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Abstract

We consider a class of difference-of-convex (DC) optimization problems whose objective is level-

bounded and is the sum of a smooth convex function with Lipschitz gradient, a proper closed

convex function and a continuous concave function. While this kind of problems can be solved

by the classical difference-of-convex algorithm (DCA) [26], the difficulty of the subproblems of this

algorithm depends heavily on the choice of DC decomposition. Simpler subproblems can be obtained

by using a specific DC decomposition described in [27]. This decomposition has been proposed in

numerous work such as [18], and we refer to the resulting DCA as the proximal DCA. Although

the subproblems are simpler, the proximal DCA is the same as the proximal gradient algorithm

when the concave part of the objective is void, and hence is potentially slow in practice. In this

paper, motivated by the extrapolation techniques for accelerating the proximal gradient algorithm

in the convex settings, we consider a proximal difference-of-convex algorithm with extrapolation to

possibly accelerate the proximal DCA. We show that any cluster point of the sequence generated

by our algorithm is a stationary point of the DC optimization problem for a fairly general choice

of extrapolation parameters: in particular, the parameters can be chosen as in FISTA with fixed

restart [15]. In addition, by assuming the Kurdyka- Lojasiewicz property of the objective and the

differentiability of the concave part, we establish global convergence of the sequence generated by our

algorithm and analyze its convergence rate. Our numerical experiments on two difference-of-convex

regularized least squares models show that our algorithm usually outperforms the proximal DCA

and the general iterative shrinkage and thresholding algorithm proposed in [17].

Keywords: difference-of-convex problems, nonconvex, nonsmooth, extrapolation, Kurdyka- Lojasiewicz

inequality
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1 Introduction

Difference-of-convex (DC) optimization problems are problems whose objective can be written as the

difference of a proper closed convex function and a continuous convex function. They arise in various

applications such as digital communication system [2], assignment and power allocation [29] and com-

pressed sensing [35]; we refer the readers to Sections 7.6 to 7.8 of the recent monograph [33] for more

applications of DC optimization problems.
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A classical algorithm for solving DC optimization problems is the so-called DC algorithm (DCA),

which was proposed by Tao and An [26]; see also [6, 18, 30, 31, 32] for more recent developments.1 In

each iteration, this algorithm replaces the concave part of the objective by a linear majorant and solves

the resulting convex optimization problem. The difficulty of the subproblems involved relies heavily

on the choice of DC decomposition of the objective function. When the objective can be written as

the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a

continuous concave function, simpler subproblems can be obtained by using a specific DC decomposition

described in [27, Eq. 16]. This idea appears in numerous work and is also recently adopted in [18], where

they proposed the so-called proximal DCA.2 This algorithm not only majorizes the concave part in the

objective by a linear majorant in each iteration, but also majorizes the smooth convex part by a quadratic

majorant. When the proximal mapping of the proper closed convex function is easy to compute, the

subproblems of the proximal DCA can be solved efficiently. However, this algorithm may take a lot

of iterations: indeed, when the concave part of the objective is void, the proximal DCA reduces to

the proximal gradient algorithm for convex optimization problems, which can be slow in practice [15,

Section 5].

It is then tempting to incorporate techniques to possibly accelerate the proximal DCA while not

significantly increasing the computational cost per iteration. One such technique is to perform extrapo-

lation. More precisely, this means adding momentum terms that involve previous iterates for updating

the current iterate. Such technique has been adopted for convex optimization problems, dating back to

Polyak’s heavy ball method [25]. More recent examples of such techniques are Nesterov’s extrapolation

techniques [21, 22, 23, 24] which have been extensively used for accelerating the proximal gradient algo-

rithm and its variants for convex optimization problems. One representative algorithm that incorporates

these techniques is the fast iterative shrinkage-thresholding algorithm (FISTA) [7, 23]. It is known that

the function values generated by FISTA converges at a rate of O(1/k2), which is faster than the O(1/k)

convergence rate of the proximal gradient algorithm. We refer the readers to [8, 15] for more examples

of such algorithms.

In view of the success of extrapolation techniques in accelerating the proximal gradient algorithm for

convex optimization problems, and noting that the proximal gradient algorithm and the proximal DCA

are the same when applied to convex problems, in this paper, we incorporate extrapolation techniques to

possibly accelerate the proximal DCA in the general DC settings.3 We call our algorithm the proximal

DCA with extrapolation (pDCAe). We prove that, for a fairly general choice of extrapolation parameters,

if the objective is level-bounded, then any cluster point of the sequence generated by our algorithm is

a stationary point of the DC optimization problem. The choice of parameters is general enough to

cover those used in FISTA with fixed restart [15]. Additionally, by assuming that the objective is a

level-bounded Kurdyka- Lojasiewicz function (see, for example, [4]) and the concave part is differentiable

with a locally Lipschitz gradient, we establish global convergence of the whole sequence generated by our

algorithm. We also analyze the convergence rate based on the Kurdyka- Lojasiewicz exponent. Finally,

we perform numerical experiments on `1−2 [35] and logarithmic [12] regularized least squares problems.

Our numerical experiments show that the pDCAe usually outperforms the proximal DCA and the general

iterative shrinkage and thresholding algorithm (GIST) proposed in [17].

The rest of this paper is organized as follows. In Section 2, we introduce notation and discuss some

preliminary materials. In Section 3, we describe the DC optimization problem we study in this paper

and present our algorithm pDCAe. The convergence of the sequence generated by the algorithm and

the convergence rate are studied in Section 4. Finally, we present numerical experiments in Section 5.

1We would also like to point to the article “DC programming and DCA” on the person webpage of Le Thi Hoai An:
http://www.lita.univ-lorraine.fr/~lethi/index.php/en/research/dc-programming-and-dca.html

2This algorithm was called “the proximal difference-of-convex decomposition algorithm” in [18]. As noted in [18], their
algorithm is the DCA applied to a specific DC decomposition.

3It is also discussed at the end of the numerical section of [18] that suitably incorporating extrapolation techniques into
the proximal DCA can accelerate the algorithm empirically.
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2 Notation and preliminaries

In this paper, we use Rn to denote the n-dimensional Euclidean space with inner product 〈·, ·〉 and

Euclidean norm ‖ · ‖, and use ‖ · ‖1 and ‖ · ‖∞ to denote the `1 norm and the `∞ norm, respectively.

Given a matrix A ∈ Rm×n, the transpose of A is denoted by AT . Moreover, for a symmetric matrix

A ∈ Rn×n, we use λmax(A) and λmin(A) to denote its largest and smallest eigenvalues, respectively.

In addition, for a nonempty closed set C ⊆ Rn, we denote the distance from a point x ∈ Rn to C by

dist(x, C) := infy∈C ‖x− y‖.
For an extended-real-valued function h : Rn → [−∞,∞], we denote its domain by domh =

{x ∈ Rn : h(x) <∞}. The function h is said to be proper if it never equals −∞ and domh 6= ∅.
Moreover, a proper function is closed if it is lower semicontinuous. A proper closed function h is said

to be level-bounded if the lower level sets of h (i.e., {x ∈ Rn : h(x) ≤ r} for any r ∈ R) are bounded.

