
28 April 2024

An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints / Cocchi,
Guido; Liuzzi, G.; Papini, Alessandra; Sciandrone, Marco. - In: COMPUTATIONAL OPTIMIZATION AND
APPLICATIONS. - ISSN 0926-6003. - STAMPA. - 69:(2018), pp. 267-296. [10.1007/s10589-017-9953-2]

Original Citation:

An implicit filtering algorithm for derivative-free multiobjective
optimization with box constraints

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1007/s10589-017-9953-2

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1107716 since: 2018-11-05T14:15:39Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

An implicit filtering algorithm for derivative-free

multiobjective optimization with box constraints

G. Cocchi∗, G. Liuzzi†, A. Papini‡, M. Sciandrone∗

November 16, 2017

Abstract. This paper is concerned with the definition of new derivative-free methods for
box constrained multiobjective optimization. The method that we propose is a non-trivial
extension of the well-known implicit filtering algorithm to the multiobjective case. Global
convergence results are stated under smooth assumptions on the objective functions. We
also show how the proposed method can be used as a tool to enhance the performance of
the Direct MultiSearch (DMS) algorithm. Numerical results on a set of test problems show
the efficiency of the implicit filtering algorithm when used to find a single Pareto solution
of the problem. Furthermore, we also show through numerical experience that the proposed
algorithm improves the performance of DMS alone when used to reconstruct the entire Pareto
front.

Keywords: Multiobjective nonlinear programming, derivative-free optimization, implicit fil-
tering

AMS subject classification: 90C30, 90C56, 65K05

1 Introduction

Many engineering and financial problems do not fit well in the classical optimization framework
where the minimization (or maximization) of a single objective function, subject to some con-
straints on the variables, is pursued. Indeed, many applications require the optimization of two
(or even more), often conflicting, objective functions at the same time. Such problems are known
in the literature as multiobjective optimization (MO) problems (see, e.g., [18]). One remarkable
peculiarity of MO problems, with respect to single objective ones, is that it is possible to con-
ceptually distinguish between the problem solver and the decision maker. This is because, as we
will see, a MO problem can have (and indeed it has) many “equivalent” (so-called non-dominated)
solutions. More precisely, such solutions are equivalent for what concerns the problem solver (they
are kind of indistinguishable one from another) but, they can be very different with respect to the
decision maker. Such distinction of roles between the problem solver and the decision maker is
so profound in the context of MO that methods for the solution of MO problems can be roughly
classified with respect to the moment when preferences of the decision maker are established. In
this respect, we have:

- methods without preferences, in which the preferences of the decision maker are completely
disregarded and finding any multiobjective solution is considered acceptable;

∗Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Via di Santa Marta 3, 50139 Firenze (Italy)
†Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185

Roma (Italy)
‡Dipartimento di Ingegneria Industriale, Università di Firenze, Viale Morgagni 40/44, 50134 Firenze (Italy)

1

- methods with a-priori statement of preferences, in which decision maker preferences are
needed in order to reduce the solution of a multiobjective problem to the solution of (a
sequence of) single objective problems, through a process called scalarization; the process
thus provide a single multiobjective solution, which depends on the parameters chosen by
the decision maker to combine the objective functions into a scalar one.

- methods with a-posteriori employment of preferences, in which decision maker preferences are
considered at the end of the optimization process in order to choose the best solution out of a
set of equivalent (non-dominated) solutions; the richer the set of final solutions presented to
the decision maker, the better, i.e. the more freedom the decision maker has when selecting
her/his preferred solution.

In this paper, we consider the following bound-constrained MO problem

min
x∈Rn

(f1(x), f2(x), . . . , fm(x))

s.t. li ≤ xi ≤ ui, i = 1, . . . , n,
(1)

where fi : Rn 7→ R, i = 1, . . . ,m, are m ≥ 2 real-valued objective functions, and li, ui ∈ R with
li < ui.

In particular, even though we require each objective function to be continuously differentiable,
we assume them to be of the black-box type, i.e. first (and higher) order derivatives cannot be
directly computed nor approximated in any way. We remark that this situation is common in
many applications, see e.g. [3]. Indeed, derivatives of the functions defining the problem could
be impossible or too costly to obtain, for instance when objective functions values are computed
by time-consuming and complex simulation programs. Furthermore, it should be noted that,
even in those cases where finite differences are affordable and could ideally be used, approximated
derivatives could be untrustworthy and useless simply because the problem functions are affected by
noise. In such cases, the so-called derivative-free methods can be used to solve the problem. Hence,
we are interested in the development and analysis of derivative-free methods for MO problems.

When a single objective is to be minimized, one of the most popular and efficient derivative-free
methods is the so-called implicit filtering algorithm, originally proposed in [12] and applied to the
solution of a variety of optimal design problems, see e.g. [1, 2, 5, 7, 9, 10, 13]. The implicit filtering
algorithm is basically a finite-difference gradient-based method in that it makes use of gradient
approximations obtained by finite differences. However, what makes the algorithm well-suited for
the class of problems we are interested in is that the step size in the difference is adaptively chosen
by the algorithm itself. More specifically, at the very beginning of the optimization process the
differentiation step size h is chosen to be relatively large. Then, when convergence of the method
is deemed with a given step size, the step is reduced so that, by computing new and more accurate
gradient approximations, progress of the iterates toward a solution can resume again.

When more than one objective is present and derivatives cannot be used, a wide variety of methods
can be employed. Stochastic or probabilistic methods, like e.g., genetic or evolutive algorithms
(see e.g., [11, 20] and the references therein), have long been proposed and are available. More
recently, in [4, 16], deterministic algorithms for problem (1) have been proposed which export to
the multiobjective context derivative-free techniques for single objective problems. In particular,
in the relatively recent paper [4], a direct multisearch (DMS) algorithm has been proposed. DMS
extends to the multiobjective case the well-known direct search (or pattern search) paradigm.
In [4], it has been shown that DMS has strong theoretical convergence properties and that, most
importantly, such stronger properties reflect in better numerical performances of DMS with respect
to a large selection of the most used and well-known stochastic algorithms.

Our aim in the paper is therefore two-fold. On the one hand, even though the implicit filtering
algorithm cannot be directly used to solve problem (1), we approach the problem as in [8], where a
steepest-descent method for problem (1) is proposed, but by approximating objective derivatives as

2

in the implicit filtering strategy. Hence, we define a new method without preferences for the solution
of problem (1). The method exports the derivative-free skills of the implicit filtering approach
[12, 14] within the steepest descent framework proposed in [8] for multiobjective optimization. For
this method, we also prove convergence to a “stationary” point of problem (1). On the other hand,
we also propose a version of the algorithm which is suitable to generate a set of non-dominated
solutions, thus approximating the set of Pareto solutions of problem (1), rather than a single point.
The paper is organized as follows. In section 2, we report some preliminaries about multiobjective
optimization. In section 3, we recall the implicit filtering algorithm for (single objective) derivative-
free optimization. In section 4, we define the multiobjective implicit filtering algorithm. Global
convergence results are stated in section 5. In section 6, we perform a computational experimen-
tation of the proposed method and a comparison with the DMS algorithm proposed in [4]. In
section 6.2, we show how the multiobjective implicit filtering algorithm can be used within DMS
to improve its ability to generate the Pareto front of the problem. Finally, section 7 contains some
concluding remarks. In the Appendix we give the proofs of two results used for the convergence
analysis.
We conclude this section by recalling some notation that will be useful later. With reference to
problem (1), we denote by F : Rn → Rm the vector-valued function defined by

F (x)
△
= (f1(x), f2(x), . . . , fm(x))⊤,

and by J : Rn → Rm×n its Jacobian matrix function,

J(x) = (∇f1(x),∇f2(x), . . . ,∇fm(x))⊤.

Furthermore, we denote by F the feasible set of Problem (1), i.e.,

F = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} (2)

and note that F is, by definition, compact.

Given any two vectors u, v ∈ Rp,

u < v ⇔ ui < vi, for all i = 1, . . . , p

u 5 v ⇔ ui ≤ vi, for all i = 1, . . . , p

u ≤ v ⇔ u 5 v and u ̸= v.

