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Abstract In this paper we propose a primal-dual homotopy method for `1-
minimization problems with infinity norm constraints in the context of sparse
reconstruction. The natural homotopy parameter is the value of the bound
for the constraints and we show that there exists a piecewise linear solution
path with finitely many break points for the primal problem and a respective
piecewise constant path for the dual problem. We show that by solving a small
linear program, one can jump to the next primal break point and then, solving
another small linear program, a new optimal dual solution is calculated which
enables the next such jump in the subsequent iteration. Using a theorem of the
alternative, we show that the method never gets stuck and indeed calculates
the whole path in a finite number of steps.
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Numerical experiments demonstrate the effectiveness of our algorithm. In
many cases, our method significantly outperforms commercial LP solvers; this
is possible since our approach employs a sequence of considerably simpler
auxiliary linear programs that can be solved efficiently with specialized active-
set strategies.
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1 Introduction

With the advent of Compressed Sensing [11,10,12,20], recovery of sparse vec-
tors by means of the popular Basis Pursuit approach [8],

min
x∈Rn

‖x‖1 s.t. Ax = b, (BP)

and the so-called Basis Pursuit Denoising (or `1-regularized Least-Squares)
problem

min
x∈Rn

λ‖x‖1 + 1
2‖Ax− b‖

2
2, (`1-LS)

with A ∈ Rm×n, b ∈ Rm and λ > 0, received a lot of attention both theo-
retically and algorithmically over the past decade (see, e.g., [15,20] and many
references therein). However, the related problem

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ (Pδ)

appears to be much less investigated. This problem can be rewritten as a linear
program (LP) by formulating the `∞-norm constraint as linear inequalities and
performing the usual variable split of x into its positive and negative parts
(see (1) below). Thus, in principle, every LP solver can be applied to solve
the problem. However, in practice it may happen that the problem instances
are very large (and with A dense or perhaps only available implicitly) so that
current LP solvers may not be able to handle the problem well. Moreover,
there are cases in which one does not only want to solve the problem for a
given instance of (A, b, δ) but for a whole range of parameters δ.

Our interest in sparse approximation under `∞-constraints via the prob-
lem (Pδ) is motivated by several practical applications:

– The Dantzig selector problem [7]

min
x∈Rn

‖x‖1 s.t.
∥∥A>(Ax− b)

∥∥
∞ ≤ δ (DSδ)

is a special case of (Pδ) and has numerous applications in statistical esti-
mation, see, e.g., [23], where the whole solution path for δ > 0 is computed
as a selection step prior to a classification step.
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– In sparse dequantization, one has quantized measurements b = Q(Ax̄) of
some signal vector x̄ which is assumed to be sparse. If the quantization level
is known, one can interpret (Pδ) as the problem of finding a reconstruc-
tion x∗ with minimal `1-norm for which the measurements Ax∗ produce
the same quantized measurements b. We refer to [13] for the general idea
and to [4] for a recent application to speech processing.

– In sparse linear discriminant analysis as proposed in [5], one obtains a
problem of the form (Pδ) in which A is a sample covariance matrix and b is
a difference of sampled means. Similarly, the so-called CLIME estimator [6]
solves sparse precision matrix estimation problems via a sequence of (Pδ)
problems in each of which A is again a covariance matrix and b is equal to
a unit vector.

In this paper, we develop a homotopy algorithm for the problem (Pδ). The
starting point is that for δ ≥ ‖b‖∞, the vector x = 0 is obviously the optimal
solution. Moreover, we will show that for a solution x of (Pδ) for a given δ > 0,
there exist a direction d and a scalar t0 > 0 such that x + td is a solution
of (Pδ−t) for 0 ≤ t ≤ t0. Our algorithm builds on these observations and
calculates a path of solutions for decreasing values of δ until a target δ-value
is reached; we shall prove that the algorithm is able to compute such a path in
finitely many steps (even if the final value is δ = 0). Our approach resembles
the popular homotopy method for (`1-LS), cf. [18], but, as detailed later, our
method has to work on both the primal and dual problem simultaneously, so
that the algorithms differ considerably.

The remainder of this paper is structered as follows: We further touch
upon related methods in Subsection 1.1 below, and fix some notation in Sub-
section 1.2. The main part of the paper, Section 2, constitutes a detailed
derivation of our homotopy approach to (Pδ), including theoretical results on
iterative improvement and finite termination. An efficient solution approach for
subproblems encountered in our scheme is put forth in Section 3. We consider
some practical applications and present computational results in Section 4,
discuss possible extensions and conclude the paper in Section 5.

1.1 Related Work

Homotopy concepts have been around for decades, so it should come as no
surprise that our approach bears some resemblance to several earlier algo-
rithms. In the following, we briefly comment on similarities and differences
with respect to the arguably most naturally related methods.
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1.1.1 Parametric Simplex Method

It is well-known that problem (Pδ) can be recast as an LP, e.g.,

min
x±,s±∈Rn

1>x+ + 1>x−

s.t.
(

A −A I 0
−A A 0 I

)
x+

x−

s+

s−

 =

(
b+ δ1
−b+ δ1

)
(1)

x+, x−, s+, s− ≥ 0.

There exists a variety of homotopy schemes for LPs, see, for instance, [3,16] and
references therein. In fact, the latter work shows how many standard LP algo-
rithms (simplex, affine-scaling and interior-point methods) can be subsumed
under a unifying homotopy framework, exhibiting nice connections between
intuitively very different approaches. The LP homotopy method most natu-
rally related to our approach results from treating the parameter δ itself as the
homotopy parameter (as we shall also do in our method) in the above LP—
the so-called (self-dual) parametric simplex method (PSM) [9,22]. Very briefly,
PSM perturbs both the LP right-hand side and objective coefficient vectors
using the same parameter and then drives this parameter down to zero, per-
forming primal or dual simplex pivot steps at each breakpoint in the (piecewise
linear) parameter homotopy path. For a sufficiently large initial parameter, a
primal-dual feasible (hence, optimal) basis is easily found and used to start
the algorithm; reducing the parameter, basis optimality is maintained until
either a basic variable or nonbasic reduced cost coefficient changes sign, which
identifies the breakpoints and induces an appropriate simplex step to exchange
some basis element for a nonbasic one. (For a detailed formal description, see,
e.g., [22, pp. 115–121].)

In fact, PSM was very recently proposed for sparse linear discriminant
analysis problems by means of reformulating the associated problem (Pδ) as
precisely the LP stated above, see [19], in which PSM is applied to several
other problems as well. For the above special parameterized LP, one needs
to stop PSM as soon as the parameter drops below the target original δ (not
zero) and since the objective is unperturbed, only primal simplex pivot steps
are performed throughout the entire algorithmic process (i.e., each breakpoint
identifies some variable that is to leave the basis in exchange for a nonbasic
one; neither of these facts is mentioned in [19]).

If the optimal solutions for each respective parameter interval are unique,
then PSM and our approach necessarily produce the same solution path. How-
ever, the paths may differ if multiple optimal solutions occur, as the underlying
algorithmic concepts are different: For one thing, we operate in the original
variable space (n primal and m dual variables versus 2n+ 2m variables in the
above parameterized LP), and thus avoid doubling the dimensions. Moreover,
in each iteration, PSM is restricted to moving to an adjacent basis and, in
particular, can get “stuck” at a certain parameter value for several iterations
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(namely when several pivot steps are needed to eventually arrive at a new basis
that allows to further reduce the parameter). Such a situation can never occur
in our algorithm (cf. Theorem 2.2 in Section 2.4 below); indeed, our scheme
guarantees the largest reduction of δ in every iteration and moves directly to
associated optimal points.

Regarding implementation, PSM is subject to all advantages and draw-
backs that come with any simplex method, e.g., its basic version (as described
in [22]) may cycle and hence not even terminate, special care needs to be taken
to compute and maintain numerically stable basis matrix factorizations, etc.
Our approach is straightforward to implement, but requires access to an LP
solver for subproblem optimization—given the large selection of sophisticated
LP solvers (both proprietary and freely available) to choose from, we actually
consider this a feature, not a disadvantage. In particular, this allows us to use
a certain active-set LP strategy that turns out to be particularly well-suited to
the subproblems occurring during our method, see Section 3. At least in case
of multiple optimal solutions, both PSM and our homotopy method are natu-
rally influenced by choices made for crucial steps (i.e., pivoting rules for PSM
and LP subproblem solver choice in our implementation), which makes a di-
rect numerical comparison somewhat meaningless; hence, we do not delve into
this subject further. (It should however be noted that the homotopy approach
not only provides the whole solution path, but for sparse solutions is also sig-
nificantly faster than applying a standard LP solver to the LP reformulation
of (Pδ) directly.)

