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Abstract

Recent several years have witnessed the surge of asynchronous (async-) parallel computing

methods due to the extremely big data involved in many modern applications and also the

advancement of multi-core machines and computer clusters. In optimization, most works about

async-parallel methods are on unconstrained problems or those with block separable constraints.

In this paper, we propose an async-parallel method based on block coordinate update (BCU)

for solving convex problems with nonseparable linear constraint. Running on a single node, the

method becomes a novel randomized primal-dual BCU for multi-block affinely constrained prob-

lems. For these problems, Gauss-Seidel cyclic primal-dual BCU is not guaranteed to converge

to an optimal solution if no additional assumptions, such as strong convexity, are made. On

the contrary, assuming convexity and existence of a primal-dual solution, we show that the

objective value sequence generated by the proposed algorithm converges in probability to the

optimal value and also the constraint residual to zero. In addition, we establish an ergodic

O(1/k) convergence result, where k is the number of iterations. Numerical experiments are per-

formed to demonstrate the efficiency of the proposed method and significantly better speed-up

performance than its sync-parallel counterpart.
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1 Introduction

Modern applications in various data sciences and engineering can involve huge amount of data

and/or variables [43]. Driven by these very large-scale problems and also the advancement of

multi-core computers, parallel computing has gained tremendous attention in recent years. In this

paper, we consider the affinely constrained multi-block structured problem:

min
x
f(x1, . . . ,xm) +

m∑
i=1

gi(xi), s.t.
m∑
i=1

Aixi = b, (1)
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where the variable x is partitioned into multiple disjoint blocks x1, . . . ,xm, f is a continuously

differentiable and convex function, and each gi is a lower semi-continuous extended-valued convex

but possibly non-differentiable function. Besides the nonseparable affine constraint, (1) can also

include certain block separable constraint by letting part of gi be an indicator function of a convex

set, e.g., nonnegativity constraint.

We will present a novel asynchronous (async-) parallel primal-dual method (see Algorithm 2) to-

wards finding a solution to (1). Suppose there are multiple nodes (or cores, CPUs). We let one

node (called master node) update both primal and dual variables and all the remaining ones (called

worker nodes) compute and provide block gradients of f to the master node. We assume each gi is

proximable (see the definition in (5) below). When there is a single node, our method reduces to

a novel serial primal-dual BCU for solving (1); see Algorithm 1.

1.1 Motivating examples

Problems in the form of (1) arise in many areas including signal processing, machine learning,

finance, and statistics. For example, the basis pursuit problem [8] seeks a sparse solution on an

affine subspace through solving the linearly constrained program:

min
x
‖x‖1, s.t. Ax = b. (2)

Partitioning x into multiple disjoint blocks in an arbitrary way, one can formulate (2) into the form

of (1) with f(x) = 0 and each gi(xi) = ‖xi‖1.

Another example is the portfolio optimization [29]. Suppose we have a unit of capital to invest on

m assets. Let xi be the fraction of capital invested on the i-th asset and ξi be the expected return

rate of the i-th asset. The goal is to minimize the risk measured by
√

x>Σx subject to total unit

capital and minimum expected return c, where x = (x1; . . . ;xm) and Σ is the covariance matrix.

To find the optimal x, one can solve the problem:

min
x

1

2
x>Σx, s.t.

m∑
i=1

xi ≤ 1,
m∑
i=1

ξixi ≥ c, xi ≥ 0, ∀i. (3)

Introducing slack variables to the first two inequalities, one can easily write (3) into the form of

(1) with a quadratic f and each gi being an indicator function of the nonnegativity constraint set.

In addition, (1) includes as a special case the dual support vector machine (SVM) [10]. Given

training data set {(xi, yi)}Ni=1 with yi ∈ {−1,+1}, ∀i, let X = [x1, . . . ,xN ] and y = [y1; . . . ; yN ].

The dual form of the linear SVM can be written as

min
θ

1

2
θ>Diag(y)X>XDiag(y)θ − e>θ, s.t. y>θ = 0, 0 ≤ θi ≤ C, ∀i, (4)

where θ = [θ1; . . . ; θN ], and C is a given number relating to the soft margin size. It is easy to

formulate (4) into the form of (1) with f being the quadratic objective function and each gi the

indicator function of the set [0, C].
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Finally, the penalized and constrained (PAC) regression problem [22] is also one example of (1)

with f(x) = 1
N

∑N
j=1 fj(x) and linear constraint of J equations. As N � J (that often holds for

problems with massive training data), the PAC regression satisfies Assumption 0. In addition, if

m� 1 and N � 1, both (3) and (4) satisfy the assumption, and thus the proposed async-parallel

method will be efficient when applied to these problems. Although Assumption 0 does not hold for

(2) as p > 1, our method running on a single node can still outperform state-of-the-art non-parallel

solvers; see the numerical results in section 4.1.

1.2 Block coordinate update

The block coordinate update (BCU) method breaks possibly very high-dimensional variable into

small pieces and renews one at a time while all the remaining blocks are fixed. Although the

problem (1) can be extremely large-scale and complicated, BCU solves a sequence of small-sized

and easier subproblems. As (1) owns nice structures, e.g., coordinate friendly [31], BCU can not

only have low per-update complexity but also enjoy faster overall convergence than the method

that updates the whole variable every time. BCU has been applied to many unconstrained or

block-separably constrained optimization problems (e.g., [21, 30, 34, 36, 40, 41, 45, 46]), and it has

also been used to solve affinely constrained separable problems, i.e., in the form of (1) without f

term (e.g., [12,13,17–19]). However, only a few existing works (e.g., [14,15,20]) have studied BCU

on solving affinely constrained problems with a nonseparable objective function.

1.3 Asynchronization

Parallel computing methods distribute computation over and collect results from multiple nodes.

Synchronous (sync) parallel methods require all nodes to keep in the same pace. Upon all nodes

finish their own computation, they altogether proceed to the next step. This way, the faster node

has to wait for the slowest one, and that wastes a lot of waiting time. On the contrary, async-parallel

methods keep all nodes continuously working and eliminate the idle waiting time. Numerous works

(e.g., [27,28,32,35]) have demonstrated that async-parallel methods can achieve significantly better

speed-up than their sync-parallel counterparts.