Finally, let us denote by ei ∈ Rn, i = 1, . . . , n, the vectors that form the canonical basis in Rn,
and by 1 the vector, of appropriate dimension, of all ones, e.g., in Rn, 1 =

∑n
i=1 ei.

2 Preliminaries on multiobjective optimization

Just as in single objective optimization, in the context of multiobjective optimization we should
be able to compare two vectors x, y ∈ Rn on the basis of their respective vectors of function values
F (x), F (y). To this aim, the following definition of (Pareto) dominance is useful.

Definition 1 (Pareto dominance) Given two vectors x, y ∈ Rn, we say that x (strictly) Pareto
dominates y when

F (x) 5 F (y)
(
F (x) ≤ F (y)

)
.

Then, with reference to problem (1), an ideal solution would be a point x∗ ∈ F such that x∗ Pareto
dominates each other feasible point x ∈ F , i.e.,

F (x∗) 5 F (x), for all x ∈ F .

Unfortunately, such a point x∗ very seldom exists, which is why the following definitions of opti-
mality are introduced for multiobjective problems.

3

Definition 2 (Weak Pareto optimality) A point x∗ ∈ F is a weak Pareto optimal point for
Problem (1), if there does not exist any x ∈ F such that

F (x) < F (x∗).

Definition 3 (Pareto optimality) A point x∗ ∈ F is a Pareto optimal point for Problem (1),
if there does not exist any x ∈ F such that

F (x) ≤ F (x∗).

By means of these two definitions, we are able to identify a set of non-dominated points (the so-
called Pareto front or frontier) which is constituted by the “optimal” solutions of the multiobjective
problem (1).
Just as in the single-objective case, to define solution algorithms and analyze their convergence
properties, we need to introduce the definition of Pareto-stationarity.

Definition 4 (Pareto stationarity) A point x∗ ∈ F is Pareto stationary for Problem (1) if, for
all y ∈ F , an index j ∈ {1, . . . ,m} exists such that

∇fj(x∗)T (y − x∗) ≥ 0.

It can be easily shown that, if x∗ is a Pareto optimal point for Problem (1), then x∗ is Pareto sta-
tionary for Problem (1) (the inverse implication can only be shown when F is a convex continuously
differentiable map, as in the single objective case).

Thanks to Definition 4, when x̄ ∈ F is not a Pareto stationary point, we know that an y ∈ F must
exist such that v = y− x̄ is a descent direction for all the objective functions fi, i = 1, . . . ,m, at x̄.

For any given x ∈ F , we define the function gx : F → Rm by

gx(y) = max
i=1,...,m

∇fi(x)⊤(y − x),

and note that gx is continuous, piecewise linear, and convex. By compactness of F , gx admits a
global minimum on F ; hence, we denote respectively by θ(x) and y(x) the global minimum value
and a global minimum point of gx over F , i.e.,

θ(x) = min
y∈F

gx(y) (3)

y(x) = argmin
y∈F

gx(y). (4)

For what concerns the above definitions, we remark that problem (3) is a finite minimax prob-
lem with linear component functions. It can thus be trivially restated as the following linear
programming problem

min
y,β

β

∇fi(x)⊤(y − x) ≤ β, i = 1, . . . ,m,

y ∈ F

(5)

Furthermore, from [8], we report the following proposition.

Proposition 1 Given problem (1), let θ : F → R be defined as in (3). Then the following
statements hold:

• θ is a continuous function;

• θ(x) ≤ 0, for all x ∈ F ;

4

• x∗ ∈ F is Pareto stationary for Problem (1) if and only if θ(x∗) = 0.

We conclude this section by formally introducing the steepest descent direction for the vector
valued mapping F at x.

Definition 5 (Steepest descent direction) Given any point x ∈ F , the steepest descent direc-
tion for F at x is

v(x) = y(x)− x

where y(x) is given by (4).

On the basis of Definition 5, from reference [8], we recall the following steepest descent algorithm
for the solution of Problem (1) (we recall from the introduction that J(x) denotes the Jacobian of
the vector of objective functions).

Algorithm 1 Steepest Descent

Data: x0 ∈ Rn, γ ∈ (0, 1)
for k = 0, 1, . . . , do
Compute θ(xk) and v(xk)
if θ(xk) = 0 then

xk is Pareto stationary, STOP
end if
Compute αk = 2−βk with βk the smallest non-negative integer s.t.

F (xk + αkv(xk)) ≤ F (xk) + γαkJ(xk)v(xk).

Set xk+1 = xk + αkv(xk)
end for

For a convergence analysis of Algorithm 1, we refer the reader to [8].

3 The implicit filtering algorithm for unconstrained single
objective optimization

In this section we briefly recall the main concepts of the implicit filtering algorithm for derivative-
free optimization (see [14], and the references therein, for a more thorough description of the
algorithm). To this aim and limited to this section, let us consider the unconstrained (single-
objective) problem

min
x∈Rn

f(x) (6)

where f : Rn → R is a continuously differentiable function. In order to introduce the implicit
filtering algorithm for the solution of Problem (6), which is basically an improvement of the well-
known coordinate search algorithm, we need to recall some definitions.

Definition 6 (Stencil) Given a point x and a stepsize h > 0, a stencil S(x, h) is a set of points,
namely

S(x, h) = {x+ he1, . . . , x+ hen, x− he1, . . . , x− hen}.

Then, with reference to f , an approximation of ∇f(x) can be obtained by using the information
obtained by evaluating f onto the points belonging to the stencil S(x, h). More precisely, let us
introduce the definition of approximated gradient of f at x.

5

Definition 7 (Approximated gradient) Given x, h > 0 and the stencil S(x, h), the approxi-
mated gradient ∇hf of f at x is defined by

∇hf(x)
△
=

(
∂hf(x)

∂x1
, . . . ,

∂hf(x)

∂xn

)⊤

where, for all i = 1, . . . , n,
∂hf(x)

∂xi
=

f(x+ hei)− f(x− hei)

2h
.

It is worth noting that, since f is continuously differentiable, ∇hf is continuous for every h ≥ 0.
Then, let us recall the definition of a “stencil failure”.

Definition 8 (Stencil failure) Given x and a stepsize h > 0, a stencil-failure at x occurs when

f(x) ≤ f(y), ∀y ∈ S(x, h), (7)

i.e. no point y in the stencil S(x, h) improves the objective function with respect to the value f(x).

Now, we are ready to introduce the sketch of a particular instance of the well-known implicit
filtering algorithm (see [14] for more general algorithms), which basically consists of two nested
loops. The external loop (see Algorithm 2) produces a sequence of stepsizes {hk}, such that
hk → 0 for k → ∞, and a sequence of iterates {xk}; each xk is obtained by performing a single
implicit filtering step, imstep, with fixed stepsize hk. The inner loop (see Algorithm 3) performs
a minimization of the objective function f starting from the current iterate xk = z0. At every
iteration, first a stencil is built around zj . If a stencil failure is not detected, i.e. at least one of the
stencil points y ∈ S(zj , hk) strictly decreases the objective function, the approximated gradient is
computed. Then, a linesearch is carried out to obtain a new iterate zj+1, provided that the current
point is not hk-stationary. We note that, in Algorithm 3, when the linesearch is performed, the
“approximated” steepest descent direction is used. In case of failure of the linesearch, zj+1 is set
equal to y. The algorithm keeps iterating through the inner cycle until either a stencil failure
occurs, or the current point zj is deemed hk-stationary. For a thorough convergence analysis of
Algorithm 2, as well as for less basic versions of the implicit filtering method, we refer the interested
reader to [14].