Finally, let us remark that the relationship between (Pδ) and linear pro-
gramming extends, in a sense, both ways: Obviously, a general LP method can
be used to solve (Pδ), rewritten as the above LP, but a relevant and relatively
large subclass of LPs can also be recast into a form resembling (Pδ) for which
our algorithm can be adapted straightforwardly, cf. Section 5.

1.1.2 Dantzig Selector and `1-Regularized Least-Squares Homotopy

A homotopy scheme for the Dantzig selector problem (DSδ) was proposed
in [1]. There, the general idea is also to perform primal and dual update steps
in each iteration, starting from a large value for the parameter δ (for which the
optimal solution is trivially known) and driving it down toward the desired
level. The update steps consist of finding directions along which optimality
conditions are maintained and by choosing suitable step sizes, breakpoints in
the homotopy path are identified; the supports of the current primal and dual
variables are updated one element at a time1.

1 The description in [1] is a bit unclear in this regard; it seems the authors implicitly use
a kind of subproblem uniqueness assumption under which this works out well, although the
choice of indices entering or leaving a support apparently needs not be uniquely determined
in general. Also, they claim the optimality conditions they work with imply uniqueness, but
they are equivalent to the standard LP optimality conditions with strict complementary
slackness (see, e.g., [21, Section 7.9]) applied to the LP obtainable from (DSδ), which do not
import a statement about uniqueness.
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Clearly, (DSδ) is a special case of the more general problem (Pδ) we con-
sider. Moreover, we allow primal and dual supports to change by more than one
component per iteration (and we do not make any uniqueness assumptions),
so our approach also generalizes that of [1] conceptually. Another difference
is that we do not explicitly compute directions first but directly obtain the
respective next points. Nevertheless, the method from [1] remains of interest
in its own right, since the special (Gramian) structure of the constraint matrix
allows for a more direct subproblem treatment than the LPs we will solve.

As discussed in [14,2], for certain sparsity levels of the optimal solution
to (DSδ) and/or conditions on the matrix A, the whole respective solution
paths of the Dantzig selector homotopy from [1], the related but different
DASSO algorithm from [14], and the homotopy scheme for (`1-LS) (see [18])
coincide. (Also, the Dantzig selector homotopy algorithm can be modified quite
simply to reduce to the `1-LS homotopy scheme, cf. [1]).

Thus, our algorithm is naturally related to those methods as well: Though
(Pδ) generalizes (DSδ), which in turn is sometimes equivalent to (`1-LS), nei-
ther problems are equivalent, whence the various algorithms are necessarily
different, though certainly very similar in spirit. It is also worth noting that
while the homotopy for (`1-LS) is a primal method2, the approaches for (DSδ)
and also our proposed algorithm work in a primal-dual fashion.

1.2 Notation

For A ∈ Rm×n, a>i denotes the i-th row and Aj denotes the j-th column of A.
Moreover, for I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, AIJ denotes the sub-matrix
of A with rows indicated by I and columns indicated by J . Sometimes, we
write A>J = (AJ)>.

By �, we denote the component-wise product of two vectors, i.e., for x, z ∈
Rn, we have (x� z)j = xjzj .

Furthermore, we define Diag(x) to be the n×n diagonal matrix having the
entries of the vector x as its diagonal elements.

As usual, ‖ · ‖1 and ‖ · ‖∞ denote the respective norms, i.e.,

‖x‖1 =

n∑
j=1

|xj | and ‖x‖∞ = max
j=1,...,n

|xj |.

The subdifferential of ‖ · ‖1 at x is denoted by

Sign(x) := ∂‖ · ‖1(x) =
{
ξ ∈ [−1, 1]n : xj 6= 0⇒ ξj = sign(xj)

}
.

2 More precisely, due to the smooth `2-part in (`1-LS), for every primal optimal solution
w.r.t. some parameter δ, the associated dual optimal solution is known in closed-form, which
can be substituted into the algorithmic formluae directly, eliminating the need for keeping
a dual variable explicitly.
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Finally, for given primal variable x, dual variable y and bound δ, we intro-
duce the index sets

JP := {j : xj 6= 0} (primal support),

IP :=
{
i :
∣∣a>i x− bi∣∣ = δ

}
(primal active set of constraints),

JD :=
{
j :
∣∣A>j y∣∣ = 1

}
(dual active set)

and ID := {i : yi 6= 0} (dual support),

cf. (Pδ) and its dual problem (Dδ) (defined below). Generally, for notational
simplicity, we do not make the sets’ dependency on x, y and δ explicit as it
will be clear from the context. Nevertheless, if we consider these index sets
for specific algorithmic iterates xk, yk and δk, we write JkP , I

k
P , J

k
D, and I

k
D,

respectively.
Set complements are denoted by a superscript c and always pertain to the

respective natural superset; e.g., JcP = {1, . . . , n}\JP and IcP = {1, . . . ,m}\IP .

2 Homotopy Algorithm

In the following, we describe our algorithmic approach in detail and prove
its correctness and finite convergence. A pseudocode of the method is given
in Algorithm 1 below. With a wink and a nod to a certain well-known basis
pursuit solver, we call our algorithm `1-Houdini (`1-norm HOmotopy UnDer
Infinity-Norm constraInts). Throughout, we assume w.l.o.g. that δ < ‖b‖∞
(otherwise, x∗ = 0 trivially solves (Pδ)).

2.1 Optimality Conditions and Algorithmic Idea

It is well-known that x∗ is an optimal solution of (Pδ) if and only if there
exists a y∗ such that

−A>y∗ ∈ Sign(x∗) (2)
and Ax∗ − b ∈ δ Sign(y∗). (3)

In particular, such a y∗ is an optimal solution to the dual problem of (Pδ), i.e.,

max
y∈Rm

−b>y − δ‖y‖1 s.t.
∥∥A>y∥∥∞ ≤ 1. (Dδ)

Thus, we call y∗ a dual certificate and (x∗, y∗) an optimal pair for (Pδ). In
particular, any optimal pair satisfies ‖x∗‖1 = −b>y∗− δ‖y∗‖1, i.e., the primal
and the dual problem attain the same optimal value. Note that, as a conse-
quence of the optimality conditions (2) and (3), it always holds that JP ⊆ JD
and ID ⊆ IP in case (x∗, y∗) is an optimal pair.

Our approach is to find an optimal pair by repeatedly making use of (2)
and (3). Instead of solving (Pδ) directly, we start by setting δ0 := ‖b‖∞ and
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observe that x0 = 0 is an optimal solution of (Pδ0). Now, the main idea
behind the iterations of our method is the following: Let k ∈ N0 := N ∪ {0}
and (xk, yk) be an optimal pair for (Pδk). First, we seek a yk+1 6= yk such that
(xk, yk+1) is still an optimal pair for (Pδk). After that, we aim at identifying
xk+1 and t > 0 such that with δk+1 = δk − t, (xk+1, yk+1) is an optimal pair
for (Pδk+1). We repeat these steps as long as δk+1 > δ; when finally δk+1 = δ,
we have found an optimal pair (xk+1, yk+1) for our initial problem (Pδ).

We remark that while (2) and (3) show that, e.g., y0 = 0 would be a
valid dual certificate associated with x0 (other similarly simple choices are
possible), such a heuristic choice—then to be used for a first primal update
step—may lead to a “zero step” (t = 0, x1 = x0), after which a new dual iterate
must be computed. Therefore, in `1-Houdini, we will actually start with the
computation of a dual certificate directly (i.e., we do not need any y0).

2.2 Primal Updates

Suppose (xk, yk+1) is an optimal pair for (Pδk) and we seek xk+1 and t such
that (xk+1, yk+1) is an optimal pair for (Pδk−t). From (2) and (3) we know
that xk+1 and t must fulfill

−A>yk+1 ∈ Sign(xk+1) and Axk+1 − b ∈ (δk − t) Sign(yk+1).

