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Abstract

We study the applicability of the Peaceman-Rachford (PR) splitting method for solving

nonconvex optimization problems. When applied to minimizing the sum of a strongly convex

Lipschitz differentiable function and a proper closed function, we show that if the strongly

convex function has a large enough strong convexity modulus and the step-size parameter is

chosen below a threshold that is computable, then any cluster point of the sequence generated,

if exists, will give a stationary point of the optimization problem. We also give sufficient

conditions guaranteeing boundedness of the sequence generated. We then discuss one way to

split the objective so that the proposed method can be suitably applied to solving optimization

problems with a coercive objective that is the sum of a (not necessarily strongly) convex

Lipschitz differentiable function and a proper closed function; this setting covers a large class

of nonconvex feasibility problems and constrained least squares problems. Finally, we illustrate

the proposed algorithm numerically.

1 Introduction

Consider the following optimization problem with competing structure:

min
u

f(u) + g(u), (1)

where f and g are proper closed possibly nonconvex functions. Optimization problems of this

form arise in many important modern applications such as signal processing, machine learning and

statistics [6, 10, 17, 32]. A typical application of (1) is to solve some ill-posed inverse problems

where the function f represents the data fitting term and the function g is the regularization

term. To solve problems with competing structures, an important and powerful class of algorithms

is the class of splitting methods. In these methods, the objective function is decomposed into

simpler individuals which are then processed separately in the subproblems. Two classical splitting

methods in the literature are the Douglas-Rachford (DR) splitting method [15, 16, 26] and the

Peaceman-Rachford (PR) splitting method [26,30].

The PR splitting method was originally introduced in [30] for solving linear heat flow equations,

and was later generalized to deal with nonlinear equations in [26]. In the case when f and g are
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both convex, the PR splitting method can be described conveniently by the following update:

xt+1 = (2proxγg − I) ◦ (2proxγf − I)(xt), (2)

where I is the identity mapping, γ > 0 and

proxγh(z) := Arg min
u

{
γh(u) +

1

2
‖u− z‖2

}
,

i.e., the set of minimizers of the problem min
u
γh(u)+ 1

2‖u−z‖
2; we note that this set is a singleton

when h is convex. Although the PR splitting method can be faster than the DR splitting method

(see, for example, [18] and Example 1 in Appendix), the PR splitting method was not as popular

as the DR splitting method. This is also witnessed by the fact that the PR splitting method is not

discussed nor mentioned in the recent monograph [5] on operator splitting methods. One of the

main reasons for the unpopularity is that, even in the convex settings, the PR splitting method

is not convergent in general. To guarantee convergence, typically one would require either the

operator (2proxγf − I) or (2proxγg − I) to be a contraction mapping. In applications where f ,

g are both convex, this requirement typically needs f or g to be strongly convex, which largely

limits the applicability of the PR splitting method; see, for example, [12, 26]. In contrast, under

a commonly used constraint qualification which can be easily satisfied, the DR splitting method

converges in the convex case [13, Theorem 20]. Moreover, recently, it has been shown in [25] that

the DR splitting method can be adapted to a nonconvex setting with global convergence guaranteed

under some assumptions. This broadens the applicability of the DR splitting method to cover many

nonconvex feasibility problems and many important nonconvex optimization problems arising in

statistical machine learning such as the `1/2 regularized least squares problem.

In this paper, to broaden the applicability of the PR splitting method, we extend it to a

nonconvex setting. By constructing a merit function which captures the progress of the PR splitting

method, we extend the global convergence of the PR splitting method from the known convex

setting to the case where the objective function can be decomposed as the sum of a strongly

convex Lipschitz differentiable function and a nonconvex function, under suitable assumptions.

As a by-product, this extension also allows us to establish the global convergence and iteration

complexity of a new PR splitting method for convex optimization problems in the absence of strong

convexity. The underlying intuitive idea is that one can decompose a non-strongly convex function

F + G into the sum of a strongly convex function f = F + γ‖ · ‖2 and a nonconvex function

g = G− γ‖ · ‖2, if a γ > 0 can be chosen so that f is strongly convex.

The contributions of this paper are two-fold. First, we establish that, for the sequence gene-

rated by the PR splitting method applied to minimizing the sum of a strongly convex Lipschitz

differentiable function and a proper closed function, if the strongly convex function has a suffi-

ciently large strong convexity modulus and the step-size parameter is chosen below a threshold

that is computable, then any cluster point, if exists, gives a stationary point of the optimization

problem. We also provide sufficient conditions to guarantee boundedness of the sequence gene-

rated. To our knowledge, this is the first work that studies the convergence of the PR splitting

method for nonconvex optimization problems. Second, we demonstrate how the method can be

suitably applied to minimizing a coercive function F +G, where G is a proper closed function, and

F is convex Lipschitz differentiable but not necessarily strongly convex. Even in the case when

G is also convex, it was previously unknown in the literature how the PR splitting method can

be suitably applied to solving it. Our study largely broadens the applicability of the PR splitting

method. We also discuss global iteration complexity of this new PR splitting method under the

additional assumption that G is convex, and establish global linear convergence of the sequence

generated if F +G is further assumed to be strongly convex.
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The rest of the paper is organized as follows. In Section 1.1, we fix the notation and recall

some basic definitions which will be used throughout this paper. In Section 2, we establish the

convergence of the PR splitting method for nonconvex optimization problems where the objective

function can be decomposed as the sum of a strongly convex function and a proper closed function,

under suitable assumptions. In Section 3, we demonstrate how the PR splitting method can be

applied in the absence of strong convexity. In Section 4, as applications, we illustrate how the

PR splitting method can be applied to solving two important classes of nonconvex optimization

problems that arise in the area of statistics and machine learning: constrained least squares problem

and feasibility problems. We also demonstrate our approach numerically. Our concluding remarks

are in Section 5. Finally, in the Appendix, we provide simple and concrete examples illustrating

the different behaviors of the classical PR splitting method, the classical DR splitting method and

our proposed PR splitting method.

1.1 Notation

In this paper, the n-dimensional Euclidean space is denoted by IRn, with the associated inner

product denoted by 〈·, ·〉 and the induced norm denoted by ‖ · ‖. For an extended-real-valued

function f : IRn → (−∞,∞], we say that f is proper if it is never−∞ and its domain, domf := {x ∈
IRn : f(x) < +∞}, is nonempty. Such a function is said to be closed if it is lower semicontinuous.

For a proper function f , we let z
f→ x denote f(z)→ f(x) and z → x. The limiting subdifferential

of f at x ∈ dom f is defined by [31]

∂f(x) :=

{
v ∈ IRn : ∃xt f→ x, vt → v with lim inf

z→xt

f(z)− f(xt)− 〈vt, z − xt〉
‖z − xt‖

≥ 0 for each t

}
.

(3)

From the above definition, one immediately obtains the following robustness property:{
v ∈ IRn : ∃xt f→ x, vt → v , vt ∈ ∂f(xt)

}
⊆ ∂f(x). (4)

The subdifferential (3) reduces to the derivative of f (denoted by ∇f) if f is continuously differen-

tiable, and the classical subdifferential in convex analysis if f is convex (see, for example, [31, Pro-

position 8.12]). For a function f having more than one group of variables, we let ∂xf (resp., ∇xf)

denote the subdifferential (resp., derivative) of f with respect to the variable x.

We say that a function f is a strongly convex function with modulus σ > 0 if f − σ
2 ‖ · ‖

2 is a

convex function. A function f is said to be coercive if lim inf
‖x‖→∞

f(x) = ∞. For a nonempty closed

set S ⊆ IRn, its indicator function δS is defined by

δS(x) =

{
0 if x ∈ S,
+∞ if x /∈ S.

We use the notation dS(x) or dist(x, S) to denote the distance from an x ∈ IRn to S, i.e., dS(x) :=

infy∈S ‖x− y‖. Moreover, we use PS(x) to denote the points in S that are closest to x: note that

PS(x) is a singleton set if S is, in addition, convex.