Algorithm 2 Implicit Filtering

Data: x0 ∈ Rn, h0 > 0, γ, δ, τ ∈ (0, 1)
for k = 0, 1, . . . , do
Set xk+1 =imstep(xk, hk, τ ,γ)
Set hk+1 = δhk

end for

4 Implicit filtering for multiobjective optimization

Our main goal in the paper is to define an implicit filtering-type method to solve the multiobjective
optimization problem (1). Indeed, we are able to prove that the proposed method converges to
Pareto stationary points of (1). In order to export the implicit filtering algorithm to a multiobjec-
tive context, at least four critical aspects must be carefully considered which are:

- a new definition of a stencil failure;

- handling of “quasi” (Pareto) stationarity;

6

Algorithm 3 imstep(z0, h, τ, γ)

for j = 0, 1, . . . do
Build S(zj , h) and define S = {y ∈ S(zj , h) : f(y) < f(zj)}
if S ≠ ∅ then

Choose y ∈ S
else

return zj (stencil failure: reduce the stepsize)
end if
Compute ∇hf(zj)
if ||∇hf(zj)|| ≤ τh then

return zj (h-stationarity: reduce the stepsize)
else if α > 0 exists such that f(zj − α∇hf(zj)) ≤ f(zj)− γα||∇hf(zj)||2 then

Set zj+1 = zj − α∇hf(zj)
else

Set zj+1 = y
end if

end for

- approximation of the multiobjective steepest descent direction;

- a multiobjective linesearch.

Moreover, bound constraints on the variables must be taken into account in the definition of stencil
and approximated gradients.

Definition 9 (Approximated gradient) Given x ∈ F , h > 0, the stencil S(x, h), and an index
i ∈ {1, . . . ,m}, the approximated gradient ∇hfi of fi at x is defined by

∇hfi(x)
△
=

(
∂hfi(x)

∂x1
, . . . ,

∂hfi(x)

∂xn

)⊤

where, for all j = 1, . . . , n,

∂hfi(x)

∂xj
=



fi(x+hej)−fi(x−hej)
2h , x+ hej ∈ F , x− hej ∈ F ;

fi(x+hej)−fi(x)
h , x+ hej ∈ F , x− hej /∈ F ;

fi(x)−fi(x−hej)
h , x+ hej /∈ F , x− hej ∈ F ;

∞ , x+ hej /∈ F , x− hej /∈ F .

(8)

Note that, ∂hfi(x)
∂xj

=∞ whenever x+ hej /∈ F , x− hej /∈ F , but this never occurs for sufficiently

small values of h; we clarify this point in Lemma 4 below.
Now, we introduce the definition of a stencil failure in the multiobjective case and of Pareto
h-stationarity.

Definition 10 (Multiobjective stencil failure) Given x ∈ F and a stepsize h > 0, a stencil
failure at x occurs when there is no y ∈ S(x, h) ∩ F that dominates x, i.e.

@y ∈ S(x, h) ∩ F : F (y) ≤ F (x).

Definition 11 (Pareto h-stationarity) Given a stepsize h > 0, a point x∗ ∈ F is Pareto h-
stationary if, for all y ∈ F , an index j ∈ {1, . . . ,m} exists, possibly depending on y, such that

∇hfj(x
∗)T (y − x∗) ≥ 0.

7

Reasoning as in Section 2, Pareto h-stationarity can be characterized by extending definitions (3-4)
for θ(x) and y(x) to the case of approximated gradients, as follows:

θ(x, h) = min
y∈F

max
i=1,...,m

∇hfi(x)
⊤(y − x) (9)

y(x, h) = argmin
y∈F

max
i=1,...,m

∇hfi(x)
⊤(y − x). (10)

Further, we approximate the steepest descent direction v(x) by

v(x, h) = y(x, h)− x.

It can be easily seen (see point (i) of Proposition 3 in the Appendix) that θ(x, h) ≤ 0 for all x ∈ F
and h > 0, so that x∗ is Pareto h-stationary if and only if θ(x∗, h) = 0. Furthermore, (see point
(ii) of Proposition 3 in the Appendix) for any given x ∈ F , it results

lim
h→0+

θ(x, h) = θ(x).

Now, we develop a first version of an implicit filtering algorithm which converges asymptotically
to a single Pareto stationary point. As in the implicit filtering framework, our algorithm consists
of two nested loops. The outermost loop, which is reported in Algorithm 4, is very similar to the
outer loop of Algorithm 2 for single objective optimization reported in Section 3.

Algorithm 4 MultiObjectiveImplicitFiltering (MOIF)

Data: x0 ∈ F , h0 > 0, γ, δ, τ ∈ (0, 1)
for k = 0, 1, 2, . . . do
xk+1 = imstepMulti(xk, hk, τ, γ)
hk+1 = δhk

end for

The innermost loop is the most important one and is reported in the following algorithm imstepMulti.
As we can see, the internal loop is somewhat different from Algorithm 3 and is composed by two
parts:

• direct search along the coordinate axis;

• (possible) linesearch along the approximated steepest descent direction (obtained by solving
an LP).

The main difference between Algorithms 3 and 5 resides in the behavior of the algorithms in case
of a stencil failure. When a stencil failure is detected by Algorithm 3, the inner loop is abandoned
so that the step size is reduced. On the contrary, in Algorithm 5, when a stencil failure is detected,
the inner loop tries to execute a linesearch along the approximated steepest descent direction.
We decided to modify the basic implicit filtering behavior by drawing inspiration from the recently
proposed algorithm DMS (see Remark 4 below). We move along coordinate axis by a fixed step h.
At iteration j of Algorithm imstepMulti, we have a stencil failure when no feasible stencil point
y ∈ S(w, h) ∩ F exists such that

F (y) ≤ F (w)− 1γh.

When a stencil failure finally occurs, we proceed trying to find a descent direction using∇hF (zj). In
particular, θj and vj = yj−zj are computed by solving a linear programming subproblem of type (5)
with exact gradients replaced by approximated ones. In this respect, we note that this calculation
does not increase the number of objective function evaluations, because the approximated gradient
is computed through stencil points already computed.
If we find a sufficiently good feasible direction vj , i.e. such that θ(zj , h) < −τh, we perform a
linesearch along the computed direction vj . We recall that direction vj is such that the unitary
stepsize is feasible, i.e. zj + vj ∈ F and vj is a feasible direction.

8

Algorithm 5 imstepMulti(z̃0, h, τ, γ)

for j = 0, 1, . . . do
Set stencilFailure = FALSE and w = z̃j
while (not stencilFailure) do

Build S(w, h)
if S(w, h) ∩ F = ∅ then
return w (the stencil is infeasible: reduce the stepsize)

else
define S = {y ∈ S(w, h) ∩ F : F (y) ≤ F (w)− 1γh}

end if
if S ≠ ∅ then
Choose y ∈ S and set w = y

else
Set stencilFailure=TRUE

end if
end while
Set zj = w
if ∃i ∈ {1, . . . , n} s.t. zj + hei, zj − hei /∈ F then

return zj (approximated gradient undetermined: reduce the stepsize)
end if
Compute θj = θ(zj , h), yj = y(zj , h), vj = yj − zj

N.B. at this point, either i) zj = z̃j or ii) zj ̸= z̃j and F (zj) ≤ F (z̃j)− 1γh.

if θj ≥ −τh then
return zj (Pareto h-stationarity: reduce the stepsize)

end if
Compute αj = Goldstein(zj , vj , h, θj , γ)
if αj |θj | ≤ τh then

return zj (line search-failure: reduce the stepsize)
end if
Set z̃j+1 = zj + αjvj

end for

Remark 1 If θ(zj , h) ≥ −τh, the current point zj is deemed h-stationary and the current stepsize
h is reduced by the algorithm. This could also mean that the current gradient approximation is not
suitable. Further, even if θ(zj , h) < −τh < 0, there is no guarantee that direction vj is a descent
direction for the objective functions.

Remark 2 Direction vj is computed by using approximations of the objective functions gradients.
Hence, for a fixed stepsize h, it might well not be a descent direction at the current iterate zj.

The above two observations suggested us to use a Goldstein linesearch (in place of an Armijo one)
with initial stepsize αj equal to h, i.e. the stepsize used in the algorithm to build the stencil and
compute the approximated objective functions gradients. In this way, we are able to immediately
verify the quality of the direction, thus avoiding a potentially large number of function evaluations.