The first condition restricts both the support and the sign of xk+1, i.e., it must
hold that

xk+1
j = 0 if |(A>yk+1)j | < 1,

xk+1
j ≥ 0 if (A>yk+1)j = −1

and xk+1
j ≤ 0 if (A>yk+1)j = 1,

or equivalently,

xk+1
JcD

= 0 and (A>JDy
k+1)� xk+1

JD
≤ 0. (4)

We split the second condition and start with the components ID in which yk+1

is non-zero and thus, Sign(yk+1
ID

) = sign(yk+1
ID

) is single-valued. This leads us
to a linear system in xk+1 and t:

AIDxk+1 + t · sign(yk+1
ID

) = b+ δk sign(yk+1
ID

). (5)

The remainder of the second condition dictates the inclusions

a>i x
k+1 − bi ∈ [−(δk − t), δk − t] for all i ∈ IcD,

which are equivalent to the linear constraints

−AI
c
Dxk+1 + t1 ≤ δk1− bIcD and AI

c
Dxk+1 + t1 ≤ δk1+ bIcD . (6)
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Finally, intuitive bounds for t are given by

0 ≤ t ≤ δk − δ. (7)

Therein, the lower bound prevents regress and the upper bound ensures that
we do not jump over an optimal solution of the original problem (recall that
under our assumption δ < ‖b‖∞, any optimal solution of (Pδ) lies on the
boundary of the feasible set).

Note that, by construction, xk+1 = xk and t = 0 always yield a solution of
(4)–(7). Nevertheless, this choice would imply stagnation (the aforementioned
“zero step”). In contrast, we can perform a maximal step with respect to the
current iterates (xk, yk+1) by maximizing t w.r.t. the constraints (4)–(7), which
amounts to solving a linear program. (Note that the number of variables is
substantially reduced by eliminating xk+1

JcD
, which must be zero; typically, JD

will be very small—and hence, JcD large—at least in the beginning, although
generally this depends on the structure of b.)

In case the maximum objective is t = 0, no progress is achievable by
performing a primal update; we will see later (cf. Lemma 2.3) that this case,
in fact, never occurs during our algorithm. Also, since t = 0 is always possible,
the lower bound t ≥ 0 is redundant and can be omitted from (7).

2.3 Dual Updates

The dual update follows the same principle as the primal update except that
here, xk and δk are fixed and we seek yk+1 such that

−A>yk+1 ∈ Sign(xk) and Axk − b ∈ δk Sign(yk+1).

Here, the second condition restricts the support and the sign of yk+1, i.e.,

yk+1
IcP

= 0 and − sign(AIP xk − bIP )� yk+1
IP
≤ 0. (8)

We split the first condition. Starting with the primal support JP , on which
Sign(xkJP ) = sign(xkJP ) is single-valued, we obtain the linear system

−A>JP y
k+1 = sign(xkJP ). (9)

On the complementary components JcP , the first condition yields the linear
constraints

− 1 ≤ A>JcP y
k+1 ≤ 1. (10)

Just as in case of the primal update, there is a trivial solution to (8)–
(10), namely yk+1 = yk. Moreover, we can again exploit that the feasible
support IP of yk+1 will, at least in the beginning, be small (so that many
variables yk+1

IcP
= 0). However, in contrast to the primal update, where it was

obvious to maximize t, it is not directly clear which solution we should prefer
in case (8)–(10) does not have a unique feasible point. The following theorem
of alternatives gives an answer to this problem.
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2.4 A Theorem of the Alternative

The following results provide, in particular, a selection rule for the dual update
which forms a key element for a working algorithm since it guarantees the
subsequent primal update to be successful (i.e., not a “zero step”).

The two alternatives (11a)–(11e) and (12a)–(12d) in the lemma below are
linear (in-)equality systems that improvement directions must obey (when
interpreting primal and dual updates as moving from xk to xk + t ·d and from
yk to yk + s · e, respectively).

Lemma 2.1 Let (x̂, ŷ) be an optimal pair for (Pδ̂) for some 0 ≤ δ̂ < ‖b‖∞.
Then, one and only one of the systems

− sign(Ax̂− b)>e < 0 (11a)

A>JP e = 0 (11b)

A>JD\JP ŷ �A
>
JD\JP e ≤ 0 (11c)

− sign(AIP \ID x̂− bIP \ID )� eIP \ID ≤ 0 (11d)
eIcP = 0 (11e)

and

AIDd = − sign(ŷID ) (12a)

sign(AIP \ID x̂− bIP \ID )�AIP \IDd ≤ − 1 (12b)

A>JD\JP ŷ� dJD\JP ≤ 0 (12c)

dJcD = 0. (12d)

has a solution.

Proof With Σ1 := Diag(sign(AIP \ID x̂ − bIP \ID )) and Σ2 := Diag(A>JD\JP ŷ),
we have Σ1 = Σ−11 as well as Σ2 = Σ−12 and can rewrite the first system as

−1>Σ1eIP \ID − sign(AID x̂− bID )>eID < 0

−Σ2(A
IP \ID
JD\JP )>eIP \ID −Σ2(AIDJD\JP )>eID ≥ 0

(A
IP \ID
JP

)>eIP \ID +(AIDJP )>eID = 0

Σ1eIP \ID ≥ 0.

We substitute êIP \ID := Σ1eIP \ID and observe that the system has a solution
if and only if the system

−1>êIP \ID − sign(AID x̂− bID )>eID < 0

−Σ2(A
IP \ID
JD\JP )>Σ1êIP \ID −Σ2(AIDJD\JP )>eID ≥ 0

(A
IP \ID
JP

)>Σ1êIP \ID +(AIDJP )>eID = 0

êIP \ID ≥ 0
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is feasible. By Farkas’ Lemma (see, e.g., [21, Corollary 7.1d]), this system has
a solution if and only if the associated alternative system

−Σ1A
IP \ID
JD\JPΣ2d̂JD\JP +Σ1A

IP \ID
JP

dJP ≤ − 1

−AIDJD\JPΣ2d̂JD\JP +AIDJP dJP = − sign(AID x̂− bID )

d̂JD\JP ≥ 0

is infeasible. Since sign(AID x̂−bID ) = sign(ŷID ) and by substituting dJD\JP :=

−Σ2d̂JD\JP , we obtain that equivalently,

Σ1A
IP \ID
JD

dJD ≤ − 1

AIDJDdJD = − sign(ŷID )

−Σ2dJD\JP ≥ 0

is infeasible. The claim now follows by explicitly including eIcP = 0 and dJcD = 0
in the respective systems. ut

In fact, our algorithm does not use explicit direction vectors, but the above
first set of alternative systems will be useful for the proof of the next result
and may also be of interest in its own right. Below, note that in (13a)–(13f)
and (14a)–(14e), we recognize the primal and dual update conditions derived
in the previous two subsections, respectively.

Theorem 2.2 Let (x̂, ŷ) be an optimal pair for (Pδ̂) for some 0 ≤ δ̂ < ‖b‖∞.
Then, the following four alternatives are equivalent.

(I) The system (11a)–(11e) is feasible.
(II) The system (12a)–(12d) is infeasible.
(III) (x̂, 0) is an optimal solution of

max
(x,t)∈Rn×R

t (13a)

s.t. AIDx− bID = (δ̂ − t) sign(ŷID )
(13b)

(t− δ̂)1 ≤ AI
c
Dx− bIcD ≤ (δ̂ − t)1 (13c)

A>ŷ�x ≤ 0 (13d)
xJcD = 0 (13e)

t ≤ δ̂ − δ. (13f)

(IV) ŷ is not an optimal solution of

min
y∈Rm

− sign(Ax̂− b)>y (14a)

s.t. −A>JP y = sign(x̂JP ) (14b)

−1 ≤ −A>JcP y ≤ 1 (14c)

− sign(Ax̂− b)� y ≤ 0 (14d)
yIcP = 0. (14e)
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Proof Lemma 2.1 already shows that alternatives (I) and (II) are equivalent.
Moreover, since (x̂, ŷ) forms an optimal pair for (Pδ̂), several relations

corresponding to constraints in the optimization problems of alternatives (III)
and (IV) already hold true, by the optimality conditions and the definitions
of the index respective sets: Due to (2), (14b) and (14c) are satisfied, and due
to (3), so are (13b) and (13c) for t = 0, i.e., we have

−A>JP ŷ = sign(x̂JP ), −1 ≤ −A>JcP ŷ ≤ 1,

AID x̂− bID = δ̂ sign(ŷID ), −δ̂1 ≤ AI
c
D x̂− bIcD ≤ δ̂1.