Finally, for an optimization problem min
x∈IRn

f(x), we use Arg min
x

f(x) to denote the set consisting

of all its minimizers. If Arg min
x

f(x) turns out to be a singleton, we simply denote it as arg min
x

f(x).
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2 Peaceman-Rachford splitting for structured nonconvex pro-

blems

Recall that the class of problems we consider is

min
u

f(u) + g(u), (5)

where f and g are proper closed possibly nonconvex functions. As discussed in the introduction,

even in the case when both f and g are convex, typically one would need f (or g) to be strongly

convex to guarantee convergence of the PR splitting method. Moreover, we recall that the Lipschitz

differentiability of f played an important role in the recent convergence analysis of the closely

related DR splitting method in [25] for (5) in the nonconvex settings. Motivated by these, we

make the following blanket assumption on f throughout this paper.

Assumption 1 (Blanket assumption on f). The function f is strongly convex with a strong

convexity modulus at least σ > 0, and is Lipschitz differentiable so that ∇f has a Lipschitz con-

tinuity modulus at most L > 0.

Notice that the proximal mapping proxγf (z) of a strongly convex function f is well defined for

any γ > 0 at any point z. Thus, in order for the iterates in (2) to be well defined, we only need to

make additionally the following blanket assumption on g in this paper.

Assumption 2 (Blanket assumption on g). The function g is proper closed with a nonempty

proximal mapping proxγg(z) for any z and for the γ > 0 we use in the algorithm.

Under the blanket assumptions, we consider the following adaptation of the PR splitting met-

hod to solve the possibly nonconvex problem (5), which can be easily shown to be equivalent to

(2) in the case when f and g are convex (so that the proximal mappings are single-valued).

PR splitting method

Step 0. Input x0 and γ > 0.

Step 1. Set 
yt+1 = arg min

y

{
f(y) +

1

2γ
‖y − xt‖2

}
,

zt+1 ∈ Arg min
z

{
g(z) +

1

2γ
‖2yt+1 − xt − z‖2

}
,

xt+1 = xt + 2(zt+1 − yt+1).

(6)

Step 2. If a termination criterion is not met, go to Step 1.

Our convergence analysis follows a similar line of arguments (with some intricate modifications)

for showing convergence for the Douglas-Rachford splitting method as in our recent work [25], and

has to make extensive use of the following merit function:

Pγ(y, z, x) := f(y) + g(z)− 3

2γ
‖y − z‖2 +

1

γ
〈x− y, z − y〉 (7)

= Dγ(y, z, x)− 1

γ
‖y − z‖2,
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where Dγ is the so-called Douglas-Rachford merit function given by Dγ(y, z, x) = f(y) + g(z) −
1
2γ ‖y − z‖

2 + 1
γ 〈x− y, z − y〉 (see [25, Definition 2.1]), motivated by [29, Eq. 35].

Before proceeding, we make two important observations. First, it is not hard to see that the

merit function Pγ can alternatively be written as

Pγ(y, z, x) = f(y) + g(z) +
1

2γ
‖2y − z − x‖2 − 1

2γ
‖x− y‖2 − 2

γ
‖y − z‖2

= f(y) + g(z) +
1

2γ
(‖x− y‖2 − ‖x− z‖2 − 2‖y − z‖2),

(8)

where the first relation follows from the elementary relation 〈u, v〉 = 1
2 (‖u + v‖2 − ‖u‖2 − ‖v‖2)

applied with u = x − y and v = z − y in (7), while the second relation is obtained by using the

elementary relation 〈u, v〉 = 1
2 (‖u‖2 +‖v‖2−‖u−v‖2) in (7) with u = x−y and v = z−y. We will

make use of these equivalent formulations in the convergence analysis. Second, we note by using

the optimality conditions for the y and z-updates in (6) that:

0 = ∇f(yt+1) +
1

γ
(yt+1 − xt),

0 ∈ ∂g(zt+1) +
1

γ
(zt+1 − yt+1)− 1

γ
(yt+1 − xt),

(9)

where we made use of the subdifferential calculus rule [31, Exercise 8.8]. Consequently, for all

t ≥ 1,

0 ∈ ∇f(yt) + ∂g(zt) +
1

γ
(zt − yt). (10)

To establish convergence and characterize the cluster point of the sequence generated, we will

subsequently show that limt→∞ ‖zt− yt‖ = 0 and that g is “continuous” at the cluster point along

the sequence generated.

We are now ready to state and prove a convergence result for the PR splitting method (6).

We would like to point out that our proof is following exactly the same line of arguments as

[25, Theorem 1]. However, there are two crucial differences. First, we now make use of the

merit function (7) in place of the Douglas-Rachford merit function. Second, as we will see in

the upper estimate in (20), the factor of γ in the denominator is canceled, and thus the strong

convexity modulus σ comes into play in establishing the non-increasing property of the sequence

{Pγ(yt, zt, xt)}t≥1.

Theorem 1 (Global subsequential convergence). Suppose that 3σ > 2L and the parameter γ

is chosen so that

0 < γ <
3σ − 2L

L2
. (11)

Then the sequence {Pγ(yt, zt, xt)}t≥1 is nonincreasing. Moreover, if a cluster point (y∗, z∗, x∗) of

the sequence exists, then we have

lim
t→∞

‖xt+1 − xt‖ = 2 lim
t→∞

‖zt+1 − yt+1‖ = 0, (12)

the cluster point satisfies z∗ = y∗, and

0 ∈ ∇f(z∗) + ∂g(z∗).

Remark 1. We note that the condition 3σ > 2L indicates that this convergence result can only

be applied when f has a relatively large strong convexity modulus, i.e., when σ > 2
3L. It seems

restrictive at first glance, but we will demonstrate in the next section how this theorem can be
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applied in a wide range of problems that do not explicitly contain a strongly convex part in the

objective. Specifically, we will show that the method can be suitably applied to minimizing a coercive

function F + G, where G is a proper closed function and F is convex Lipschitz differentiable but

not necessarily strongly convex; see Corollary 1.

Proof. We study the behavior of Pγ along the sequence generated from the PR splitting method.

First, using (7) and the definition of the x-update, we see that

Pγ(yt+1, zt+1, xt+1)−Pγ(yt+1, zt+1, xt) =
1

γ
〈xt+1 − xt, zt+1 − yt+1〉 =

1

2γ
‖xt+1 − xt‖2. (13)

Second, making use of the first relation in (8) and the definition of zt+1 as a minimizer, we have

Pγ(yt+1, zt+1, xt)−Pγ(yt+1, zt, xt)

= g(zt+1) +
1

2γ
‖2yt+1 − zt+1 − xt‖2 − 2

γ
‖yt+1 − zt+1‖2

− g(zt)− 1

2γ
‖2yt+1 − zt − xt‖2 +

2

γ
‖yt+1 − zt‖2

≤ 2

γ

(
‖yt+1 − zt‖2 − ‖yt+1 − zt+1‖2

)
=

2

γ

(
‖yt+1 − zt‖2 − 1

4
‖xt+1 − xt‖2

)
,

(14)

where the last relation is due to the definition of xt+1. Consequently, summing (13) and (14), we

have

Pγ(yt+1, zt+1, xt+1)−Pγ(yt+1, zt, xt) ≤ 2

γ
‖yt+1 − zt‖2. (15)

Next, making use of the second relation in (8), we see that

Pγ(yt+1, zt, xt)−Pγ(yt, zt, xt)

= f(yt+1) +
1

2γ
‖xt − yt+1‖2 − f(yt)− 1

2γ
‖xt − yt‖2 − 1

γ
‖yt+1 − zt‖2 +

1

γ
‖yt − zt‖2

≤ −1

2

(
1

γ
+ σ

)
‖yt+1 − yt‖2 − 1

γ
‖yt+1 − zt‖2 +

1

γ
‖yt − zt‖2,

(16)

where, in the last inequality, we used the definition of yt+1 as a minimizer and the strong convexity

of the objective in the minimization problem that defines the y-update. Combining (16) with (15)

gives further that

Pγ(yt+1, zt+1, xt+1)−Pγ(yt, zt, xt) ≤ −1

2

(
1

γ
+ σ

)
‖yt+1−yt‖2+

1

γ
‖yt+1−zt‖2+

1

γ
‖yt−zt‖2. (17)

To further upper estimate (17), observe from the first relation in (9) that

∇f(yt+1) =
1

γ
(xt − yt+1).

Since f is strongly convex with modulus σ > 0 by assumption, we see that for all t ≥ 1,〈
1

γ
(xt − yt+1)− 1

γ
(xt−1 − yt), yt+1 − yt

〉
≥ σ‖yt+1 − yt‖2

=⇒ 〈xt − xt−1, yt+1 − yt〉 ≥ (1 + γσ)‖yt+1 − yt‖2.