Remark 3 We observe that, whenever the test αj |θj | ≤ τh holds, as |θj | > τh, we have that the
produced αj is “sufficiently small”, so that, the current point can be considered an approximation
of a Pareto h-stationary point and, as a consequence, the finite-difference stepsize h is reduced.

Remark 4 As we said before, the direct search along the coordinate directions draws inspiration
from DMS, which is an algorithmic framework that extends the class of direct search methods for
single optimization to nonsmooth, multiobjective optimization. In the general setting of DMS, the

9

Algorithm 6 Goldstein(x, v, h, θ, γ)

if F (x+ hv) ≤ F (x) + 1γ(hθ) and x+ hv ∈ F then
Set β ← 0
while x+ 2β+1hv ∈ F and F (x+ 2β+1hv) ≤ F (x) + 1γ(2β+1hθ) do

Set β ← β + 1
end while
return α = 2βh

else
return α = 0

end if

objective functions are sampled along suitable sets of search directions, the acceptance criterion
is based on the Pareto dominance, and a list of feasible nondominated points is updated. The
simplest strategy of the framework is that of considering lists formed by a single point and to use
the set of coordinate directions as search directions. This strategy is similar to that defined in
the direct search block of our algorithm. However, in our framework the implicit filtering phase
generates an approximated “steepest descent direction” for all objective functions, by solving the
minmax problem (see (10)), and this is the key ingredient, coupled with the line search, to ensure
convergence properties.

5 Convergence analysis

First of all we prove that Algorithm imstepMulti is well defined. To this aim, in the following
lemma we show that for every j ≥ 0 and z̃j a point zj is produced, i.e. stencilFailure is
eventually set to TRUE.

Lemma 1 With reference to Algorithm imstepMulti, for every j ≥ 0, after a finite number of
iterations of the while-loop, either stencil infeasibility is detected or stencil failure is obtained, i.e.
stencilFailure is eventually set to TRUE.

Proof. Let us assume by contradiction that for a given iteration j the while-loop never terminates,
i.e. the stencil is always feasible and stencilFailure is never set to TRUE. In this case, let us
denote by wt the stencil center point at the generic t-th iteration of the while loop, and by wt+1

the point of the next stencil. Of course, for every t it results

i) wt ∈ F ;

ii) F (wt+1) ≤ F (wt)− 1γh.

Recalling that w0 = z̃j and point ii) above, we can write

F (wt+1) ≤ F (wt)− 1γh ≤ F (wt−1)− 1(2γh) ≤ · · · ≤ F (z̃j)− 1(t+ 1)γh.

Taking the limit for t→∞ in the above relation we would obtain

lim
t→∞

fi(wt) = −∞, i = 1, . . . ,m,

which is a contradiction with the continuity of F , compactness of F , and {wt} ⊂ F . �
By virtue of Lemma 1,

- either zj = z̃j and F (zj) = F (z̃j)

- or zj is such that F (zj) ≤ F (z̃j)− 1γh.

10

Then, we prove that the Goldstein procedure is well-defined, namely that the while-loop in the
Goldstein procedure cannot infinitely cycle.

Lemma 2 For every x ∈ F , h > 0, θ < 0, and v ∈ Rn, the Goldstein procedure always returns a
value α ≥ 0.

Proof. If F (x+ hv) ̸≤ F (x) + 1γ(hθ) or x+ hv ̸∈ F , the procedure immediately returns α = 0.
Hence, we have only to analyze the case when F (x + hv) ≤ F (x) + 1γ(hθ) and x + hv ∈ F , and
show that the while-loop cannot infinitely cycle. Let us proceed by contradiction and assume that
the while-loop infinitely cycle. This means that, for every β = 0, 1, 2, . . . , we have

x+ 2β+1hv ∈ F and F (x+ 2β+1hv) ≤ F (x) + 1γ(2β+1hθ).

For β sufficiently large, this is a contradiction with the compactness of F and continuity of F , and
concludes the proof. �
Now, concerning the convergence of Algorithm MOIF (the Multi Objective Implicit Filtering

procedure described in Algorithm 4), the first thing we need to prove is that the stepsize hk

converges to zero. Then, we state the following lemma.

Lemma 3 Algorithm MOIF generates infinite sequences {xk} ⊂ F and {hk} ⊂ R+, such that

lim
k→∞

hk = 0. (11)

Proof. We assume by contradiction that for an index k̄ Algorithm imstepMulti does not termi-
nate, thus producing infinite sequences {z̃j}, {zj}, {αj}, {θj}, {vj}, and {fi(zj)}, for i = 1, . . . ,m.
Let h̄ = hk̄. Furthermore, for all j = 0, 1, . . . ,

i) θj = θ(zj , h̄) < −τ h̄ < 0, and

ii) zj + αjvj ∈ F and αj |θj | > τh̄.

Hence, for all i ∈ {1, . . . ,m} and j ≥ 0, we have

fi(zj+1) ≤ fi(z̃j+1) = fi(zj + αjvj) ≤ fi(zj) + γαjθj ,

that is
fi(zj)− fi(zj+1) ≥ −γαjθj . (12)

Since {fi(zj)}, for i = 1, . . . ,m, are non-increasing sequences, and zj ∈ F for all j, then the
continuity of fi ensures that

lim
j→∞

fi(zj)− fi(zj+1) = 0, ∀i = 1, . . . ,m.

Above limits and relation (12) imply that

lim
j→∞

αj |θj | = 0.

Thus, for j sufficiently large we will have αj |θj | ≤ τ h̄. In other words, the test after the Goldstein
procedure will be satisfied, and hence Algorithm imstepMulti will terminate, within a finite num-
ber of inner iterations, in contradiction with our initial assumption. Then (11) is easily proved, as
{hk} is an infinite sequence such that hk+1 = δhk with δ ∈ (0, 1). �
Before stating the main theorem, we prove the following result.

11

Lemma 4 Let {xk}K be a subsequence produced by Algorithm MOIF and assume that xk → x̄ for
k ∈ K and k →∞. Then, for k ∈ K and k sufficiently large we have that for j = 1, . . . , n at least
one of the following conditions holds

xk + hkej ∈ F

xk − hkej ∈ F .

Proof. The points of the subsequence {xk}K belong to the closed set F , so that, x̄ ∈ F . Since F
is defined by box constraints, for j = 1, . . . n we have that at least one of the vectors ej or −ej is
a feasible direction at x̄. Let dj ∈ {ej ,−ej} be a feasible direction at x̄, and let D(x̄) be the set of
feasible directions at x̄. Again, since F is defined by linear constraints, from known results (see,
e.g., Proposition 4 in [17] and Proposition A1 in [15]) it follows:

(i) D(x̄) ⊆ D(xk) for k ∈ K and k sufficiently large;

(ii) given d ∈ D(x̄), there exists t̄ > 0 such that, for all t ∈ (0, t̄], we have xk + td ∈ F , for k ∈ K
and k sufficiently large.

Then for any j = 1, . . . , n, being dj ∈ {ej ,−ej} a feasible direction at x̄ and recalling that hk → 0
for k ∈ K and k →∞, it follows from (ii) that

xk + hkdj ∈ F

for k ∈ K and k sufficiently large, and the thesis is proved. �

Finally, we can state the main theorem concerning the convergence of Algorithm MOIF.

Theorem 1 Let {xk} be a sequence produced by Algorithm MOIF. Then {xk} admits limit points,
and each one of them is Pareto stationary for Problem (1).

Proof. By construction, {xk} ⊂ F . Hence, by compactness of F and using Lemma 3, there exists
a limit point x̄ ∈ F of {xk} and an infinite subset of iteration indices K ⊂ {0, 1, 2 . . . } such that

lim
k∈K,k→∞

xk = x̄

and
lim

k∈K,k→∞
hk = 0. (13)

From Lemma 4 it follows that, for k ∈ K and sufficiently large, procedure imstepMulti(xk, hk, τ, γ)
can never return because S(xk, hk) ∩ F = ∅ or because xk + hkei /∈ F and xk − hkei /∈ F , for all
i = 1, . . . , n, i.e. the stencil is feasible and all the components of the approximated gradient at xk

are finite as defined by (8).
Then, after relabelling (if necessary) the index set K, we can split K into two subsets, K1 and K2,
defined as

K1 = {k ∈ K : −τhk ≤ θ(xk, hk) ≤ 0} and
K2 = {k ∈ K \K1 : αk|θ(xk, hk)| ≤ τhk}.

