

in
(3.2)

for any k ∈ [n].

We say that x =
(

(xk)k∈[n]
)

∈ R
m is a joint mixed strategy if xk is a mixed strategy

of player k for any k ∈ [n], i.e., xk satisfies xk ≥ 0 and eTmk
xk = 1.

A joint mixed strategy x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is said to be a Nash equilibrium point

of the multilinear game, if for any joint mixed strategy x =
(

(xk)k∈[n]
)

∈ R
m and any

k ∈ [n], it holds that

A
kx1∗x2∗ · · ·xn∗ ≥ A

kx1∗ · · ·xk−1∗xkxk+1∗ · · ·xn∗.
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It is obvious that a joint mixed strategy x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is a Nash equilibrium

point of the multilinear game if and only if, for any k ∈ [n], x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is

an optimal solution of the following optimization problem:

max
xk∈Rmk

A kx1∗ · · ·xk−1∗xkxk+1∗ · · ·xn∗

s.t. eTmk
xk = 1, xk ≥ 0.

(3.3)

Remark 3.1 (i) The model (3.3) of the multilinear game is given by using the Nash
equilibrium in mixed strategies, not in pure strategies. Throughout this paper, we
consider such a model.

(ii) There are many different models on the n-person noncooperative game. One of
general models is that the utility function is a continuously differentiable concave
function and each set Ωk (∀k ∈ [n]) defined in (IV) is convex.

(iii) If in (III), we let Akj denote the payoff matrix of player k with respect to player
j (i.e., if player k plays his p-th pure strategy and player j plays his q-th pure
strategy, then the payoff of player k is akjpq); and furthermore, instead of (3.2), we
define the utility function of player k by

xkT
∑

j∈[n]\{k}

Akjxj ,

then the corresponding problem is the polymatrix game.

(iv) It is obvious that the multilinear game considered in this paper is different from
the polymatrix game. Both the multilinear game and the polymatrix game are the
generalizations of the bimatrix game, however, it seems that the multilinear game
is a more natural extension of the bimatrix game than the polymatrix game.

Without loss of generality, we assume in this paper that aki1i2···in > 0 for any k ∈ [n]
and any ij ∈ [mj ] with all j ∈ [n]. In fact, it is obvious that there exists a sufficient
large c > 0 such that aki1i2···in + c > 0 for any k ∈ [n] and any ij ∈ [mj ] with all j ∈ [n].
Since for any joint mixed strategy x =

(

(xk)k∈[n]
)

∈ R
m and any k ∈ [n], we have that

m1
∑

i1=1

m2
∑

i2=1

· · ·
mn
∑

in=1

(aki1i2···in + c)x1
i1
x2
i2
· · ·xn

in
= A

kx1x2 · · ·xn + c,

it is easy to see that x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is a Nash equilibrium point of the multilinear

game with payoff tensors A k for all k ∈ [n] if and only if x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is a

Nash equilibrium point of the multilinear game with payoff tensors A k + cE for all
k ∈ [n], where E ∈ R

m1×m2×···×mn is a tensor whose all entries are 1.
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4 Reformulation of the multilinear game

For any given tensor B ∈ Tn,l and vector q ∈ R
l, the tensor complementarity problem,

denoted by the TCP(q,B), is to find a vector z ∈ R
l such that

z ≥ 0, Bzn−1 + q ≥ 0, 〈z,Bzn−1 + q〉 = 0,

which was introduced recently by Song and Qi [39]; and was further studied by many
scholars [2, 6, 10, 17, 25, 31, 40, 41, 42, 43, 44]. When n = 2, the tensor B reduces to a
matrix, denoted by B; and the TCP(q,B) becomes: find a vector z ∈ R

l such that

z ≥ 0, Bz + q ≥ 0, 〈z, Bz + q〉 = 0,

which is just the linear complementarity problem [9].

In this section, we show that the multilinear game can be reformulated as a specific
tensor complementarity problem.

