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AVIV GIBALI, KARL-HEINZ KÜFER, DANIEL REEM AND PHILIPP SÜSS

Abstract. In this paper we present a new algorithmic realization
of a projection-based scheme for general convex constrained opti-
mization problem. The general idea is to transform the original
optimization problem to a sequence of feasibility problems by it-
eratively constraining the objective function from above until the
feasibility problem is inconsistent. For each of the feasibility prob-
lems one may apply any of the existing projection methods for
solving it. In particular, the scheme allows the use of subgradi-
ent projections and does not require exact projections onto the
constraints sets as in existing similar methods.

We also apply the newly introduced concept of superiorization
to optimization formulation and compare its performance to our
scheme. We provide some numerical results for convex quadratic
test problems as well as for real-life optimization problems coming
from medical treatment planning.
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1. Introduction

In this paper we are concerned with a general convex optimization
problem. Let f : Rn → R and {gi : Rn → R}i∈I , for I = {1, . . . ,m} be
convex functions. We wish to solve the following convex optimization
problem.

min f(x)

such that gi(x) ≤ 0 for all i ∈ I. (1.1)

The literature on this problem is vast and there exist many different
techniques for solving it, see e.g., [6, 8, 10] and the many references
therein. As a special case when f ≡ 0, (1.1) reduces to find a point in
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2 A. GIBALI, K.-H. KÜFER, D. REEM AND P. SÜSS

the convex set,

C := ∩i∈ICi = ∩i∈I {x ∈ Rn | gi(x) ≤ 0} 6= ∅. (1.2)

C is called the feasibility set of (1.1). In general, the problem of finding
a point in the intersection of convex sets is known as the Convex Fea-
sibility Problem (CFP) or Set Theoretic Formulation. Many real-world
problems in various areas of mathematics and of physical sciences can
be modeled in this way; see [23] and the references therein for an early
example. More work on the CFP can be found in [15,16,26].

In case where all the {gi}i∈I are linear and only equalities are consid-
ered in Ci, meaning that all the Ci are hyper-planes, the CFP reduces
to a system of linear equations; Kaczmarz [55] and Cimmino [37] in
the 1930’s, proposed two different projection methods, sequential and
simultaneous projection methods for solving a system of linear equali-
ties. These methods were later extended for solving systems of linear
inequalities, see [1, 67]. Today, projection methods are more general
and are applied to solve general convex feasibility problems.

In general, projection methods are iterative procedures that employ
projections onto convex sets in various ways. They typically follow the
principle that it is easier to project onto the individual sets (usually
closed and convex) instead of projecting onto other derived sets (e.g.
their intersection). The methods have different algorithmic structures,
of which some are particularly suitable for parallel computing, and they
demonstrate desirable convergence properties and good initial behavior
patterns, for more details see for example [24].

In last decades, due to their computational efficiency, projection
methods have been applied successfully to many real-world applica-
tions, for example in imaging, see Bauschke and Borwein [3] and Censor
and Zenios [33], in transportation problems [5,76], sensor networks [9],
in radiation therapy treatment planning [23,38], in resolution enhance-
ment [36], in graph matching [74], in matrix balancing [2,34], in radia-
tion therapy treatment planning, in resolution enhancement [4,18,24],
to name but a few. Their success is based on their ability to handle
huge-size problems since they do not require storage or inversion of the
full constraint matrix. Their algorithmic structure is either sequen-
tial or simultaneous, or in-between, as in the block-iterative projection
methods or string-averaging projection methods which naturally sup-
port parallelization. This is one of the reasons that this class of methods
was called “Swiss army knife”, see [5].

Following the above we aim to apply different projection methods
for solving (1.1); in order to do that we first put (1.1) into epigraph
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form.

min t

such that t ∈ R
and for some x ∈ C one has f(x) ≤ t. (1.3)

Denote by t∗ the optimal value of (1.3) which we assumed is attained
and finite. Now, a natural idea for solving (1.3) is to construct a
decreasing sequence {tk} such that tk → t∗ and at each step, for a
fixed tk, to solve a corresponding CFP; see also [8, Subsection 2.1.2].
Formally this can be phrased as follows. Set t−1 =∞ and at the k-th
step, with k ≥ 0, solve the following problem:

find a point xk such that

 f(xk) ≤ tk−1
and
gi(x

k) ≤ 0 for all i ∈ I.
(1.4)

Once a feasible point xk is obtained, tk is updated according to the
formula

tk = f(xk)− εk, (1.5)

where εk > 0 is some user chosen constant; in the numerical experi-
ments in Section 4 we use εk = 0.1|f(xk)| whenever |f(xk)| > 1 and
εk = 0.1 otherwise. For solving these CFPs at each k-th step, we apply
different projection methods based on the Cyclic Subgradient Projec-
tions Method (CSPM) [29,30] and thus obtain several algorithmic real-
izations of this general scheme. In Subsection 3.1 we discuss the issue
of convergence to an approximate optimal solution of (1.1) (which we
call an ε-optimal solution.)

It might happen that the objective function decreases by εk after
each step. Therefore, we not only wish to solve each of the CFPs (1.4),
but also end up with a Slater point, that is a point that solves (1.4)
with strict inequalities at each step to maximize the decrease in tk. To
this end, we will make use of over relaxation parameters in the CSPM
for one realization of the scheme, but also apply the newly introduced
Superiorization idea [26], where perturbations are used in the CSPM
to steer the algorithm into the interior of the objective level set af-
ter the k-th CSP. Our major contribution in this work, Section 4, is
the applicability of the scheme and its comparability with some exist-
ing results as demonstrated and compared intensively on benchmark
quadratic programming problems and medical therapy.