Due to lack of synchronization, the information used by a certain node may be outdated. Hence

the convergence of an async-parallel method cannot be easily inherited from its non-parallel coun-

terpart but often requires a new tool of analysis. Most existing works only analyze such methods

for unconstrained or block-separably constrained problems. Exceptions include [4, 5, 42, 48] that

consider separable problems with special affine constraint.
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1.4 Related works

Recent several years have witnessed the surge of async-parallel methods partly due to the increas-

ingly large scale of data/variable involved in modern applications. However, only a few existing

works discuss such methods for affinely constrained problems. Below we review the literature

of async-parallel BCU methods in optimization and also primal-dual BCU methods for affinely

constrained problems.

It appears that the first async-parallel method was proposed by Chazan and Miranker [6] for solving

linear systems. Later, such methods have been applied in many others fields. In optimization, the

first async-parallel BCU method was due to Bertsekas and Tsitsiklis [1] for problems with a smooth

objective. It was shown that the objective gradient sequence converges to zero. Tseng [39] further

analyzed its convergence rate and established local linear convergence by assuming isocost surface

separation and a local Lipschitz error bound on the objective. Recently, [27, 28] developed async-

parallel methods based on randomized BCU for convex problems with possibly block separable

constraints. They established convergence and also rate results by assuming a bounded delay

on the outdated block gradient information. The results have been extended to the case with

unbounded probabilistic delay in [33], which also shows convergence of the async-parallel BCU

methods for nonconvex problems. On solving problems with convex separable objective and linear

constraints, [42] proposed to apply the alternating direction method of multipliers (ADMM) in

an asynchronous and distributive way. Assuming a special structure on the linear constraint,

it established O(1/k) ergodic convergence result, where k is the total number of iterations. In

[2, 4, 5, 48], the async-ADMM is applied to distributed multi-agent optimization, which can be

equivalently formulated into (1) with f = 0 and consensus constraint. Among them, [2] proved

an almost sure convergence result, [48] showed sublinear convergence of the async-ADMM for

convex problems, and [5] established its linear convergence for strongly convex problems. Besides

convex problems, [4] also considered nonconvex cases. Assuming certain structure on the problem

and choosing appropriate parameters, it showed that any limit point of the iterates satisfies first-

order optimality conditions. The works [9, 32] developed async-parallel BCU methods for fixed-

point or monotone inclusion problems. Although these settings are more general (including convex

optimization as a special case), no convergence rate results have been shown under monotonicity

assumption1 (similar to convexity in optimization).

Running on a single node, the proposed async-parallel method reduces to a serial randomized

primal-dual BCU. In the literature, various Gauss-Seidel (GS) cyclic BCU methods have been

developed for solving separable convex programs with linear constraints. Although a cyclic primal-

dual BCU can empirically work well, in general it may diverge [7, 13, 44]. By an example of 3 × 3

linear system, [7] showed that the direct extension of ADMM could diverge on solving problems with

more than 2 blocks. The works [13, 44] showed that even with proximal terms, the cyclic primal-

dual BCU can still diverge. Hence, to guarantee convergence, additional assumptions besides

1In [32], a linear convergence result is established under strong monotonicity assumption, which is similar to strong

convexity in optimization.
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convexity must be made, such as strong convexity on part of the objective [3, 11,16,23,25,26] and

orthogonality properties of block matrices in the linear constraint [7]. Assuming strong convexity

of each block component function and choosing the penalty parameter within a region, [16] showed

the convergence of ADMM to an optimal solution for solving problems with multiple blocks. For

3-block problems, [3,11,23] established the convergence of ADMM and/or its variant by assuming

strong convexity of one block component function. For general m-block problems, [26] showed that

if m − 1 block component functions are strongly convex, then ADMM with appropriate penalty

parameter is guaranteed to converge. Without these assumptions, modifications to the algorithm

are necessary for convergence. For example, [18,19] performed a correction step after each cycle of

updates. On solving linear system or quadratic programming, [38] proposed, at each iteration, to

first randomly permute all block variables and then perform a cyclic update. Jacobi-type update

together with proximal terms was used in [12,17] to ensure the convergence of the algorithm, which

turns out to be a linearized augmented Lagrange method (ALM). In addition, a hybrid Jacobi-

GS update was performed in [24, 37, 44]. Different from these modifications, our algorithm simply

employs randomization in selecting block variable and can perform significantly better than Jacobi-

type methods. In addition, convergence is guaranteed with convexity assumption and thus better

than those results for GS-type methods.

1.5 Contributions

The contributions are summarized as follows.

– We propose an async-parallel BCU method for solving multi-block structured convex pro-

grams with linear constraint. The algorithm is the first async-parallel primal-dual method

for affinely constrained problems with nonseparable objective. When there is only one node,

it reduces to a novel serial primal-dual BCU method.

– With convexity and existence of a primal-dual solution, convergence of the proposed method

is guaranteed. We first establish convergence of the serial BCU method. We show that the

objective value converges in probability to the optimal value and also the constraint residual

to zero. In addition, we establish an ergodic convergence rate result. Then through bounding

a cross term involving delayed block gradient, we prove that similar convergence results hold

for the async-parallel BCU method if a delay-dependent stepsize is chosen.

– We implement the proposed algorithm and apply it to the basis pursuit, quadratic program-

ming, and also the support vector machine problems. Numerical results demonstrate that

the serial BCU is comparable to or better than state-of-the-art methods. In addition, the

async-parallel BCU method can achieve significantly better speed-up performance than its

sync-parallel counterpart.
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1.6 Notation and Outline

We use bold small letters x,y,λ, . . . for vectors and bold capital letters A,L,P, . . . for matrices.

[m] denotes the integer set {1, 2, . . . ,m}. Uix represents a vector with xi for its i-th block and zero

for all other m− 1 blocks. blkdiag(P1, . . . ,Pm) denotes a block diagonal matrix with P1, . . . ,Pm

on the diagonal blocks. We denote ‖x‖ as the Euclidean norm of x and ‖x‖P =
√

x>Px for a

symmetric positive semidefinite matrix P. We reserve I for the identity matrix, and its size is

clear from the context. Eik stands for the expectation about ik conditional on previous history

{i1, . . . , ik−1}. We use ξk
p→ ξ for convergence in probability of a random vector sequence ξk to ξ.

For ease of notation, we let g(x) =
∑m

i=1 gi(xi), F = f + g, and A = [A1, . . . ,Am]. Denote

Φ(x̄,x,λ) = F (x̄)− F (x)− 〈λ,Ax̄− b〉.

Then (x∗,λ∗) is a saddle point of (1) if Ax∗ = b and Φ(x,x∗,λ∗) ≥ 0, ∀x.

The proximal operator of a function ψ is defined as

proxψ(x) = arg min
y

ψ(y) +
1

2
‖x− y‖2. (5)

If proxψ(x) has a closed-form solution or is easy to compute, we call ψ proximable.