Using payoff tensors A k for all k ∈ [n], we construct a new tensor:

A := (ai1i2···in) ∈ Tn,m (4.4)

where

ai1i2···in =



















































































a1
i1(i2−m1)···(in−

∑n−1

j=1
mj)

,

if i1 ∈ [m1], i2 ∈ [m1 +m2] \ [m1], · · · , in ∈ [
∑n

j=1mj ] \ [
∑n−1

j=1 mj ],

a2
(i1−m1)i2(i3−m1−m2)···(in−

∑n−1

j=1
mj)

,

if i1 ∈ [m1 +m2] \ [m1], i2 ∈ [m1],

i3 ∈ [
∑3

j=1mj ] \ [m1 +m2], · · · , in ∈ [
∑n

j=1mj] \ [
∑n−1

j=1 mj],

ak
(i1−

∑k−1

j=1
mj)(i2−m1)···(ik−1−

∑k−2

j=1
mj)ik(ik+1−

∑k
j+1

mj)···(in−
∑n−1

j=1
mj)

,

if k ∈ [n] \ {1, 2}, and for any given k, i1 ∈ [
∑k

j=1mj ] \ [
∑k−1

j=1 mj],

i2 ∈ [m1 +m2] \ [m1], · · · , ik−1 ∈ [
∑k−1

j=1 mj ] \ [
∑k−2

j=1 mj ], ik ∈ [m1],

ik+1 ∈ [
∑k+1

j=1 mj ] \ [
∑k

j=1mj ], · · · , in ∈ [
∑n

j=1mj ] \ [
∑n−1

j=1 mj ],

0, otherwise

for any ij ∈ [m] with j ∈ [n].

For convenience of description, we introduce the following tensors by using the payoff
tensors.

Definition 4.3 For any k ∈ [n], let A k be the payoff tensor of player k; and define

Ā
k := (āki1i2···in) ∈ R

mk×m1×···×mk−1×mk+1×···×mn

with
āki1i2···in = akiki1···ik−1ik+1···in

, ∀ij ∈ [mj ] and j ∈ [n].
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Then, by Proposition 2.1, we have Ā 1 = A 1; and for any x =
(

(xk)k∈[n]
)

∈ R
m, we

have that
∂

∂xk
A

kx1x2 · · ·xn = Ā
kx1 · · ·xk−1xk+1 · · ·xn

and
〈xk, Ā kx1 · · ·xk−1xk+1 · · ·xn〉 = A

kx1x2 · · ·xn

hold for any k ∈ [n].

Furthermore, by (4.4), it is not difficult to see that

A xm−1 =















Ā 1x2 · · ·xn

...
Ā kx1 · · ·xk−1xk+1 · · ·xn

...
Ā nx1x2 · · ·xn−1















. (4.5)

Now, we can construct a tensor complementarity problem as follows:

Find y =
(

(yk)k∈[n]
)

∈ R
m such that

y ≥ 0, A ym−1 + q ≥ 0, 〈y,A ym−1 + q〉 = 0, (4.6)

where A ∈ Tn,m is a known tensor given by (4.4), q ∈ R
m is a known vector given by

q :=











−em1

−em2

...
−emn











∈ R
m1 × R

m2 × · · · × R
mn = R

m,

and A ym−1 is defined by (4.5) by replacing x by y.

Remark 4.2 (i) The constructed complementarity problem (4.6) is a specific tensor
complementarity problem. We denote the problem (4.6) by the TCP(q,A ).

(ii) When n = 2, tensors A 1 and A 2 reduce to two matrices, denoted by A1 and A2,
respectively; and the tensor A defined by (4.4) reduces to a matrix A given by

A =

(

0 A1

A2T 0

)

.

In this case, the TCP(q,A ) (4.6) reduces to a linear complementarity problem,
which is a reformulation of the bimatrix game [29].
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In the following, we will show that finding a Nash equilibrium point of the multi-
linear game is equivalent to finding a solution of the TCP(q,A ) (4.6) with the explicit
corresponding relation between the solutions of these two problems.