Thus, making use of the definition of xt and the above relation, we obtain further that

‖yt+1 − zt‖2 = ‖yt+1 − yt + yt − zt‖2 =

∥∥∥∥yt+1 − yt − 1

2
(xt − xt−1)

∥∥∥∥2
= ‖yt+1 − yt‖2 − 〈yt+1 − yt, xt − xt−1〉+

1

4
‖xt − xt−1‖2

≤ −γσ‖yt+1 − yt‖2 +
1

4
‖xt − xt−1‖2.

(18)
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In addition, observe also from the definition of the x-update, the first relation in (9) and the

Lipschitz continuity of ∇f that for t ≥ 1

2‖yt − zt‖ = ‖xt − xt−1‖ ≤ (1 + γL)‖yt+1 − yt‖. (19)

Combining (18), (19) with (17), we conclude that for any t ≥ 1

Pγ(yt+1, zt+1, xt+1)−Pγ(yt, zt, xt) ≤ 1

2γ

(
(1 + γL)2 − 3γσ − 1

)
‖yt+1 − yt‖2

=
1

2

(
−3σ + 2L+ γL2

)
‖yt+1 − yt‖2.

(20)

By our choice of γ, −3σ + 2L + γL2 < 0. From this we see immediately that {Pγ(yt, zt, xt)} is

nonincreasing. Summing (20) from t = 1 to N − 1 ≥ 1, we obtain that

Pγ(yN , zN , xN )−Pγ(y1, z1, x1) ≤ 1

2

(
−3σ + 2L+ γL2

)N−1∑
t=1

‖yt+1 − yt‖2. (21)

Using this, the closedness of Pγ and the existence of cluster points, we conclude immediately from

(21) that lim
t→∞

‖yt+1−yt‖ = 0. Combining this with (19), we conclude that (12) holds. Furthermore,

combining these with the third relation in (6), we obtain further that lim
t→∞

‖zt+1 − zt‖ = 0.

Consequently, if (y∗, z∗, x∗) is a cluster point of {(yt, zt, xt)} with a convergent subsequence

{(ytj , ztj , xtj )} such that lim
j→∞

(ytj , ztj , xtj ) = (y∗, z∗, x∗), then we must have

lim
j→∞

(ytj , ztj , xtj ) = lim
j→∞

(ytj−1, ztj−1, xtj−1) = (y∗, z∗, x∗). (22)

Since zt is a minimizer of the subproblem,

g(zt) +
1

2γ
‖2yt − zt − xt−1‖2 ≤ g(z∗) +

1

2γ
‖2yt − z∗ − xt−1‖2.

Taking limit along the convergent subsequence and using (22) yields

lim sup
j→∞

g(ztj ) ≤ g(z∗).

Conversely, we have lim inf
j→∞

g(ztj ) ≥ g(z∗) by the lower semicontinuity of g. Thus,

lim
j→∞

g(ztj ) = g(z∗). (23)

Using (4), (12), (23) and passing to the limit in (10) along the convergent subsequence above, we

conclude that the cluster point gives a stationary point of (5), i.e., y∗ = z∗ and

0 ∈ ∇f(z∗) + ∂g(z∗).

This completes the proof.

In the next theorem, we study sufficient conditions to guarantee boundedness of the sequence

generated from the PR splitting method. Thus, a cluster point will necessarily exist under these

conditions.

Theorem 2 (Boundedness of sequence). Suppose that 3σ > 2L and the γ is chosen to satisfy

(11). Suppose in addition that f + g is coercive, i.e., lim inf‖u‖→∞(f + g)(u) = ∞. Then the

sequence {(yt, zt, xt)} generated from (6) is bounded.
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Proof. Recall from Theorem 1 that the merit function is nonincreasing along the sequence generated

from (6). In particular,

Pγ(yt, zt, xt) ≤ Pγ(y1, z1, x1) (24)

whenever t ≥ 1, where

Pγ(yt, zt, xt) = f(yt) + g(zt)− 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2 − 1

γ
‖yt − zt‖2 (25)

from the second relation in (8). Next, recall from the definition of x-update that xt = xt−1+2(zt−
yt), which together with the first relation in (9) gives

∇f(yt) =
1

γ
(xt−1 − yt) =

1

γ
([xt − zt]− [zt − yt]). (26)

Moreover, for the function f whose gradient is Lipschitz continuous with modulus L, we have

f(zt) ≤ f(yt) + 〈∇f(yt), zt − yt〉+
L

2
‖zt − yt‖2. (27)

Combining these with (25) and (24), we see further that

Pγ(y1, z1, x1) ≥ f(yt) + g(zt)− 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2 − 1

γ
‖yt − zt‖2

≥ f(zt) + g(zt)− 〈∇f(yt), zt − yt〉 − 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2 −

(
L

2
+

1

γ

)
‖yt − zt‖2

= f(zt) + g(zt)− 1

γ
〈xt − zt, zt − yt〉 − 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2 − L

2
‖yt − zt‖2

= f(zt) + g(zt) +
1

2

(
1

γ
− L

)
‖yt − zt‖2,

(28)

where the second inequality follows from (27), the first equality follows from (26), while the last

equality follows from the elementary relation 〈u, v〉 = 1
2 (‖u+v‖2−‖u‖2−‖v‖2) applied to u = xt−zt

and v = zt−yt. From (28), the coerciveness of f+g and the fact that γ < 3σ−2L
L2 ≤ 1

L , we conclude

that {zt} and {yt} are bounded. The boundedness of {xt} now follows from these and the first

relation in (9). This completes the proof.

Remark 2 (Comments on the proof of Theorem 2). (i) The technique of using (27) for

establishing (28) was also used previously in [20, Lemma 3.3] for showing that the augmen-

ted Lagrangian function is bounded below along the sequence generated from the alternating

direction method of multipliers for a special class of problems. Here, we applied the technique

to the new merit function Pγ .

(ii) The same technique used here can be applied to establishing the boundedness of the sequence

generated by the DR splitting method studied in [25] under a condition which is slightly weaker

than the one used in [25]. In fact, one can show that, the DR splitting method in [25] generates

a bounded sequence under the blanket assumptions of f and g in [25, Section 3], the condition

that f + g is coercive and the choice of parameter specified in [25, Theorem 4] 1.

To see this, recall that for the DR splitting method, we also have ∇f(yt) = 1
γ (xt−1 − yt) but

have xt = xt−1 + (zt − yt) instead of the third relation in (6). Thus, ∇f(yt) = 1
γ (xt − zt)

1This slightly improves [25, Theorem 4] because [25, Theorem 4] assumed a slightly stronger condition that f

and g are bounded below and one of them is coercive.
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and we have the following estimate for the DR merit function, making use of (27):

Dγ(yt, zt, xt) = f(yt) + g(zt)− 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2

≥ f(zt) + g(zt)− 〈∇f(yt), zt − yt〉 − L

2
‖zt − yt‖2 − 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2

= f(zt) + g(zt)− 1

γ
〈xt − zt, zt − yt〉 − L

2
‖zt − yt‖2 − 1

2γ
‖xt − zt‖2 +

1

2γ
‖xt − yt‖2

= f(zt) + g(zt) +
1

2

(
1

γ
− L

)
‖yt − zt‖2,

where the last equality follows from the elementary relation 〈u, v〉 = 1
2 (‖u+v‖2−‖u‖2−‖v‖2)

applied to u = xt − zt and v = zt − yt. The boundedness of the sequence can then be deduced

under the choice of γ in [25, Theorem 4], which guarantees γ < 1
L , and the assumption that

f + g is coercive.