Outline. The rest of the paper is organized as follows. In section 2, we present the serial and also

async-parallel primal-dual BCU methods for (1). Convergence results of the algorithms are shown

in section 3. Section 4 gives experimental results, and finally section 5 concludes the paper.

2 Algorithm

In this section, we propose an async-parallel primal-dual method for solving (1). Our algorithm is

a BCU-type method based on the augmented Lagrangian function of (1):

Lβ(x,λ) = f(x) + g(x)− 〈λ,Ax− b〉+
β

2
‖Ax− b‖2,

where λ is the multiplier (or augmented Lagrangian dual variable), and β is a penalty parameter.

2.1 Non-parallel method

For ease of understanding, we first present a non-parallel method in Algorithm 1. At every iteration,

the algorithm chooses one out of m block uniformly at random and renews it by (6) while fixing all

the remaining blocks. Upon finishing the update to x, it immediately changes the multiplier λ. The

linearization to possibly complicated smooth term f greatly eases the x-subproblem. Depending

on the form of gi, we can choose appropriate Pi to make (6) simple to solve. Since each gi is
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proximable, one can always easily find a solution to (6) if Pi = ηiI. For even simpler gi such as

`1-norm and indicator function of a box constraint set, we can set Pi to a diagonal matrix and have

a closed-form solution to (6). Note that the algorithm is a special case of Algorithm 1 in [14] with

only one group of variables. We include it here for ease of understanding our parallel method.

Randomly choosing a block to update has advantages over the cyclic way in both theoretical

and empirical perspectives. We will show that this randomized BCU has guaranteed convergence

with convexity other than strong convexity assumed by the cyclic primal-dual BCU. In addition,

randomization enables us to parallelize the algorithm in an efficient way as shown in Algorithm 2.

Algorithm 1: Randomized primal-dual block update for (1)

1 Initialization: choose x0 and λ0 = 0; let r0 = Ax0 − b and k = 0; set β, ρ and Pi’s.

2 while the stopping conditions not satisfied do

3 Pick ik from [m] uniformly at random.

4 For any i 6= ik, keep xk+1
i = xki , and for i = ik, update xi by

xk+1
i ∈ arg min

xi

〈∇if(xk)−A>i (λk − βrk),xi〉+ gi(xi) +
1

2
‖xi − xki ‖2Pi

, (6)

Update residual r and multipliers λ by

rk+1 = rk + Aik(xk+1
ik
− xkik), (7)

λk+1 = λk − ρrk+1. (8)

Let k ← k + 1.

2.2 Async-parallel method

Assume there are p nodes. Let the data and variables be stored in a global memory accessible to

every node. We let one node (called master node) update both primal variable x and dual variable

λ and the remaining ones (called worker nodes) compute block gradients of f and provide them to

the master node. The method is summarized in Algorithm 2.

To achieve nice practical speed-up performance, we make the following assumption:

Assumption 0 The cost of computing ∇if(x) is roughly at least p − 1 times of that of updating

xi, r, and λ respectively by (9), (7) and (8) for all i, where p is the number of nodes.

Note that our theoretical analysis does not require this assumption. Roughly speaking, the above

assumption means that the worker nodes compute block gradients no faster than the master node

can use them. When it holds, the master node can quickly digest the block gradient information

fed by all worker nodes. Without this assumption, Algorithm 2 may not perform well in terms of
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parallel efficiency. For example, if p > 2, and computing ∇if(x) takes similar time as updating xi,

r and λ, then until the k-th iteration, there would be roughly k(p− 2) partial gradients that have

been sent to but not used by the master node. In this case, a lot of computation will be wasted.

We make a few remarks on Algorithm 2 as follows.

– Special case: If there is only one node (i.e., p = 1), the algorithm simply reduces to the

non-parallel Algorithm 1. In this case, Assumption 0 trivially holds.

– Iteration number: Only the master node increases the iteration number k, which counts

the times λ is updated and also the number of used block gradients. The sync-parallel

method (e.g., in [14]) chooses to update multiple blocks every time, and the computation

is distributed over multiple nodes. It generally requires larger weight in the proximal term

for convergence. Hence, even if vk = ∇ikf(xk), ∀k, Algorithm 2 does not reduce to its

sync-parallel counterpart.

– Delayed information: Since all worker nodes provide block gradients to the master node,

we cannot guarantee every computed block gradient will be immediately used to update x.

Hence, in (9), vk may not equal ∇if(xk) but can be a delayed (i.e., outdated) block gradient.

The delay is usually in the same order of p and can affect the stepsize, but the affect is

negligible as the block number m is greater than the delay in an order (see Theorem 3.8).

Because x-blocks are computed in the master node, the values of r and λ used in the update

are always up-to-date. One can let worker nodes compute new xi’s and then feed them (or

also the changes in r) to the master node. That way, r and λ will also be outdated when

computing x-blocks.

– Load balance: Under Assumption 0, if (9) is easy to solve (e.g., Pi = ηiI) and all nodes

have similar computing power, the master node will have used all received block gradients

before a new one comes. We let the master node itself also compute block gradient if there is

no new one sent from any worker node. This way, all nodes work continuously without idle

wait. Compared to its sync-parallel counterpart that typically suffers serious load imbalance,

the async-parallel can achieve better speed-up; see the numerical results in section 4.3.

3 Convergence analysis

In this section, we present convergence results of the proposed algorithm. First, we analyze the non-

parallel Algorithm 1. We show that the objective value F (xk) and the residual Axk − b converge

to the optimal value and zero respectively in probability. In addition, we establish a sublinear

convergence rate result based on an averaged point. Then, through bounding a cross term involving

the delayed block gradient, we establish similar results for the async-parallel Algorithm 2.

Throughout our analysis, we make the following assumptions.
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Algorithm 2: Async-parallel randomized primal-dual block update for (1)

1 Initialization: choose x0 and λ0 = 0; let r0 = Ax0 − b and k = 0; set β, ρ and Pi’s.

2 while the stopping conditions not satisfied do

3 if worker node then

4 Pick j from [m] uniformly at random.

5 Read x from the memory as x̂.

6 Compute ∇jf(x̂) and send it together with the block j to master node

7 if master node then

8 if received one new pair
(
j,∇jf(x̂)

)
then

9 Let ik = j and vk = ∇jf(x̂)

10 else

11 Pick ik from [m] uniformly at random and let vk = ∇ikf(xk)

12 For any i 6= ik, keep xk+1
i = xki , and for i = ik, update xi by

xk+1
i ∈ arg min

xi

〈vk −A>i (λk − βrk),xi〉+ gi(xi) +
1

2
‖xi − xki ‖2Pi

, (9)

Update residual r and multipliers λ by (7) and (8).