By definition of the active sets IP and JD together with (2) and (3) (in other
words, by complementary slackness) , (13e) and (14e) are also satisfied, i.e.,
x̂JcD = 0 and ŷIcP = 0. Finally, (13d) follows from (2) and (14d) from (3), and
since x̂j 6= 0 for all j ∈ JP and ŷi 6= 0 for all i ∈ ID, we obtain, in particular,
that

A>JP ŷ � x̂JP < 0

and − sign(AID x̂− bID )� ŷID < 0.

Keeping the above relations in mind, we proceed to show the equivalence
of alternatives (II) and (III):

Suppose that alternative (II) is not true, i.e., there exists a d that satisfies
(12a)–(12d). As d fulfills (12a) and (12d), we get that for each t > 0, (x̂+ td, t)
fulfills (13b) and (13e), respectively. From (12b) we obtain the existence of a
t1 > 0 such that (x̂ + td, t) satisfies (13c) for all 0 ≤ t ≤ t1, and because of
(12c), there exists a t2 > 0 such that (x̂+ td, t) fulfills (13d) for all 0 ≤ t ≤ t2.
Consequently, we can choose t = min(t1, t2, δ̂−δ) > 0 and have a corresponding
feasible solution (x̂+ td, t) of (12a)–(12d), which shows that alternative (III)
is not true either.

Conversely, suppose that alternative (III) is not true, i.e., there exists a pair
(x, t) with t > 0 that satisfies (13b)–(13f). We easily see that d = (x − x̂)/t
obeys (12a). Obviously, by construction, also (12d) holds for d. Moreover, it
holds that

sign(AIP \ID x̂− bIP \ID )�AIP \IDd
= 1
t sign(AIP \ID x̂− bIP \ID )� ([AIP \IDx− bIP \ID ]− [AIP \ID x̂− bIP \ID ])

= 1
t sign(AIP \ID x̂− bIP \ID )� sign(AIP \IDx− bIP \ID )� |AIP \IDx− bIP \ID |
− 1

t sign(AIP \ID x̂− bIP \ID )� sign(AIP \ID x̂− bIP \ID )� |AIP \ID x̂− bIP \ID |

≤ δ̂−tt 1−
δ̂
t1 = −1,

so d satisfies (12b) as well. Finally, (12c) also holds true, since

A>JD\JP ŷ � dJD\JP = 1
t A
>
JD\JP ŷ � xJD\JP︸ ︷︷ ︸

≤0

− 1
tA
>
JD\JP ŷ � x̂JD\JP︸ ︷︷ ︸

=0

≤ 0.

Thus, we conclude that alternative (II) is indeed not true either.
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To complete the proof, it now suffices to show that alternatives (I) and (IV)
are equivalent. First, suppose that alternative (I) is true, i.e., there exists an e
that satisfies (11a)–(11e). For arbitrary s > 0, the vector ŷ+se still obeys (14b)
and (14e), because of (11b) and (11e), respectively. Furthermore, (11c) ensures
that there exists an s1 > 0 such that ŷ + se still satisfies (14c) for 0 ≤ s ≤ s1,
and (11d) ensures the existence of an s2 > 0 such that ŷ + se obeys (14d)
for 0 ≤ s ≤ s2. Thus, we can choose s = min(s1, s2) and obtain that ŷ + se
satisfies (14b)–(14e). Moreover, (11a) shows that − sign(Ax̂ − b)>(ŷ + se) <
− sign(Ax̂−b)>ŷ and it follows that ŷ is not the minimizer of (14a)–(14e) and
thus, that alternative (IV) is true.

Now, suppose conversely that alternative (IV) is true and that y 6= ŷ is a
minimizer of (14a)–(14e). Then, e := y − ŷ satisfies − sign(Ax̂− b)>(ŷ + e) <
− sign(Ax̂ − b)>ŷ, which shows that e obeys (11a). Moreover, (14b)–(14e)
continue to hold for ŷ + e, which implies that e satisfies (11b)–(11e) as well,
and consequently, that alternative (I) is true. ut

2.5 `1-Houdini Algorithm and Finite Termination

Theorem 2.2 suggests the following algorithm: For a given δk > δ and an
optimal pair (xk, yk) do: First update yk+1 as a solution to (14a)–(14e) (with
x̂ = xk) and then find an updated xk+1 and a tk+1 > 0 as solution of (13a)–
(13f) (with ŷ = yk+1 and δ̂ = δk). In detail this is described in Algorithm 1.

To prove convergence of Algorithm 1 we start with a lemma:

Lemma 2.3 In each two consecutive iterations, Algorithm 1 produces iterates
yk+1 6= yk and xk+1 6= xk. In particular, it holds that tk+1 > 0 in each
iteration.

Proof In the beginning, we have x0 = 0 and determine y1 solving (14a)–(14e)
with x̂ = x0. By Theorem 2.2, (x0, 0) is not an optimal solution to (13a)–(13f)
with ŷ = y1 and δ̂ = δ0. It follows that x1 6= x0 and t1 > 0 after solving
(13a)–(13f).

Now suppose k ≥ 1 and consider an iteration of Algorithm 1 starting from
an optimal pair (xk, yk) for (Pδk) which is known from the previous iteration.
First, we determine a new dual iterate yk+1 by solving (14a)–(14e) with x̂ = xk.
From the previous primal update we know that (xk, δk−1 − δk) is a solution
of (13a)–(13f) with δ̂ = δk−1 and ŷ = yk. It follows that (xk, 0) is a solution
of (13a)–(13f) with δ̂ = δk and ŷ = yk. In turn, Theorem 2.2 states that yk is
not a solution of (14a)–(14e) with x̂ = xk. By construction, yk+1 is a solution
of (14a)–(14e) with x̂ = xk and consequently yk+1 6= yk. For the same reason,
Theorem 2.2 states that (xk, 0) is (although feasible) not a solution of (13a)–
(13f) with ŷ = yk+1 and δ̂ = δk. Since (xk+1, tk+1) is exactly such a solution,
it follows that tk+1 > 0 and xk+1 6= xk. ut

Certainly, Lemma 2.3 does not yet prove convergence of Algorithm 1. Nev-
ertheless, we see that each iteration contributes at least a small approach
towards a solution of (Pδ).
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Algorithm 1: `1-Houdini
Input: A ∈ Rm×n, b ∈ Rm, 0 ≤ δ < ‖b‖∞
Output: solution x∗ to problem (Pδ)

// Initialization:
1 δ0 ← ‖b‖∞
2 x0 ← 0

3 IP ←
{
i : |bi| = δ0

}
4 JP ← ∅
5 k ← 0

6 repeat
// Dual update:

7 yk+1 ← solution of problem (14a)–(14e) with x̂ = xk

8 ID ←
{
i : yk+1

i 6= 0
}

9 JD ←
{
j :
∣∣A>j yk+1

∣∣ = 1
}

// Primal update:
10 (xk+1, tk+1)← sol. of problem (13a)–(13f) with ŷ = yk+1 and δ̂ = δk

11 δk+1 ← δk − tk+1

12 IP ←
{
i :
∣∣a>i xk+1 − bi

∣∣ = δk+1
}

13 JP ←
{
j : xk+1

j 6= 0
}

14 k ← k + 1

15 until δk = δ

16 return x∗ = xk+1

Theorem 2.4 Algorithm 1 terminates after a finite number of iterations and
returns an optimal solution of (Pδ).

Proof The number of possible support sets JP , active sets IP , associated sign
patterns and combinations thereof is finite. Suppose that for k < ` Algo-
rithm 1 produces JP := JkP = J`P , IP := IkP = I`P , sign(xkJP ) = sign(x`JP ) and
sign(Axk − b) = sign(Ax` − b). According to (14a)–(14e) we obtain that also
yk+1 = y`+1. It follows that the primal update steps (13a)–(13f) to find xk+1

and x`+1 are equal except that we have δ̂ = δk in the first case and δ̂ = δ` in
the second, where δk > δ` by Lemma 2.3. Since δ̂ is a constant, it is equiva-
lent to rewrite (13a) as t − δ̂. The substitution δ̃ := δ̂ − t in (13a)–(13c) and
(13f) then reveals that the update problems for xk+1 and x`+1 indeed have
an identical reformulation. Hence, we obtain the same optimal value for δ̃ in
both cases, which shows that δk+1 = δ`+1 and contradicts Lemma 2.3 since
k < `. Thus, Algorithm 1 terminates after a finite number of iterations with
an optimal solution. ut
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3 Practical Considerations

As mentioned earlier, one may in principle use an arbitrary LP solver to tackle
the update problems in `1-Houdini. However, due to their special structure,
we found active-set strategies to be particularly efficient for these LPs. In the
following, we give the details of our approach; the numerical experiments in
Section 4 will later demonstrate the efficiency of our corresponding implemen-
tation.