Theorem 4.1 If x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is a Nash equilibrium point of the multilinear

game, then y∗ =
(

(yk
∗
)k∈[n]

)

∈ R
m defined by

yk
∗
:= n−1

√

(A kx1∗x2∗ · · ·xn∗)n−2

∏

i∈[n]\{k} A ix1∗x2∗ · · ·xn∗
xk∗ for any k ∈ [n] (4.7)

is a solution of the TCP(q,A ) (4.6).

Conversely, if y∗ =
(

(yk
∗
)k∈[n]

)

∈ R
m is a solution of the TCP(q,A ) (4.6), then

yk
∗
6= 0 for any k ∈ [n]; and x∗ =

(

(xk∗)k∈[n]
)

∈ R
m defined by

xk∗ :=
yk

∗

eTmk
yk∗

for any k ∈ [n] (4.8)

is a Nash equilibrium point of the multilinear game.

Proof. “=⇒”. Suppose that x∗ =
(

(xk∗)k∈[n]
)

∈ R
m is a Nash equilibrium point of the

multilinear game, we show that y∗ =
(

(yk
∗
)k∈[n]

)

∈ R
m defined by (4.7) is a solution of

the TCP(q,A ) (4.6). For any k ∈ [n], by the KKT conditions of problem (3.3), there
exist a number λ∗

k ∈ R and a nonnegative vector µ∗
k ∈ R

mk such that

Ā
kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ − λ∗

kemk
− µ∗

k = 0 (4.9)

and

eTmk
xk∗ = 1, xk∗ ≥ 0, µ∗

k ≥ 0, µ∗
k
Txk∗ = 0. (4.10)

By (4.9), it is easy to obtain that for any k ∈ [n],

A
kx1∗x2∗ · · ·xn∗ − λ∗

ke
T
mk

xk∗ − µ∗
k
Txk∗ = 0,

which, together with equalities given in (4.10), implies that

A
kx1∗x2∗ · · ·xn∗ = λ∗

ke
T
mk

xk∗ − µ∗
k
Txk∗ = λ∗

k. (4.11)

Since xk∗ ≥ 0 and xk∗ 6= 0 for any k ∈ [n]; and aki1i2···in > 0 for any k ∈ [n] and any
ij ∈ [mj] with all j ∈ [n], it is easy to show that

λ∗
k = A

kx1∗x2∗ · · ·xn∗ > 0, ∀k ∈ [n].

9



Thus, for any k ∈ [n],

yk
∗
= n−1

√

(λ∗
k)

n−2

∏

i∈[n]\{k} λ
∗
i

xk∗ ≥ 0. (4.12)

Furthermore,

A y∗m−1 + q =















Ā 1y2
∗
· · · yn∗ − em1

...
Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

...
Ā

ny1
∗
y2

∗
· · · yn−1∗ − emn















=

















1
λ∗

1

Ā 1x2∗ · · ·xn∗ − em1

...
1
λ∗

k

Ā
kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ − emk

...
1
λ∗

n
Ā nx1∗x2∗ · · ·xn−1∗ − emn

















=

















1
λ∗

1

(λ∗
1em1

+ µ∗
1)− em1

...
1
λ∗

k

(λ∗
kemk

+ µ∗
k)− emk

...
1
λ∗

n
(λ∗

nemn
+ µ∗

n)− emn

















=



















µ∗

1

λ∗

1

...
µ∗

k

λ∗

k

...
µ∗

n

λ∗

n



















≥ 0, (4.13)

where the first equality follows from (4.5), the second equality from (4.12), and the third
equality and the last inequality from (4.9) and (4.10). Moreover,

y∗T (A y∗m−1 + q) =















y1
∗

...
yk

∗

...
yn∗















T 













Ā 1y2
∗
· · · yn∗ − em1

...
Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

...
Ā ny1

∗
y2

∗
· · · yn−1∗ − emn














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=
n
∑

k=1

yk
∗T
(Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

)

=

n
∑

k=1

{

n−1

√

1
∏n

i=1 λi

A
kx1∗ · · ·xn∗ − n−1

√

(λ∗
k)

n−2

∏

i∈[n]\{k} λ
∗
i

eTmk
xk∗

}

=
n
∑

k=1

n−1

√

(λ∗
k)

n−2

∏

i∈[n]\{k} λ
∗
i

(1− eTmk
xk∗)

= 0, (4.14)

where the third equality holds by (4.12), the forth equality holds by (4.11), and the last
equality holds by (4.10).