Note that, since K is infinite, K1 and K2 cannot be both finite.
First, let us suppose thatK1 is infinite. From the definition ofK1, using assertion (ii) of Proposition
3 in the Appendix and (13), we obtain that

lim
k→∞,k∈K1

θ(xk, hk) = θ(x̄) = 0,

which completes the proof in this case.

12

Let us now suppose that K2 is infinite. We proceed by contradiction and assume that x̄ is not
Pareto stationary, i.e.

θ(x̄) < 0. (14)

Then, from the definition of K2 and considering (13), we get

lim
k∈K2,k→∞

αk|θ(xk, hk)| = 0,

which, recalling (ii) of Proposition 3 in the Appendix, (13) and (14), yields

lim
k∈K2,k→∞

αk = 0. (15)

Furthermore, it must exist an infinite subset K̄2 ⊂ K2 such that one of the following two cases can
occur:

i) either αk = 0 for k ∈ K̄2

ii) or αk = 2βkhk > 0 for k ∈ K̄2.

Point i). In this case, recalling that v(xk, hk) = y(xk, hk)−xk so that xk+v(xk, hk) = y(xk, hk) ∈ F
by definition, that for k sufficiently large hk < 1, and that F is a convex set, we have that
xk + hkvk ∈ F for k sufficiently large and, by definition of the Goldstein procedure,

F (xk + hkvk) ̸≤ F (xk) + 1γhkθk, (16)

where we introduced the notations vk = v(xk, hk) and θk = θ(xk, hk). If (16) holds, we can write,
for at least an index ℓ ∈ {1, . . . ,m} (which can depend on k),

fℓ(xk)− fℓ(xk + hkvk)

hk
< −γθk ≤ −γ∇hk

fℓ(xk)
⊤vk.

Then, by the Mean Value Theorem, an h̃k ∈ (0, hk) exists such that

−∇fℓ(xk + h̃kvk)
⊤vk < −γθk ≤ −γ∇hk

fℓ(xk)
⊤vk. (17)

Moreover,

−γ∇hk
fℓ(xk)

⊤vk = γ(∇fℓ(xk)−∇hk
fℓ(xk))

⊤vk − γ∇fℓ(xk)
⊤vk

≤ γ∥∇fℓ(xk)−∇hk
fℓ(xk)∥∥vk∥ − γ∇fℓ(xk)

⊤vk.

Now, using (17) and the above relation, and recalling that the sequence of search directions {vk}
is bounded, a fixed ℓ̄ ∈ {1, . . . ,m}, a direction v̄ ∈ Rn, and an infinite subset K3 ⊆ K̄2 exist such
that

−∇fℓ̄(xk + h̃kvk)
⊤vk < −γθk ≤ γ∥∇fℓ̄(xk)−∇hk

fℓ̄(xk)∥∥vk∥ − γ∇fℓ̄(xk)
⊤vk, ∀k ∈ K3, (18)

and
lim

k∈K3,k→∞
vk = v̄.

Taking the limit in (18) and recalling Proposition 2 and Proposition 3 in Appendix, we then obtain

−∇fℓ̄(x̄)⊤v̄ ≤ −γθ(x̄) ≤ −γ∇fℓ̄(x̄)⊤v̄,

from which (1 − γ)∇fℓ̄(x̄)⊤v̄ ≥ 0 and θ(x̄) ≥ ∇fℓ̄(x̄)⊤v̄ follow. Together with γ ∈ (0, 1) these
yield 0 > θ(x̄) ≥ ∇fℓ̄(x̄)⊤v̄ ≥ 0, i.e. a contradiction.

Point ii). In this case, αk = 2βkhk > 0. From (15), recalling that vk is computed in such a way

that xk+vk ∈ F , see e.g. (10), for k ∈ K̄2 and k sufficiently large we have xk+2αkvk ∈ F . Hence,
the Goldstein procedure returns αk such that, recalling (15) and the convexity of F ,

xk + 2αkvk ∈ F and F (xk + 2αkvk) ̸≤ F (xk) + 1γ(2αkθk). (19)

Then, reasoning as above, we can again conclude that x̄ is Pareto stationary for Problem (1), thus
raising yet a contradiction and concluding the proof. �

13

6 Computational experiments

In this section we report the numerical results of experiments performed in order to assess the
effectiveness and the efficiency of the proposed algorithm, both when it is used to generate a single
non-dominated point (i.e. when preferences of the decision maker are disregarded), and to generate
a set of non-dominated solutions (i.e. when preferences of the decision maker are taken into account
a posteriori). In both situations, our strategy is compared with the direct multisearch algorithm
(DMS) proposed in [4]. We acknowledge that algorithm DFMO proposed in [16] is also suitable for
the solution of Problem (1) when derivatives are not available. However, considering the results
reported in [16] and in particular Figure 2 therein, DMS appears to be better than DFMO, at least
when the coordinate directions are used as search directions in both algorithms.

Test problems. We considered the set of 100 multiobjective problems used in [4], whose dimension
n is in the range [1, 30] and with a number m of objectives belonging to the set {2, 3, 4}.

Implementation details. We have implemented Algorithm 4 in MATLAB c⃝ and we tested it on an
Intel 1.2 GHz quad-core multithread with 8GB RAM. Parameters of algorithm MOIF have been set
as follows

h0 = 1, τ = 10−2

δ = 0.5, γ = 10−5.

The computation of θ(x, h) and y(x, h), as defined in (9) and (10), respectively, in Algorithm MOIF

is carried out by using the linprog function of MATLAB c⃝.
In the experiments, MOIF is stopped whenever either hk ≤ 10−3 or the number of function evalu-
ations exceeds 20,000. Furthermore, as concerns the implementation of algorithm imstepMulti,
i.e. Algorithm 5, the instruction “Choose y ∈ S” is realized so that y is the first point in S not
dominated by any other point in S.
As for DMS, all of its parameters (except for Pareto front) have been set to their default values.
In particular, we have

stop alfa = 1 tol stop = 10−3

stop feval = 1 max fevals = 20, 000

so that the stopping criteria of DMS are the same as those used in MOIF. Both solvers start from
the centroid of the feasible region F , i.e.

(x0)i =
ui + li

2
, for all i = 1, . . . , n.

6.1 Computation of a single non-dominated solution

We compare the performance of our algorithm MOIF (i.e. Algorithm 4) with the one of DMS when it
is used to generate a single non-dominated solution, i.e. when the calling parameter Pareto front

is set to 1.
The first thing that we observe is that, in 54 out of 100 problems, the Goldstein linesearch is never
performed since the Pareto h−stationarity condition

θj ≥ −τh

is always satisfied. When this happens, the two algorithms MOIF and DMS show the same behaviour
and produce the same non-dominated point.

In the remaining 46 problems, at least one linesearch is performed with success by algorithm
MOIF during the optimization process. In 20 out of these 46 problems, MOIF determines a point
that dominates the point computed by DMS, while the point provided by DMS never happens to

14

dominate the point determined by MOIF. Hence, we can conclude that these results show the good
performance of MOIF in terms of quality of the computed solution.
In the 26 problems where the two solvers computed solutions that do not dominate each other, we
have the following situation in terms of objective function evaluations. In 5 out of 26 test problems
MOIF required a lower number of function evaluations than that required by DMS. However, this
situation is not surprising since, as we may expect, the linesearch procedure of MOIF requires
additional function evaluations with respect to the plain coordinate search performed by both
solvers.
On the whole, we may conclude that algorithm MOIF, which combines a coordinate search phase
with an implicit filtering strategy, shows a good ability to produce non-dominated solutions, con-
firming the viability of the proposed approach. It can also be noted that, due to the additional
burden of the Goldstein linesearch, MOIF might be somewhat more expensive than DMS.