3.1 Active-Set Method for the Primal Update

Finding a new primal iterate xk+1 and the related decrease tk+1 of the ho-
motopy parameter in Step 10 of Algorithm 1 gives rise to the linear program

max
(xJD ,t)∈R

|JD|×R

(
0
1

)>(
xJD
t

)
(15a)

s.t.
[
AIDJD sign(yk+1

ID
)
](xJD

t

)
= δk sign(yk+1

ID
) + bID (15b) A

IcD
JD

1

−AI
c
D

JD
1

0 1

(xJDt
)
≤

δk1+ bIcD
δk1− bIcD
δk − δ

 (15c)

[
Diag(A>JDy

k+1) 0
0 −1

](
xJD
t

)
≤ 0. (15d)

In this section, we introduce an active-set method in order to solve problem
(15a)-(15d). The idea for our approach bases upon the active-set method for
quadratic programs illustrated, e.g., in [17]. We adapt the method to the spe-
cial type of linear programs that we are faced with. We refer to Appendix A
for the general procedure and to Table 3 for supplementary details about the
implementation of (15).

3.1.1 Initialization

We observe that the point (xkJD , 0) is feasible since (xk, yk+1) is an optimal
pair for Pδk . We set ` = 0 and choose our starting point (ξ`JD , τ

`) = (xkJD , 0)
accordingly. Regarding (15c), we see that the subset of active constraints at
the starting point (xkJD , 0) corresponds to A = IP \ ID with either positive or
negative sign. The initial support is exactly S = JP .

The variable t represents the decrease of the homotopy parameter starting
from δk. Although the associated iterate is initially zero, t joins the support
once we have performed a step towards an ascent direction. Since each con-
structed direction is an ascent direction, t does not leave the support after-
wards. Consequently, we have S = JP ∪ {t}.
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The constraint t ≤ δk − δ is neither active in the beginning nor will it be
so unless we have found an optimal solution of our original problem (Pδ).

3.1.2 Ascent Directions and Blocking Constraints

In order to find an ascent direction preserving A and S, we fix dJD\JP = 0
and dt = 1 and seek for a solution of the linear system

AIPJP dJP = − sign(AIP ξ` − bIP ). (16)

If a solution of (16) exists, the largest step size α preserving feasibility is

α = min
{
αA, αS , δ

k − τ ` − δ
}
, (17)

wherein

αA = min

 min
i∈Ic

P
a>
i
d>−1

δk − τ ` − a>i ξ` + bi
a>i d+ 1

, min
i∈Ic

P
a>
i
d<1

δk − τ ` + a>i ξ
` − bi

−a>i d+ 1

 (18)

and

αS = min
j∈JP

A>
j
yk+1·dj>0

−
ξ`j
dj
. (19)

The new iterates are then

ξ`+1 = ξ` + αd and τ `+1 = τ ` + α. (20)

In case α = δk − τ ` − δ, we stop thereafter since x∗ = ξ`+1 is an optimal
solution of (Pδ). Otherwise, we finally update

IP = IP ∪
{
i ∈ IcP : |Aiξ`+1 − bi| = δk − τ `+1

}
JP = JP \

{
j ∈ JP : |ξ`+1| = 0

} (21)

which corresponds to an update of A = IP \ ID and S = JP .

3.1.3 Lagrange Multipliers

If a solution of (16) does not exist, zero is an optimal solution of

max
(dJP ,dt)∈R

|JP |×R

(
0
1

)>(
dJP
dt

)
s.t.

[
AIPJP sign(AIP ξ` − bIP )

](dJP
dt

)
= 0

and the associated KKT conditions show that there exists êIP satisfying

(AIPJP )>êIP = 0

sign(AIP ξ` − bIP )>êIP = 1.
(22)
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Building on that, we set

µIP \ID = sign(AIP \IDξ` − bIP \ID )� êIP \ID (23)

νJD\JP = −(A>JP \JDy
k+1)� (AIPJD\JP )>êIP . (24)

We can consider µIP \ID and νJD\JP as Lagrange multipliers associated with
the KKT conditions for (15). In particular, µIP \ID corresponds to the set A
of active constraints in (15c) and νJD\JP to Sc, i.e., the active constraints in
(15d). Although differently motivated, the multipliers (23) and (24) are exactly
what we get if we determine µA and νSc according to Appendix A.4.

In case µIP \ID ≥ 0 and νJD\JP ≥ 0, the current iterate ξ`JD is optimal.
Else, we pick i ∈ IP \ ID with µi < 0 or j ∈ JD \ JP with νj < 0 and update
IP = IP \ {i} or JP = JP ∪ {j}, respectively. This corresponds to an update
of A and S, respectively.

3.2 Active-Set Method for the Dual Update

Finding a new dual iterate yk+1 in Step 7 of Algorithm 1 gives rise to to the
linear program

min
yIP ∈R

|IP |
− sign(AIP xk − bIP )>yIP (25a)

s.t. (−AIPJP )>yIP = sign(xkJP ) (25b)[
(AIPJcP

)>

(−AIPJcP )>

]
yIP ≥ − 1 (25c)

Diag(sign(AIP xk − bIP ))yIP ≥ 0. (25d)

Analogous to the primal case, we use our results from Appendix A to de-
velop an active-set method for problem (25a)–(25d). We refer to Table 2 for
additional information on the implementation of (25).

3.2.1 Initialization

In the beginning, ykIP is feasible since (xk, yk) is an optimal pair. We set ` = 0

and choose ψ`IP = ykIP as our starting point. In view of (25c), the set of active
constraints at ykIP corresponds to A = JD \JP with either positive or negative
sign and the initial support is S = ID.

3.2.2 Descent Direction and Blocking Constraints

We seek for a descent direction preserving A and S by solving

(AIDJD )>eID = 0

sign(AIDxk − bID )>eID = 1.
(26)
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If such a direction exists, the largest step size preserving feasibility is

α = min {αA, αS} . (27)

Here,

αA = min

 min
j∈Jc

D
A>
j
e<0

1 +A>j ψ
`

−A>j e
, min
j∈Jc

D
A>
j
e>0

1−A>j ψ`

A>j e

 (28)

and

αS = min
i∈ID

sign(a>
i
xk−bi)ei<0

−ψ
`
i

ei
. (29)

The new iterate is ψ`+1 = ψ` + αe. Finally, we need to update

ID = ID \
{
i ∈ ID : ψ`+1 = 0

}
JD = JD ∪

{
j ∈ JcD : |A>j ψ`+1| = 1

} (30)

which corresponds to an upate of A = JD \ JP and S = ID.

3.2.3 Lagrange Multipliers

If a solution of (26) does not exist, then zero is an optimal solution of

min
eID∈R

|ID|
− sign(AIDxk − bID )>eID s.t. (AIDJD )>eID = 0.

Analogous to above, KKT conditions ensure that there exists d̂JD such that

AIDJD d̂JD = − sign(AIDxk − bID ) (31)

and we obtain Lagrange multipliers for (25) by setting

µJD\JP = −(A>JD\JPψ
`)� d̂JD\JP (32)

νIP \ID = − sign(AIP \IDxk − bIP \ID )�AIP \IDJD
d̂JD − 1. (33)

Here, µJD\JP corresponds to the set A of active constraints in (25c) and νIP \ID
correpsonds to Sc, i.e., the set of active constraints in (25d). These multipliers
are equal to those we obtain according to Appendix A.4.

In case µJD\JP ≥ 0 and νIP \ID ≥ 0, the current iterate ψ`IP is optimal.
Otherwise, we can find j ∈ JD \JP with µj < 0 or i ∈ IP \ ID with νi < 0 and
update JD = JD \ {j} or ID = ID \ {i}, repsectively.
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3.3 Links Between Primal and Dual Active-Set Method

In the following, we establish a close connection between the methods discussed
in Sections 3.1 and 3.2. This natural link will turn out to be enormously useful
in terms of computational efficiency.

In the context of Section 3.1.3, suppose that we have found êIP satisfy-
ing equations (22) such that the associated Lagrange multipliers µIP \ID and
νJD\JP are throughout non-negative. In that situation, we have found an opti-
mal solution of the primal subproblem (15) and proceed to the dual subproblem
(25). Therein, we would first attempt to find a direction eID satisfying (26).
Can this ever be successful?