The paper is organized as follows. In Section 2 we present several
projection methods and definitions which will be useful for our analysis.
Next in Section 3 our general scheme for solving convex optimization
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problems are presented and analyzed. Later in Section 4 numerical
experiments illustrating the different realizations of our scheme are
presented and tested for convex quadratic programming problems and
for Intensity-Modulated Radiation Therapy (IMRT). Finally in Section
5 conclusion and further research directions are presented.

2. Preliminaries

In this section we provide several projection methods which are rel-
evant to our results, mainly orthogonal and subgradient projections.
We start by presenting several definitions which will be useful for our
analysis.

Definition 2.1. A sequence
{
xk
}∞
k=0

is said to be finite convergent

if limk→∞ x
k = x∗ and there exists N ∈ N such that for all k ≥ N ,

xk = x∗.

Let C be non-empty, closed and convex set in the Euclidean space
Rn. Assume that the set C can be represented as

C = {x ∈ Rn | c(x) ≤ 0} , (2.1)

where c : Rn → R is an appropriate continuous and convex function.
Take, for example, c(x) = dist(x,C), where dist is the distance func-
tion; see, e.g., [53, Chapter B, Subsection 1.3(c)].

Definition 2.2. For any point x ∈ Rn, the orthogonal projection

of x onto C, denoted by PC(x) is the closest point to x in C, that is,

‖x− PC (x)‖ ≤ ‖x− y‖ for all y ∈ C. (2.2)

Definition 2.3. Let c be as in the representation of C in (2.1). The
set

∂c(z) := {ξ ∈ Rn | c(y) ≥ c(z) + 〈ξ, y − z〉 for all y ∈ Rn} (2.3)

is called the subdifferential of c at z and any element of ∂c(z) is
called a subgradient.

It is well-known that if C is non-empty, closed and convex, then
PC(x) exists and is unique. Moreover, if c is differentiable at z, then
∂c(z) = {∇c(z)}, see for example [73, Theorem 5.37 (p. 77)].

Now for any x ∈ Rn the function ξ assigns some subgradient, that is
ξ(x) ∈ ∂c(x).
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Definition 2.4. For any point x ∈ Rn, the subgradient projection

of x is defined as

Π
C

(x) :=

 x− c(x)

‖ξ‖2
ξ if c(x) > 0,

x if c(x) ≤ 0,
(2.4)

where ξ ∈ ∂c(x). It must be that ξ 6= 0 when c(x) > 0, because if ξ = 0,
then from (2.3) one has c(x) ≤ c(y) for every y ∈ Rn; in particular, for
y ∈ C we have c(x) ≤ c(y) = 0, a contradiction to the assumption that
c(x) > 0.

Remark 2.5. It is well-known and can be verified easily that if the
set C is a half-space which is presented using its canonical way (using
a normal vector) then the subgradient projection is the orthogonal
projection onto C.

Definition 2.6. Consider the CFP

C := ∩i∈ICi = ∩i∈I {x ∈ Rn | gi(x) ≤ 0} . (2.5)

We say that C satisfies the Slater Condition if there exists a point
x ∈ C having the property that gi(x) < 0 for all i ∈ I.

2.1. Projection methods and Superiorization. Now we present
two relevant classes of projection methods, the Orthogonal and the
Subgradient projections methods. We only introduce the sequential
versions which is relevant to our result, but there exists also simul-
taneous version; see e.g., [33, Chapter 5]. Later we also present the
Superiorization methodology.

1. Sequential methods
Sequential projection methods are also refereed to as “row-action”

methods. The main idea is that at each iteration one constraint set Ci is
chosen with respect to some control sequence and either an orthogonal
or a subgradient projection is calculated.

1.1. Projection Onto Convex Sets (POCS). The general iterative
step can fit into the following

xk+1 = xk − λk
(
xk − PCi(k)

(xk)
)

(2.6)

where λk ∈ [ε1, 2 − ε2] are called relaxation parameters for arbitrary
ε1, ε2 > 0 such that ε1 + ε2 < 2, PCi(k)

is the orthogonal projection

of xk onto Ci(k), {i(k)} is a sequence of indices according to which
individual sets Ci are chosen, for example cyclic i(k) = kmodm + 1.
For the linear case with equalities and λk = 1 for all k, this is known
as Kaczmarz’s algorithm [55] or Algebraic Reconstruction Technique
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(ART) in the field of image reconstruction from projection, see [7, 52].
For solving a system of interval linear inequalities which appears for
example in the field of Intensity-Modulated Radiation Therapy (IMRT),
ART3 and especially its faster version ART3+ (see [50]) are known to
find a solution in a finite number of steps, provided that the feasible
region is full dimensional. The successful idea of ART3+ was extended
for solving optimization problems with linear objective and interval
linear inequalities constraints, this is known as ATR3+O [38].

1.2. The Cyclic Subgradient Projections (CSP) introduced by Cen-
sor and Lent [29, 30] for solving the CFP. The iterative step of the
method is formulated as follows.

xk+1 =

{
xk − λk

gi(k)(x
k)

‖ξk‖2 ξ
k gi(k)(x

k) > 0

xk gi(k)(x
k) ≤ 0

(2.7)

where ξk ∈ ∂gi(k)(xk) is arbitrary, λk is taken as in (2.6) and {i(k)} is
cyclic. Of course, in the linear case this method coincides with POCS.