Given a proper closed function h : Rn → R ∪ {∞}, the (limiting) subdifferential of h at x ∈ domh is

given by

∂h(x) =

{
v ∈ Rn : ∃ xt h→ x, vt → v with lim inf

y→xt
h(y)− h(xt)− 〈vt, y − xt〉

‖y − xt‖
≥ 0 for each t

}
, (2.1)

where z
h→ x means z → x and h(z) → h(x). We also write dom ∂h := {x ∈ Rn : ∂h(x) 6= ∅}. It is

known that the above subdifferential reduces to the classical subdifferential in convex analysis when h

is convex, i.e.,

∂h(x) = {v ∈ Rn : h(u)− h(x)− 〈v, u− x〉 ≥ 0, ∀u ∈ Rn} ;

see, for example, [28, Proposition 8.12]. In addition, if h is continuously differentiable, then the subdiffe-

rential (2.1) reduces to the gradient of h denoted by ∇h. We also use ∇ih to denote the partial gradient

of h with respect to xi, the i-th component of x.

We next recall the Kurdyka- Lojasiewicz (KL) property [3, 4, 5, 10], which is satisfied by a wide

variety of functions such as proper closed semialgebraic functions, and plays an important role in the

convergence analysis of many first-order methods; see, for example, [4, 5].

Definition 2.1. (KL property) A proper closed function h is said to satisfy the KL property at

x̂ ∈ dom ∂h if there exist a ∈ (0,∞], a neighborhood O of x̂, and a continuous concave function φ :

[0, a)→ R+ with φ(0) = 0 such that:

(i) φ is continuously differentiable on (0, a) with φ′ > 0;

(ii) For any x ∈ O with h(x̂) < h(x) < h(x̂) + a, one has

φ′(h(x)− h(x̂)) dist(0, ∂h(x)) ≥ 1. (2.2)

A proper closed function h satisfying the KL property at all points in dom ∂h is called a KL function.

We also recall the following result proved in [11, Lemma 6] concerning the uniformized KL property.

For notational simplicity, we use Ξa to denote the set of all concave continuous functions φ : [0, a)→ R+

that are continuously differentiable on (0, a) with positive derivatives and satisfy φ(0) = 0.

Lemma 2.1. (Uniformized KL property) Suppose that h is a proper closed function and let Γ be a

compact set. If h is a constant on Γ and satisfies the KL property at each point of Γ, then there exist

ε, a > 0 and φ ∈ Ξa such that

φ′(h(x)− h(x̂))dist(0, ∂h(x)) ≥ 1

for any x̂ ∈ Γ and any x satisfying dist(x,Γ) < ε and h(x̂) < h(x) < h(x̂) + a.
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3 Problem formulation and the proximal difference-of-convex

algorithm with extrapolation

In this section, we describe the optimization problem we study in this paper and present our proximal

difference-of-convex algorithm with extrapolation (pDCAe).

We focus on problems of the following form:

v := min
x∈Rn

F (x) := f(x) + P (x), (3.1)

where f is a smooth convex function with a Lipschitz continuous gradient whose Lipschitz continuity

modulus is L > 0, and

P (x) = P1(x)− P2(x),

with P1 being a proper closed convex function and P2 being a continuous convex function. We assume

in addition that F is level-bounded. This latter assumption implies that v > −∞ and that the set of

global minimizers of (3.1) is nonempty. Problem (3.1) arises in applications such as compressed sensing,

where f is typically the data fitting term such as the least squares loss function, and P is a nonsmooth

regularizer for inducing desirable structures in the solution. We refer the readers to [1, 9, 16, 35, 36, 37]

for concrete examples.

It is clear that problem (3.1) is a DC optimization problem and can be solved by the renowned DCA.

However, as noted in the introduction, the difficulty of the subproblems involved in the DCA depends

on the DC decomposition used. Indeed, when decomposing F naturally as the difference of f + P1 and

P2, the subproblems of the corresponding DCA take the following form:

xt+1 ∈ Arg min
x∈Rn

{
f(x) + P1(x)− 〈ξt, x〉

}
, (3.2)

where ξt ∈ ∂P2(xt). Although these problems are convex, they do not necessarily have closed form/simple

solutions. On the other hand, simpler subproblems can be obtained via a specific DC decomposition

described in [27, Eq. 16] and many other related papers such as [18], i.e.,

F (x) =

(
L

2
‖x‖2 + P1(x)

)
−
(
L

2
‖x‖2 − f(x) + P2(x)

)
,

and we refer to the resulting DCA as the proximal DCA. When applied to solving (3.1), the subproblems

of the proximal DCA take the following form:

xt+1 = arg min
x∈Rn

{
〈∇f(xt)− ξt, x〉+

L

2
‖x− xt‖2 + P1(x)

}
= arg min

x∈Rn

{
L

2

∥∥∥∥x− (xt − 1

L
[∇f(xt)− ξt]

)∥∥∥∥2

+ P1(x)

}
,

(3.3)

where ξt ∈ ∂P2(xt), and xt+1 is uniquely defined because P1 is proper closed convex. In contrast to

(3.2), solving the subproblem (3.3) amounts to evaluating the so-called proximal operator of 1
LP1, and

this proximal operator is easy to compute for a wide variety of P1; see, for example, [14, Tables 10.1 and

10.2].

Despite having simple subproblems for many commonly used P1, the proximal DCA is potentially

slow: this is because the proximal DCA is the same as the proximal gradient algorithm when P2 = 0 and

the proximal gradient algorithm can take a lot of iterations in practice [15, Section 5]. Fortunately, the

proximal gradient algorithm for convex problems (i.e., when P2 = 0) has been successfully accelerated

by various extrapolation techniques [21, 22, 23, 24]. Thus, it is tempting to incorporate extrapolation

techniques into the proximal DCA to possibly accelerate the algorithm. Specifically, we consider the

following algorithm for solving the DC optimization problem (3.1):
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Proximal difference-of-convex algorithm with extrapolation (pDCAe):

Input: x0 ∈ domP1, {βt} ⊆ [0, 1) with sup
t
βt < 1. Set x−1 = x0.

for t = 0, 1, 2, · · ·
Take any ξt ∈ ∂P2(xt) and set

yt = xt + βt(x
t − xt−1),

xt+1 = arg min
y∈Rn

{
〈∇f(yt)− ξt, y〉+

L

2
‖y − yt‖2 + P1(y)

}
.

(3.4)

end for

In view of the algorithmic framework of pDCAe and the subproblem (3.3) in the proximal DCA, it

is not hard to see that pDCAe reduces to the proximal DCA when βt ≡ 0. Hence, the proximal DCA is

a special case of pDCAe. In addition, we would like to point out that the conditions on {βt} in pDCAe

(i.e., {βt} ⊆ [0, 1) and sup
t
βt < 1) are general enough to cover many popular choices of extrapolation

parameters including those used in FISTA with fixed restart or FISTA with both fixed and adaptive

restart for solving (3.1) with P2 = 0 [15]. In detail, in these schemes, one starts with θ−1 = θ0 = 1,

recursively defines for t ≥ 0 that

βt =
θt−1 − 1

θt
with θt+1 =

1 +
√

1 + 4θ2
t

2
, (3.5)

and resets θt−1 = θt = 1 for some t > 0 under suitable conditions: in the fixed restart scheme, one

fixes a positive number T̄ and resets θt−1 = θt = 1 every T̄ iterations, while the adaptive restart scheme

amounts to resetting θt−1 = θt = 1 whenever 〈yt−1 − xt, xt − xt−1〉 > 0. From these definitions, one can

readily show by induction that the {βt} chosen as in FISTA with fixed restart or FISTA with both fixed

and adaptive restart satisfies {βt} ⊆ [0, 1) and sup
t
βt < 1.4 The choice of {βt} as in FISTA with both

fixed and adaptive restart will be used in our numerical experiments in Section 5.