Combining (4.12) with (4.13) and (4.14), we obtain that y∗ =
(

(yk
∗
)k∈[n]

)

∈ R
m

defined by (4.7) is a solution of the TCP(q,A ) (4.6).

“⇐=”. Suppose that y∗ =
(

(yk
∗
)k∈[n]

)

∈ R
m is a solution of the TCP(q,A ) (4.6),

then














y1
∗

...
yk

∗

...
yn∗















≥ 0,















Ā 1y2
∗
· · · yn∗ − em1

...
Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

...
Ā ny1

∗
y2

∗
· · · yn−1∗ − emn















≥ 0,















y1
∗

...
y3

∗

...
yn∗















T 













Ā 1y2
∗
· · · yn∗ − em1

...
Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

...
Ā ny1

∗
y2

∗
· · · yn−1∗ − emn















= 0.

(4.15)

It is easy to show that yk
∗
6= 0 for any k ∈ [n]. In fact, if yk

∗
= 0 for some k ∈ [n], then

by the second inequality in (4.15), we have that −emj
≥ 0 for any j ∈ [n] \ {k}, which

is a contradiction.

Next, we prove that x∗ =
(

(xk∗)k∈[n]
)

∈ R
m defined by (4.8) is a Nash equilibrium

point of the multilinear game. For this purpose, we need to show that, for any k ∈ [n],
there exist a number λ∗

k ∈ R and a nonnegative vector µ∗
k ∈ R

mk such that

Ā
kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ − λ∗

kemk
− µ∗

k = 0 (4.16)

and

eTmk
xk∗ = 1, xk∗ ≥ 0, µ∗

k ≥ 0, µ∗
k
Txk∗ = 0. (4.17)
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By (4.15), we have that for any k ∈ [n],

yk
∗T
(Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

) = 0,

i.e.,
A

ky1
∗
y2

∗
· · · yn∗ − eTmk

yk
∗
= 0.

For any k ∈ [n], since yk
∗
6= 0 and yk

∗
≥ 0, we have that eTmk

yk
∗
> 0; and then

A
k y1

∗

eTm1
y1∗

y2
∗

eTm2
y2∗

· · ·
yn∗

eTmn
yn∗

−
1

∏

i∈[n]\{k} e
T
mi
yi∗

= 0.

By (4.8), the above equality becomes

A
kx1∗x2∗ · · ·xn∗ −

1
∏

i∈[n]\{k} e
T
mi
yi∗

= 0. (4.18)

For any k ∈ [n], from yk
∗
≥ 0, eTmk

yk
∗
> 0 and the definition of xk∗, it follows that

xk∗ ≥ 0 and eTmk
xk∗ = 1. In addition, for any k ∈ [n], since

Ā
ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

≥ 0,

we have that
Ā

kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ −
emk

∏

i∈[n]\{k} e
T
mi
yi∗

≥ 0,

which implies that there exists a nonnegative vector µ∗
k ∈ R

mk such that

Ā
kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ −

emk
∏

i∈[n]\{k} e
T
mi
yi∗

− µ∗
k = 0;

and furthermore,

µ∗
k
Txk∗ = xk∗T

(

Ā
kx1∗ · · ·xk−1∗xk+1∗ · · ·xn∗ −

emk
∏

i∈[n]\{k} e
T
mi
yi∗

)

= A
kx1∗x2∗ · · ·xn∗ −

eTmk
xk∗

∏

i∈[n]\{k} e
T
mi
yi∗

= A
kx1∗x2∗ · · ·xn∗ −

1
∏

i∈[n]\{k} e
T
mi
yi∗

= 0,

where the last equality holds by (4.18). So, we obtain that (4.16) and (4.17) holds with

λ∗
k =

1
∏

i∈[n]\{k} e
T
mi
yi∗

.