2. Superiorization
Superiorization is a recently introduced methodology which gains

increasing interest and recognition, as evidenced by the dedicated spe-
cial issue entitled: “Superiorization: Theory and Applications”, in the
journal Inverse Problems [28]. The state of current research on su-
periorization can best be appreciated from the “Superiorization and
Perturbation Resilience of Algorithms: A Bibliography compiled and
continuously updated by Yair Censor” [22]. In addition, [49], [21]
and [71, Section 4] are recent reviews of interest.

This methodology is heuristic and its goal is to find certain good, or
superior, solutions to optimization problems. More precisely, suppose
that we want to solve a certain optimization problem, for example,
minimization of a convex function under constraints (below we focus
on this optimization problem because it is relevant to our paper; for an
approach which considers the superiorization methodology in a much
broader form, see [71, Section 4]). Often, solving the full problem can
be rather demanding from the computational point of view, but solving
part of it, say the feasibility part (namely, finding a point which satisfies
all the constraints) is, in many cases, less demanding. Suppose further
that our algorithmic scheme which solves the feasibility problem is
perturbation resilient, that is, it converges to a solution of the feasibility
problem despite perturbations which may appear in the algorithmic
steps due to noise, computational errors, and so on.
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Under these assumptions, the superiorization methodology claims
that there is an advantage in considering perturbations in an active
way during the performance of the scheme which tries to solve the
feasibility part. What is this advantage? It may simply be a solution
(or an approximation solution) to the feasibility problem which is found
faster thanks to the perturbations; it may also be a feasible solution
x′ which is better than (or superior) feasible solutions x which would
have been obtained without the perturbations, where we measure this
“superiority ”with respect to some given cost/merit function φ, namely
we want to have φ(x′) ≤ φ(x) (and hopefully φ(x′) will be much smaller
than φ(x)).

Since our original optimization problem is the minimization of some
convex function, we may, but not obliged to, take φ to be that function,
and we can combine a feasibility-seeking step (a step aiming at finding
a solution to the feasibility problem) with a perturbation which will
reduce the cost function (such a perturbation can be chosen or be
guessed in a non-ascending direction, if such a direction exists: see
Definition 2.7 and Algorithm 2.8 below). We note that the above-
mentioned assumption that the algorithmic scheme which solves the
feasibility part is perturbation resilient often holds in practice: for
example, this is the case for the schemes considered in [14,31,51].

Definition 2.7. Given a function φ : ∆ ⊆ Rn → R and a point x ∈ ∆,
we say that a vector d ∈ Rn is non-ascending for φ at x if ‖d‖ ≤ 1
and there is a δ > 0 such that

for all λ ∈ [0, δ] we have (x+ λd) ∈ ∆ and φ (x+ λd) ≤ φ (x) .
(2.8)

Observe that one option of choosing the perturbations, in order to
steer the algorithm to a superior feasible point with respect to φ, is
along −∇φ, (when φ is convex and differentiable) but this is only one
example and of course the scheme allows the usage of other direction.

The following pseudocode, which is a small modification of a simi-
lar algorithm mentioned in [51], illustrates one option to perform the
perturbations when applying the superiorizaton methodology.

Algorithm 2.8.
Initialization: Select an arbitrary starting point x0 ∈ Rn, a positive

integer N , an integer `, a sequence (η`)
∞
`=0 of positive real numbers

which is strictly decreasing to zero (for example, η` = a` where a ∈
(0, 1)) and a family of algorithmic operators (Pk)

∞
k=0.

Iterative step:
set k = 0
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set xk = x0

set ` = −1
repeat until a stopping criterion is satisfied (see Section 3)

set m = 0
set xk,m = xk

while m<N
set vk,m to be a non-ascending vector for φ at xk,m

set loop=true
while loop

set ` = `+ 1
set βk,m = η`
set z = xk,m + βk,mv

k,m

if z∈∆ and φ (z)≤φ
(
xk
)

then
set m=m+ 1
set xk,m=z
set loop = false

set xk+1=P k(x
k,N)

set k = k + 1

3. A general projection scheme for convex optimization

In this section we present our scheme (Algorithm 3.2) for solving
convex optimization problems by translating them into a sequence of
convex feasibility problems (1.4) and then solving each of them by us-
ing some projection method; since we are concerned with the general
convex case, subgradient projections are most likely to be used, but
we can use any type of projections, for example orthogonal and Breg-
man projection, see e.g., [33]. There are two essential questions in this
scheme, the first is how to construct the sequence of convex feasibility
problems, meaning how to choose an ε to update tk, and the other
question is when to stop the procedure. For the latter question, that
is, the stopping criterion, there are several options and the most poplar
are maximum number of iterations (an upper bound on the maximum
number should be specified in advance), or to check whether either
‖xk+1 − xk‖ or |f(xk+1)− f(xk)| are smaller than some given positive
parameter.

For (1.1) we denote Ci := {x ∈ Rn | gi(x) ≤ 0}, we assume that C :=
∩i∈ICi 6= ∅ and for t ∈ R we denote Ct := {x ∈ Rn | f(x) ≤ t}.

We would like to motivate our scheme (Algorithm 3.2) by reviewing
a natural extension of the ART3+O [38], which was designed for linear
problems, for the general convex case. We will also show how the
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mathematical disadvantages of ART3+O can be treated in our new
scheme. ART3+O is based on the same reformulation of the original
optimization problem (1.1) into a feasibility problem (1.3). Then the
optimal level set value is determined using a one-dimensional line search
on tk. In the original work [38] the Dichotomous (bisection) line search
[6, Chapter 8] was used (in practice a somewhat variant of the line
search was used), but any line search could be applied.