6.2 Computation of a set of non-dominated solutions

When an approximation of the Pareto front is required, like e.g. in a posteriori methods, drawing
inspiration from DMS, we have defined a version of algorithm MOIF aimed at approximating the
whole Pareto front which we call MOIFfront (see Algorithm 7). In the following, we discuss the main
aspects that distinguish MOIFfront from MOIF (i.e. the proposed algorithm aimed at computing a
single non-dominated solution) and DMS.
The main difference between MOIF and MOIFfront is that every iteration of MOIFfront is characterized
by a set, say Lk, of point-stepsize pairs rather than the single pair (xk, hk), as in MOIF and as it is
common in algorithms for single objective optimization.
Management of the sequence of sets {Lk} is performed drawing inspiration both from DMS [4] and
DFMO [16]. Since this aspect and, in particular, the generation of Lk+1 starting from Lk is not
trivial, we describe it with some detail.
For each k, let Lk be the following finite set

Lk = {(xi, hi), xi ∈ F , hi > 0, i = 1, . . . , rk},

where rk = |Lk| and hi is the (tentative) stepsize associated with point xi. At each iteration k, a
current pair (xk

i , h
k
i) ∈ Lk is selected (according to a certain criterion). Then, let

L′
k =

(
(S(xk

i , h
k
i) ∩ F)× {hk

i }
)
∪ Lk

and
L̃k = {(xi, hi) ∈ L′

k : @(xj , hj) ∈ L′
k s.t. F (xj) ≤ F (xi)} . (20)

Then, the new set Lk+1 is so defined:

Lk+1 = L̃k when L̃k ̸= Lk, (21a)

Lk+1 =
{
(xi, hi) ∈ Lk ∪ {(wk, αk)} :

@(xj , hj) ∈ Lk s.t. F (xj) ≤ F (xi)
} when L̃k = Lk, θk < −τhk

i

and αk|θk| > τhk
i

(21b)

Lk+1 = Lk \ {(xk
i , h

k
i)} ∪ {(xk

i , δh
k
i)} otherwise (21c)

where θk = θ(xk
i , h

k
i), vk = v(xk

i , h
k
i), wk = xk

i + αkvk and αk = Goldstein(xk
i , vk, h

k
i , θk, γ).

Note that when the algorithm is not able to find any new nondominated point, that is, when
both the coordinate search does not produce any new nondominated point (i.e. L̃k = Lk), and
the Goldstein linesearch either is not performed (because either the approximated gradient is
undetermined or θk ≥ −τhk

i) or produces an unsuitable stepsize (i.e. αk|θk| ≤ τhk
i), Lk+1 is

obtained from Lk by replacing the selected pair (xk
i , h

k
i) by (xk

i , δh
k
i). The same is done in case of

infeasibile stencil, that is when Lk = L′
k = L̃k because S(xk

i , h
k
i) ∩ F = ∅ .

15

Algorithm 7 MOIFfront

γ, δ, τ ∈ (0, 1), L0 = {(xi, hi), xi ∈ F , hi > 0, i = 1, . . . , r0} initial set of nondominated points
for k = 0, 1, . . . do
Select (xk

i , h
k
i) ∈ Lk and compute L̃k as in (20)

if L̃k ̸= Lk then
Set Lk+1 = L̃k

else
Compute θk = θ(xk

i , h
k
i), yk = y(xk

i , h
k
i), vk = yk − xk

i

if θk ≥ −τhk
i then

Set Lk+1 = Lk \ {(xk
i , h

k
i)} ∪ {(xk

i , δh
k
i)}

else
Compute αk = Goldstein(xk

i , vk, h
k
i , θk, γ)

if αk|θk| ≤ τhk
i then

Set Lk+1 = Lk \ {(xk
i , h

k
i)} ∪ {(xk

i , δh
k
i)}

else
Set Lk+1 as in (21b)

end if
end if

end if
end for

As we already pointed out in Remark 4, theoretical convergence properties of Algorithm MOIFfront
(at least under smoothness assumptions) would derive from the Goldstein linesearch procedure.
However, carrying out such a theoretical convergence analysis for algorithm MOIFfront would con-
siderably burden the paper. Indeed, before proceeding with the theoretical analysis it would be
necessary to formally state what a sequence of points is supposed to be in an algorithmic framework
that generates sequences of sets of points. Most probably, it could be necessary to proceed as in
[16] where “linked sequences of points” are defined. Then, stationarity results could be given with
reference to (some) linked sequences.

Numerical results. Comparison of MOIFfront and DMS in this context is carried out by means of
the Purity and Spread (both Γ and ∆) metrics used in [4], and by using performance profiles [6].
We recall that the purity metric measures the quality of the generated front, i.e. how good the non-
dominated points computed by a solver are with respect to those computed by any other solver.
Note that, for each problem p, the “reference” Pareto front Fp is calculated by first computing

F ′
p = Fp,DMS ∪ Fp,MOIF,

where Fp,s denotes the set of non-dominated solutions found by solver s, and then removing from
this set any dominated solution, that is

Fp = {x ∈ F ′
p : @y ∈ F ′

p s.t. F (y) ≤ F (x) }. (22)

On the other hand, the spread metrics are essential to measure the uniformity of the generated
front in the objectives space.
In the experiments MOIFfront is stopped at iteration k, when the number of function evaluations
exceeds 20,000, or when the following stepsize criterion holds:

max
(xi,hi)∈Lk

hi ≤ 10−3. (23)

As concerns the choice of xk ∈ Lk, we select the point with the highest Γ value as in [4].

In figure 1, comparison between MOIFfront and DMS is reported in terms of the above mentioned
metrics.

16

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

MOIF_front(1)
DMS(1)

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 1: Comparison between MOIFfront and DMS when both solvers start from the centroid of
the feasible region F

As we can see, MOIFfront outperforms DMS in terms of purity, while it can be considered equivalent
in terms of spread Γ. However, DMS outperforms MOIFfront in terms of spread ∆.
As we may expect, the linesearch phase is very effective when quality of the generated points is
regarded. This is confirmed by the results in terms of purity. We observe that many points of the
current list Lk may be dominated by the points generated by the linesearch along “good” descent
directions. Hence, the cardinality of the list of nondominated points may tend to quickly reduce
with respect to a strategy based on the pure coordinate search as in DMS. This may lead to a
generated front with a lower degree of uniformity compared with that generated by DMS.
In order to take into account the effect of the linesearch in terms of the spread metrics, we defined
a version of the algorithm that uses a suitable condition to decide whether or not to perform the
linesearch at a given iteration. More specifically, let cp ∈ [0, 1] be a parameter which we call
purity coefficient. Then, in Algorithm MOIFfront, given the current pair (xk

i , h
k
i) ∈ Lk and θk, the

Goldstein linesearch is performed only if

θk < −τ̄hk
i where τ̄ =

{
τ if hk

i ≤ cp max(x,h)∈Lk
{h},

∞ otherwise.

Note that, setting τ̄ =∞ will make the test before the Goldstein linesearch in Algorithm MOIFfront
surely satisfied so that the Goldstein linesearch is not executed. Furthermore, it is worth noting
that, when cp = 1, then the Goldstein linesearch is performed just as in the original version of
MOIFfront, while if cp = 0 then, as in DMS, no linesearch is ever executed.
The idea underlying the use of the above condition is that of managing the uniformity of the
generated front by controlling the uniformity of the sampling step sizes related to the points of the
list. As we can see from the performance profiles reported in figures 2 and 3, when we reduce cp
our algorithm became closer to DMS solver.
Finally, we observe that, when cp = 0, Algorithm MOIFfront becomes equal to a specific instance
of DMS, namely the one using the set of directions {e1, . . . , en,−e1, . . . ,−en}.