As in [24, Theorem 4] and [25, Theorem 2], one can also show that the whole sequence generated

is convergent under the additional assumption that Pγ(y, z, x) is a KL function.2 To this end, note

that for any t ≥ 1, we have from (7) and the third relation in (6) that

∇xPγ(yt, zt, xt) =
1

γ
(zt − yt) =

1

2γ
(xt − xt−1). (29)

Moreover, using the second relation in (8), one can obtain

∇yPγ(yt, zt, xt) = ∇f(yt) +
1

γ
(yt − xt)− 2

γ
(yt − zt) =

1

γ
(xt−1 − xt)− 2

γ
(yt − zt) = 0 (30)

where the second equality follows from the first relation in (9), and the last equality follows again

from the third relation in (6). Finally, using the second relation in (8), one can compute that

∂zPγ(yt, zt, xt) = ∂g(zt)− 1

γ
(zt − xt)− 2

γ
(zt − yt)

= ∂g(zt) +
1

γ
(zt − yt)− 1

γ
(yt − xt−1)− 1

γ
(zt − yt) +

1

γ
(yt − xt−1)− 1

γ
(zt − xt)− 2

γ
(zt − yt)

3 − 4

γ
(zt − yt) +

1

γ
(xt − xt−1) = − 1

γ
(xt − xt−1),

(31)

where the inclusion follows from the second relation in (9) and the last equality follows from the

third relation in (6). Consequently, by combining (29), (30), (31) and (19), we see the existence of

κ > 0 so that

dist (0, ∂Pγ(yt, zt, xt)) ≤ κ‖yt+1 − yt‖.

Using this, (20) and following the arguments as in the proof of [25, Theorem 2], it is not hard to

prove the following result. We omit the detailed proof here.

Theorem 3 (Global convergence of the whole sequence). Suppose that 3σ > 2L, the pa-

rameter γ > 0 is chosen as in (11) and that the sequence {(yt, zt, xt)} generated from (6) has

a cluster point (y∗, z∗, x∗). Suppose also that Pγ is a KL function. Then the whole sequence

{(yt, zt, xt)} is convergent.

2We refer the readers to, for example, [1, 2, 7, 8], for the definition and examples of KL functions. In particular,

if f and g are proper closed semi-algebraic functions, then Pγ is a KL function for any γ > 0.
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As we have seen from Theorems 1 and 2, our convergence analysis of the PR splitting method

requires that the nonconvex objective function can be decomposed as f + g where f is strongly

convex. It should be noted that if the strong convexity assumption on f is dropped, then the

sequence generated is not necessarily converging to/clustering at a stationary point even when g

is also convex. On the other hand, in the next section, we will demonstrate how the method can

be suitably applied to minimizing a coercive function F +G, where G is a proper closed function

and F is convex Lipschitz differentiable but not necessarily strongly convex.

3 Peaceman-Rachford splitting methods for nonconvex pro-

blems with non-strongly convex decomposition

In many applications, the underlying optimization problem can be formulated as

min
u

F (u) +G(u) (32)

where F +G is coercive, F is a convex smooth function with a Lipschitz continuous gradient whose

modulus is at most LF > 0, and G is a proper and closed function with a nonempty proximal

mapping proxτG(z) for any z and any τ > 0. For example, when F is the least squares loss

function for linear regression and G is the indicator function of the `1 norm ball, the problem

(32) reduces to the LASSO [32]. This and various related (possibly nonconvex) models have been

studied extensively in the statistical literature; see, for example, [2, 6, 11, 17, 22]. We will also

provide more concrete examples and simulation results later in Section 4.

In view of the structure of (32), a natural way of applying a splitting method would be to

set f(y) = F (y) and g(z) = G(z). However, since this choice of f is not strongly convex, our

convergence theory in Section 2 cannot be applied to deducing convergence of the resulting PR

splitting method.

Thus, we consider an alternative way of splitting the objective in order to obtain a strongly

convex f . To this end, we start by fixing any α > 0 and defining f(y) = F (y) + α
2 ‖y‖

2, g(z) =

G(z) − α
2 ‖z‖

2. Then ∇f is Lipschitz continuous with a modulus at most L = LF + α, and f is

strongly convex with modulus at least σ = α. Thus, one only needs to pick α > 2LF so that

3σ > 2L. Let α = βLF for some β > 2. Then the upper bound of γ in (11) is given by

α− 2LF
(LF + α)2

=
β − 2

(β + 1)2LF
.

Consequently, if we set

f(y) = F (y) +
βLF

2
‖y‖2 and g(z) = G(z)− βLF

2
‖z‖2,

then we can pick 0 < γ < β−2
(β+1)2LF

.3 Moreover, for this choice of γ, the Assumption 2 is satis-

fied for the above choice of g. Hence, it follows from Theorem 2 that the sequence generated by

applying the PR splitting method to this pair of f and g is bounded, and then any cluster point

gives a stationary point of (32), according to Theorem 1. For concreteness and easy reference for

our subsequent discussion, we present this algorithm explicitly below:

3One natural choice of β is to set β = 5 so that maxβ>2
β−2

(β+1)2LF
= 1

12LF
is attained. However, we discover

in our numerical experiments that a smaller β > 2 coupled with a suitable heuristic for updating γ leads to faster

convergence.
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PR splitting method for (32)

Step 0. Input x0, β > 2 and γ ∈
(

0, β−2
(β+1)2LF

)
.

Step 1. Set 
yt+1 = arg min

y

{
F (y) +

βLF
2
‖y‖2 +

1

2γ
‖y − xt‖2

}
,

zt+1 ∈ Arg min
z

{
G(z)− βLF

2
‖z‖2 +

1

2γ
‖2yt+1 − xt − z‖2

}
,

xt+1 = xt + 2(zt+1 − yt+1).

(33)

Step 2. If a termination criterion is not met, go to Step 1.

To the best of our knowledge, the global convergence of the sequence generated from (33) is

new, which we summarize below for concreteness.

Corollary 1. Consider optimization problem (32) and let {(yt, zt, xt)} be the sequence generated

from (33). Then the sequence is bounded, and any cluster point (ȳ, z̄, x̄) would satisfy ȳ = z̄, and

z̄ is a stationary point of (32), that is,

0 ∈ ∇F (z̄) + ∂G(z̄).

Proof. We first note that since (33) is just (6) applied to f(y) = F (y) + βLF

2 ‖y‖
2 and g(z) =

G(z)− βLF

2 ‖z‖
2, we obtain immediately from the above discussion and Theorem 1 that ȳ = z̄ and

z̄ is a stationary point of (32) for any cluster point (ȳ, z̄, x̄). In addition, the objective function

f + g = F + G is coercive by assumption. The boundedness of the sequence {(yt, zt, xt)} now

follows from Theorem 2. This completes the proof.

3.1 Peaceman-Rachford splitting method for convex problems

In this subsection, we suppose in addition that the G in (32) is also convex. Hence, (32) is

a convex problem. We first establish the following global (ergodic) complexity result for the

sequence generated from (33). Similar kinds of complexity results have also been established for

other primal-dual methods for convex optimization problems; see, for example, [33, Theorem 2].

We would like to emphasize that the PR splitting method we discuss here is different from the

classical PR splitting method in the literature: we split the convex objective F +G into the sum of

a strongly convex function f and a possibly nonconvex function g, while the classical PR splitting

method only admits splitting into a sum of convex functions.

Theorem 4 (Global iteration complexity under convexity). Consider optimization problem

(32) with G being convex. Let {(yt, zt, xt)} be the sequence generated from (33) and (ȳ, z̄, x̄) be any

cluster point of this sequence. Then, ȳ = z̄ and z̄ is a solution of (32). Moreover, for any N ≥ 1,

we have

F (z̄N ) +G(z̄N )− F (z̄)−G(z̄) ≤ 1

8βγNLF

(
1

γ
− βLF

)
‖x0 − x̄‖2, (34)

where z̄N := 1
N

∑N
t=1 z

t and

min
0≤t≤N

{‖xt+1 − xt‖} = o(
1√
N

).
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Proof. Since (32) is convex, we conclude that z̄ is actually optimal. We now establish the inequality

(34). First, from the first-order optimality conditions for the y and z-updates in (33), we have

−
(
βLF +

1

γ

)
yt+1 +

1

γ
xt = ∇F (yt+1),(

βLF −
1

γ

)
zt+1 − 1

γ
xt +

2

γ
yt+1 ∈ ∂G(zt+1).

(35)

Moreover, it is not hard to see from the definition of cluster point and (12) that (35) is also satisfied

with x̄ in place of xt and (ȳ, z̄) in place of (yt+1, zt+1). Write wte = wt − w̄ for w = x, y or z for

notational simplicity. We have from (35) (and its counterpart at (ȳ, z̄, x̄)) and the monotonicity of

convex subdifferentials that〈
−
(
βLF +

1

γ

)
yt+1
e +

1

γ
xte, y

t+1
e

〉
≥ 0,

〈(
βLF −

1

γ

)
zt+1
e − 1

γ
xte +

2

γ
yt+1
e , zt+1

e

〉
≥ 0.