4 Convergence analysis

In this section, we study the convergence behavior of pDCAe. We first establish the global subsequential

convergence of pDCAe. Then, by making an additional differentiability assumption on P2 and assuming

that the Kurdyka- Lojasiewicz property holds for an auxiliary function, we prove the global convergence

of the whole sequence generated by pDCAe and analyze the rate of convergence.

4.1 Convergence analysis I: Global subsequential convergence of pDCAe

We start with the following definition of stationary points; see, for example, [17, Remark 1]. It is routine

to show that any local minimizer of F is a stationary point of F ; see [26, Theorem 2(i)].

Definition 4.1. Let F be given in (3.1). We say that x̄ is a stationary point of F if

0 ∈ ∇f(x̄) + ∂P1(x̄)− ∂P2(x̄).

The set of all stationary points of F is denoted by X .

4Indeed, when P2 = 0, FISTA with fixed restart and FISTA with both fixed and adaptive restart are special cases of
pDCAe.
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We are now ready to prove a global subsequential convergence result for pDCAe applied to solving

(3.1). Recall that F in (3.1) is level-bounded, and the extrapolation parameters {βt} in pDCAe satisfy

sup
t
βt < 1 and {βt} ⊆ [0, 1).

Theorem 4.1. (Global subsequential convergence of pDCAe) Let {xt} be a sequence generated

by pDCAe for solving (3.1). Then the following statements hold.

(i) The sequence {xt} is bounded.

(ii) limt→∞ ‖xt+1 − xt‖ = 0.

(iii) Any accumulation point of {xt} is a stationary point of F .

Proof. First we prove (i). We note from (3.4) that xt+1 is the global minimizer of a strongly convex

function. Using this and comparing the objective values of this strongly convex function at xt+1 and xt,

we see immediately that

〈∇f(yt)− ξt, xt+1〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)

≤ 〈∇f(yt)− ξt, xt〉+
L

2
‖xt − yt‖2 + P1(xt)− L

2
‖xt+1 − xt‖2.

(4.1)

On the other hand, using the fact that ∇f is Lipschitz continuous with a modulus of L > 0, we have

f(xt+1) + P (xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P (xt+1)

= f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)− P2(xt+1)

≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)− P2(xt)− 〈ξt, xt+1 − xt〉

≤ f(yt) + 〈∇f(yt), xt − yt〉+
L

2
‖xt − yt‖2 + P1(xt)− P2(xt)− L

2
‖xt+1 − xt‖2

≤ f(xt) + P (xt) +
L

2
‖xt − yt‖2 − L

2
‖xt+1 − xt‖2,

(4.2)

where the second inequality follows from the subgradient inequality and the fact that ξt ∈ ∂P2(xt), the

third inequality follows from (4.1), while the last inequality follows from the convexity of f and the

definition of P . Now, invoking the definition of yt, we obtain further from (4.2) that

f(xt+1) + P (xt+1) ≤ f(xt) + P (xt) +
L

2
β2
t ‖xt − xt−1‖2 − L

2
‖xt+1 − xt‖2.

Consequently, we have upon rearranging terms that

L

2
(1− β2

t )‖xt − xt−1‖2 ≤
[
f(xt) + P (xt) +

L

2
‖xt − xt−1‖2

]
−
[
f(xt+1) + P (xt+1) +

L

2
‖xt+1 − xt‖2

]
.

(4.3)

Since {βt} ⊂ [0, 1), we deduce from (4.3) that the sequence {f(xt) + P (xt) + L
2 ‖x

t − xt−1‖2} is

nonincreasing. This together with the fact that x0 = x−1 gives

f(xt) + P (xt) ≤ f(xt) + P (xt) +
L

2
‖xt − xt−1‖2 ≤ f(x0) + P (x0)

for all t ≥ 0, which shows that {xt} is bounded, thanks to the level-boundedness of f + P . This proves

(i).
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Next we prove (ii). Summing both sides of (4.3) from t = 0 to ∞, we obtain that

L

2

∞∑
t=0

(1− β2
t )‖xt − xt−1‖2 ≤ f(x0) + P (x0)− lim inf

t→∞

[
f(xt+1) + P (xt+1) +

L

2
‖xt+1 − xt‖2

]
≤ f(x0) + P (x0)− v <∞.

Since sup
t
βt < 1, we deduce immediately from the above relation that lim

t→∞
‖xt+1−xt‖ = 0. This proves

(ii).

Finally, let x̄ be an accumulation point of {xt} and let {xti} be a subsequence such that lim
i→∞

xti = x̄.

Then, from the first-order optimality condition of the subproblem (3.4), we have

−L(xti+1 − yti) ∈ ∂P1(xti+1) +∇f(yti)− ξti .

Using this together with the fact that yti = xti + βti(x
ti − xti−1), we obtain further that

−L[(xti+1 − xti)− βti(xti − xti−1)] ∈ ∂P1(xti+1) +∇f(yti)− ξti . (4.4)

In addition, note that the sequence {ξti} is bounded due to the continuity and convexity of P2 and the

boundedness of {xti}. Thus, by passing to a further subsequence if necessary, we may assume without

loss of generality that lim
i→∞

ξti exists, which belongs to ∂P2(x̄) due to the closedness of ∂P2. Using this

and invoking ‖xti+1 − xti‖ → 0 from (ii) together with the closedness of ∂P1 and the continuity of ∇f ,

we have upon passing to the limit in (4.4) that

0 ∈ ∂P1(x̄) +∇f(x̄)− ∂P2(x̄).

This completes the proof. 2

We next study the behavior of {F (xt)} for a sequence {xt} generated by pDCAe. The result will

subsequently be used in establishing global convergence of the whole sequence {xt} under additional

assumptions in the next subsection.

Proposition 4.1. Let {xt} be a sequence generated by pDCAe for solving (3.1). Then the following

statements hold.

(i) ζ := lim
t→∞

F (xt) exists.

(ii) F ≡ ζ on Ω, where Ω is the set of accumulation points of {xt}.

Proof. Since {βt} ⊆ [0, 1), we see immediately from (4.3) that the sequence {F (xt) + L
2 ‖x

t − xt−1‖2}
is nonincreasing. In addition, this sequence is also bounded below by v. Furthermore, we recall from

Theorem 4.1(ii) that ‖xt+1−xt‖ → 0. The conclusion that ζ := lim
t→∞

F (xt) exists now follows immediately

from the aforementioned facts. This proves (i).

Now we prove (ii). We first note from Theorem 4.1(i) and (iii) that ∅ 6= Ω ⊆ X . Take any x̂ ∈ Ω. By

the definition of accumulation point, there exists a convergent subsequence {xti} such that lim
i→∞

xti = x̂.

Since xti is the minimizer of the subproblem (3.4), we see that

P1(xti) + 〈∇f(yti−1)− ξti−1, xti〉+
L

2
‖xti − yti−1‖2 ≤ P1(x̂) + 〈∇f(yti−1)− ξti−1, x̂〉+

L

2
‖x̂− yti−1‖2.