Let us recall the situation at the end of the previous dual update. In fact, we
did not find a direction satisfying (26) and afterwards found that our current
iterate was already optimal. Since then, the sets ID and JD did not change.
Hence, it would be pointless to search a solution of (26) as a first step of the
active-set method for the dual update.

As we have argued so far, we would continue by adapting the sets ID
and JD invoking Lagrange multipliers according to (31)–(33). But there is a
remedy. A comparison of what we have and what we seek for, êIP and eID ,
respectively, reveals the follwing:

(AIPJP )>êIP = 0 (AIDJD )>eID = 0

sign(AIP xk − bIP )>êIP = 1 sign(AIDxk − bID )>eID = 1.

The crucial idea is now to perform the updates

ID = ID ∪ {i ∈ IP \ ID : êi 6= 0}
JD = JD \ {j ∈ JD \ JP : (AIPj )>êIP 6= 0}.

(34)

After that, eID = êID will do exactly what we need.

The fact that the Lagrange multipliers associated with êIP are non-negative
throughout shows that a non-trivial step yk + αê maintains primal-dual opti-
mality. For i ∈ IP \ ID with êi 6= 0, it holds that sign(a>i x

k − bi)êi > 0, which
shows that a step in direction ê provides the dual variable with the desired
sign. Further, it holds for j ∈ JD \ JP with A>j ê 6= 0 that A>j yk · A>j ê < 0,
which shows that a step in direction ê forces the respective dual constraint to
become inactive while maintaining feasibility.

It is not at all surprising that an analogous approach works in the beginning
of the primal update. Suppose that we have d̂JD according to (31) at hand
and the associated Lagrange multipliers are non-negative. We compare d̂JD to
the sought after direction dJP :

AIDJD d̂JD = − sign(AIDxk − bID ) AIPJP dJP = − sign(AIP xk − bIP ).
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Fig. 1 Examplary run of `1-Houdini (using active set) with A ∈ R6×12 and b ∈ R6

randomly generated and δ = 0. The algorithm needed 9 iterations to solve the problem.
Horizontal labels display the value of the homotopy parameter δk after each iteration. The
plots represent the solution paths of xkj for j = 1, . . . , 12. The optimal solution has 6 nonzero
entries.

Analogous to above, we perform the update

JP = JP ∪ {j ∈ JD \ JP : d̂j 6= 0}

IP = IP \ {i ∈ IP \ ID : a>i d̂ 6= − sign(a>i x
k − bi)},

(35)

whereafter dJP = d̂JP does the job.

By non-negativity of the Lagrange multipliers associated with d̂JD , it can
be shown that a non-trivial step xk+αd̂ maintains primal-dual optimality: For
j ∈ JD \JP with d̂j 6= 0 it holds that −A>j yk · d̂j > 0. Further, each i ∈ IP \ID
with a>i d̂ 6= − sign(a>i x

k − bi) satisfies a>i d̂ · sign(a>i x
k − bi) < −1.

4 Applications and Examples

Before we come to a numerical evaluation of the algorithm, a typical run
of `1-Houdini on a small problem is shown in Figure 1. We observe that
the solution path does not need to show any particular monotonicity; other
examples exhibit even more tangled solution paths with multiple variables
entering or leaving the support or dense clusters of break points of δk at
various values.

We compare our homotopy method for (Pδ) with the state-of-the-art com-
mercial LP solver Gurobi applied to the LP reformulation

min 1>x+ + 1>x− s.t. − δ · 1 ≤ Ax+ −Ax− − b ≤ δ · 1, x+ ≥ 0, x− ≥ 0
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(note that this formulation is equivalent to the one stated in Section 1.1.1,
which contains slack variables). We experiment with two variants of our `1-
Houdini algorithm: In one, we use the specialized active-set methods described
in Section 3, and in the other, we employ the same LP solver for our primal
and dual update subproblems that we compare against, i.e., with which we
solve the above LP reformulation of (Pδ).

Our `1-Houdini is implemented in Matlab. From the same wrapper code
to read instance data, we call either `1-Houdini to solve for the entire homo-
topy path, or call Gurobi (via its Matlab interface).

The test instances are constructed from the “L1-Testset” described in [15].
This test set (available online via the last author’s or the SPEAR project
homepage) contains over 500 instances A, x̄ and b = Ax̄ for the pure Basis
Pursuit problem (BP) such that x̄ is the known unique optimal solution; all
solutions in the test set are relatively sparse and have varying dynamic ranges.
Based on the following result, we can (for a given δ) construct new vectors b̂
such that x̄ is optimal for the instance of (Pδ) specified by A, b̂ and δ.

Lemma 4.1 Let x̄ be an optimal solution of (BP) with given A and b = Ax̄.
Then, x̄ is an optimal solution of (Pδ) with the same A and a measurement
vector b = b̂ if and only if there exists ȳ such that

−A>ȳ ∈ Sign(x̄) and b̂ ∈ Ax̄− δ Sign(ȳ).

Proof Optimality of x̄ for (BP) with A and b = Ax̄ is characterized by the
existence of a vector ȳ such that −A>ȳ ∈ Sign(x̄), see, e.g., [15]. Choosing
b̂ ∈ Ax̄− δ Sign(ȳ), we obtain that additionally, Ax̄ ∈ b̂+ δ Sign(ȳ). The claim
now follows immediately from (2) and (3). ut

To use Lemma 4.1 to construct instances for (Pδ), note that in addition to
A and x̄, we also need an optimal dual certificate ȳ for the associated (BP)
problem. For the L1-Testset instances, a detailed description of how this can
be computed is provided in [15, Sections 4 and 5 (particularly, Theorem 5.1)];
in short, we can either obtain ȳ with a closed-form expression or apply alter-
nating projections onto Sign(x̄) and the image space of A>. The vectors b̂ are
then constructed as Ax̄− δ sign(ȳ). For the present experiments, we randomly
choose two instances for each of the matrix sizes 512×{1025, 1536, 2048, 4096}
and 1024 × {2048, 3072, 4096, 8192} (cf. [15, Table II])—one in which x̄ has
nonzero entries of high dynamic range, and one with low dynamic range. This
way, we end up with 16 instances, which we will identify by their L1-Testset
number (the instance details can be found in the table accompanying the test
instance download package). The δ-values were chosen uniformly at random
from the interval [0.1, 5] for each instance. Moreover, since we observed that
the ȳ constructed in the above-mentioned ways are fully dense (which, by
complementary slackness, implies that the primal active sets in the respective
optimal solutions are also as large as possible), we computed a second set of
b̂-vectors using other dual certificates that were computed, aiming at sparsity,
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inst. no. m× n δ |S| |A| time `1-HOUDINI time
Gurobi

(active set) (Gurobi)

7 512× 1024 4.09 34 512 0.48 2.44 0.47
72 - 2.46 0.47

485 512× 1024 4.54 51 512 1.68 98.51 1.31
96 1.01 - 1.12

25 512× 1536 0.72 14 512 0.20 3.46 0.82
31 0.19 3.50 0.81

319 512× 1536 4.58 22 512 0.38 15.16 1.70
43 0.24 9.64 1.53

228 512× 2048 3.20 51 512 5.09 - 1.10
141 3.08 - 0.95

338 512× 2048 0.58 20 512 0.70 - 1.93
45 0.36 15.19 1.43

74 512× 4096 1.47 10 512 0.16 17.87 1.27
38 0.11 1.00 1.22

347 512× 2048 2.78 10 512 0.10 8.18 1.25
32 0.06 0.82 1.24

239 1024× 2048 4.79 84 1024 0.62 2.00 0.08
148 0.60 1.86 0.07

357 1024× 2048 4.83 27 1024 1.63 - 3.41
55 0.65 36.92 2.73

99 1024× 3072 0.87 18 1024 0.71 19.02 3.40
47 0.58 16.45 3.45

527 1024× 3072 4.86 99 1024 20.37 - 1.75
234 11.43 - 1.54

263 1024× 4096 4.79 97 1024 30.76 - 2.88
245 22.23 411.83 2.55

416 1024× 4096 2.48 26 1024 1.89 - 6.74
60 1.01 47.69 3.93

148 1024× 8192 4.02 20 1024 1.13 21.97 4.90
64 1.01 19.42 4.82

421 1024× 8192 0.80 9 1024 0.60 - 4.92
43 0.26 - 4.82

Table 1 Runtime comparison of `1-Houdini against Gurobi.

by solving problems of the form

min
y∈Rm

‖y‖1 s.t. −A>y ∈ Sign(x̄).