Summing these two relations and rearranging terms, we obtain that

〈xte, yt+1 − zt+1〉+ 2〈yt+1
e , zt+1

e 〉 ≥ (1 + βγLF )‖yt+1
e ‖2 + (1− βγLF )‖zt+1

e ‖2. (36)

Next, observe that

〈xte, yt+1 − zt+1〉 =
1

2
〈xte, xt − xt+1〉 =

1

4
(‖xte‖2 + ‖xt − xt+1‖2 − ‖xt+1

e ‖2)

=
1

4
(‖xte‖2 − ‖xt+1

e ‖2) + ‖zt+1 − yt+1‖2

=
1

4
(‖xte‖2 − ‖xt+1

e ‖2) + ‖zt+1
e ‖+ ‖yt+1

e ‖2 − 2〈yt+1
e , zt+1

e 〉,

(37)

where the first and third equalities follow from the third relation in (33), the second equality

follows from the elementary relation 〈u, v〉 = 1
2 (‖u‖2 + ‖v‖2 − ‖u− v‖2) as applied to u = xte and

v = xt − xt+1. Combining (37) with (36), we see further that

1

4
‖xte‖2 −

1

4
‖xt+1

e ‖2 ≥ βγLF (‖yt+1
e ‖2 − ‖zt+1

e ‖2) (38)

Next, using the fact that ∇F is Lipschitz continuous with modulus at most LF , we have

F (zt+1) ≤ F (yt+1) + 〈∇F (yt+1), zt+1 − yt+1〉+
LF
2
‖zt+1 − yt+1‖2. (39)
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From this we see further that

F (zt+1) +G(zt+1)− F (z̄)−G(z̄)

≤ F (yt+1)− F (ȳ) +G(zt+1)−G(z̄) + 〈∇F (yt+1), zt+1 − yt+1〉+
LF
2
‖zt+1 − yt+1‖2

≤ 〈∇F (yt+1), yt+1
e 〉+

〈(
βLF −

1

γ

)
zt+1 − 1

γ
xt +

2

γ
yt+1, zt+1

e

〉
+ 〈∇F (yt+1), zt+1 − yt+1〉+

LF
2
‖zt+1 − yt+1‖2

=

〈
∇F (yt+1) +

(
βLF −

1

γ

)
zt+1 − 1

γ
xt +

2

γ
yt+1, zt+1

e

〉
+
LF
2
‖zt+1 − yt+1‖2

=

〈
−
(
βLF −

1

γ

)
yt+1 +

(
βLF −

1

γ

)
zt+1, zt+1

e

〉
+
LF
2
‖zt+1 − yt+1‖2

=

(
1

γ
− βLF

)
〈yt+1 − zt+1, zt+1

e 〉+
LF
2
‖zt+1 − yt+1‖2

=
1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2) +

1

2

(
(1 + β)LF −

1

γ

)
‖zt+1 − yt+1‖2

≤ 1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2) ≤ 1

8βγLF

(
1

γ
− βLF

)
(‖xte‖2 − ‖xt+1

e ‖2),

(40)

where: the first inequality follows from (39) and the fact that z̄ = ȳ; the second inequality follows

from the subdifferential inequalities applied to F and G at the points yt+1 and zt+1 respectively,

and also the second relation in (35); the second equality follows from the first relation in (35);

the fourth equality follows from the elementary relation 〈u, v〉 = 1
2 (‖u + v‖2 − ‖u‖2 − ‖v‖2) as

applied to u = zt+1
e and v = yt+1 − zt+1; the second last inequality follows from the fact that

0 < γ < β−2
(β+1)2LF

so that (1 + β)LF − 1
γ < 0, while the last inequality follows from (38).

Summing both sides of (40) from t = 0 to N −1 ≥ 0 and using the convexity of F +G, we have

F (z̄N ) +G(z̄N )− F (z̄)−G(z̄) ≤ 1

N

N−1∑
t=0

(F (zt+1) +G(zt+1)− F (z̄)−G(z̄))

≤ 1

8βγNLF

(
1

γ
− βLF

)
‖x0 − x̄‖2,

where z̄N is defined in the statement of the theorem. This proves (34).

Finally, observe from the last equality in (40) that for all t ≥ 1

0 ≤ F (zt+1) +G(zt+1)− F (z̄)−G(z̄)

≤ 1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2) +

1

2

(
(1 + β)LF −

1

γ

)
‖zt+1 − yt+1‖2,

where the first inequality follows from the optimality of z̄. Rearranging terms in the above relation,

we see further that(
1

γ
− (1 + β)LF

)
‖zt+1 − yt+1‖2 ≤

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2).

Using this relation and the definition of the x-update, we obtain

1

4

N−1∑
t=0

‖xt+1 − xt‖2 =

N−1∑
t=0

‖zt+1 − yt+1‖2 ≤ γ

1− (1 + β)γLF

(
1

γ
− βLF

)N−1∑
t=0

(‖yt+1
e ‖2 − ‖zt+1

e ‖2)

≤ 1

4βLF (1− (1 + β)γLF )

(
1

γ
− βLF

)
‖x0 − x̄‖2,
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where the last inequality is due to (38). Thus,
∑+∞
t=0 ‖xt+1 − xt‖2 < +∞ and so,

∑2N−1
t=N ‖xt+1 −

xt‖2 → 0 as N →∞. Now consider αN := min0≤t≤N{‖xt+1 − xt‖2} for all N ≥ 0. Then, we have

αN+1 ≤ αN for all N ≥ 0 and,

N α2N ≤ αN + . . . α2N−1 ≤
2N−1∑
t=N

‖xt+1 − xt‖2 → 0.

This implies that αN = o(1/N). Therefore, the conclusion follows. This completes the proof.

Next, we show that the PR splitting method exhibits linear convergence in solving (32) if G

is convex and F + G is strongly convex. We note that, for the classical PR splitting method,

linear convergence under strongly convexity is known; see [26, Remark 10 and Proposition 4]. As

explained before, here we are considering a different PR splitting method.

Proposition 1. (Linear convergence under strong convexity) Consider optimization pro-

blem (32) with G being convex. Suppose that F +G is indeed strongly convex. Let {(yt, zt, xt)} be

the sequence generated from (33). Then {(yt, zt, xt)} converges linearly to (ȳ, z̄, x̄) with ȳ = z̄ and

z̄ being the unique optimal solution for (32), i.e., there exist M > 0 and r ∈ (0, 1) such that for

all t ≥ 1,

max{‖yt − ȳ‖2, ‖zt − z̄‖2, ‖xt − x̄‖2} ≤M rt.

Proof. Let (ȳ, z̄, x̄) be any cluster point of the sequence {(yt, zt, xt)}. As before, we write wte =

wt − w̄ for w = x, y or z for notational simplicity. From the preceding theorem ȳ = z̄ and z̄ is

optimal for (32). Note that F+G is strongly convex. Hence, the optimal solution of (32) exists and

is unique. Consequently, the whole sequence {(yt, zt)} converges to the unique limit (z̄, z̄), where

z̄ is the unique solution of (32). From this and (35) one can deduce that {xt} is also convergent,

and hence, converges to x̄. We next establish linear convergence.

Denote the strong convexity modulus of F +G by σ1. From (40), the strong convexity of F +G

and the fact that z̄ is the solution of (32), we see that for all t ≥ 1,

σ1
2
‖zt+1
e ‖2 ≤ F (zt+1) +G(zt+1)− F (z̄)−G(z̄) ≤ C(‖xte‖2 − ‖xt+1

e ‖2), (41)

where C := 1
8βγLF

(
1
γ − βLF

)
. Moreover, from the last inequality in (40), we have for all t ≥ 1,

C1(‖yt+1
e ‖2 − ‖zt+1

e ‖2) ≤ C(‖xte‖2 − ‖xt+1
e ‖2),

where C1 = 1
2

(
1
γ − βLF

)
. It then follows that

‖yt+1
e ‖2 − C

C1
(‖xte‖2 − ‖xt+1

e ‖2) ≤ ‖zt+1
e ‖2.