13 Let k ← k + 1.

Assumption 1 (Existence of a solution) There exists one pair of primal-dual solution (x∗,λ∗)

such that Ax∗ = b and Φ(x,x∗,λ∗) ≥ 0, ∀x.

Assumption 2 (Gradient Lipschitz continuity) There exist constants Li’s and Lr such that

for any x and y,

‖∇if(x + Uiy)−∇if(x)‖ ≤ Li‖yi‖, i = 1, . . . ,m,

and

‖∇f(x + Uiy)−∇f(x)‖ ≤ Lr‖yi‖, i = 1, . . . ,m.

Denote L = diag(L1, . . . , Lm). Then under the above assumption, it holds that

f(x + Uiy) ≤ f(x) + 〈∇if(x),yi〉+
Li
2
‖yi‖2, ∀i, ∀x,y. (10)

3.1 Convergence results of Algorithm 1

Although Algorithm 1 is a special case of the method in [14], its convergence analysis is easier and

can be made more succinct. In addition, our analysis for Algorithm 2 is based on that for Algorithm

1. Hence, we provide a complete convergence analysis for Algorithm 1. First, we establish several

lemmas, which will be used to show our main convergence results.
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Lemma 3.1 Let {xk} be the sequence generated from Algorithm 1. Then for any x independent
of ik, it holds that

Eik

〈
∇ikf(xk),xk+1

ik
− xik

〉
≥ −

(
1− 1

m

)
[f(xk)− f(x)] + Eik

[
f(xk+1)− f(x)− 1

2
‖xk+1 − xk‖2L

]
.

Proof. We write 〈∇ikf(xk),xk+1
ik
− xik〉 = 〈∇ikf(xk),xkik − xik〉+ 〈∇ikf(xk),xk+1

ik
− xkik〉. For the

first term, we use the uniform distribution of ik on [m] and the convexity of f to have

Eik〈∇ikf(xk),xkik − xik〉 =
1

m
〈∇f(xk),xk − x〉 ≥ 1

m

[
f(xk)− f(x)

]
,

and for the second term, we use (10) to have

〈∇ikf(xk),xk+1
ik
− xkik〉 ≥f(xk+1)− f(xk)− Lik

2
‖xk+1

ik
− xkik‖

2

=f(xk+1)− f(xk)− 1

2
‖xk+1 − xk‖2L. (11)

Combining the above two inequalities gives the desired result. �

Lemma 3.2 For any x independent of ik such that Ax = b, it holds

Eik〈−A>ik(λk − βrk),xk+1
ik
− xik〉

=−
(
1− 1

m

) (
−〈λk, rk〉+ β‖rk‖2

)
− Eik〈λ

k+1, rk+1〉+ (β − ρ)Eik‖r
k+1‖2

− β

2
Eik
[
‖rk+1‖2 − ‖rk‖2 + ‖xk+1 − xk‖2A>A

]
.

Proof. Let yk = −A>(λk − βrk). Then

Eik〈y
k
ik
,xk+1

ik
− xik〉 =Eik〈y

k
ik
,xkik − xik〉+ Eik〈y

k
ik
,xk+1

ik
− xkik〉

=
1

m
〈yk,xk − x〉+ Eik〈y

k,xk+1 − xk〉

=−
(
1− 1

m

)
〈yk,xk − x〉+ Eik〈y

k,xk+1 − x〉. (12)

Note yk = −A>λk+1 +(β−ρ)A>rk+1−βA>(rk+1−rk) and rk+1−rk = A(xk+1−xk). In addition,

from Ax = b, we have A(xk+1 − x) = rk+1. Hence,

〈yk,xk+1 − x〉 = 〈−A>λk+1,xk+1 − x〉+ (β − ρ)‖rk+1‖2 − β
〈
A(xk+1 − xk),A(xk+1 − x)

〉
. (13)

Noting 〈
A(xk+1 − xk),A(xk+1 − x)

〉
=

1

2

[
‖rk+1‖2 − ‖rk‖2 + ‖xk+1 − xk‖2A>A

]
,

we complete the proof by plugging (13) into (12). �
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Lemma 3.3 For any x independent of ik, it holds

Eik
〈
∇̃gik(xk+1

ik
),xk+1

ik
− xik

〉
≥ Eik [g(xk+1)− g(x)]−

(
1− 1

m

)
[g(xk)− g(x)],

where ∇̃gik(xk+1
ik

) denotes a subgradient of gik at xk+1
ik

.

Proof. From the convexity of gik and definition of subgradient, it follows that

Eik
〈
∇̃gik(xk+1

ik
),xk+1

ik
− xik

〉
≥ Eik

[
gik(xk+1

ik
)− gik(xik)

]
. (14)

Writing gik(xk+1
ik

)− gik(xik) = gik(xkik)− gik(xik) + gik(xk+1
ik

)− gik(xkik) and taking the conditional

expectation give

Eik
[
gik(xk+1

ik
)− gik(xik)

]
=

1

m

[
g(xk)− g(x)

]
+ Eik

[
g(xk+1)− g(xk)

]
.

We obtain the desired result by plugging the above equation into (14). �

Using the above three lemmas, we show an inequality after each iteration of the algorithm.

Theorem 3.4 (Fundamental result) Let {(xk, rk,λk)} be the sequence generated from Algo-

rithm 1. Then for any x such that Ax = b, it holds

Eik

[
F (xk+1)− F (x)− 〈λk+1, rk+1〉+ (β − ρ)‖rk+1‖2 − β

2
‖rk+1‖2

]
+

1

2
Eik
[
‖xk+1 − x‖2P + ‖xk+1 − xk‖2P−L−βA>A

]
≤
(
1− 1

m

) [
F (xk)− F (x)− 〈λk, rk〉+ β‖rk‖2

]
− β

2
‖rk‖2 +

1

2
‖xk − x‖2P, (15)

where P = blkdiag(P1, . . . ,Pm).