6.3 Comparison using a set of initial points

In this subsection, we compare MOIFfront and DMS choosing a set of initial solutions rather than
a single point. In particular, rather than starting the solvers from the single point x0 as we did in
subsections 6.1 and 6.2, we let them start from a list of n points equally spaced on the line segment

17

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

MOIF_front(1)
DMS(1)

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.5 2 2.5
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 2: Comparison between MOIFfront, with cp = 0.5, and DMS

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PURITY

MOIF_front(1)
DMS(1)

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 3: Comparison between MOIFfront, with cp = 0.2, and DMS

18

joining the upper and lower bounds on the variables. Specifically, we let

L̃0 = {(x1
0, h0), . . . , (x

n
0 , h0)}

with

(xj
0)i = li +

ui − li
n− 1

(j − 1), for i, j = 1, . . . , n.

Then,
L0 = {(xi, hi) ∈ L̃0 : @ (xj , hj) ∈ L̃0 s.t. F (xj) ≤ F (xi)},

i.e. the set obtained from L̃0 by removing dominated solutions. Note that, for DMS, this is version
DMS(n,line), as defined in [4].

The performance profiles are reported in figure 4. As in the previous case, we can still say that
MOIFfront outperforms DMS in terms of purity. As for the spread metrics, the two solvers are
almost equivalent in terms of spread Γ, while MOIFfront is outperformed by DMS in terms of
spread ∆. However, it is worth noting that the superiority of MOIFfront over DMS in terms of

2 4 6 8 10

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

MOIF_front(line,n)

DMS(line,n)

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.5 2 2.5
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 4: Comparison between MOIFfront, with cp = 1, and DMS when both solvers start from set
L0

purity is considerably reduced with respect to the single starting point case (see figure 1).
This situation brings us to argue that the use of the initial set L0 seems to help DMS to generate
better estimates of the Pareto front. This is indeed the case with DMS starting from set L0 beating
DMS starting from the centroid in terms of purity but at the expense of the spread metrics, for
which the version of DMS starting from the centroid seems the best one. On the contrary, MOIFfront
seems not to be able to produce better estimates when it starts from the set L0 rather than from
the single point x0.This can in turn be explained by recalling the 20,000 function evaluations limit.
Indeed, at least for problems where the implicit filtering stepsize hk is bigger than the tolerance
10−3 when the above limit is hit, the final estimate of the Pareto front could still be far away from
the “real” one. This is to say that the linesearches employed by MOIF have the effect to consume
more function evaluations with respect to the “simpler” pattern search strategy of DMS.
Finally, we have considered the comparison between the best version of MOIFfront, i.e. the one
with cp = 1 and starting from the centroid of the feasible region (as evidenced in Figure 5) and the
default version of DMS, i.e. the one starting from set L0. Performance profiles for the purity and
spread metrics relative to this further comparison are reported in Figure 6. From the figure, it is
apparent the superiority of MOIFfront (starting from the centroid) over DMS (starting from set L0)
both in terms of purity and spread Γ. As concerns the spread ∆, it emerges quite a new situation
with respect to the already seen comparisons. In fact, spread ∆ profiles reported in Figure 6 show

19

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

MOIF_front(1)
MOIF_front(line,n)

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.5 2 2.5
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 5: Comparison between MOIFfront with cp = 1, starting from the centroid of F and from
set L0

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

2 4 6 8 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.5 2 2.5
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 6: Comparison between MOIFfront, with cp = 1 and starting from the centroid of F , and
DMS starting from set L0

20

that DMS is clearly less robust than MOIFfront even though the former method is more efficient
than the latter one.

6.4 Numerical results with noisy functions

In this section we report the numerical results obtained by MOIFfront in the case of noisy functions.
In our experiments we consider additive noise sampled from a normal distribution. For every
feasible point x, we evaluate a noisy version F̃ : Rn → Rm of F such that

F̃ (x) := F (x) +N (0, εσ̄2), (24)

where ε ∈ R+ is a smoothing parameter which controls the noise level, σ̄2 ∈ Rm is such that

σ̄2 :=

 |f
max
1 |
...

|fmax
m |

 , (25)

and, for each problem p, fmax
i is the maximum value of the i−th objective on the reference Pareto

front Fp defined in (22).
In order to give a good estimation of the gap between the Pareto front found in the noisy case and
the reference Pareto front, we consider the Generational Distance (GD) metric introduced in [19]:

GD =

(∑P
i=1 d

2
i

)1/2

P
, (26)

where P is the number of points found by a solver, x1, x2, . . . , xP , and di is the euclidean distance
of the corresponding noise-free value F (xi) from the real Pareto front. GD is a recommended
metric in test problems for which a set of Pareto optimal solutions is known. Although in our
test problems the real Pareto front is generally unknown, we use it in order to show the extent of
convergence of MOIFfront and DMS with respect to their noise-free versions. Therefore we adopted
in (26) the following definition of di:

di =

0 if xi is non-dominated by Fp

min
x∈Fp

{||F (x)− F (xi)||2} otherwise.
(27)

We remark that the contribution of di to the GD metric is zero not only if xi belongs to the
reference Pareto front, but also if it is better (this may happen because Fp is an approximation
of the real Pareto Front). We also remark that GD, as the Purity metric, does not consider the
quantity of generated points, but only the quality.
We tested both MOIFfront and DMS, starting from the centroid of the feasible region F using the
stopping criteria defined in section 6.2 and ε ∈ {0.0001, 0.05, 0.1, 0.2}.
We did not observe significant differences in the performance of the two algorithms for ε ∈
{0.05, 0.1, 0.2}. Therefore, we report the results only for ε = 0.0001. Figure 7 shows the good
performance of MOIFfront in terms of GD metric compared with those of DMS. For the same value
of ε = 0.0001 we have also compared MOIFfront and DMS in terms of purity and spread metrics
over the 1000 instances. The results of the comparison are reported in figure 8. We may observe
that the results of the comparison are similar to those obtained without noise and reported in fig-
ure 1, that is, MOIFfront outperforms DMS in terms of the purity metric, while DMS outperforms
MOIFfront in terms of spread metrics. On the whole, MOIFfront and DMS show a similar robustness
in presence of moderate noise.

21

1 2 3 4 5 6 7 8 9 10
Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Generational Distance Profiles

MOIF_front(1)

DMS(1)

Figure 7: Generational Distance comparison between MOIFfront and DMS, starting from the cen-
troid, with ε = 0.0001

1 2 3 4 5 6 7 8 9 10

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity

MOIF_front(1)
DMS(1)

1 2 3 4 5 6 7 8 9 10

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma

1 1.2 1.4 1.6 1.8 2 2.2

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta

Figure 8: Purity and spread metrics comparison between MOIFfront and DMS, starting from the
centroid, with ε = 0.0001

22

7 Concluding remarks

In this work a derivative-free algorithm for smooth multiobjective optimization has been proposed.
The algorithm combines a coordinate search with a suitable extension of the implicit filtering strat-
egy to multiobjective optimization with box constraints. Global convergence results are established
under standard assumptions. The results of the computational experiments and the comparison
with a state-of-art algorithm show the effectiveness of the proposed algorithm both in comput-
ing a single Pareto solution and in reconstructing the entire Pareto front. The approach can be
easily and advantageously adapted to the case of multiobjective optimization problems where the
derivatives of some objective functions are available.
The case when some (possibly all) of the objective functions are only Lipschitz continuous in the
feasible set is the subject of future work. In the following we briefly discuss the main differences
between the smooth and the nonsmooth case.
In the smooth case, thanks to the approximation of the gradient by finite-differences, the implicit
filtering phase generates a search direction, by solving the minmax problem (see (10)), approxi-
mating the steepest direction and this, coupled by employment of the line search, allowed us to
attain convergence properties. In the nonsmooth case, in order to guarantee theoretical properties,
we need to make use of a (pre-determined) set of directions which is dense in the unit sphere. We
may expect that the implicit filtering phase could be suitably adapted to evaluate the “goodness”
of a given search direction to decide whether or not to perform a line search along it. Then, the
extension of the proposed approach to the nonsmooth case seems to lead to a substantially different
algorithmic framework, and therefore it is the subject of ongoing research and the topic of a future
paper.