This together with (41) gives us that for all t ≥ 1,

‖yt+1
e ‖2 ≤

(
2C

σ1
+

C

C1

)
(‖xte‖2 − ‖xt+1

e ‖2). (42)

On the other hand, note from the first relation in (35) that

−
(
βLF +

1

γ

)
yt+1
e +

1

γ
xte = ∇F (yt+1)−∇F (ȳ).

This together with the Lipschitz continuity of ∇F implies that

−
(
βLF +

1

γ

)
‖yt+1
e ‖+

1

γ
‖xte‖ ≤ ‖∇F (yt+1)−∇F (ȳ)‖ ≤ LF ‖yt+1

e ‖
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and consequently, ‖xte‖ ≤ ((1 + β)γLF + 1)‖yt+1
e ‖. Thus, we obtain that, for all t ≥ 1

1

((1 + β)γLF + 1)2
‖xte‖2 ≤ ‖yt+1

e ‖2 ≤
(

2C

σ1
+

C

C1

)
(‖xte‖2 − ‖xt+1

e ‖2).

This shows that there exists r ∈ (0, 1) such that

‖xt+1
e ‖2 ≤ r‖xte‖2 for all t ≥ 1.

It follows that

‖xte‖2 ≤ ‖x0 − x̄‖2 rt for all t ≥ 1.

Moreover, from (41) and (42), this further yields that, for all t ≥ 1,

‖zt+1
e ‖2 ≤ 2C

σ1
‖xte‖2 ≤

2C‖x0 − x̄‖2

σ1
rt.

and

‖yt+1
e ‖2 ≤

(
2C

σ1
+

C

C1

)
‖xte‖2 ≤

(
2C

σ1
+

C

C1

)
‖x0 − x̄‖2 rt.

Therefore, the conclusion follows.

4 Applications

In this section, we apply the PR splitting method (33) to solving two important class of nonconvex

optimization problems: constrained least squares problem and feasibility problems, based on our

discussion in Section 3.

Constrained least squares problems. A common type of problems that arises in the area of

statistics and machine learning is the following constrained least squares problem:

min
u∈D

1
2‖Au− b‖

2, (43)

where A is a linear map, b is a vector of suitable dimension, and D is a nonempty compact set that

is not necessarily convex. See [23,32] for concrete examples of (43).

The classical PR splitting method applied to (43) does not have a convergence guarantee. As

an alternative, as discussed in Section 3, we can set f(y) = 1
2‖Ay − b‖

2 + βλmax(A
TA)

2 ‖y‖2 and

g(z) = δD(z)− βλmax(A
TA)

2 ‖z‖2 and apply the PR splitting method accordingly.

We next discuss computation of the proximal mappings. We start with the proximal mapping

of γg. From the definition, for each w, the proximal mapping gives the set of minimizers of

min
z∈D

{
−βλmax(ATA)

2
‖z‖2 +

1

2γ
‖z − w‖2

}
.

It is clear that this set is given by PD

(
w

1−βλmax(ATA)γ

)
since γ < 1

βλmax(ATA)
. On the other hand,

to compute the proximal mapping for γf , we consider the following optimization problem for each

w

min
y

{
1

2
‖Ay − b‖2 +

βλmax(ATA)

2
‖y‖2 +

1

2γ
‖y − w‖2

}
,

whose unique minimizer is given by

y = [(βγλmax(ATA) + 1)I + γATA]−1(w + γAT b).
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Thus, the PR splitting method for (43) can be stated as follows:

PR splitting method for (43)

Step 0. Input x0, β > 2 and γ ∈
(

0, β−2
(β+1)2λmax(ATA)

)
.

Step 1. Set 
yt+1 = [(βγλmax(ATA) + 1)I + γATA]−1(xt + γAT b),

zt+1 ∈ PD
(

2yt+1 − xt

1− βλmax(ATA)γ

)
,

xt+1 = xt + 2(zt+1 − yt+1).

(44)

Step 2. If a termination criterion is not met, go to Step 1.

As a consequence of Corollary 1, we see that Algorithm (44) generates a bounded sequence such

that any of its cluster point gives a stationary point of (43). We note that this global convergence

result of (44) is new even when D is convex.

To illustrate our proposed approach, we now test the PR splitting method (44) on solving

(43). We compare our algorithm against the DR splitting method in [25]. Our initialization and

termination criteria for both algorithms are the same as in [25, Section 5]; both algorithms are

initialized at the origin and terminated when

max{‖xt − xt−1‖, ‖yt − yt−1‖, ‖zt − zt−1‖}
max{‖xt−1‖, ‖yt−1‖, ‖zt−1‖, 1}

< tol (45)

for some tol > 0. Note that, in general, the upper bound of γ in algorithm (44) might be too

small in practical computation. Thus, following a technique used in [25, Section 5] for the DR

splitting method, we adopt a heuristic for PR splitting method in our numerical simulation, which

combines algorithm (44) with a specific update rule of the parameter γ. In particular, we set

β = 2.2 and start with γ = 0.93/(βλmax(ATA)). We then update γ as max{γ2 , 0.9999·γ1} whenever

γ > γ1 := β−2
(β+1)2λmax(ATA)

and the sequence satisfies either ‖yt − yt−1‖ > 1000
t or ‖yt‖ > 1010.

Following a similar discussion as in [25, Remark 4], one can show that this heuristic leads to a

bounded sequence which clusters at a stationary point of (43). On the other hand, for the DR

splitting method, we use the same heuristics described in [25, Section 5] for updating γ but we

consider three different initial γ’s: k · γ0 for k = 10, 30 and 50, with γ0 = (
√

3
2 − 1)/λmax(ATA).

These variants are denoted by DR10, DR30 and DR50, respectively.

In our first numerical experiment, we first randomly generate an m×n matrix A, a noise vector

ε ∈ IRm, and also an x̂ ∈ IRr with r = dm10e, all with i.i.d. standard Gaussian entries. We further

scale each column of A to have norm 1. Next, we generate a random sparse vector x̃ ∈ IRn by first

setting x̃ = 0 and then assigning randomly r entries in x̃ to be x̂. Finally, we set b = Ax̃+ 0.01 · ε
and D = {x ∈ IRn : ‖x‖0 ≤ r, ‖x‖∞ ≤ 106}; here ‖x‖0 denotes the cardinality of x and ‖x‖∞ is

the `∞ norm of x.

We generate 50 random instances as described above for each pair of (m,n), where m ∈
{100, 200, 300, 400, 500} and n ∈ {4000, 5000, 6000}. Our results are reported in Table 1, where we

present the number of iterations and the function value at termination4 averaged over the 50 in-

stances. One can observe that the PR splitting method is faster than the DR splitting methods for

larger m. Besides, the function values obtained by the PR splitting method are usually comparable

with DR30, worse than DR50 and better than DR10.

4We choose tol = 10−8, and we report 1
2
‖Azt − b‖2 for both methods.
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Table 1: Comparing DR10, DR30, DR50 and PR splitting for constrained least squares problem on

random instances.

Data DR10 DR30 DR50 PR

m n iter fval iter fval iter fval iter fval

100 4000 805 5.00e-01 225 2.67e-01 274 7.73e-02 324 3.17e-01

100 5000 962 6.43e-01 252 4.96e-01 291 2.06e-01 370 4.95e-01

100 6000 1137 6.18e-01 326 5.02e-01 301 2.53e-01 436 4.76e-01

200 4000 508 5.32e-01 172 4.74e-02 217 9.20e-03 185 7.59e-02

200 5000 624 5.78e-01 195 6.93e-02 234 9.10e-03 224 2.06e-01

200 6000 723 6.93e-01 220 1.60e-01 250 8.94e-03 281 1.77e-01

300 4000 415 1.41e-01 141 1.33e-02 184 1.31e-02 123 1.39e-02

300 5000 489 2.70e-01 154 1.39e-02 201 1.35e-02 150 1.42e-02

300 6000 567 5.20e-01 170 1.36e-02 215 1.32e-02 187 1.44e-02

400 4000 322 4.35e-02 124 1.78e-02 166 1.75e-02 91 1.79e-02

400 5000 406 9.08e-02 137 1.77e-02 179 1.75e-02 115 1.83e-02

400 6000 481 1.48e-01 148 1.82e-02 194 1.77e-02 140 1.85e-02

500 4000 258 2.53e-02 114 2.26e-02 160 2.23e-02 75 2.27e-02

500 5000 314 2.97e-02 124 2.20e-02 166 2.17e-02 92 2.22e-02

500 6000 406 4.05e-02 135 2.25e-02 178 2.22e-02 112 2.27e-02

We also perform experiments using real data. We consider four sets of real data for the A and

b used in (43): leukemia data, lymph node status data, breast cancer prognosis data and colon

tumor gene expression data. We use the leukemia data pre-processed in [34], that has 3501 genes

and 72 samples. The lymph node status data we use are pre-processed in [14], with 4514 genes

and 148 samples. The breast cancer prognosis data we use are pre-processed in [34], containing

4919 genes and 76 samples. Finally, we use the data pre-processed in [19] with 2000 genes and 62

samples for the colon tumor gene expression data.