Rearranging terms, we obtain further that

P1(xti) + 〈∇f(yti−1)− ξti−1, xti − x̂〉+
L

2
‖xti − yti−1‖2 ≤ P1(x̂) +

L

2
‖x̂− yti−1‖2. (4.5)
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On the other hand, observe that

‖x̂− yti−1‖ = ‖x̂− xti + xti − yti−1‖ ≤ ‖x̂− xti‖+ ‖xti − yti−1‖ (4.6)

and that

‖xti − yti−1‖ = ‖xti − xti−1 − βti−1(xti−1 − xti−2)‖
≤ ‖xti − xti−1‖+ ‖xti−1 − xti−2‖,

(4.7)

where we made use of the fact that yti−1 = xti−1 + βti−1(xti−1 − xti−2) for the equality. Since ‖xt+1 −
xt‖ → 0 from Theorem 4.1(ii) and lim

i→∞
xti = x̂, we have by passing to the limits in (4.6) and (4.7) that

‖x̂− yti−1‖ → 0 and ‖xti − yti−1‖ → 0. (4.8)

In addition, notice that the sequence {ξti} is bounded, thanks to the convexity and continuity of P2 and

the fact that lim
i→∞

xti = x̂. Using this and (4.8), we obtain further that

ζ = lim
i→∞

f(xti) + P (xti)

= lim
i→∞

f(xti) + P (xti) + 〈∇f(yti−1)− ξti−1, xti − x̂〉+
L

2
‖xti − yti−1‖2

≤ lim sup
i→∞

f(xti) + P1(x̂)− P2(xti) +
L

2
‖x̂− yti−1‖2 = F (x̂),

where the inequality follows from (4.5) and the definition of P . Finally, since F is lower semicontinuous,

we also have

F (x̂) ≤ lim inf
i→∞

F (xti) = lim
i→∞

F (xti) = ζ.

Consequently, F (x̂) = lim
i→∞

F (xti) = ζ. Since x̂ ∈ Ω is arbitrary, we conclude that F ≡ ζ on Ω. This

completes the proof. 2

4.2 Convergence analysis II: Global convergence and convergence rate of the
pDCAe

In this subsection, we consider the global convergence property of the whole sequence {xt} generated by

pDCAe for solving (3.1) and establish the convergence rate of {xt} under suitable conditions. We start

by introducing the following assumption.

Assumption 4.1. The function P2 in (3.1) is continuously differentiable on an open set N0 that contains

X . Moreover, the gradient ∇P2 is locally Lipschitz continuous on N0.

While Assumption 4.1 may look restrictive at first glance, it is satisfied by many DC regularizers

P (x) that arise in applications. We present some concrete examples below.

Example 4.1. We consider the least squares problem with `1−2 regularization [35], which takes the

following form

min
x∈Rn

F`1−2(x) =
1

2
‖Ax− b‖2 + λ‖x‖1 − λ‖x‖, (4.9)

where A ∈ Rm×n, b ∈ Rm and λ > 0. We also assume that A does not have zero columns so that F`1−2

is level-bounded (see [35, Lemma 3.1] and [20, Example 4.1(b)]). This model corresponds to (3.1) with

f(x) = 1
2‖Ax− b‖

2, P1(x) = λ‖x‖1 and P2(x) = λ‖x‖.
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We claim that if 2λ < ‖AT b‖∞, then 0 is not a stationary point of F`1−2
. Suppose to the contrary

that 0 ∈ X , then we have from the definition of stationary point that AT b ∈ λ∂‖0‖1 − λ∂‖0‖, which is

equivalent to

AT b ∈ λ[−1, 1]n − λB(0, 1),

where B(0, 1) = {x ∈ Rn : ‖x‖ ≤ 1}. From this, we see that ‖AT b‖∞ ≤ 2λ, which is a contradiction.

Hence, if λ < 1
2‖A

T b‖∞, then X does not contain 0. Since X is closed, one can then construct an

open set N0 containing X so that P2 is continuously differentiable with locally Lipschitz gradient on N0.

Thus, Assumption 4.1 is satisfied for (4.9) when λ < 1
2‖A

T b‖∞.

Example 4.2. We consider the minmax concave penalty (MCP) regularization [36], whose DC decom-

position is given in [17]:

P (x) = λ

n∑
i=1

∫ |xi|
0

[
1− x

θλ

]
+
dx = λ‖x‖1 − λ

n∑
i=1

∫ |xi|
0

min
{

1,
x

θλ

}
dx︸ ︷︷ ︸

P2(x)

,

where θ > 0 is a constant, λ > 0 is the regularization parameter and [x]+ = max{0, x}. It is routine to

show that P2 is continuously differentiable and

∇iP2(x) = λ sign(xi) min{1, |xi|/(θλ)}.

Moreover, the gradient ∇P2 is Lipschitz continuous with modulus 1
θ .

Example 4.3. We consider the smoothly clipped absolute deviation (SCAD) regularization [16], whose

DC decomposition is given in [17]:

P (x) = λ

n∑
i=1

∫ |xi|
0

min

{
1,

[θλ− x]+
(θ − 1)λ

}
dx = λ‖x‖1 − λ

n∑
i=1

∫ |xi|
0

[min{θλ, x} − λ]+
(θ − 1)λ

dx︸ ︷︷ ︸
P2(x)

,

where λ > 0 is the regularization parameter and θ > 2 is a constant. It is routine to show that P2 is

continuously differentiable with

∇iP2(x) = sign(xi)
[min{θλ, |xi|} − λ]+

θ − 1
.

Thus it is routine to show that 1
θ−1 is a Lipschitz continuity modulus of ∇P2.

Example 4.4. We consider the transformed `1 regularization [37], whose DC decomposition is given in

[1]:

P (x) =

n∑
i=1

(a+ 1)|xi|
a+ |xi|

=
a+ 1

a
‖x‖1 −

n∑
i=1

[
a+ 1

a
|xi| −

(a+ 1)|xi|
a+ |xi|

]
︸ ︷︷ ︸

P2(x)

,

where a > 0. It was shown in [1, Section 5.4] that P2(x) is continuously differentiable with a Lipschitz

continuous gradient whose Lipschitz continuity modulus is 2(a+1)
a2 .

Example 4.5. The last regularization function we consider is the logarithmic penalty function [12],

whose DC decomposition is given in [17]:

P (x) =

n∑
i=1

[λ log(|xi|+ ε)− λ log ε] =
λ

ε
‖x‖1 −

n∑
i=1

λ

[
|xi|
ε
− log(|xi|+ ε) + log ε

]
︸ ︷︷ ︸

P2(x)

,

where λ and ε are positive numbers. One can see that P2(x) is continuously differentiable with a Lipschitz

continuous gradient whose Lipschitz continuity modulus is λ
ε2 .
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We next present our global convergence analysis. We will show that the sequence {xt} generated

by pDCAe is convergent to a stationary point of F under suitable assumptions. Our analysis follows

a similar line of arguments to other convergence analysis based on KL property (see, for example,

[3, 4, 5, 6]), but has to make extensive use of the following auxiliary function:

E(x, y) = f(x) + P (x) +
L

2
‖x− y‖2. (4.10)

Theorem 4.2. (Global convergence of pDCAe) Suppose that Assumption 4.1 holds and E is a KL

function. Let {xt} be a sequence generated by pDCAe for solving (3.1). Then the following statements

hold.

(i) lim
t→∞

dist((0, 0), ∂E(xt, xt−1)) = 0.

(ii) The sequence {E(xt, xt−1)} is nonincreasing and lim
t→∞

E(xt, xt−1) = ζ, where ζ is given in Propo-

sition 4.1.

(iii) The set of accumulation points of {(xt, xt−1)} is Υ := {(x, x) : x ∈ Ω} and E ≡ ζ on Υ, where Ω

is the set of accumulation points of {xt}.

(iv) The sequence {xt} converges to a stationary point of F ; moreover,
∑∞
t=1 ‖xt − xt−1‖ <∞.