Therefore, x∗ =
(

(xk∗)k∈[n]
)

∈ R
m defined by (4.8) is a Nash equilibrium point of the

multilinear game. ✷
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Remark 4.3 (i) In Theorem 4.1, we have reformulated the multilinear game as a
tensor complementarity problem; and especially, we have established a one to one
correspondence between the solutions of these two classes of problems, which built
a bridge between two classes of problems.

(ii) When n = 2, the TCP(q,A ) (4.6) reduces to a linear complementarity problem,
which is a reformulation of the bimatrix game [19, 29, 26]; and the results of
Theorem 4.1 reduces to those obtained in the case of the bimatrix game [19, 26].

(iii) By using Theorem 4.1, we can investigate the TCP(q,A ) (4.6) by the known results
on the n-person noncooperative game. It is easy to see that the multilinear game
has at least a Nash equilibrium point by using Nash’s result [35]; and hence, by
Theorem 4.1, we obtain that the TCP(q,A ) (4.6) has at least a solution.

(iv) By using Theorem 4.1, we can also investigate the multilinear game by using the
theory and methods for the nonlinear complementarity problems [12, 19]. In the
next section, we apply a smoothing-type algorithm to solve the TCP(q,A ) (4.6).

5 Algorithm and numerical results

It is well known that the smoothing-type algorithm is a class of effective methods for
solving variational inequalities and complementarity problems, and related optimization
problems [5, 7, 8, 14, 15, 24, 38]. In this section, we apply a smoothing-type algorithm
to solve the TCP(q,A ) (4.6) and give some preliminary numerical results for solving
the multilinear games.

Let payoff tensors of the multilinear game be given by A k for all k ∈ [n], the tensor
A ∈ Tn,m be defined by (4.4), and the tensors Ā k for all k ∈ [n] be defined by Definition
4.3. Denote

F (y) :=















Ā 1y2
∗
· · · yn∗ − em1

...
Ā ky1

∗
· · · yk−1∗yk+1∗ · · · yn∗ − emk

...
Ā ny1

∗
y2

∗
· · · yn−1∗ − emn















,

then we can rewrite the TCP(q,A ) (4.6) as follows: Find y =
(

(yk)k∈[n]
)

∈ R
m and

s =
(

(sk)k∈[n]
)

∈ R
m such that

y ≥ 0, s = F (y) ≥ 0, 〈y, s〉 = 0. (5.19)
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We define a function H : R1+2m → R
1+2m by

H(µ, y, s) :=





µ
s− F (y)

Φ(µ, y, s) + µy



 ,

where Φ(µ, y, s) = (φ(µ, y1, s1), φ(µ, y2, s2), . . . , φ(µ, ym, sm))
T with

φ(µ, yi, si) = yi + si −
√

(yi − si)2 + 4µ, ∀i ∈ {1, 2, . . . , m}.

It is obvious that (y, s) solves the problem (5.19) if and only if H(µ, y, s) = 0. Since the
function H is continuously differentiable for any (µ, y, s) ∈ R

1+2m with µ > 0, we can
apply some Newton-type methods to solve the system of smooth equations H(µ, y, s) = 0
at each iteration and make µ → 0 so that a solution of the problem (5.19) can be found.
We use the following algorithm to solve the problem (5.19).

Algorithm 5.1 (A Smoothing-type Algorithm)

Step 0 Choose δ, σ ∈ (0, 1). Let µ0 > 0 and (y0, s0) ∈ R
2m be an arbitrary vector. Set

z0 := (µ0, y
0, s0). Choose β > 1 such that ‖H(z0)‖ ≤ βµ0. Set e

0 := (1, 0, . . . , 0) ∈
R

1+2m and k := 0.