Proof. Since xk+1
ik

is one solution to (6), there is a subgradient ∇̃gik(xk+1
ik

) of gik at xk+1
ik

such that

∇ikf(xk)−A>ik(λk − βrk) + ∇̃gik(xk+1
ik

) + Pik(xk+1
ik
− xkik) = 0,

Hence,

Eik
〈
∇ikf(xk)−A>ik(λk − βrk) + ∇̃gik(xk+1

ik
) + Pik(xk+1

ik
− xkik),xk+1

ik
− xik

〉
= 0. (16)

In the above equation, using Lemmas 3.1 through 3.3 and noting〈
Pik(xk+1

ik
− xkik),xk+1

ik
− xik

〉
=

1

2

[
‖xk+1 − x‖2P − ‖xk − x‖2P + ‖xk+1 − xk‖2P

]
, (17)

we have the desired result. �

Now we are ready to show the convergence results of Algorithm 1.
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Theorem 3.5 (Global convergence in probability) Let {(xk, rk,λk)} be the sequence gener-

ated from Algorithm 1. If 0 < ρ ≤ β
m and Pi � LiI + βA>i Ai, ∀i, then

F (xk)
p→ F (x∗), and ‖rk‖ p→ 0.

Before proving the theorem, we make a remark here. The dual stepsize ρ can be up to β
m , so it

could be much smaller than β as m is big. However, note that λ is renewed more frequently than

x. It is updated once immediately after one change to x. Hence, if ρ = β
m , after one epoch of

x-update, the dual variable λ has been updated m times and moved a step of size β. That is why

we can still observe fast convergence of the algorithm to the optimal solution even though a small

ρ is used; see the numerical results in section 4.

Proof. Note that

F (xk)− F (x)− 〈λk, rk〉 = Φ(xk,x,λ) + 〈λ− λk, rk〉.

Hence, taking expectation over both sides of (15) and summing up from k = 0 through K yield

E
[
Φ(xK+1,x,λ) + 〈λ− λK+1, rK+1〉

]
+

1

m

K∑
k=1

E
[
Φ(xk,x,λ) + 〈λ− λk, rk〉

]
+ (β − ρ)E‖rK+1‖2

+
( β
m
− ρ
) K∑
k=1

‖rk‖2 − β

2
E‖rK+1‖2 +

1

2
E‖xK+1 − x‖2P +

1

2

K∑
k=0

E‖xk+1 − xk‖2P−L−βA>A

≤
(
1− 1

m

) [
F (x0)− F (x)− 〈λ0, r0〉+ β‖r0‖2

]
+

1

2
‖x0 − x‖2P −

β

2
‖r0‖2. (18)

Since λK+1 = λK − ρrK+1, it follows from Young’s inequality that

〈λ− λK+1, rK+1〉+ (β − ρ)‖rK+1‖2 − β

2
‖rK+1‖2 ≥ − 1

2β
‖λ− λK‖2. (19)

In addition,

K∑
k=1

〈λ− λk, rk〉 =
1

2ρ

K∑
k=1

[
‖λ− λk‖2 − ‖λ− λk−1‖2 + ‖λk−1 − λk‖2

]
=

1

2ρ

[
‖λ− λK‖2 − ‖λ− λ0‖2

]
+
ρ

2

K∑
k=1

‖rk‖2. (20)

Plugging (19) and (20) into (18) and using λ0 = 0, we have

EΦ(xK+1,x,λ) +
1

m

K∑
k=1

EΦ(xk, x,λ) +
( β
m

+
ρ

2m
− ρ
) K∑
k=1

E‖rk‖2 +
( 1

2mρ
− 1

2β

)
E‖λ− λK‖2

+
1

2
E‖xK+1 − x‖2P +

1

2

K∑
k=0

E‖xk+1 − xk‖2P−L−βA>A

≤
(
1− 1

m

) [
F (x0)− F (x) + β‖r0‖2

]
+

1

2
‖x0 − x‖2P −

β

2
‖r0‖2 +

1

2mρ
E‖λ‖2. (21)

12



Letting (x,λ) = (x∗,λ∗) in the above equality, we have from Pi � LiI + βA>i Ai and β ≥ mρ that

1

m

K∑
k=1

EΦ(xk,x∗,λ∗) +
( β
m

+
ρ

2m
− ρ
) K∑
k=1

E‖rk‖2 <∞, ∀K,

which together with |Eξ|2 ≤ Eξ2 implies that

lim
k→∞

EΦ(xk,x∗,λ∗) = 0, (22a)

lim
k→∞

E‖rk‖ = 0. (22b)

For any ε > 0, it follows from the Markov’s inequality that

Prob(‖rk‖ > ε) ≤ E‖rk‖
ε
→ 0, as k →∞,

and

Prob(|F (xk)− F (x∗)| ≥ ε)
=Prob(F (xk)− F (x∗) ≥ ε) + Prob(F (xk)− F (x∗) ≤ −ε)

≤Prob(F (xk)− F (x∗)− 〈λ∗, rk〉 ≥ ε

2
) + Prob(〈λ∗, rk〉 ≥ ε

2
) + Prob(−〈λ∗, rk〉 ≥ ε)

≤Prob(F (xk)− F (x∗)− 〈λ∗, rk〉 ≥ ε

2
) + Prob(‖λ∗‖ · ‖rk‖ ≥ ε

2
) + Prob(‖λ∗‖ · ‖rk‖ ≥ ε)

→0, as k →∞, (23)

where in the first inequality, we have used the fact F (x)− F (x∗)− 〈λ∗,Ax− b〉 ≥ 0, ∀x, and the

last equation follows from (22) and the Markov’s inequality. This completes the proof. �

Given any ε > 0 and σ ∈ (0, 1), we can also estimate the number of iterations for the algorithm to

produce a solution satisfying an error bound ε with probability no less than 1− σ.

Definition 3.1 ((ε, σ)-solution) Given ε > 0 and 0 < σ < 1, a random vector x is called an

(ε, σ)-solution to (1) if Prob(|F (x)− F (x∗)| ≥ ε) ≤ σ and Prob(‖Ax− b‖ ≥ ε) ≤ σ.

Theorem 3.6 (Ergodic convergence rate) Let {(xk, rk,λk)} be the sequence generated from

Algorithm 1. Assume 0 < ρ ≤ β
m and Pi � LiI + βA>i Ai, ∀i. Let x̄K+1 =

xK+1+
∑K

k=1 x
k+1/m

1+K/m and

C0 =
(
1− 1

m

) [
F (x0)− F (x∗)

]
+

1

2
‖x0 − x∗‖2P +

(β
2
− β

m

)
‖r0‖2.