Proof. From Theorem 4.1(i), we see that {xt} is bounded. This together with the definition of Ω implies

that lim
t→∞

dist(xt,Ω) = 0. Also recall from Theorem 4.1(iii) that Ω ⊆ X . Thus, for any ν > 0, there

exists T0 > 0 so that dist(xt,Ω) < ν and xt ∈ N0 whenever t ≥ T0, where N0 is the open set from

Assumption 4.1. Moreover, since Ω is compact due to the boundedness of {xt}, by shrinking ν if

necessary, we may assume without loss of generality that ∇P2 is globally Lipschitz continuous on the

bounded set N := {x ∈ N0 : dist(x,Ω) < ν}.
Next, considering the subdifferential of the function E in (4.10) at the point (xt, xt−1) for t ≥ T0, we

have

∂E(xt, xt−1) = [{∇f(xt)−∇P2(xt) + L(xt − xt−1)}+ ∂P1(xt)]× {−L(xt − xt−1)}, (4.11)

where we made use of the definition of P , the facts that P2 is continuously differentiable in N and that

xt ∈ N for t ≥ T0.

On the other hand, using the first-order optimality condition of the subproblem (3.4) in pDCAe, we

have for any t ≥ T0 + 1 that

−L(xt − yt−1)−∇f(yt−1) +∇P2(xt−1) ∈ ∂P1(xt),

since P2 is continuously differentiable in N and xt−1 ∈ N whenever t ≥ T0 + 1. Using this relation, we

see further that

− L(xt−1 − yt−1) +∇f(xt)−∇f(yt−1) +∇P2(xt−1)−∇P2(xt)

= ∇f(xt)−∇P2(xt) + L(xt − xt−1)− L(xt − yt−1)−∇f(yt−1) +∇P2(xt−1)

∈ ∇f(xt)−∇P2(xt) + L(xt − xt−1) + ∂P1(xt).

Combining this with (4.11), we obtain

(−L(xt−1 − yt−1) +∇f(xt)−∇f(yt−1) +∇P2(xt−1)−∇P2(xt),−L(xt − xt−1)) ∈ ∂E(xt, xt−1).

Using this, the definition of yt and the global Lipschitz continuity of ∇f and ∇P2 on N , we see that

there exists C > 0 such that

dist((0, 0), ∂E(xt, xt−1)) ≤ C(‖xt − xt−1‖+ ‖xt−1 − xt−2‖) (4.12)
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whenever t ≥ T0 + 1. Since ‖xt+1 − xt‖ → 0 according to Theorem 4.1(ii), we conclude that

lim
t→∞

dist((0, 0), ∂E(xt, xt−1)) = 0,

which proves (i).

We now prove (ii) and (iii). Using the fact that sup
t
βt < 1, the definition of E and (4.3), we see that

there exists a positive number D such that

E(xt, xt−1)− E(xt+1, xt) ≥ D‖xt − xt−1‖2 (4.13)

for all t. In particular, the sequence {E(xt, xt−1)} is nonincreasing. Since this sequence is also bounded

below by v, it is convergent. Next, in view of Theorem 4.1(ii) which says that ‖xt− xt−1‖ → 0, it is not

hard to show that the set of accumulation points of {(xt, xt−1)}t≥1 is Υ. Moreover,

lim
t→∞

E(xt, xt−1) = ζ,

thanks to Proposition 4.1(i). Furthermore, for any (x̂, x̂) ∈ Υ so that x̂ ∈ Ω, we have E(x̂, x̂) = F (x̂) = ζ,

where the last equality follows from Proposition 4.1(ii). Since x̂ ∈ Ω is arbitrary, we conclude that E ≡ ζ
on Υ. This proves (ii) and (iii).

Finally, we prove (iv). In view of Theorem 4.1(iii), it suffices to show that {xt} is convergent. We first

consider the case that there exists a t > 0 such that E(xt, xt−1) = ζ. Since {E(xt, xt−1)} is nonincreasing

and convergent to ζ due to (ii), we conclude that for any t̄ ≥ 0, E(xt+t̄, xt+t̄−1) = ζ. Hence, we have

from (4.13) that xt = xt+t̄ for any t̄ ≥ 0, meaning that {xt} converges finitely.

We next consider the case that E(xt, xt−1) > ζ for all t. Since E is a KL function, Υ is a compact

subset of dom ∂E and E ≡ ζ on Υ, by Lemma 2.1, there exist an ε > 0 and a continuous concave

function φ ∈ Ξa with a > 0 such that

φ′(E(x, y)− ζ)dist((0, 0), ∂E(x, y)) ≥ 1 (4.14)

for all (x, y) ∈ U , where

U = {(x, y) ∈ Rn × Rn : dist((x, y),Υ) < ε} ∩ {(x, y) ∈ Rn × Rn : ζ < E(x, y) < ζ + a} .

Since Υ is the set of accumulation points of {(xt, xt−1)}t≥1 by (iii), and {xt} is bounded due to Theo-

rem 4.1(i), we have

lim
t→∞

dist((xt, xt−1),Υ) = 0.

Hence, there exists T1 > 0 such that dist((xt, xt−1),Υ) < ε whenever t ≥ T1. In addition, since

the sequence {E(xt, xt−1)} is nonincreasing and convergent to ζ by (ii), there exists T2 > 0 such that

ξ < E(xt, xt−1) < ξ+a for all t ≥ T2. Taking T̄ = max{T0 +1, T1, T2}, then the sequence {(xt, xt−1)}t≥T̄
belongs to U . Hence we deduce from (4.14) that

φ′(E(xt, xt−1)− ζ) · dist((0, 0), ∂E(xt, xt−1)) ≥ 1, for all t ≥ T̄ . (4.15)

From the concavity of φ, we see further that for any t ≥ T̄ ,[
φ(E(xt, xt−1)− ζ)− φ(E(xt+1, xt)− ζ)

]
· dist((0, 0), ∂E(xt, xt−1))

≥ φ′(E(xt, xt−1)− ζ)) · dist((0, 0), ∂E(xt, xt−1)) · (E(xt, xt−1)− E(xt+1, xt))

≥ E(xt, xt−1)− E(xt+1, xt),

where the last inequality holds due to (4.15) and the fact that {E(xt, xt−1)} is nonincreasing. Combining

this with (4.12) and (4.13) and rearranging terms, we obtain that for any t ≥ T̄ ,

‖xt − xt−1‖2 ≤ C

D

(
φ(E(xt, xt−1)− ζ)− φ(E(xt+1, xt)− ζ)

)
·
(
‖xt − xt−1‖+ ‖xt−1 − xt−2‖

)
. (4.16)
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Taking square root on both sides of (4.16) and using the AM-GM inequality, we have

‖xt − xt−1‖ ≤
√

2C

D
(φ(E(xt, xt−1)− ζ)− φ(E(xt+1, xt)− ζ)) ·

√
‖xt − xt−1‖+ ‖xt−1 − xt−2‖

2

≤ C

D

(
φ(E(xt, xt−1)− ζ)− φ(E(xt+1, xt)− ζ)

)
+

1

4
‖xt − xt−1‖+

1

4
‖xt−1 − xt−2‖,

which implies that

1

2
‖xt − xt−1‖ ≤ C

D

(
φ(E(xt, xt−1)− ζ)− φ(E(xt+1, xt)− ζ)

)
+

1

4
(‖xt−1 − xt−2‖− ‖xt − xt−1‖). (4.17)

Summing the above relation from t = T̄ to ∞, we have

∞∑
t=T̄

‖xt − xt−1‖ ≤ 2C

D
φ(E(xT̄ , xT̄−1)− ζ) +

1

2
‖xT̄−1 − xT̄−2‖ <∞,

which implies the convergence of {xt} as well as the summability of {‖xt+1 − xt‖}t≥0. This completes

the proof. 2

Remark 4.1. If the objective is not level bounded but we still have v > −∞ (which can be true for

least squares with regularizers in Examples 4.2, 4.3 and 4.4), we can still show that ‖xt − xt−1‖ → 0

by following the same arguments as in the proof of Theorem 4.1(ii). Consequently, if the sequence {xt}
also has an accumulation point, then using a similar proof as Theorem 4.1(iii), this accumulation point

can be shown to be a stationary point of (3.1).