Assume that a lower bound of f is given and denote it by fl. We
denote by fh the upper bound of f and initialize it to∞. In [38] there
is also the use of a bisection scheme but for the linear case, and in what
follows we generalize this scheme for the convex optimization setting
(below k is a natural number).
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Algorithm 3.1 (Bisection scheme).
Initialization: Solve the following CFP

find a point x0 ∈ C (3.1)

set fh = f(x0) and t0 =
(
fl + fh

)
/2.

Iterative step: Given tk−1, try to find a feasible solution xk ∈
C ∩ Ctk−1 ;

(i) If there exists a feasible solution, set fh = f(xk) and continue
with tk :=

(
fl + fh

)
/2;

(ii) If there is no feasible solution, determined by a “time-out” rule
(meaning that a feasible point can not be found in nmax iterations;
other alternatives might be [59, 60] and [41]), then set fl = tk−1 and
continue with tk :=

(
fl + fh

)
/2;

(iii) If
∣∣fh − fl∣∣ ≤ γ for small enough γ > 0, then stop. A γ-optimal

solution is obtained.

Next we present our new scheme which we call the level set scheme
for solving the constrained minimization (1.1). Let {εk}∞k=0 be some
user chosen positive sequence, such that

∑∞
k=0 εk = ∞. We choose

εk = max{0.1|f(xk)|, 0.1}.

Algorithm 3.2 (Level set scheme).
Initialization: Solve the following CFP

find a point x0 ∈ C (3.2)

and set t0 = f(x0)− ε0.
Iterative step: Given the current point xk−1, try to find a point

xk ∈ C ∩ Ctk−1 ;
(i) If there exists a feasible solution, set tk = f(xk)−εk and continue.

(ii) If there is no feasible solution, then xk−1 is an εk-optimal solution.

Remark 3.3. Compared with the bisection strategy, infeasibility is
detected only once, just before we get the εk-optimal solution.

This level set scheme is quite general as it allows users to decide in
advance what projection method they would like to use in that scheme.
For the numerical results, we decided to apply the scheme with the
following variations of projection methods.

1. Each convex feasibility problem in the level set scheme is solved
via the Cyclic Subgradient Projections Method (CSPM) (2.7) with λk ∈
(1, 2) over relaxation parameters.
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2. Each convex feasibility problem in the level set scheme is solved
based on the superiorization methodology. By doing so we try to de-
crease the objective function value below tk−1. Following the recent re-
sult of [31, Section 7], the methodology can be extended to convex and
non-convex constraints. In general, superiorization does not provide
an optimality certificate, therefore, we propose a sequential superior-
ization method where we decrease the sub-level sets of the objective
function f according to the level set scheme.

3. In the first variation where CSPM is used to solve the result-
ing feasibility problems, it may happen that the objective function
only decreases by some small εk in each step k. Combining the pre-
vious ideas, if only small steps are detected as progress, a perturba-
tion along the negative gradient of the objective is performed - just
like in superiorization. That is, if insufficient decrease is detected
within a block of iterations, then the current iterate is shifted by
xk ← xk − 1.9∇f(xk). It is clear that this is a heuristic step and
does not guarantee that f(xk−1 − 1.9∇f(xk−1)) ≤ f(xk−1), and so it
can be revised by using an adaptive step-size rule for some positive α
such that f(xk−1 − α∇f(xk−1)) ≤ f(xk−1).

Let c, s > 0 and {εk}∞k=0 be a sequence and small user chosen con-
stants, such that

∑∞
k=0 εk =∞, and δ = 0; In addition, determine the

size of each block of iterations BLOCK, for example if we decide to
run 1000 iterations then BLOCK = 1000.

Algorithm 3.4.
Initialization: Let δ = 0 and t−1 :=∞; Solve the following CFP

find a point x0 ∈ C (3.3)

and set t0 = f(x0)− ε0.
Iterative step: At the k-th iterate compute |tk−2 − tk−1|;
If |tk−2 − tk−1| ≤ cεk−1, then δ = δ + 1.

If δ/BLOCK > s, then δ = 0 and xk−1 ← xk−1 − 1.9∇f(xk−1).

Set tk−1 = f(xk−1)− εk−1 and try to find a solution xk ∈ C ∩ Ctk−1

to the CFP.

Remark 3.5. Relation with previous work. There are numerous
approaches in the literature on how to update tk, and by that, the sub-
level set of f in solving (1.4), or how to transform (1.1) to a sequence of
CFPs. Some of these schemes are Khabibullin [57, English translation]
and [58, English translation], Cutting-planes methods or localization
methods ; see [44, 47, 48, 56, 60, 64] and [11, 41], Cegielski in [17] and
also in [19, 20], subgradient method for constrained optimization, see
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e.g. [12]. For optimization problem (1.1) with separable objective see
De Pierro and Helou Neto [43] and see also [38].

3.1. Convergence . Next we present the convergence proof of Algo-
rithm 3.2. We use different arguments than those presented for other
finite convergent projection methods, for example, to name but a few
Khabibullin [58, English translation], (see also Kulikov and Fazylov [63]
and Konnov [61, Procedure A.]) and Iusem and Moledo [54], De Pierro
and Iusem [42] and Censor, Chen and Pajoohesh [25]. These algorithms
assume that the Slater Condition holds, i.e., Definition 2.6.