Thus, we have 32 instances in total, with pairs sharing the same instance num-
ber, A, δ and optimal solution x̄ but having different measurement vectors b̂.
(Regarding instance constructions for basis pursuit and related problems in
general, it is worth mentioning that the above `1-minimization problem to
compute dual certificates can be solved very efficiently via its straightforward
LP reformulation, even for large-scale data where an alternating projection
approach may no longer work or take an unreasonably long time.)

The running time results of our experiments (conducted in Matlab 2014a,
using Gurobi 6.5.2, on Ubuntu with an Intel R© Core

TM
i7-4550U CPU @

1.50GHz × 4 processor) are summarized in Table 1.
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In the majority of cases, we observed that `1-Houdini using specialized
active-set methods for the subproblems is considerably faster than `1-Houdini
using Gurobi (31 out of 32 instances) and even faster than Gurobi used as
standalone LP solver (21 out of 32 instances). Another comparison suggests
that Gurobi used as standalone solver is usually faster than `1-Houdini using
Gurobi for the subproblems (30 out of 32 instances). (Nevertheless, note that
`1-Houdini generates the entire solution path w.r.t. the homotopy parameter,
whereas solving the LP formulation of (Pδ) solely yields a solution for the final
parameter δ.)

In particular, it seems beneficial to use `1-Houdini when |S| is small (i.e.,
when the optimal solution x∗ is relatively sparse). This is a natural feature
of our method since the sparsity of the iterates has direct impact on the size
of the arising subproblems. Analogously, the size of the primal active set |A|
directly affects the size of the subproblems. Our experiments show that solving
the very same instace with smaller optimal active set (induced by a modified
measurement vector b̂) causes an average speedup of 33.9% and 31.4% using
`1-Houdini with active-set methods and Gurobi for the subproblems, respec-
tively. In contrast, using Gurobi as standalone LP solver induces an average
speedup of 10.4%.

In additional experiments, we observed that `1-Houdini is also competitive
in the Basis Pursuit setting (δ ≈ 0). To that end, we compared our method
with `1-Homotopy and SPGL1, two of the fastest methods according to [15].
Finally, we performed testruns on some of the large-scale instances with sparse
coefficient matrices from the L1-Testset, where `1-Houdini was competitive as
well and often considerably faster than Gurobi (even though Gurobi is tuned
for sparse data). However, we need to mention that our current implementation
(availabe on the first author’s homepage) suffers numerical issues on particular
instances of our testset, especially on those with sparse coefficient matrices.

5 Extensions and Conclusion

Our algorithm can be extended straightforwardly to treat the more general
problem class

min
x∈Rn

‖x‖1 s.t. α ≤ Ax− b ≤ β, Dx = d, (36)

assuming w.l.o.g. that α < β and that the feasible set is nonempty.
To that end, first observe that we can rewrite

α ≤ Ax− b ≤ β ⇔ α− α+β
2︸ ︷︷ ︸

=−γ

≤ Ax−
(
b+ α+β

2

)
︸ ︷︷ ︸

=:b̃

≤ β − α+β
2︸ ︷︷ ︸

=:γ

;
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since α < β, γi 6= 0 for all i, we can scale each row by δ̂/γi for an arbitarily
chosen δ̂ > 0 and obtain

− δ̂Gγ ≤ G(Ax− b̃) ≤ δ̂Gγ

⇔ − δ̂1 ≤ GAx−Gb̃ ≤ δ̂1 ⇔ ‖GAx−Gb̃‖∞ ≤ δ̂,

where G = Diag(1/γ1, . . . , 1/γm). Thus, in the absence of equality constraints
Dx = d, (36) can be recast into the form (Pδ) directly.

However, such an equality constraint is obviously equivalent to requiring
‖Dx − d‖∞ ≤ 0. Therefore, we can extend the homotopy treatment of prob-
lem (Pδ) (where we drive the homotopy parameter down to the target δ-value)
to (36) by linking the homotopy parameter δ to the bounds from both `∞-
norm constraints derived from (36) and reducing it all the way to zero. For
δ = 0, the homotopy constraints ‖GAx −Gb̃‖∞ ≤ δ̂ + δ and ‖Dx − d‖∞ ≤ δ
then correspond exactly to those of (36). Considering two `∞-norm constraints
simultaneously, and the offset δ̂ in one of them, leads to minor simple modifica-
tions to the update subproblems in our algorithm; we omit the straightforward
details for brevity. Note that for δ = δ0 := max{‖d‖∞, ‖b‖∞ − δ̂}, x = 0 is an
optimal solution for the problem

min
x∈Rn

‖x‖1 s.t. ‖GAx−Gb̃‖∞ ≤ δ̂ + δ, ‖Dx− d‖∞ ≤ δ

and thus provides the starting point for our method in the present context.
Further generalizations are likely possibly. For instance, it should be possi-

ble to modify the algorithm to treat one-sided bounds (αi = −∞ or βi = +∞);
then, in particular, the case of nonnegative variables could be handled directly,
and by means of a standard variable split into the respective positive and neg-
ative parts, general linear objective functions (with all coefficients nonzero)
could be replaced by the `1-norm w.r.t. appropriately rescaled variables. Since
a thorough investigation of such considerations goes beyond the scope of the
present paper, we leave it open for future research.

A Active-Set Method for Linear Programs

A.1 Optimality Condtions for Linear Programs

Let c ∈ Rn, A ∈ Rm×n, b ∈ Rm, D ∈ Rk×n, e ∈ Rk and σ ∈ {±1}n.3 We consider the
linear program

min
x∈Rn

c>x

s.t. Ax = b

Dx ≥ e

Diag(σ)x ≥ 0

(37)

3 At this point, we use the standard notation for linear programs. The labels A and b
appear as well in the preceding sections. However, they do not have the same meaning here.
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and assume that it is feasible and bounded. By the well-known KKT conditions (see, e.g.,
[17, Theorem 12.1]), x∗ is an optimal solution of (37) if and only if there exist Lagrange
multipliers λ ∈ Rm, µ ∈ Rk and ν ∈ Rn such that the following conditions hold:

Ax∗ = b (38a)
Dx∗ ≥ e (38b)

Diag(σ)x∗ ≥ 0 (38c)

A>λ+D>µ+Diag(σ)ν = c (38d)
µ� (Dx∗ − e) = 0 (38e)

ν � x∗ = 0 (38f)
µ ≥ 0 (38g)
ν ≥ 0. (38h)

A.2 General Theme

Suppose that x` ∈ Rn is feasible for (37), i.e., it satisfies (38a)-(38c). Then, there exist
non-empty sets A ⊆ {1, . . . , k} and S ⊆ {1, . . . , n} such that

DAx` = eA, DA
c
x` > eAc , x`Sc = 0 and |x`S | > 0.

We refer to A as the active set and further to S as the support of x`. In the context of (38e)
and (38f), necessarily µAc = 0 and νS = 0 in case x` is an optimal solution to (37). The
following Lemma exploits this fact and provides alternative optimality conditions for (37).

Lemma A.1 A point x` is an optimal solution to (37) if and only if it is feasible and there
exist λ ∈ Rm and µA ∈ R|A| such that

A>S λ+ (DAS )
>µA = cS , (39a)

Diag(σSc )(cSc −A>Scλ− (DASc )
>µA) ≥ 0 and (39b)
µA ≥ 0. (39c)

Proof It can easily be shown that the conditions in Lemma A.1 are equivalent to conditions
(38a)–(38h) with µAc = 0, νS = 0 and

νSc = Diag(σSc )(cSc −A>Scλ− (DASc )
>µA). (40)

ut

Starting from x`, our goal is to approach a solution of (37) by generating descent direc-
tions ξ that preserve the active set as well as the support and, should this not be possible,
by changing these sets appropriately. We repeat these steps until we finally identify A, S, λ
and µA satisfying (39a)–(39c).