Then

− 1

1 +K/m

(
C0 +

2

mρ
‖λ∗‖2

)
≤ E[F (x̄K+1)− F (x∗)] ≤ C0

1 +K/m
, (24)

E‖Ax̄K+1 − b‖ ≤ 1

1 +K/m

(
C0 +

1

2mρ
(1 + ‖λ∗‖)2

)
. (25)

13



In addition, given any ε > 0 and 0 < σ < 1, if

K ≥ m ·max

(
C0 + 1

2mρ(1 + ‖λ∗‖)2

εσ
− 1,

5C0 + 13
2mρ‖λ

∗‖2

εσ
− 1

)
, (26)

then x̄K+1 is an (ε, σ)-solution to (1).

Proof. Since F is convex, it follows from (21) that

EΦ(x̄K+1,x,λ) ≤ 1

1 +K/m

(
C0 +

1

2mρ
E‖λ‖2

)
, (27)

which with x = x∗ and λ = 0 implies the second inequality in (24). From Φ(x,x∗,λ∗) ≥ 0, ∀x and

Cauchy-Schwartz inequality, we have that

F (x)− F (x∗) ≥ −‖λ∗‖ · ‖Ax− b‖, ∀x. (28)

Letting x = x∗ and λ = − 1+‖λ∗‖
‖Ax̄K+1−b‖(Ax̄K+1−b) in (27) and using (28) give (25), where we have

used the convention 0
0 = 0. By Markov’s inequality,

Prob(‖Ax̄K+1 − b‖ ≥ ε) ≤ E‖Ax̄K+1 − b‖
ε

,

and thus to have Prob(‖Ax̄K+1 − b‖ ≥ ε) ≤ σ, it suffices to let

K ≥
C0 + 1

2mρ(1 + ‖λ∗‖)2

εσ
m−m. (29)

Similarly, letting x = x∗ and λ = − 2‖λ∗‖
‖Ax̄K+1−b‖(Ax̄K+1 − b) in (27) and using (28) give

‖λ∗‖ · E‖Ax̄K+1 − b‖ ≤ 1

1 +K/m

(
C0 +

2

mρ
‖λ∗‖2

)
,

which together with (28) implies the first inequality in (24). Through the same arguments that

show (23), we have

Prob(|F (x̄K+1)− F (x∗)| ≥ ε) (30)

≤Prob(Φ(x̄K+1,x∗,λ∗) ≥ ε

2
) + Prob(‖λ∗‖ · ‖Ax̄K+1 − b‖ ≥ ε

2
) + Prob(‖λ∗‖ · ‖Ax̄K+1 − b‖ ≥ ε)

≤EΦ(x̄K+1,x∗,λ∗)

ε/2
+
‖λ∗‖ · E‖Ax̄K+1 − b‖

ε/2
+
‖λ∗‖ · E‖Ax̄K+1 − b‖

ε
.

Hence, to have Prob(|F (x̄K+1)− F (x∗)| ≥ ε) ≤ σ, it suffices to let

K ≥
5C0 + 13

2mρ‖λ
∗‖2

εσ
m−m,

which together with (29) gives the desired result and thus completes the proof. �
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3.2 Convergence results of Algorithm 2

The key difference between Algorithms 1 and 2 is that vk used in (9) may not equal the block

gradient of f at xk but another outdated vector, which we denote as x̂k. This delayed vector may

not be any iterate that ever exists in the memory, i.e., inconsistent read can happen [27]. Besides

Assumptions 1 and 2, we make an additional assumption on the delayed vector.

Assumption 3 (Bounded delay) The delay is uniformly bounded by an integer τ , and x̂k can

be related to xk by the equation

x̂k = xk +
∑
d∈J(k)

(xd − xd+1), (31)

where J(k) is a subset of {k − τ, k − τ + 1, . . . , k − 1}.

The boundedness of the delay holds if there is no “dead” node. The relation between xk and x̂k in

(31) is satisfied if the read of each block variable is consistent, which can be guaranteed by a dual

memory approach; see [32].

Similar to (16), we have from the optimality condition of (9) that

Eik
〈
∇ikf(x̂k)−A>ik(λk − βrk) + ∇̃gik(xk+1

ik
) + Pik(xk+1

ik
− xkik),xk+1

ik
− xik

〉
= 0, (32)

where we have used vk = ∇ikf(x̂k). Except Eik〈∇ikf(x̂k),xk+1
ik
− xik〉, all the other terms in (32)

can be bounded in the same ways as those in section 3.1. We first show how to bound this term

and then present the convergence results of Algorithm 2.

Lemma 3.7 Under Assumptions 2 and 3, we have for any α > 0 that

Eik〈∇ikf(x̂k),xk+1
ik
− xik〉

≥Eik [f(xk+1)− f(x)]−
(
1− 1

m

)
[f(xk)− f(x)]− 1

2
Eik‖x

k+1 − xk‖2L+αLcI

− κLrτ/α+ 2Lrτ

2m

k−1∑
d=k−τ

‖xd+1 − xd‖2 − 1

2m

k−1∑
d=k−τ

‖xd+1 − xd‖2L, (33)

where Lc = maxi Li > 0, and κ = Lr
Lc

denotes the condition number.

Proof. We split Eik〈∇ikf(x̂k),xk+1
ik
− xik〉 into four terms:

Eik〈∇ikf(x̂k),xk+1
ik
− xik〉

=Eik〈∇ikf(xk),xk+1
ik
− xkik〉 − Eik〈∇ikf(xk)−∇ikf(x̂k),xk+1

ik
− xkik〉

+ Eik〈∇ikf(x̂k),xkik − x̂kik〉+ Eik〈∇ikf(x̂k), x̂kik − xik〉, (34)
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and we bound each of the four cross terms in (34). The first is bounded in (11). Secondly, from

the convexity of f , we have

Eik〈∇ikf(x̂k), x̂kik − xik〉 =
1

m
〈∇f(x̂k), x̂k − x〉 ≥ 1

m
[f(x̂k)− f(x)]. (35)

For the other two terms, we use the relation between x̂k and xk in (31). From the result in [28,

pp.306], it holds that

‖∇f(xk)−∇f(x̂k)‖ ≤ Lr
∑
d∈J(k)

‖xd+1 − xd‖. (36)

Hence by Young’s inequality, we have for any α > 0 that

− Eik〈∇ikf(xk)−∇ikf(x̂k),xk+1
ik
− xkik〉

≥ − 1

2αLc
Eik‖∇ikf(xk)−∇ikf(x̂k)‖2 − αLc

2
Eik‖x

k+1
ik
− xkik‖

2

=− 1

2mαLc
‖∇f(xk)−∇f(x̂k)‖2 − αLc

2
Eik‖x

k+1 − xk‖2

(36)

≥ − L2
r |J(k)|

2mαLc

∑
d∈J(k)