Theorem 3.6. Let (Pk)
∞
k=0 be a sequence of algorithmic schemes (for-

mally, each Pk is a Turing machine). For every k ∈ N∪{0} the goal of
Pk is to solve the sub-problem (1.4). It produces, after a finite number
of machine operations, an output, and then it terminates. There are
three possible cases for this output: if there exists a solution to (1.4) and
the machine is able to find it before it passes a given threshold (that is,
before it performs a too large number of machine operations, where this
“large number” is fixed in the beginning), then this output is a point xk

which solves (1.4); if there exists no solution to (1.4) and the machine
is able to determine this case before it passes the threshold, then the
output is a string indicating that (1.4) has no solution; otherwise the
output is a string indicating that the threshold has been passed. In addi-
tion, if for some k ∈ N∪{0} the algorithmic scheme Pk is able to find a
point xk satisfying (1.4), then a positive number εk is produced (it may
or may not depend on xk) and one defines tk := f(xk) − εk. Assume
further that there exists a sequence (ε̃k)

∞
k=0 satisfying

∑∞
k=1 ε̃k =∞ and

having the property that for every k ∈ N ∪ {0}, if Pk is able to find a
point xk satisfying (1.4) before passing the threshold, then εk ≥ ε̃k. Un-
der the above mentioned assumptions, Algorithm 3.2 terminates after
a finite number of machine operations, and, moreover, exactly one of
the following cases must hold:

Case 1: The only algorithmic scheme that has been applied is P0

and either it declares that (1.4) has no solution or it declares that the
threshold has been passed;

Case 2: there exists k ∈ N ∪ {0} such that P0, . . . , Pk are able to
solve (1.4) before the threshold has been passed and Pk+1 terminates
by declaring that (1.4) does not have a solution. In this case xk is an
εk-approximate solution of the minimization problem (1.3).

Case 3: there exists k ∈ N ∪ {0} such that P0, . . . , Pk are able to
solve (1.4) before the threshold has been passed and Pk+1 terminates by
declaring that the threshold has been passed;
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Proof. A simple verification shows that the three cases mentioned above
are mutually disjoint, and therefore at most one of them can hold.
Hence it is sufficient to show that at least one of these cases holds.
The level-set scheme starts at k = 0. According to our assumption
on P0 (and on any other algorithmic scheme), either it is able to solve
(1.4) before passing the threshold, or it is able to show before passing
the threshold that (1.4) does not have any solution, or it passes the
threshold before being able to determine whether (1.4) has or does not
have any solution. If either the second or the third cases holds, then we
are in the first case (Case 1) mentioned by the theorem, and the proof
is complete (the number of machine operations done on both cases is
finite by the assumption on P0). Hence from now on we assume that
P0 is able to solve (1.4) before passing the threshold.

According to the level-set scheme definition, since we assume that
P0 was able to solve (1.4), we should now consider P1. Either P1 finds
a solution x1 to (1.4) before passing the threshold, or it is able to show
before passing the threshold that (1.4) does not have any solution, or
it passes the threshold before being able to determine whether (1.4)
has or does not have any solution. In the second case we are in Case 2
of the theorem and in the third case we are in Case 3 of the theorem.
Hence in the second and third cases the proof is complete (up to the
verification that in the second case xk is an εk-optimal solution: see the
next paragraph), and so we assume from now on that P1 finds a solution
to (1.4) before passing the threshold. By continuing this reasoning it
can be shown by induction that several subcases can hold: either any
Pk, k ∈ N ∪ {0}, is able to solve (1.4) before passing the threshold, or
there exists a minimal k ∈ N ∪ {0} such that any Pj, j ∈ {0, . . . , k} is
able to solve (1.4) before passing the threshold but Pk+1 either shows
that (1.4) does not have any solution or Pk+1 passes the threshold
before being able to determine whether (1.4) has a solution or does
not have any solution. In the second subcase we are in Case 2 of the
theorem, and in the third subcase we are in Case 3 of the theorem.
In both subcases the accumulating machine operations is, of course,
finite, since it is the sum of the finitely many machine operations done
by each of the algorithmic schemes Pj, j ∈ {0, 1, . . . , k + 1}.

In the third subcase the proof is complete but in the second subcase
we also need to show that xk is an εk-optimal solution. Indeed, suppose
that this subcase holds. Then C ∩ Ctk = ∅. Since a basic assumption
of the paper is that the set of minimizers of f over C is non-empty,
there exists x∗ ∈ C satisfying f(x∗) = t∗ := inf{f(x) : x ∈ C}. It must
be that t∗ > tk because otherwise we would have f(x∗) = t∗ ≤ tk, i.e.,
x∗ ∈ C ∩ Ctk , a contradiction. Because xk ∈ C one has t∗ ≤ f(xk).
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Hence t∗ ≤ f(xk) = tk + εk < t∗ + εk and therefore |f(xk) − t∗| < εk.
In other words, xk is an εk-optimal solution, as required.

Therefore it remains to deal with the first subcase mentioned earlier
in which each Pk, k ∈ N ∪ {0}, is able to solve (1.4) before passing
the threshold. Assume to the contrary that this subcase holds. Then
for each k ∈ N ∪ {0} the point xk and the numbers εk and tk are well-
defined and their definitions imply (by induction) that when k ≥ 2,
then

tk = f(xk)− εk ≤ tk−1 − εk ≤ . . . ≤ t0 −
k∑
j=1

εj ≤ t0 −
k∑
j=1

ε̃j. (3.4)

Because t∗ = f(x∗) ∈ R and since, according to our assumption,∑∞
j=1 ε̃j = ∞, for large enough k ∈ N we have t0 − t∗ <

∑k
j=1 ε̃j.