Similar to [21, Section 3.3], for all the data, we first standardize A and b to make each column

have mean 0 and variance 1, and then scale the columns of A to have unit norm. For the A and b

thus constructed, we solve (43) with D = {x ∈ IRn : ‖x‖0 ≤ r, ‖x‖∞ ≤ 106} for r = 10, 20, 30 by

the PR splitting method (44) and compare it with DR10, DR30 and DR50. Our numerical results

are presented in Table 2,5 where one can see that PR is slower than DR50 and faster than DR10.

Moreover, it usually outperforms DR30 in terms of function values, and its speed is comparable

with DR30 for the Breast and the Colon data.

Table 2: Comparing DR10, DR30, DR50 and PR splitting on real data.

Data r
DR10 DR30 DR50 PR

iter fval iter fval iter fval iter fval

10 8242 2.40e+00 1805 3.92e+00 1229 3.92e+00 3461 2.47e+00

Leukemia 20 7890 2.32e+00 3727 6.09e-01 3065 5.81e-01 6608 3.05e-01

30 12530 2.24e-01 5011 3.01e-01 2988 1.47e-01 8265 1.20e-01

10 1345 2.93e+01 758 2.90e+01 496 2.90e+01 1297 2.76e+01

Lymph 20 5912 2.26e+01 1910 1.91e+01 895 1.73e+01 2529 1.84e+01

30 9354 7.91e+00 1883 1.34e+01 939 1.44e+01 2089 8.27e+00

10 2338 1.28e+01 2705 9.33e+00 1095 8.40e+00 1656 1.33e+01

Breast 20 14359 2.90e+00 2345 3.53e+00 2824 4.11e+00 2906 2.81e+00

30 9905 6.96e-01 5162 1.33e+00 3802 7.50e-01 8241 9.58e-01

10 7072 8.08e+00 4313 8.08e+00 3352 8.08e+00 4463 8.08e+00

Colon 20 14393 3.20e+00 7011 1.95e+00 9798 2.29e+00 6187 1.89e+00

30 18361 7.17e-01 8952 6.45e-01 4922 7.26e-01 10937 1.33e+00

5We choose tol = 10−5, and we report 1
2
‖Azt − b‖2 for both methods.
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Feasibility problems. Another important problem in optimization is the feasibility problem

[2–4, 9, 28]. We consider the following simple version: finding a point in the intersection of a

nonempty closed convex set C and a nonempty compact set D. It is well known that this problem

can be modeled via (32) by setting F (u) = 1
2d

2
C(u) and G(u) = δD(u); see, for example, [27]. For

this choice of F , we have LF = 1.

As before, it can be shown that the proximal mapping of γg is given by PD

(
w

1−βγ

)
since γ < 1

β .

We next compute the proximal mapping for γf in this case. From the definition, for each w, we

consider the following optimization problem

v := min
y

{
1

2
d2C(y) +

β

2
‖y‖2 +

1

2γ
‖y − w‖2

}
= min

u∈C
min
y

{
1

2
‖y − u‖2 +

β

2
‖y‖2 +

1

2γ
‖y − w‖2

}
.

(46)

Notice that the inner minimization on the right hand side is attained at

y =
γu+ w

(1 + β)γ + 1
. (47)

Plugging (47) back into the (46), we see further that

v =
1

((1 + β)γ + 1)2
min
u∈C

{
1

2
‖(1 + βγ)u− w‖2 +

β

2
‖γu+ w‖2 +

γ

2
‖u− (1 + β)w‖2

}
. (48)

It is routine to show that the minimum in (48) is attained at

u = PC

(
w

1 + βγ

)
.

Combining this with (47), the proximal mapping of γf at w is given by

γPC

(
w

1+βγ

)
+ w

(1 + β)γ + 1
.

Thus, the PR splitting method for (32) with F (u) = 1
2d

2
C(u) and G(u) = δD(u) can be described

as follows:

PR splitting method for (32) with F (u) = 1
2d

2
C(u) and G(u) = δD(u)

Step 0. Input x0, β > 2 and γ ∈
(

0, β−2
(β+1)2

)
.

Step 1. Set 
yt+1 =

γPC

(
xt

1+βγ

)
+ xt

(1 + β)γ + 1
,

zt+1 ∈ PD
(

2yt+1 − xt

1− βγ

)
,

xt+1 = xt + 2(zt+1 − yt+1).

(49)

Step 2. If a termination criterion is not met, go to Step 1.

Similarly, as an immediate consequence of Corollary 1, we see that Algorithm (49) generates

a bounded sequence such that any of its cluster point gives a stationary point of (32). We would

like to point out that this global convergence result of (49) is new even when D is also convex.
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As an illustration of our proposed approach, we now test the PR splitting method (49) on solving

(32) with F (u) = 1
2d

2
C(u) and G(u) = δD(u) via MATLAB experiments. We again benchmark

our algorithm against the DR splitting method in [25]. Both algorithms are initialized at the

origin and terminated when (45) is satisfied with tol = 10−8. Also, as in the previous subsection,

we adopt a heuristic for updating γ following the technique used in [25, Section 5]. Specifically,

for the PR splitting method (49), we set β = 2.2 and start with γ = 0.93/β and update γ as

max{γ2 , 0.9999 ·γ1} whenever γ > γ1 := β−2
(β+1)2 , and the sequence satisfies either ‖yt−yt−1‖ > 1000

t

or ‖yt‖ > 1010. Following a similar discussion as in [25, Remark 4], this heuristic can be shown to

give a bounded sequence that clusters at a stationary point of (32). On the other hand, for the

DR splitting method, we adopt the same heuristics described in [25, Section 5] for updating γ but

we consider three different initial γ’s: k · γ0 for k = 50, 100 and 150, with γ0 :=
√

3
2 − 1. These

variants are denoted by DR50, DR100 and DR150, respectively.

As in [25, Section 5], we consider the problem of finding an r-sparse solution of a randomly

generated linear system Ax = b. To be concrete, we set C = {x ∈ IRn : Ax = b} and D = {x ∈
IRn : ‖x‖0 ≤ r, ‖x‖∞ ≤ 106}; here ‖x‖0 denotes the cardinality of x and ‖x‖∞ is the `∞ norm of

x. For the set C, we first generate an m × n matrix A and an x̂ ∈ IRr with r = dm5 e, both with

i.i.d. standard Gaussian entries. We then set x̃ to be the n-dimensional zero vector and randomly

assign r entries in x̃ to be x̂. We further project this x̃ onto [−106, 106]n so that x̃ ∈ D. Finally, we

set b = Ax̃. Consequently, the intersection C ∩D is nonempty for the instance generated because

it contains x̃. In particular, this means that the globally optimal value of minu{ 12d
2
C(u) : u ∈ D}

is zero.

In our experiments, we generate 50 random instances as described above for each pair of (m,n),

where m ∈ {100, 200, 300, 400, 500} and n ∈ {4000, 5000, 6000}. We report our results in Tables 3

and 4, where we present the number of iterations averaged over the 50 instances, the largest

and smallest function values at termination,6 and also the number of successes and failures in

identifying a sparse solution of the linear system.7 We also present the average number of iterations

for successful instances (iters) and failed instances (iterf).

In Table 3, we compare our PR splitting method with DR150. One can observe that this version

of DR splitting method outperforms the PR splitting method in terms of the solution quality in

this setting. However, the PR splitting method is consistently faster and its performance becomes

comparable with the DR splitting method for easier instances (larger m and smaller n/m).

We also present in Table 4 the numerical results for DR50 and DR100. One can see that the

DR splitting method becomes faster (while still slower than the PR splitting method) for these

two smaller initial γ, at the price of fewer successful instances.