We next consider the convergence rate of the sequence {xt} under the assumption that the auxiliary

function E is a KL function whose φ ∈ Ξa (see Definition 2.1) takes the form φ(s) = cs1−θ for some

θ ∈ [0, 1). This kind of convergence rate analysis has also been performed for other optimization

algorithms; see, for example, [3]. Our analysis is similar to theirs but makes use of the auxiliary function

E in (4.10).

Theorem 4.3. Suppose that Assumption 4.1 holds. Let {xt} be a sequence generated by pDCAe for

solving (3.1) and suppose that {xt} converges to some x̄. Suppose further that E is a KL function with

φ in the KL inequality (2.2) taking the form φ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. Then the

following statements hold.

(i) If θ = 0, then there exists t0 > 0 so that xt is constant for t > t0;

(ii) If θ ∈ (0, 1
2 ], then there exist c1 > 0, t1 > 0 and η ∈ (0, 1) such that ‖xt − x̄‖ < c1η

t for t > t1;

(iii) If θ ∈ ( 1
2 , 1), then there exist c2 > 0 and t2 > 0 such that ‖xt − x̄‖ < c2t

− 1−θ
2θ−1 for t > t2.

Proof. First, we prove (i). If θ = 0, we claim that there must exist t0 > 0 such that E(xt0 , xt0−1) = ζ.

Suppose to the contrary that E(xt, xt−1) > ζ for all t > 0. Since lim
t→∞

xt = x̄ and the sequence

{E(xt, xt−1)} is nonincreasing and convergent to ζ by Theorem 4.2(ii), we have from φ(s) = cs and the

KL inequality (4.15) that for all sufficiently large t,

dist((0, 0), ∂E(xt, xt−1)) ≥ 1

c
,

which contradicts Theorem 4.2(i). Thus, there exists t0 > 0 so that E(xt0 , xt0−1) = ζ. Since {E(xt, xt−1)}
is nonincreasing and convergent to ζ, it must then hold that E(xt0+t̄, xt0+t̄−1) = ζ for any t̄ ≥ 0. Thus,

we conclude from (4.13) that xt0 = xt0+t̄ for any t̄ ≥ 0. This proves (i).
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We next turn to the case that θ ∈ (0, 1). If there exists t0 > 0 such that E(xt0 , xt0−1) = ζ, then one

can show that {xt} is finitely convergent as above, and the desired conclusions hold trivially. Hence, for

θ ∈ (0, 1), we only need to consider the case when E(xt, xt−1) > ζ for all t > 0.

Define Ht = E(xt, xt−1) − ζ and St =
∑∞
i=t ‖xi+1 − xi‖, where St is well-defined due to Theo-

rem 4.2(iv). Then, using (4.17), we have for any t ≥ T̄ (where T̄ is defined as in (4.15)) that

St = 2

∞∑
i=t

1

2
‖xi+1 − xi‖ ≤ 2

∞∑
i=t

1

2
‖xi − xi−1‖

≤ 2

∞∑
i=t

[
C

D

(
φ(E(xi, xi−1)− ζ)− φ(E(xi+1, xi)− ζ)

)
+

1

4
(‖xi−1 − xi−2‖ − ‖xi − xi−1‖)

]
≤ 2C

D
φ(E(xt, xt−1)− ζ) +

1

2
‖xt−1 − xt−2‖ =

2C

D
φ(Ht) +

1

2
(St−2 − St−1).

Using this and the fact that {St} is nonincreasing, we obtain further that

St ≤
2C

D
φ(Ht) +

1

2
(St−2 − St) (4.18)

for all t ≥ T̄ . On the other hand, since lim
t→∞

xt = x̄ and the sequence {E(xt, xt−1)} is nonincreasing and

convergent to ζ by Theorem 4.2(ii), we have from the KL inequality (4.15) with φ(s) = cs1−θ that for

all sufficiently large t,

c(1− θ)(Ht)
−θdist((0, 0), ∂E(xt, xt−1)) ≥ 1. (4.19)

In addition, using (4.12) and the definition of St, we see that for all sufficiently large t,

dist((0, 0), ∂E(xt, xt−1)) ≤ C(St−2 − St). (4.20)

Combining (4.19) and (4.20), we have for all sufficiently large t that

(Ht)
θ ≤ C · c(1− θ) · (St−2 − St).

Raising to a power of 1−θ
θ to both sides of the above inequality and scaling both sides by c, we obtain

that

c(Ht)
1−θ ≤ c · (C · c(1− θ) · (St−2 − St))

1−θ
θ .

Combining this with (4.18) and recalling that φ(Ht) = c(Ht)
1−θ, we see that for all sufficiently large t,

St ≤ C1(St−2 − St)
1−θ
θ +

1

2
(St−2 − St) ≤ C1(St−2 − St)

1−θ
θ + St−2 − St, (4.21)

where C1 = 2C
D c · (C · c(1− θ))

1−θ
θ .

We now consider two cases: θ ∈ (0, 1
2 ] or θ ∈ ( 1

2 , 1).

Suppose first that θ ∈ (0, 1
2 ]. Then 1−θ

θ ≥ 1. Since ‖xt+1 − xt‖ → 0 from Theorem 4.1(ii), it holds

that St−2 − St → 0. From these and (4.21), we conclude that there exists t1 > 0 so that for all t ≥ t1,

we have

St ≤ (C1 + 1)(St−2 − St),

which implies that St ≤ C1+1
C1+2St−2. Hence,

‖xt − x̄‖ ≤
∞∑
i=t

‖xi+1 − xi‖ = St ≤ St1−2

(√
C1 + 1

C1 + 2

)t−t1+1

for all t ≥ t1. This proves (ii).
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Finally, we consider the case that θ ∈ ( 1
2 , 1). In this case, we have 1−θ

θ < 1. Combining this with

(4.21) and the fact that St−2 − St → 0, we see that there exists t2 > 0 such that for all t ≥ t2, we have

St ≤ C1(St−2 − St)
1−θ
θ + St−2 − St

≤ C1(St−2 − St)
1−θ
θ + (St−2 − St)

1−θ
θ

= (C1 + 1)(St−2 − St)
1−θ
θ .

Raising to a power of θ
1−θ to both sides of the above inequality, we see further that,

S
θ

1−θ
t ≤ C2(St−2 − St)

whenever t ≥ t2, where C2 = (C1 + 1)
θ

1−θ . Consider the sequence ∆t := S2t. Then for any t ≥ d t22 e, we

have

∆
θ

1−θ
t ≤ C2(∆t−1 −∆t).

Proceeding as in the proof of [3, Theorem 2] starting from [3, Equation (13)], one can show similarly

that for all sufficiently large t,

∆t ≤ C3t
− 1−θ

2θ−1

for some C3 > 0; see the first equation on [3, Page 15]. This implies that for all sufficiently large t, we

have

‖xt − x̄‖ ≤ St

{
= ∆ t

2
≤ 2ρC3t

−ρ if t is even,

≤ St−1 = ∆ t−1
2
≤ 2ρC3(t− 1)−ρ ≤ 4ρC3t

−ρ if t is odd and t ≥ 2,

where ρ := 1−θ
2θ−1 . This completes the proof. 2

Remark 4.2. We recall that there are many concrete examples of functions f satisfying the KL property

at all points in dom ∂f with φ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. Indeed, all proper closed

semialgebraic functions satisfy this property; see, for example, [10, section 2] and [4, section 4.3]. We

refer the readers to [4, 19] for more examples. In particular, one can show that if f(x) = 1
2‖Ax − b‖

2

for some matrix A and vector b, P is given as in any one of the five examples at the beginning of this

subsection, then the function E in (4.10) is a KL function with φ(s) = cs1−θ for some θ ∈ [0, 1) and

c > 0.