By combining this with (3.4) it follows that

tk ≤ t0 −
k∑
j=1

ε̃j < t∗. (3.5)

It must be that one of the algorithmic schemes Pj, j ∈ {1, . . . , k + 1}
will fail to solve (1.4) (either by passing the threshold or by determining
that (1.4) does not have any solution), since if this is not true, then in
iteration k + 1 a solution xk+1 to (1.4) will be found by Pk+1. Now,
because xk+1 solves (1.4) we have f(xk+1) ≤ tk. Hence it follows from
(3.5) that f(xk+1) < t∗, a contradiction to the definition of t∗. This
contradiction shows that the subcase mentioned earlier in which each
Pk, k ∈ N ∪ {0} is able to solve (1.4) before passing the threshold,
cannot occur. �

Remark 3.7. If for some given ε > 0 the sequence {εk}∞k=0 satisfies
εk < ε for all k ∈ N sufficiently large, then the theorem ensures, in the
third case mentioned in it, that the point xk will be an ε-approximate
solution.

Remark 3.8. An illustration of the condition needed in Theorem 3.6
is to let εk := max{0.1, 0.1|f(xk)|}, as done in the numerical simu-
lations (Section 4). In this case εk ≥ ε̃k := 0.1 for all k ∈ N ∪ {0}
for which Pk is able to solve (1.4) before passing the threshold, and,
in addition,

∑∞
k=0 ε̃k = ∞, as required. However, if one merely de-

fines εk := 0.1|f(xk)| instead of defining εk := max{0.1, 0.1|f(xk)|},
or, more generally, if one uses algorithmic schemes Pk which, for every
k ∈ N ∪ {0}, are able to solve (1.4) before passing the threshold, and
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if
∑∞

k=0 εk < ∞, then it may happen that none of the values f(xk)
approximate well the optimal value t∗.

Indeed, consider f(x) := x2 − 100, x ∈ C := R. Denote x0 :=
√

500.
Suppose that for each k ∈ N our schemes Pk find a point xk satis-
fying f(xk) = tk−1, namely xk =

√
100 + tk−1 (we assume that Pk

can represent numbers in an algebraic way which allows it to store
square roots without the need to represent them in a decimal way; such
schemes can be found in the scientific domains called “computer alge-
bra”, “exact numerical computation”, and “symbolic computation”).
Let ε0 := 0.1|f(x0)|. Since f(x0) = 400 > 0 we have t0 = f(x0)− ε0 =
0.9 · 400 = 360. Now we need to find a point x1 satisfying f(x1) = 360,
i.e.,

(x1)2 − 100 = 360 = 0.9 · f(x0) = 0.9((x0)2 − 100) = 0.9(x0)2 − 90

and thus x1 =
√

10 + 0.9(x0)2. By induction xk =
√

10 + 0.9(xk−1)2,
f(xk) = tk−1 and εk := 0.1|f(xk)| for every k ∈ N. In particular, we
can see by induction that xk ≥ 10 for all k and hence εk = 0.1f(xk)
and tk = f(xk)− εk = 0.9f(xk) ≥ 0 for all k ∈ N. Therefore |tk − t∗| ≥
100 and |f(xk) − t∗| > 100 for all k ∈ N and hence we neither have
limk→∞ f(xk) = −100 = t∗ nor limk→∞ tk = t∗. It remains to show
that

∑∞
k=1 εk < ∞. Indeed, observe that since 0 < f(xk+1) ≤ tk for

every k ∈ N∪ {0} and since from (3.4) we have
∑k

i=0 εi ≤ t0 − tk ≤ t0,
it follows that

∑∞
k=1 εk ≤ t0. Therefore

∑∞
k=1 εk <∞ as claimed.

4. Numerical experiments

In this section, we compare several variants of the two optimiza-
tion schemes (Algorithms 3.2 and 3.4) for some selected optimization
problems. All solvers were tested against the freely available library
of convex quadratic programming problems stored in the QPS format
by Maros and Mészáros [65] as well as clinical cases from intensity
modulated radiation therapy planning (IMRT) provided to us by the
German Cancer Research Center (DKFZ) in Heidelberg. The QPS
problems were parsed using the parser from the CoinUtils package [40]
and consist of quadratic objectives and linear constraints. The IMRT
problem data is constructed using a prototypical treatment planning
system developed by the Fraunhofer ITWM and consist of nonlinear
convex objectives and constraints.

Remark 4.1. It is clear that from the mathematical point of view only
finite convergence projection methods can be applied in each iterative
step. However, numerical experiments show that even asymptotically
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convergent algorithms can be used, when the stopping rule is chosen in
an educated way. For further finite convergence methods see [45,66,70].

The algorithms were implemented in C++. As solvers for the feasi-
bility problem, we implemented the finite convergence variants of the
Cyclic Subgradient Projections Method (CSPM) and the Algebraic Re-
construction Technique 3 (ART3+) and also their regular version with
standard stopping rule, see the beginning of Section 3 and Remark 4.1.
The superiorized versions of these methods simply use the objective
function of the optimization problem as a merit function to decrease.
Although the superiorized versions of CSPM and ART3+ preformed
surprisingly well in terms of the objective function value they obtained,
the solutions were in almost all cases far from the optimum. Table 1
lists the variants of the level set and bisection schemes that are com-
pared:

Scheme variant Abbreviation
Level set (Alg. 3.2) with CSPM ls cspm
Level set (Alg. 3.2) with ART3+ ls art3+
Accelerated level set (Alg. 3.4) with CSPM ls acc cspm
Level set (Alg. 3.2) with superiorized CSPM ls sup cspm
Level set (Alg. 3.2) with superiorized ART3+ ls sup art3+
Accelerated level set (Alg. 3.4) with superiorized CSPM ls acc sup cspm
Bisection (Alg. 3.1) with CSPM bis cspm
Bisection (Alg. 3.1) with ART3+ bis art3+
Accelerated Bisection with CSPM bis acc cspm
Bisection (Alg. 3.1) with superiorized CSPM bis sup cspm
Bisection (Alg. 3.1) with superiorized ART3+ bis sup art3+
Accelerated Bisection with superiorized CSPM bis acc sup cspm

Table 1. Overview of all tested schemes.