5 Concluding remarks

In this paper, we studied the applicability of the PR splitting method for solving nonconvex opti-

mization problems. We established global convergence of the method when applied to minimizing

the sum of a strongly convex Lipschitz differentiable function f and a proper closed function g,

under suitable assumptions. Exploiting the possible nonconvexity of g, we showed how to suitably

apply the PR splitting method to a large class of convex optimization problems whose objective

function is not necessarily strongly convex. This significantly broadens the applicability of the PR

splitting method to cover feasibility problems and many constrained least squares problems.

6For both methods, we report 1
2
d2C(zt).

7We declare a failure if the function value at termination is above 10−6, and a success if the value is below 10−12.
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Table 3: Comparing DR150 and PR splitting on random instances.

Data DR150 PR

m n iter fvalmax fvalmin succ fail iters iterf iter fvalmax fvalmin succ fail iters iterf
100 4000 2073 3e-02 1e-16 36 14 1861 2617 297 6e-02 4e-05 0 50 - 297

100 5000 2931 3e-02 1e-16 12 38 1842 3275 367 5e-02 3e-05 0 50 - 367

100 6000 2014 2e-02 2e-16 5 45 1891 2028 431 5e-02 8e-08 0 49 - 423

200 4000 833 7e-02 3e-16 49 1 825 1219 189 2e-01 1e-15 15 35 227 173

200 5000 970 5e-02 2e-16 48 2 947 1528 230 1e-01 2e-15 11 39 297 211

200 6000 1254 4e-02 3e-16 44 6 1193 1704 277 1e-01 3e-15 4 46 344 271

300 4000 607 3e-15 2e-16 50 0 607 - 132 3e-01 9e-16 38 12 138 111

300 5000 705 3e-15 3e-16 50 0 705 - 163 2e-01 1e-15 24 26 181 146

300 6000 819 3e-15 4e-16 50 0 819 - 204 2e-01 2e-15 16 34 241 187

400 4000 523 3e-15 5e-17 50 0 523 - 95 2e-01 8e-16 44 6 96 91

400 5000 574 4e-15 2e-16 50 0 574 - 125 3e-01 1e-15 43 7 127 114

400 6000 655 4e-15 5e-16 50 0 655 - 156 3e-01 2e-15 27 23 165 145

500 4000 500 2e-16 7e-19 50 0 500 - 106 2e-01 6e-16 49 1 64 2173

500 5000 521 1e-15 4e-17 50 0 521 - 91 3e-01 1e-15 47 3 91 87

500 6000 560 4e-15 4e-16 50 0 560 - 123 3e-01 1e-15 47 3 124 108

Table 4: Computational results for DR50 and DR100.

Data DR50 DR100

m n iter fvalmax fvalmin succ fail iters iterf iter fvalmax fvalmin succ fail iters iterf
100 4000 336 4e-02 6e-16 1 49 423 334 854 2e-02 2e-16 5 45 716 870

100 5000 345 4e-02 3e-16 1 49 423 343 681 2e-02 4e-16 2 48 683 681

100 6000 349 3e-02 5e-03 0 50 - 349 647 2e-02 3e-16 1 49 715 646

200 4000 331 1e-01 4e-16 17 33 351 321 711 7e-02 8e-17 48 2 669 1728

200 5000 332 8e-02 9e-16 3 47 357 330 983 5e-02 1e-16 44 6 864 1857

200 6000 341 7e-02 5e-16 6 44 396 333 1186 4e-02 1e-16 24 26 802 1540

300 4000 319 2e-01 1e-16 45 5 315 353 489 3e-15 4e-16 50 0 489 -

300 5000 332 1e-01 5e-16 29 21 335 328 545 3e-15 4e-16 50 0 545 -

300 6000 341 1e-01 6e-16 16 34 378 323 674 5e-02 3e-16 49 1 651 1799

400 4000 271 3e-15 9e-16 50 0 271 - 405 4e-15 2e-16 50 0 405 -

400 5000 301 1e-01 8e-16 48 2 296 413 453 4e-15 5e-16 50 0 453 -

400 6000 329 1e-01 5e-16 40 10 330 329 516 4e-15 5e-16 50 0 516 -

500 4000 244 5e-15 2e-16 50 0 244 - 363 3e-15 2e-16 50 0 363 -

500 5000 269 4e-15 7e-16 50 0 269 - 404 5e-15 3e-16 50 0 404 -

500 6000 295 5e-15 4e-16 50 0 295 - 442 5e-15 9e-16 50 0 442 -

Appendix: Concrete numerical examples

In this appendix, we provide some simple and concrete examples illustrating the different behaviors

of the classical PR splitting method, the classical DR splitting method and our proposed PR

splitting method (33).

The first example shows that, even in the convex setting, the classical PR splitting method can

be faster than the classical DR splitting method, and our proposed PR method can outperform

the classical DR method for some particular choice of the parameter γ. The second example on

nonconvex feasibility problem shows that the classical PR method can diverge while our proposed

PR method converges linearly to a solution for the feasibility problem.

Example 1. (Classical DR splitting method vs classical/proposed PR method) Consider

f(x) = ‖x‖2 and g(x) = 0 for all x ∈ IRn. Then, a direct verification shows that, for any γ > 0,

proxγf (z) = arg min
u

{
γ‖u‖2 +

1

2
‖u− z‖2

}
=

z

2γ + 1
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and

proxγg(z) = arg min
u

{
1

2
‖u− z‖2

}
= z.

Thus, the classical DR method reads

xt+1 =
I + (2proxγg − I) ◦ (2proxγf − I)

2
(xt) =

1

2γ + 1
xt = · · · =

(
1

2γ + 1

)t+1

x0,

while the classical PR method reads

xt+1 = (2proxγg − I) ◦ (2proxγf − I)(xt) =
1− 2γ

2γ + 1
xt = · · · =

(
1− 2γ

2γ + 1

)t+1

x0.

Thus, for this example, the classical PR method converges faster than the classical DR method

when γ ∈ (0, 1).

Moreover, let β = 2.5 and γ < β−2
(β+1)2LF

= 1
49 . Then, the proposed PR method (33) reads

yt+1 = arg min
y

{
7

2
‖y‖2 +

1

2γ
‖y − xt‖2

}
=

1

1 + 7γ
xt,

zt+1 = arg min
z

{
−5

2
‖z‖2 +

1

2γ
‖2yt+1 − xt − z‖2

}
=

1

1− 5γ
(2yt+1 − xt),

xt+1 = xt + 2(zt+1 − yt+1) =

(
1− 4γ

(1− 5γ)(1 + 7γ)

)
xt.

(50)

Note that, for γ = 0.01 < β−2
(β+1)2LF

= 1
49 , we have

0 < 1− 4γ

(1− 5γ)(1 + 7γ)
≤ 0.97 <

1

2γ + 1
.

Thus, for γ = 0.01, our proposed PR method (33) is faster than the classical DR method for this

example.

Example 2. (classical PR method vs the proposed PR method) Let C = {(0, 0)} and

D =
(
{0}×IR

)
∪
(
IR×{0}

)
. We consider the feasibility problem of finding a point in the intersection

of C and D. We start with the initial point x0 = (a, 0) with a 6= 0. Then, the classical PR splitting

method applies (6) to f(x) = δC(x) and g(x) = δD(x) for all x ∈ IR2, and reduces to

xt+1 = (2proxγg − I) ◦ (2proxγf − I)(xt) = (2PD − I) ◦ (2PC − I)(xt) = −xt.

Thus, the classical PR splitting method diverges and cycles between two points (a, 0) and (−a, 0).

On the other hand, let β = 5 and γ ∈
(
0, 1

12

)
and consider the proposed PR method (49) for

feasibility problems. This algorithm reads

yt+1 =
γPC

(
xt

1+βγ

)
+ xt

(1 + β)γ + 1
=

xt

6γ + 1
,

zt+1 ∈ PD
(

2yt+1 − xt

1− βγ

)
=

{
2yt+1 − xt

1− 5γ

}
,

xt+1 = xt + 2(zt+1 − yt+1) =

(
1− 2γ

(1− 5γ)(6γ + 1)

)
xt,

(51)

where the formula for the z-update follows from the fact that xt, yt ∈ IR × {0} ⊂ D, and so is

2yt+1 − xt by the construction. Hence, the proposed PR method (51) converges to (0, 0) ∈ C ∩D
linearly in this case.
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