A.3 Descent Directions and Blocking Constraints

If there exists a solution of the linear systemASDAS
c>S

 ξS =

 0
0
−1

 and ξSc = 0, (41)
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then it holds for arbitrary α > 0 that

A(x` + αξ) = b, DA(x` + αξ) = eA and x`Sc + αξSc = 0. (42)

The largest α > 0 such that also

DA
c
(x` + αξ) ≥ eAc and Diag(σS)(x

`
S + αξS) ≥ 0 (43)

is given by

α = min

 min
i∈Ac
d>
i
ξ<0

ei − d>i x`

d>i ξ
, min

j∈S
σjξj<0

−
xj

ξj

 . (44)

Note that 0 < α <∞ since we assumed that (37) is bounded. The sets

A+ =
{
i ∈ Ac : d>i (x` + αξ) = ei

}
and S− =

{
j ∈ S : x`j + αξj = 0

}
(45)

are the index sets where the minimum is attained, i.e., the sets of blocking constraints. Each
i ∈ A+ joins the active set and each j ∈ S− leaves the support if we perform the step αξ.
Consequently, we update x`+1 = x` + αξ, A = A ∪A+ and S = S \ S−.

A.4 Lagrange Multipliers

If there is no direction according to (41), then zero is an optimal solution of

min
ξS∈R|S|

c>S ξS

s.t.

[
AS
DAS

]
ξS = 0

(46)

Employing KKT conditions again, we see that there exist λ and µA satisfying (39a). For
the case that λ and µA additionally satisfy (39b)–(39c), Lemma A.1 states that x` is an
optimal solution.

Otherwise, with νSc according to (40), there exists at least one index i ∈ A such that
µi < 0 or j ∈ Sc such that νj < 0. We select the smaller of both values and set A = A\ {i}
or S = S ∪ {j}, respectively. Then, we search a new direction according to Subsection A.3.

A.5 Feasibility of Generated Directions

In the context of the previous section, suppose that µi < 0 and we set A = A \ {i}.
Afterwards, we go back to (41) and find a direction ξ. It holds that

−1 (41)
= c>S ξS

(39a)
= (A>S λ+ (DAS )

>µA + (DiS)
>µi)

>ξS

= λ>ASξS + µ>AD
A
S ξS + µiD

i
SξS

(41)
= µid

>
i ξ.

(47)

It follows that d>i ξ = −µ−1
i > 0. Consequently, it holds that d>i (x` +αξ) > ei and the step

αξ preserves the property of A exactly reflecting the set of active constraints. An analogous
statement holds if we update S = S ∪ {j} prior to finding a direction ξ. In that case, we
obtain σjξj = −ν−1

j > 0.

Note that, if we found µ{i,i′} < 0 for distinct indices i, i′ ∈ A and set A = A \ {i, i′},
we would not necessarily get d>i ξ > 0 and d>

i′ ξ > 0. Repeating the above reasoning only
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shows (µidi + µi′di′ )
>ξ > 0. The same holds if we have ν{j,j′} < 0 or µi < 0 and νj < 0.

Therefore, we do not change more than one index before we search for a new direction.
However, it can occur that we do not immediately find a new direction after changing one
index in A or S. In that case, we have two determine Lagrange multipliers repeatedly and
change A and S until we are able to find a new direction. This situation needs to be handled
with care in order to correctly keep track of A and S. We capture this aspect in Appendix
A.7.

A.6 Fixing New Support Variables

Equation (47) further shows that, if we replace c>S ξS = −1 by d>i ξ = 1 in (41), this implies
c>ξ = µi < 0. The resulting system isASDSA

DSi

 ξS =

0
0
1

 . (48)

Numerically, there is no obvious gain in the replacement of one equation. Essentially, the
new constraint specifies d>i ξ = 1. The same reasoning for the case that j ∈ S was recently
added to the support shows that by dropping c>S ξS = −1 and fixing ξj = σj , we obtain
c>ξ = νj < 0. Considering the numerical effort, this can be beneficial since we not only
drop a constraint but also reduce the number of variables in the system. The result is[

AS\{j}

D
S\{j}
A

]
ξS\{j} = −σj

(
Aj

DjA

)
. (49)

A.7 Algorithm and Implementation of `1-HOUDINI

Algorithm 2 illustrates the iterative scheme discussed in Appendix A.2–A.6. Additionally,
we assume that an initial direction ξ is provided as input since this is the situation we are
faced with in Section 3.

The conditional statement beginning in Step 9 considers two special cases. In that
context, A− is the set of indices that were consecutively removed from the active set in
Steps 22–29 and S+ is the set of indices that were consecutively added to the support. It
can occur that |A−| + |S+| > 1 in case we do not find a direction in Step 3 in a positive
number of consecutive iterations.

The first case is α = 0 which can occur if |A−|+ |S+| > 1 and there exists i ∈ A− such
that d>i ξ < 0 or σjξj < 0 for some j ∈ S+. The respective indices are re-added to A and
re-removed from S, respectively, before trying to find a new feasible direction.

In the second case, if α > 0 and |A−|+ |S+| > 1, we can still have i ∈ A− with d>i ξ = 0
or σjξj = 0 for some j ∈ S+. Consequently, the i-th constraint stays active and j does not
join the support after a step in direction ξ. We adapt A and S accordingly. Since we have
performed a non-zero step, we moreover reset A− and S+.

Table 3 puts the primal update from Section 3.1 into the context of Algorithm 2. Notice
that problem (15) needs to be reformulated as a minimization problem in order to have the
form (37). Table 2 does the same for the dual update from Section 3.2.

In both the primal and the dual case we applied some easy sign substitutions in order
to bring (39a) into a simple form. Of course, the respective inverse substitutions appear in
the formulas for µS and νSc , respectively.

Moreover, we used that during the primal update sign(yk+1
ID

) = sign(AID ξ` − bID )

throughout.
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Algorithm 2: Active-Set Method for LPs.
Input: c ∈ Rn, A ∈ Rm×n, b ∈ Rm, D ∈ Rk×n, e ∈ Rk, σ ∈ {±1}n,

feasible x0 ∈ Rn and associated sets A and S, initial direction ξ
Output: solution x∗ to problem (37)

1 `← 0
2 while not stopped do
3 if a solution ξ of (41) exists then
4 α← step size according to (44)
5 x`+1 ← x` + αξ
6 (A+,S−)← blocking constraints according to (45)
7 A ← A∪A+

8 S ← S \ S−
9 if α = 0 then

10 A− ← A− \ A+

11 S+ ← S+ \ S−
12 else if |A−|+ |S+| > 1 then
13 A ← A∪

{
i ∈ A− : d>i ξ = 0

}
14 S ← S \ {j ∈ S+ : ξj = 0}
15 A− ← ∅
16 S+ ← ∅
17 `← `+ 1
18 else
19 (µA, νSc)← Lagrange multipliers according to (39a) and (40)
20 i− ← argmini∈A µi
21 j+ ← argminj∈Sc νj
22 if µi− ≥ 0 and νj+ ≥ 0 then
23 return x∗ = x`

24 else if µi− < νj+ then
25 A ← A \ {i−}
26 A− ← A− ∪ {i−}
27 else
28 S ← S ∪ {j+}
29 S+ ← S+ ∪ {j+}
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S ID

A JD \ JP

AS (−AIDJP )>

DAS (A>
JD\JP

ψ`)� (−AID
JD\JP

)>

cS − sign(AIDxk − bID )

(41)
(A
ID
JD

)>eID = 0

sign(AIDxk − bID )>eID = 1

(39a) A
ID
JD
d̂JD = − sign(AIDxk − bID )

µA −(A>
JD\JP

ψ`)� d̂JD\JP

σSc sign(AIP \IDxk − bIP \ID )

cSc − sign(AIP \IDxk − bIP \ID )

ASc (−AIP \IDJP
)>

DASc (A>
JD\JP

ψ`)� (−AIP \ID
JD\JP

)>

νSc − sign(AIP \IDxk − bIP \ID )�AIP \ID d̂− 1

Table 2 Active-Set Implementation of the Dual Update.

S JP ∪ {t}

A IP \ ID

AS

[
A
ID
JP

sign(yk+1
ID

)

]
DAS

[
− sign(AIP \ID ξ` − bIP \ID )�AIP \IDJP

− 1
]

cS (0,−1)>

(41) A
IP
JP
dJP = − sign(AIP ξ` − bIP )

(39a)
(A
IP
JP

)>êIP = 0

sign(AIP ξ` − bIP )>êIP = 1

µA sign(AIP \ID ξ` − bIP \ID )� êIP \ID

σSc A>
JP \JD

yk+1

cSc 0

ASc A
ID
JD\JP

DASc − sign(AIP \ID ξ` − bIP \ID )�AIP \ID
JD\JP

νSc −(A>
JD\JP

yk+1)�A>
JD\JP

ê

Table 3 Active-Set Implementation of the Primal Update.
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