The bisection schemes were accelerated in the same way as in Algo-
rithm 3.4, despite the fact that this is a heuristics which is not guaran-
teed to converge, we decided to test and add it to our comparison. To
determine whether a feasible solution exists, we set a maximum num-
ber of 1000 iterations for each of the feasibility solvers. In Algorithm
3.1(iii) we choose γ = 10−5. If no feasible solution is found after 1000
projections, it is assumed that none exists. For the choice of εk we
used multiplicative update rule (εk = 0.1|f(xk)|) if the absolute value
of the objective function is greater than 1 and subtraction update rule
(εk = 0.1) otherwise.
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4.1. IMRT cases descriptions. Given fixed irradiation directions,
the objective in IMRT optimization is to determine a treatment plan
consisting of an energy fluence distribution to create a dose in the pa-
tient to irradiate the tumor as homoegeneously as possible while spar-
ing critical healthy organs [62]. Figure 1 shows irradiation directions
and some energy fluence maps for a paraspinal tumor case.

Figure 1. The gantry moves around the couch on which
the patient lies. The couch position may also be changed
to alter the beam directions.

The problem is multi-criteria in nature and numerical optimization
problems are often a weighted sum scalarization of the multiple objec-
tives involved. IMRT optimization problems can be formulated so that
they are convex. For this work, we selected nine head-and-neck cancer
patients and posed the same optimization formulations for each to en-
sure comparability, see Figure 2 for two of the nine patients. We then
chose four types of scalarization weights to determine four treatment
plans for each patient, each with different distinct solution properties.
Overall, this resulted in 36 optimization problems. The following list
describes the different scalarizations.
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1. High weights on tumor volumes, low weights on healthy organs;
2. High weights on tumor volumes and brain stem;
3. High weights on tumor volumes and spinal cord;
4. High weights on tumor volumes and parotis glands.

In order to numerically optimize the treatment plans, we define the
energy fluence distribution - the variables of the optimization problem
- as a vector x ∈ Rn (typically n ≈ 103) and assume that the resulting
radiation dose in the patient is given by d = Dx ∈ Rm (typically
m ≈ 106), where the entries Dij of the so-called dose matrix D ∈ Rm×n

contain the information of how much radiation is deposited in voxel
i of the patient body by a unit amount of energy emitted by a small
area j on the beam surface. That is, the dose in each voxel i is given
by di(x) :=

∑n
j=1Dijxj. To achieve a homogeneous dose in a tumor

volume given by voxel indices T , we use functions to minimize the
amount of under-dosage below a prescribed dose R,

funder(x) :=

(
|T |−1

∑
i∈T

max(0, R− di(x))2

) 1
2

,

and, symmetrically the over-dosage above a given prescription. This is
done using two functions to provide better control over both aspects.
These objectives are also constrained from above, resulting in nonlinear
but convex constraints. Dose in risk organs given by voxel indices R is
minimized by norms of the dose in those organs:

fnorm(x) :=

(
|R|−1

∑
i∈R

dpi (x)

) 1
p

,

where we used p = 2 and p = 8, depending on whether the organ is more
sensitive to the general amount of radiation (e.g. parotis glands) or the
maximal dose (e.g. spinal cord) received. More relevant data which is
typical and standard to IMRT and in particular for the implementation
of our scheme, i.e., the constrains set C, can be found in [62], which
also includes details on numerical optimization in IMRT planning; see
also the works [27,72]. Note that the IMRT problem formulations here
do not contain any linear constraints in our case, so that in the analysis,
ART3+ is omitted as it is identical to CSPM in this case.

4.2. Quality evaluation of the solutions. All of the 36 IMRT opti-
mization problems could be solved by all variants of the schemes. This
was not the case for the QPS problems: of the 101 problems tested
in the library, only 50 problems could be solved by all of the variants
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(a) Head-Neck patient 1

(b) Head-Neck patient 2

Figure 2. Two of the nine patients. Highlighted
are some tumor volumes (lymphatic pathways and the
macroscopic tumor volume) and some healthy structures
to be spared.

of the schemes. There are two reasons why for the other 51 cases, the
projection methods were unable to find an initial feasible solution. The
first reason is that most of these QPS problems are indeed infeasible.
The second reason is, that in [65], the primal infeasibility stopping
criterion is determined as ‖Ax − b‖/(1 − ‖b‖) < 10−8 (where A and
b are part of the QPS problems constraints and ‖b‖ < 1) (also com-
bined with an additional stopping criterion for the dual infeasibility),
while in our implementations, we choose the maximum number of it-
erations, such as in [38], denoted there by Q, to be the stopping rule.
As can be seen, these two stopping criterion are different. It turn out
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that even when the number of iterations was increased to 10, 000, still
the CSPM did not make a difference and hence these problems were
declared infeasible. In general, the behaviour of projection methods
in the inconsistent case (infeasibility) have attracted many researchers
and the subject is not fully explored. Some of the results in this area,
state that in the case of infeasibility there is a cyclic convergence while
for others methods, mainly simultaneous ones, there is convergent to
some point that minimizes the norm of the infeasibilities. For fur-
ther details on the above, the readers are refereed to the works Gubin,
Polyak and Raiḱıs [46, Theorem 2], Censor and Tom [32], the book of
Chinneck [39] and the many references therein. Moreover, in the recent
result of Censor and Zur [35], superiorization is used for the inconsis-
tent linear case and it is shown that the generated sequence converges
to a point that minimizes a proximity function which measures the
linear constraints violation.