‖xd+1 − xd‖2 − αLc
2

Eik‖x
k+1 − xk‖2. (37)

Let τk = |J(k)| and order the elements in J(k) as d1 < d2 < . . . < dτk . Define x̂k,0 = x̂k and

x̂k,j = x̂k +
∑j

t=1(xdt+1 − xdt), j = 1, . . . , τk. Then we have

Eik〈∇ikf(x̂k),xkik − x̂kik〉

=
1

m
〈∇f(x̂k),xk − x̂k〉

=
1

m

τk−1∑
j=0

〈∇f(x̂k), x̂k,j+1 − x̂k,j〉

=
1

m

τk−1∑
j=0

[
〈∇f(x̂k,j), x̂k,j+1 − x̂k,j〉 − 〈∇f(x̂k,j)−∇f(x̂k), x̂k,j+1 − x̂k,j〉

]
. (38)

Since x̂k,j+1 − x̂k,j = xdj+1+1 − xdj+1 , it follows from (10) that

〈∇f(x̂k,j), x̂k,j+1 − x̂k,j〉 ≥ f(x̂k,j+1)− f(x̂k,j)− 1

2
‖xdj+1+1 − xdj+1‖2L. (39)

Note ∇f(x̂k,j)−∇f(x̂k) =
∑j−1

t=0 (∇f(x̂k,t+1)−∇f(x̂k,t)). Thus, by the Cauchy-Schwarz inequality
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and the Young’s inequality, we have

〈∇f(x̂k,j)−∇f(x̂k), x̂k,j+1 − x̂k,j〉

≤
j−1∑
t=0

‖∇f(x̂k,t+1)−∇f(x̂k,t)‖ · ‖x̂k,j+1 − x̂k,j‖

≤Lr
j−1∑
t=0

‖x̂k,t+1 − x̂k,t‖ · ‖x̂k,j+1 − x̂k,j‖

≤Lr
2

j−1∑
t=0

(
‖x̂k,t+1 − x̂k,t‖2 + ‖x̂k,j+1 − x̂k,j‖2

)
. (40)

Plugging (39) and (40) into (38) gives

Eik〈∇ikf(x̂k),xkik − x̂kik〉 (41)

≥ 1

m

f(xk)− f(x̂k)− 1

2

∑
d∈J(k)

‖xd+1 − xd‖2L

− Lr
2m

τk−1∑
j=0

(
j−1∑
t=0

‖x̂k,t+1 − x̂k,t‖2 + j‖x̂k,j+1 − x̂k,j‖2
)

Noting τk ≤ τ , we have the desired result by plugging (11), (35), (37), and (41) into (34). �

From Lemmas 3.2, 3.3, and 3.7, and also the equation (17), we can easily have the following result.

Eik

[
F (xk+1)− F (x)− 〈λk+1, rk+1〉+ (β − ρ)‖rk+1‖2 − β

2
‖rk+1‖2 +

1

2
‖xk+1 − x‖2P

]
+

1

2
Eik‖x

k+1 − xk‖2P−L−αLcI−βA>A −
κLrτ/α+ 2Lrτ

2m

k−1∑
d=k−τ

‖xd+1 − xd‖2 − 1

2m

k−1∑
d=k−τ

‖xd+1 − xd‖2L

≤
(
1− 1

m

) [
F (xk)− F (x)− 〈λk, rk〉+ β‖rk‖2

]
− β

2
‖rk‖2 +

1

2
‖xk − x‖2P. (42)

Regard xk = x0, ∀k < 0. Hence,

K∑
k=0

k−1∑
d=k−τ

‖xd+1 − xd‖2 ≤ τ
K−1∑
k=0

‖xk+1 − xk‖2.

Using (42) and following the same arguments in the proofs of Theorems 3.5 and 3.6, we obtain the

two theorems below.

Theorem 3.8 (Global convergence in probability) Let {(xk, rk,λk)} be the sequence gener-

ated from Algorithm 2 with 0 < ρ ≤ β
m and Pi’s satisfying

Pi �
(
Li + αLc +

τLi
m

+
(κ/α+ 2)Lrτ

2

m

)
I + βA>i Ai, i = 1, . . . ,m, (43)

for α > 0, then

F (xk)
p→ F (x∗), ‖rk‖ p→ 0.
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Theorem 3.9 (Ergodic convergence rate) Under the assumptions of Theorem 3.8, let x̄K+1 =
xK+1+

∑K
k=1 x

k+1/m
1+K/m and

C0 =
(
1− 1

m

) [
F (x0)− F (x∗)

]
+

1

2
‖x0 − x∗‖2P +

(β
2
− β

m

)
‖r0‖2.

Then we have the same results as those in (24) and (25). In addition, given any ε > 0 and

0 < σ < 1, if K satisfies (26), then x̄K+1 is an (ε, σ)-solution to (1).

Remark 3.1 Comparing the settings of Pi’s in Theorems 3.5 and 3.8, we see that they are only

weakly affected by the delay if τ = o(
√
m), which holds for problems involving extremely many

variables. If all p nodes compute at the same rate, τ is in the same order of p [33], and thus

Theorem 3.8 indicates that nearly linear speed-up can be achieved on O(
√
m) nodes. Even without

the nonseparable affine constraint, this quantity is better than that required in [27]. In addition, as

τ = 0, Algorithm 2 reduces to Algorithm 1, and their convergence results coincide.

4 Numerical experiments

In this section, we test the proposed methods on the basis pursuit problem (2), the nonnegativity

constrained quadratic programming, and also the dual SVM (4). We demonstrate their efficacy by

comparing to several other existing algorithms.

4.1 Basis pursuit

The tests in this subsection compare Algorithm 1 to the linearized augmented Lagrangian method

(LALM) and the open-source solver YALL1 [49] on the basis pursuit problem (2). Putting all

variables into a single block, we can regard LALM as a special case of Algorithm 1 with m = 1,

and YALL1 is a linearized ADMM with penalty parameter adaptively updated based on primal

and dual residuals.

The matrix A ∈ Rq×1000 in (2) was randomly generated with q varying among {200, 300, 400},
and its entries independently follow standard Gaussian distribution. We normalized each row of

A. A sparse vector xo was then generated with 30 nonzero entries that follow standard Gaussian

distribution and whose locations are chosen uniformly at random. The vector b = Axo. We evenly

partitioned the variable x into 100 blocks, and we set ρ = β
100 and Pi = β‖Ai‖2I, i = 1, . . . , 100,

where ‖Ai‖ denotes the spectral norm of Ai. For LALM, we treated it as a special case of Algorithm

1 with a single block and set ρ = β and P = β‖A‖2I. The same values of β were used for both

Algorithm 1 and LALM. The parameters of YALL1 were set to the default values.