Step 1 If ‖H(zk)‖ = 0, stop.

Step 2 Compute ∆zk := (∆µk,∆xk,∆sk) ∈ R× R
m × R

m by

H(zk) +H ′(zk)∆zk = (1/β)‖H(zk)‖e0. (5.20)

Step 3 Let λk be the maximum of the values 1, δ, δ2, · · · such that

‖H(zk + λk∆zk)‖ ≤ [1− σ(1− 1/β)λk]‖H(zk)‖. (5.21)

Step 4 Set zk+1 := zk + λk∆zk and k := k + 1. Go to Step 1.

The above algorithmic framework was proposed in [23]; and from [23] it follows that
Algorithm 5.1 is globally convergent under suitable assumptions.

In the following, we give some preliminary numerical results of Algorithm 5.1 for
solving the multilinear game and bimatrix game. Throughout our experiments, the
parameters used in Algorithm 5.1 are chosen as

δ := 0.75, σ := 10−4, y0 := 0.01 ∗ ones(m, 1), s0 := F (y0),

where m is given in the tested examples. In our experiments, we take µ0 := 0.1; and if
the algorithm fails to find a solution to the TCP(q,A ) (4.6), we try to take µ0 := 0.01
or µ0 := 0.1+3 ∗ p for p = 2, 3, 4, 5, 6, respectively. We denote z0 := (µ0, y

0, s0) and take
β := ‖H(z0)‖/µ0. We use ‖H(zk)‖ ≤ 10−6 as the stopping rule.
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Example 5.1 Consider the multilinear games with three players, where the payoff ten-
sors A 1,A 2,A 3 ∈ R

m1×m2×m3 are randomly generated by using rand(m1, m2, m3), re-
spectively.

Obviously, for different values of m1, m2 and m3, different games are generated by
Example 5.1. We use Algorithm 5.1 to solve these games, where values of m1, m2, m3

and m := m1 + m2 + m3 are specified in the table of the numerical results. In our
experiments, for any fixed m1, m2 and m3, the random problems are generated ten
times for which Algorithm 5.1 can find an approximation solution to every generated
problem. The numerical results are listed in Table 1, where AI (MinI and MaxI) denotes
the average number (minimal number and maximal number) of iterations for solving ten
randomly generated problems of each size; AT (MinT and MaxT) denotes the average
(minimal and maximal) CPU time in second for solving ten randomly generated problems
of each size; and ARes denotes the average value of ‖H(zk)‖ for ten randomly generated
problems of each size when the algorithm stops.

Table 1: The numerical results of the problem in Example 5.1

m m1 m2 m3 AI/MinI/MaxI AT/MinT/MaxT(s) ARes

2 2 6 13.7/9/23 0.0546/0.0156/0.125 2.68e− 7
2 3 5 16.3/12/31 0.0764/0.0156/0.187 1.17e− 7
2 4 4 15.5/10/26 0.0889/0.0156/0.265 1.55e− 7
3 5 2 15.1/10/22 0.125/0.0468/0.281 1.98e− 7

10 3 2 5 13.9/9/24 0.0842/0.0156/0.203 3.35e− 7
4 4 2 18.3/11/25 0.0889/0.0156/0.265 1.45e− 7
4 2 4 13.6/9/22 0.0827/0.0156/0.172 3.35e− 7
5 3 2 15.0/9/21 0.0515/0.0156/0.140 2.64e− 7
6 2 2 12.7/9/26 0.0250/0.0156/0.0468 2.12e− 7
3 5 12 23.8/17/33 0.200/0.0624/0.421 2.04e− 7
3 8 9 21.8/14/31 0.133/0.0312/0.328 2.51e− 7
3 12 5 22.5/13/29 0.179/0.0936/0.472 2.34e− 7
4 6 10 24.0/16/35 0.137/0.0312/0.281 2.44e− 7