Acknowledgements

We are thankful to three anonymous reviewers whose stimulating comments and suggestions greatly
helped us improving the paper. Also, we would like to thank Prof. Ana Lúısa Custódio, José F.
Aguilar Madeira, A. Ismael F. Vaz, and Lúıs Nunes Vicente for providing us the matlab code of
their direct multisearch algorithm (DMS). Work partially supported by INDAM-GNCS.

References

[1] K.R. Bailey and B.G. Fitzpatrick. Estimation of groundwater flow parameters using least
squares. Mathematical and Computer Modelling, 26(11):117–127, 1997.

[2] R.G. Carter, J.M. Gablonsky, A. Patrick, C.T. Kelley, and O.J. Eslinger. Algorithms for noisy
problems in gas transmission pipeline optimization. Optimization and engineering, 2(2):139–
157, 2001.

[3] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to derivative-free optimization.
Society for Industrial and Applied Mathematics, 2009.

[4] A.L. Custódio, J.F.A. Madeira, A.I.F. Vaz, and L.N. Vicente. Direct multisearch for multi-
objective optimization. SIAM Journal on Optimization, 21(3):1109–1140, 2011.

[5] J. David, R.L. Ives, H.T. Tran, T. Bui, and M.E. Read. Computer optimized design of electron
guns. IEEE Transactions on Plasma Science, 36(1):156–168, 2008.

[6] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical programming, 91(2):201–213, 2002.

23

[7] L. dos Santos Coelho and V.C. Mariani. Combining of differential evolution and implicit
filtering algorithm applied to electromagnetic design optimization. In Soft Computing in
Industrial Applications, pages 233–240. Springer, 2007.

[8] J. Fliege and B.F. Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 51(3):479–494, 2000.

[9] K.R. Fowler, C.T. Kelley, C.E. Kees, and C.T. Miller. A hydraulic capture application for
optimal remediation design. Developments in Water Science, 55:1149–1157, 2004.

[10] K.R. Fowler, C.T. Kelley, C.T. Miller, C.E. Kees, R.W. Darwin, J.P. Reese, M.W. Farthing,
and M.S.C. Reed. Solution of a well-field design problem with implicit filtering. Optimization
and Engineering, 5(2):207–234, 2004.

[11] M. Gen, R. Cheng, and L. Lin. Multiobjective genetic algorithms. In Network Models and
Optimization: Multiobjective Genetic Algorithm Approach, pages 1–47. Springer, 2008.

[12] P. Gilmore and C.T. Kelley. An implicit filtering algorithm for optimization of functions with
many local minima. SIAM Journal on Optimization, 5(2):269–285, 1995.

[13] P. Gilmore, C.T. Kelley, C.T. Miller, and G.A. Williams. Implicit filtering and optimal design
problems. In Optimal Design and Control, pages 159–176. Springer, 1995.

[14] C.T. Kelley. Implicit Filtering. Society for Industrial and Applied Mathematics, 2011.

[15] C.-J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. Decomposition algorithm model
for singly linearly constrained problems subject to lower and upper bounds. Journal of Opti-
mization Theory and Applications, 141:107–126, 2009.

[16] G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjective
nonsmooth optimization. SIAM Journal on Optimization, 26(4):2744–2774, 2016.

[17] S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. A convergent decomposition algorithm for
support vector machines. Computational Optimization and Applications, 38:217–234, 2007.

[18] K. Miettinen. Nonlinear Multiobjective Optimization. International Series in Operations Re-
search & Management Science. Springer, 1998.

[19] David Allen Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analy-
ses, and New Innovations. PhD thesis, Wright Patterson AFB, OH, USA, 1999. AAI9928483.

[20] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, and Q. Zhang. Multiobjective evolu-
tionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,
1(1):32–49, 2011.

8 Appendix: technical results

In the appendix we prove two technical results that are used for the convergence analysis.

Proposition 2 Let f : Rn → R be continuously differentiable and let x ∈ F . Let {zk} ⊂ F and
{hk} ⊂ R+ be sequences such that

lim
k→∞

zk = x lim
k→∞

hk = 0. (28)

Assume that, for i = 1, . . . , n, at least one of the following condition holds

zk + hkei ∈ F ,

24

zk − hkei ∈ F .

Then we have
lim
k→∞

∇hk
f(zk) = ∇f(x).

Proof. Let i ∈ {1, . . . , n} and define the following subsets

K1 = {k : zk + hkei ∈ F , zk − hkei /∈ F} ,
K2 = {k : zk ± hkei ∈ F} ,
K3 = {k : zk − hkei ∈ F , zk + hkei /∈ F} .

By definition of approximated gradient we have

∂hf(zk)

∂xi
=


f(zk+hkei)−f(zk)

hk
k ∈ K1

f(zk+hkei)−f(zk−hkei)
2hk

k ∈ K2
f(zk)−f(zk−hkei)

hk
k ∈ K3

Suppose that K1 is an infinite subset. For all k ∈ K1, by the Mean Value Theorem, we can write

∂hf(zk)

∂xi
=

∂f(ξk)

∂xi
,

where ξk = zk + θkhkei, with θk ∈ (0, 1). Taking the limits for k ∈ K1 and k →∞, recalling (28)
and the continuity of the gradient, we obtain

lim
k∈K1,k→∞

∂hf(zk)

∂xi
=

∂f(x)

∂xi
.

By repeating the same reasonings using the sets K2 and K3, we have

lim
k→∞

∂hf(zk)

∂xi
=

∂f(x)

∂xi
,

and the thesis is proved. �

Proposition 3 Consider Problem (1), let F : Rn → Rm be continuously differentiable, x ∈ F ,
and let θ : F ×R+ → R be defined as in (9). Then:

(i) θ(x, h) ≤ 0 for all x ∈ F and h > 0;

(ii) let {zk} ⊂ F and {hk} ⊂ R+ be sequences satisfying the assumptions of Proposition 2; we
have

lim
k→∞

θ(zk, hk) = θ(x).

Proof. (i) Given x, y ∈ F and h > 0, we consider the function g defined as follows:

g(y, h, x) = max
i=1,...,m

∇hfi(x)
⊤(y − x),

and note that
θ(x, h) = min

y∈F
g(y, h, x).

Then θ(x, h) ≤ 0 follows easily from g(x, h, x) = 0.

(ii) We preliminary observe that

|max
i

ai −max
i

bi| ≤ ∥a− b∥ , for any a, b ∈ Rm.

25

Let us define
y(x) ∈ argmin

y∈F
max

i=1,...,m
∇fi(x)⊤(y − x),

yk ∈ argmin
y∈F

max
i=1,...,m

∇hk
fi(zk)

⊤(y − zk),

so that
max

i=1,...,m
∇fi(x)⊤(y(x)− x) ≤ max

i=1,...,m
∇fi(x)⊤(yk − x)

max
i=1,...,m

∇hk
fi(zk)

⊤(yk − zk) ≤ max
i=1,...,m

∇hk
fi(zk)

⊤(y(x)− zk).

Denote by Jhk
(zk) the approximated Jacobian Jhk

(zk) = [∇hk
f1(zk), . . . ,∇hk

fm(zk)]
⊤. We can

write

θ(zk, hk)− θ(x) = max
i
∇hk

fi(zk)
⊤(yk − zk)−max

i
∇fi(x)⊤(y(x)− x)

≤ max
i
∇hk

fi(zk)
⊤(y(x)− zk)−max

i
∇fi(x)⊤(y(x)− x)

≤ ∥Jhk
(zk)

⊤(y(x)− zk)− J(x)⊤(y(x)− x)∥
≤ ∥(Jhk

(zk)− J(x))⊤y(x)∥+ ∥J(x)⊤x− Jhk
(zk)

⊤zk + J(x)⊤zk − J(x)⊤zk∥
≤ ∥(Jhk

(zk)− J(x))⊤y(x)∥+ ∥J(x)⊤(zk − x)∥+ ∥(Jhk
(zk)− J(x))⊤zk∥.

A quite similar bound, with yk in place of y(x), can be obtained for θ(x)− θ(zk, hk). Then, as zk
and yk belong to the compact set F , by Proposition 2, |θ(zk, hk)− θ(x)| → 0 for k →∞. �

26