To compare the performance of the three algorithms, we plot their values of |F (xt) − F (x∗)| and

‖Axt − b‖ with respect to t, where t denotes the epoch number.2 Since the three algorithms have

2Each epoch is equivalent to updating m x-blocks.
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Figure 1: Results by three different algorithms on solving the basis pursuit problem (2) with

A ∈ R300×1000. The parameter β varies among {1, 10, 100} for Algorithm 1 and LALM.

roughly the same per-epoch complexity, the plot in terms of running time will be similar. In Figure

1, we fixed q = 300 and varied β among {1, 10, 100}. From the results, we see that the proposed

algorithm perform significantly better than LALM and comparably as well as YALL1. In addition,

the parameter β affected both Algorithm 1 and LALM but the former was only weakly affected.

In Figure 2, we set β =
√
q and varied q among {200, 300, 400}. Again we see that the proposed

algorithm is significantly better than LALM. For q = 200, Algorithm 1 is slightly better than

YALL1, and for q = 300 and 400, they perform equally well.

4.2 Quadratic programming

In this subsection, we simulate the performance of Algorithm 2 with different delays on solving the

nonnegativity constrained quadratic programming (NCQP):

min
x

1

2
x>Qx + c>x, s.t. Ax = b,x ≥ 0, (44)

where Q is a positive semidefinite matrix. We set Q = HH> with H ∈ R2000×2000 randomly

generated from standard Gaussian distribution, and the vector c was generated from Gaussian

distribution. The matrix A = [B, I] ∈ R200×2000 with the entries of B independently following

standard Gaussian distribution, and b was generated from uniform distribution on [0, 1]. This way,

we guarantee the feasibility of (44).
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Figure 2: Results by three different algorithms on solving the basis pursuit problem (2) with

A ∈ Rq×1000 and q varying among {200, 300, 400}. The parameter β was set to
√
q for Algorithm

1 and LALM.
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Figure 3: Results by Algorithm 2 on solving the quadratic programming (44). The matrices Pi’s

are set according to (43) with α = 1.
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Figure 4: Results by Algorithm 2 on solving the quadratic programming (44). The same matrices

Pi’s are used for different delays, i.e., Pi = Qii + β‖ai‖2, ∀i according to Theorem 3.5, where ai is

the i-th column of A.

We partitioned x into 2,000 blocks, namely, every coordinate was treated as one block. To see

how the algorithm is affected by delayed block gradients, τ + 1 most recent iterates were kept,

and x̂k was set to one of these iterates that was chosen uniformly at random. We varied τ among

{0, 5, 10, 20, 40}. β was tuned to
√

2, ρ = β
2000 was used, and Pi’s were set in two different ways.

Figure 3 plots the results by Algorithm 2 with Pi’s set according to (43) with α = 1. Note that for

this instance, we have Li = Qii, i.e., the i-th diagonal entry of Q for each i, and Lr = maxi ‖qi‖
where qi denotes the i-th column of Q. From the figure, we see that the convergence speed of the

algorithm is affected by the delays. Larger τ gives smaller stepsize and leads to slower convergence.

However, the algorithm is hardly affected by delayed block gradient if the same Pi’s were used,

as shown in Figure 4. Practically, the maximum delay τ is unknown, but the results in Figure 4

indicate that we can simply set Pi’s according to Theorem 3.5 regardless of the delay. This implies

that our analysis may not be tight.

4.3 Support vector machine

In this subsection, we compare the performance of the async-parallel Algorithm 2 and its sync-

parallel counterpart on solving the dual SVM (4). Another way of parallel computing on solving

(4) is to directly distribute computation of an algorithm (that may not be BCU type) over multiple

nodes, such as the method in [47]. In the test, we used two LIBSVM datasets:3 rcv1 and news20,

whose characteristics are listed in Table 1.

We partitioned the variable into blocks of size 50 or 51. For both sync and async-parallel methods,

β = 0.1 and ρ = β
m were set, where m is the number of blocks. As suggested in section 4.2, for

the async-parallel method, we set Pi = (Li + β‖Ai‖2)I, ∀i according to Theorem 3.5. For the

sync-parallel method, if there are p cores, we selected a set S of p blocks at every iteration and set

3The data can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Name #samples #features #nonzeros

rcv1 20,242 47,236 1,498,952

news20 19,996 1,355,191 9,097,916

Table 1: Characteristics of two LIBSVM datasets
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Figure 5: Results by the sync-parallel (top) and async-parallel (bottom) algorithms on solving the

dual SVM (4). The dataset rcv1 is used.

Pi =
∑

j∈S(Lj + β‖Aj‖2)I for all i ∈ S. We also used Pi’s the same as those by the async-parallel

method but noticed that the sync-parallel method diverged. The larger weight matrices are also

suggested in [14] to be proportional to the number of blocks. Note that in the dual SVM (4), if we

let Xi and yi contain the data points and labels corresponding to the i-th block variable, then Li
equals the spectral norm of the matrix diag(yi)X

>
i Xidiag(yi). Since every block only has 50 or 51

coordinates, it is easy to compute Li’s.

We ran the tests on a machine with 20 cores. Figure 5 plots the results by the sync and async-

parallel algorithms on the rcv1 dataset. From the figure, we see that in terms of epoch number,

the sync-parallel method converges slower if more cores are used, while the async-parallel one

converges almost the same with different number of cores. As shown in Figure 6, similar results

were observed for the news20 dataset. We also measured the speed-up of the two parallel methods

in terms of running time. The results are plotted in Figure 7. From the results, we see that the

async-parallel method achieves significantly better speed-up than the sync-parallel one, and that is

because synchronization at every iteration wastes much waiting time.
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Figure 6: Results by the sync-parallel (top) and async-parallel (bottom) algorithms on solving the

dual SVM (4). The dataset news20 is used.
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Figure 7: Speed up of the sync and async-parallel algorithms for solving the dual SVM (4) on

different number of cores.
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5 Conclusions

We have proposed an async-parallel primal-dual BCU method for convex programming with non-

separable objective and arbitrary linear constraint. As a special case on a single node, the method

reduces to a randomized primal-dual BCU for multi-block linearly constrained problems. Conver-

gence and also rate results in probability have been established under convexity assumption. We

have also numerically compared the proposed algorithm to several existing methods. The experi-

mental results demonstrate the superior performance of our algorithm over other ones.
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