5 Numerical experiments

In this section, we perform numerical experiments to illustrate the efficiency of our algorithm pDCAe for

solving problem (3.1). All experiments are performed in Matlab 2015b on a 64-bit PC with an Intel(R)

Core(TM) i7-4790 CPU (3.60GHz) and 32GB of RAM.

In our numerical tests, we focus on the following DC regularized least squares problem:

min
x∈Rn

1

2
‖Ax− b‖2 + P1(x)− P2(x), (5.1)

where A ∈ Rm×n, b ∈ Rm, P1 is a proper closed convex function and P2 is a continuous convex function.

We consider two different classes of regularizers: the `1−2 regularizer discussed in Example 4.1 and the

logarithmic regularizer presented in Example 4.5. We compare three algorithms for solving (5.1) with

these regularizers: our algorithm pDCAe, the proximal DCA (pDCA) studied in various work such as

[27] and [18], and the GIST proposed in [17]. We discuss the implementation details of these algorithms

below.
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pDCAe. For this algorithm, we set L = λmax(ATA),5 choose the extrapolation parameters {βt}
as in (3.5), and perform both the fixed restart (with T̄ = 200) and the adaptive restart strategies as

described in Section 3. We initialize the algorithm at the origin and terminate it when

‖xt − xt−1‖
max{1, ‖xt‖}

< 10−5. (5.2)

pDCA. This is a special case of pDCAe with βt ≡ 0. We set L = λmax(ATA), initialize the algorithm

at the origin and terminate it when (5.2) holds. In our experiments below, this algorithm turns out to

be very slow, and so we also terminate this algorithm when the iteration number hits 5000.

GIST. This algorithm was proposed in [17], and is the same as the nonmonotone proximal gradient

algorithm described in [34] (see also [13, Appendix A, Algorithm 1]) applied to f(x) = 1
2‖Ax− b‖

2 and

P (x) = P1(x)−P2(x). Following the notation in [13, Appendix A, Algorithm 1], in our implementation,

we set c = 10−4, τ = 2, M = 4, L0
0 = 1, and

L0
t = min

{
max

{
‖A(xt − xt−1)‖2

‖xt − xt−1‖2
, 10−8

}
, 108

}
for t ≥ 1. We would like to point out that the subproblem in [13, Appendix A, A.4] now becomes

min
x∈Rn

{
〈AT (Axt − b), x− xt〉+

Lt
2
‖x− xt‖2 + P1(x)− P2(x)

}
,

which has closed form solutions for the two regularizers used in our experiments below; see the appendices

of [17] and [20]. We initialize this algorithm at the origin and terminate it when (5.2) holds.

In our numerical experiments below, we compare our algorithm pDCAe with pDCA and GIST for

solving (5.1) on random instances generated as follows. We first generate an m× n matrix A with i.i.d.

standard Gaussian entries, and then normalize this matrix so that the columns of A have unit norms.

A subset T of size s is then chosen uniformly at random from {1, 2, 3, . . . , n} and an s-sparse vector

y having i.i.d. standard Gaussian entries on T is generated. Finally, we set b = Ay + 0.01 · n̂, where

n̂ ∈ Rm is a random vector with i.i.d. standard Gaussian entries.

We next present the DC models we use in our numerical tests and the numerical results.

5.1 Least squares problems with `1−2 regularizer

In this subsection, we consider the `1−2 regularized least squares problem:

min
x∈Rn

F`1−2(x) =
1

2
‖Ax− b‖2 + λ‖x‖1 − λ‖x‖, (5.3)

where A ∈ Rm×n, b ∈ Rm, and λ > 0 is the regularization parameter. This problem takes the form of

(5.1) with P1(x) = λ‖x‖1 and P2(x) = λ‖x‖. We assume in addition that the A in (5.3) does not have

zero columns. Using this assumption, Example 4.1, Theorem 4.2 and Remark 4.2, we see that F`1−2

is level-bounded, and that if we choose λ < 1
2‖A

T b‖∞, then the sequence {xt} generated by pDCAe is

globally convergent.

In our numerical experiments below, we consider (m,n, s) = (720i, 2560i, 80i) for i = 1, 2, . . . , 10. For

each triple (m,n, s), we generate 30 instances randomly as described above. The computational results

are presented in Tables 1 and 2, which correspond to problem (5.3) with λ = 5× 10−4 and λ = 1× 10−3

respectively.6 We report the time for computing λmax(ATA) (tλmax
), the number of iterations (iter),7

CPU times in seconds (CPU time),8 and the function values at termination (fval), averaged over the 30

random instances. We can see that pDCAe always outperforms pDCA and GIST.

5λmax(ATA) is computed via the MATLAB code lambda = norm(A*A’); when m ≤ 2000, and by opts.issym = 1;
lambda= eigs(A*A’,1,’LM’,opts); otherwise.

6These λ satisfy λ < 1
2
‖AT b‖∞ for all our random instances.

7In the tables, “max” means the number of iterations hits 5000.
8The CPU time reported for pDCAe does not include the time for computing λmax(ATA).
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Table 1: Solving (5.3) on random instances, λ = 5× 10−4

problem size iter CPU time fval

n m s tλmax GIST pDCAe pDCA GIST pDCAe pDCA GIST pDCAe pDCA

2560 720 80 0.1 1736 915 max 3.0 1.2 6.1 2.9757e-02 2.9743e-02 4.7049e-02

5120 1440 160 0.7 1726 895 max 14.2 5.4 29.6 6.1497e-02 6.1472e-02 9.5797e-02

7680 2160 240 0.7 1747 929 max 31.0 12.1 64.7 9.3836e-02 9.3799e-02 1.4394e-01

10240 2880 320 1.3 1754 949 max 54.8 21.8 114.6 1.2500e-01 1.2495e-01 1.9063e-01

12800 3600 400 2.4 1767 935 max 86.8 33.9 180.6 1.5956e-01 1.5949e-01 2.4367e-01

15360 4320 480 3.7 1757 955 max 120.5 48.5 253.2 1.8982e-01 1.8975e-01 2.8811e-01

17920 5040 560 6.0 1778 982 max 166.6 67.5 343.7 2.2481e-01 2.2472e-01 3.4110e-01

20480 5760 640 7.6 1780 982 max 215.6 87.5 444.4 2.5908e-01 2.5897e-01 3.9319e-01

23040 6480 720 10.7 1782 982 max 269.8 110.4 561.4 2.9150e-01 2.9137e-01 4.4057e-01

25600 7200 800 14.3 1799 995 max 341.4 140.1 704.0 3.2831e-01 3.2816e-01 4.9679e-01