20 4 8 8 22.5/14/32 0.136/0.0468/0.437 3.08e− 7
4 10 6 21.6/14/39 0.179/0.0312/0.374 2.38e− 7
6 5 9 21.0/13/40 0.125/0.0156/0.328 1.30e− 7
8 4 8 27.2/13/39 0.183/0.0312/0.484 3.29e− 7
12 5 3 22.1/14/32 0.212/0.0780/0.593 3.04e− 7

From Table 1, it is easy to see that the TCP(q,A ) (5.19) can be effectively solved
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by Algorithm 5.1. Furthermore, by Theorem 4.1 we can obtain that a Nash equilibrium
point of the concerned game can be found by using Algorithm 5.1. In order to see this
more clearly, we test two specific problems in the following.

Example 5.2 Consider a multilinear game with three players, where the payoff tensors
A 1,A 2,A 3 ∈ R

2×3×2 are given by

A 1(:, :, 1) =

(

0.0605 0.5269 0.6569
0.3993 0.4168 0.6280

)

, A (:, :, 2) =

(

0.2920 0.0155 0.1672
0.4317 0.9841 0.1062

)

,

A 2(:, :, 1) =

(

0.3724 0.4897 0.9516
0.1981 0.3395 0.9203

)

, A 2(:, :, 2) =

(

0.0527 0.2691 0.5479
0.7379 0.4228 0.9427

)

,

A 3(:, :, 1) =

(

0.4177 0.3015 0.6663
0.9831 0.7011 0.5391

)

, A 2(:, :, 2) =

(

0.6981 0.1781 0.9991
0.6665 0.1280 0.1711

)

.

We use Algorithm 5.1 to solve the TCP(q,A ) (5.19) with the payoff tensors being
given by Example 5.2; and a solution to this tensor complementarity problem:

y∗ = (0.6235, 0.0000, 3.8396, 0.0000, 0.0000, 4.3070, 0.0000)T,
s∗ = (0.0000, 5.6024, 0.0000, 0.3149, 1.5553, 0.0000, 0.6711)T

is obtained with 10 iterative steps in 0.0156 seconds. Furthermore, by Theorem 4.1 we
obtain that a Nash equilibrium point of the concerned game is x∗ = (x1∗, x2∗, x3∗) with

x1∗ = (1.0000, 0.0000)T , x2∗ = (1.0000, 0.0000, 0.0000)T , x3∗ = (1.0000, 0.0000)T .

Example 5.3 Consider the bimatrix game “Battle of the Sexes” [32], where two payoff
matrices A1, A2 ∈ R

2×2 are given by

A1 =

(

2 −1
−1 1

)

, A2 =

(

1 −1
−1 2

)

.

We use Algorithm 5.1 to solve the TCP(q,A ) (5.19) with the payoff matrices being
given by Example 5.3; and a solution to this tensor complementarity problem:

y∗ = (3, 2, 2, 3)T , s∗ = (0, 0, 0, 0)T

is obtained with 5 iterative steps in 0.0156 seconds. Furthermore, by Theorem 4.1 we
obtain that a Nash equilibrium point of the concerned game is x∗ = (x1∗, x2∗) with

x1∗ = (0.6, 0.4)T , x2∗ = (0.4, 0.6)T .

From these numerical results, we can see that Algorithm 5.1 is effective for solving
the tensor complementarity problem (5.19). We have also tested some other problems,
the computation effect is similar.
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6 Conclusions

In this paper, we reformulated the multilinear game as a tensor complementarity
problem and showed that finding a Nash equilibrium point of the multilinear game is
equivalent to finding a solution of the resulted tensor complementarity problem. Espe-
cially, we provided a one to one correspondence between the solutions of the multilinear
game and the tensor complementarity problem, which built a bridge between these two
classes of problems so that one can investigate one problem by using the theory and
methods for another problem. We also applied a smoothing-type algorithm to solve
the resulted tensor complementarity problem and reported some preliminary numerical
results for solving the multilinear games. Hopefully some more effective algorithms can
be designed to solve the tensor complementarity problem by using the structure of the
tensors and properties of the homogeneous polynomials.
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