Table 2: Solving (5.3) on random instances, λ = 1× 10−3

problem size iter CPU time fval

n m s tλmax GIST pDCAe pDCA GIST pDCAe pDCA GIST pDCAe pDCA

2560 720 80 0.1 925 600 max 1.7 0.8 6.1 5.9909e-02 5.9903e-02 7.2646e-02

5120 1440 160 0.7 908 602 max 7.4 3.6 29.5 1.2002e-01 1.2001e-01 1.4286e-01

7680 2160 240 0.6 928 602 max 16.4 7.9 65.3 1.8679e-01 1.8677e-01 2.2359e-01

10240 2880 320 1.3 941 602 max 29.0 13.8 114.4 2.5185e-01 2.5182e-01 3.0125e-01

12800 3600 400 2.4 946 602 max 45.8 21.8 179.9 3.1906e-01 3.1903e-01 3.8187e-01

15360 4320 480 3.8 949 602 max 64.6 30.6 253.5 3.8418e-01 3.8414e-01 4.6012e-01

17920 5040 560 6.0 943 602 max 87.4 41.7 345.8 4.4659e-01 4.4654e-01 5.3129e-01

20480 5760 640 7.7 946 602 max 112.4 53.6 444.4 5.1037e-01 5.1031e-01 6.0884e-01

23040 6480 720 10.6 943 602 max 141.8 68.2 562.0 5.8029e-01 5.8022e-01 6.9129e-01

25600 7200 800 14.1 946 602 max 179.0 84.9 703.7 6.4830e-01 6.4822e-01 7.7247e-01

To illustrate the ability of recovering the original sparse solution by our method, we plot in Figure 1

the true solution and the solution obtained by pDCAe for solving (5.3) with λ = 5× 10−4 (the plot on

the left) and λ = 10−3 (the plot on the right) on a random instance (m,n, s) = (720, 2560, 80). The true

solution y is represented by asterisks, while the circles are the estimates obtained by pDCAe. We see

that the estimates obtained by pDCAe are quite close to the true values.

5.2 Least squares problems with logarithmic regularizer

In this subsection, we consider the least squares problem with logarithmic regularization function:

min
x∈Rn

Flog(x) =
1

2
‖Ax− b‖2 +

n∑
i=1

[λ log(|xi|+ ε)− λ log ε] , (5.4)

where A ∈ Rm×n, b ∈ Rm, ε > 0 is a constant, and λ > 0 is the regularization parameter. From the

discussion in Example 4.5, it is easy to show that Flog takes the form of (5.1) with P1(x) = λ
ε ‖x‖1

and P2(x) =
∑n
i=1 λ

[
|xi|
ε − log(|xi|+ ε) + log ε

]
. In addition, it is not hard to show that Flog is level-

bounded. This together with Theorem 4.2 and Remark 4.2 shows that the sequence {xt} generated by

pDCAe is globally convergent to a stationary point of (5.4).

In our experiments below, we consider (m,n, s) = (720i, 2560i, 80i), i = 1, 2, . . . , 10. For each triple,

we generate 30 instances randomly as described above. The computational results are presented in

Tables 3 and 4, which correspond to problem (5.4) with λ = 5 × 10−4 and λ = 1 × 10−3 respectively.9

9We set ε = 0.5 in (5.4).
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Figure 1: The true solution and the solution obtained by solving (5.3) with λ = 5 × 10−4 (left) and

λ = 10−3 (right).

In these tables, we report the time for computing λmax(ATA) (tλmax
), the number of iterations (iter),10

CPU times in seconds (CPU time),11 and the function values at termination (fval), averaged over the

30 random instances. We see from the tables that pDCAe always outperforms pDCA and GIST.

Table 3: Solving (5.4) on random instances, λ = 5× 10−4

problem size iter CPU time fval

n m s tλmax GIST pDCAe pDCA GIST pDCAe pDCA GIST pDCAe pDCA

2560 720 80 0.1 863 601 max 1.9 0.8 6.1 3.8020e-02 3.8013e-02 5.3479e-02

5120 1440 160 0.7 866 602 max 7.4 3.6 29.4 7.5865e-02 7.5852e-02 1.0691e-01

7680 2160 240 0.7 878 602 max 16.0 7.8 64.9 1.1419e-01 1.1417e-01 1.6253e-01

10240 2880 320 1.3 866 602 max 27.2 13.8 113.8 1.5219e-01 1.5217e-01 2.1442e-01

12800 3600 400 2.4 869 602 max 43.1 22.0 181.9 1.8917e-01 1.8914e-01 2.6717e-01

15360 4320 480 3.7 869 602 max 59.9 30.9 256.0 2.2823e-01 2.2819e-01 3.2213e-01

17920 5040 560 6.0 866 602 max 80.7 41.8 346.6 2.6594e-01 2.6589e-01 3.7583e-01

20480 5760 640 7.7 874 602 max 104.9 53.8 446.4 3.0510e-01 3.0505e-01 4.3300e-01

23040 6480 720 10.7 873 602 max 132.0 67.9 563.1 3.4211e-01 3.4205e-01 4.8604e-01

25600 7200 800 14.3 871 602 max 164.7 85.0 705.0 3.8055e-01 3.8049e-01 5.4107e-01

Similarly as in the previous subsection, we plot in Figure 2 the true solution and the solution obtained

by pDCAe for solving (5.4) with λ = 5×10−4 (the plot on the left) and λ = 10−3 (the plot on the right)

on a random instance (m,n, s) = (720, 2560, 80). The true solution y is represented by asterisks, and

the solution obtained by pDCAe is marked by circles. We again observe that the estimates are close to

the true solution.

6 Conclusion

In this paper, we propose a proximal difference-of-convex algorithm with extrapolation (pDCAe) for

solving (3.1), which reduces to the proximal DCA when βt ≡ 0. Our algorithmic framework allows

a wide range of choices of the extrapolation parameters {βt}, including those used in FISTA with

fixed restart [15]. We establish global subsequential convergence of the sequence generated by pDCAe.

In addition, by assuming the Kurdyka- Lojasiewicz property of the objective and the locally Lipschitz

10In the tables, “max” means the number of iterations hits 5000.
11The CPU time reported for pDCAe does not include the time for computing λmax(ATA).
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Table 4: Solving (5.4) on random instances, λ = 1× 10−3

problem size iter CPU time fval

n m s tλmax GIST pDCAe pDCA GIST pDCAe pDCA GIST pDCAe pDCA

2560 720 80 0.1 473 380 4531 1.0 0.5 5.7 7.6101e-02 7.6099e-02 7.6125e-02

5120 1440 160 0.7 473 400 4540 4.1 2.4 27.1 1.5200e-01 1.5200e-01 1.5204e-01

7680 2160 240 0.7 467 402 4546 8.4 5.3 59.7 2.2691e-01 2.2691e-01 2.2696e-01

10240 2880 320 1.3 475 402 4549 14.6 9.2 103.4 3.0374e-01 3.0373e-01 3.0381e-01

12800 3600 400 2.4 470 401 4519 22.7 14.5 162.7 3.7530e-01 3.7529e-01 3.7538e-01

15360 4320 480 3.8 471 402 4539 31.9 20.5 230.6 4.5451e-01 4.5450e-01 4.5461e-01

17920 5040 560 6.1 471 402 4564 42.9 27.6 312.5 5.2941e-01 5.2939e-01 5.2953e-01

20480 5760 640 7.8 475 402 4554 56.1 35.9 406.5 6.0388e-01 6.0385e-01 6.0401e-01

23040 6480 720 10.7 476 402 4593 70.9 45.3 516.9 6.8519e-01 6.8516e-01 6.8534e-01

25600 7200 800 14.3 475 402 4559 88.2 56.8 642.5 7.5684e-01 7.5681e-01 7.5701e-01

Figure 2: The true solution and the solution obtained by solving (5.4) with λ = 5 × 10−4 (left) and

λ = 10−3 (right).

differentiability of P2(x) in (3.1), we establish global convergence of the sequence generated by our

algorithm and analyze its convergence rate. Our numerical experiments show that our algorithm usually

outperforms the proximal DCA and GIST for two classes of DC regularized least squares problems.
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