The following analysis concerning the QPS problems is restricted to
those problems that could be solved by all variants. We report the
required total number of projections and the total number of objective
evaluations for each method as measures of numerical complexity, since
these are independent of machine architecture or efficiency of imple-
mentation (parallelization or other software acceleration techniques).
To measure the quality of the solutions, the following score Q was cal-
culated for each solver variant and each problem. Let f̂ be the best
objective the solver found and f ∗ the best known objective value for
the problem. We define

Q :=


f̂ , if f ∗ = 0

f̂ − f ∗, if |f ∗| ≤ 1

(f̂ − f ∗)/(|f ∗|), else

Thus, the close to 0, the better the score, a positive value for Q mea-
sures a deviation from optimality. Tables 2 and 3 show some statistics
for the deviation from optimality for the solvers.

The median quality score of all optimization schemes for the prob-
lems that could be solved are very good, meaning each solver can be ex-
pected to find the optimal solution if the underlying projection method
can find a feasible starting point. The average is heavily skewed to-
wards some outliers, i.e. instances for which the algorithms needed
many iterations - especially for the QPS problems and in the bisection
schemes for both problem types. However, not all problems are solved
very well, as the 90-th quantiles show: in 10% of all problem instances
the algorithms did not produce a very good solution.
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Based on these findings, the following questions are answered in the
following subsections:

1. Do the accelerated versions of the schemes outperform the basic
versions in terms of quality and complexity?

2. Do the superiorized versions of the feasibility solvers outperform
their basic variants since the average deviations are lower for those
solvers with “sup”?

3. Is the level set scheme better than the bisection scheme in terms
of quality and complexity?

Scheme variant Average Q Median Q 10-th quantile Q 90-th quantile Q
ls cspm 0.44 0.05 0.00 0.66
ls art3+ 1.83 0.05 0.00 0.66
ls acc cspm 0.44 0.06 0.00 0.66
ls sup cspm 0.17 0.05 0.00 0.66
ls sup art3+ 0.14 0.06 0.00 0.66
ls acc sup cspm 0.20 0.05 0.00 0.66
bis cspm 7.22 0.04 0.00 1.10
bis art3+ 7.07 0.04 0.00 1.00
bis acc cspm 7.24 0.05 0.00 1.10
bis sup cspm 0.19 0.03 0.00 0.89
bis sup art3+ 0.16 0.02 0.00 0.83
bis acc sup cspm 0.21 0.05 0.00 0.89

Table 2. Quality scores of all tested algorithms over all
50 QPS problems that could be solved by all variants.
The statistics are taken over the 50 problem runs, thus
aggregating the results over all problems.
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Scheme variant Average Q Median Q 10-th quantile Q 90-th quantile Q
ls cspm 0.13 0.11 0.03 0.23
ls acc cspm 0.13 0.11 0.03 0.23
ls sup cspm 0.06 0.06 0.00 0.12
ls acc sup cspm 0.05 0.05 0.00 0.13
bis cspm 2.72 0.02 0.00 8.52
bis acc cspm 2.72 0.02 0.00 8.52
bis sup cspm 0.04 0.04 0.00 0.08
bis acc sup cspm 0.04 0.03 0.00 0.09

Table 3. Quality scores of all tested algorithms over
all IMRT problems. ART3+ was omitted as the prob-
lem formulations did not contain any linear constraints.
The statistics are taken over the 36 problem runs, thus
aggregating the results over all problems.

4.3. Is the accelerated scheme better than the basic scheme?
Only the CSPM variants for the level set scheme and the bisection
scheme are studied, since they are most promising candidates for each
(in the bisection scheme, there is no difference between CSPM and
ART3+). The quality scores for the level set scheme with CSPM
ls cspm and the accelerated level set scheme ls acc cspm were compared
to see if there is a statistically significant difference in the outcome of
the methods. For the 50 QPS problems, the median difference is 0,
and the t-Test for two-tailed sample mean difference returns a p-value
of 0.472, indicating that there is no real difference between the two
versions. For the IMRT problems there was absolutely no difference in
the quality score between the two variants.

The results for the bisection scheme are even clearer. For the QPS
problems, the median difference is 0 and the average difference is -0.01.
In no case could the accelerated version produce a better objective
score, and at worst, it produced a loss of 0.28 objective score. A sta-
tistical test was not performed for this case. Similar results were found
for the IMRT problems.

As there is no difference in quality, the question remains whether the
accelerated variants can be better in terms of faster function decrease
or number of constraint projections or function evaluations. For IMRT,
there was no difference in running time or rate of decrease of the objec-
tive function: the behavior was identical for the base and accelerated
versions. For the QPS problems, however, the acceleration of the level
set schemes lead to a faster converging algorithm. The rate of decrease
of the objective function over all feasible solutions produced by the
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scheme with the accelerated version can be up to 15 times the rate of
the basic version. The chart in Figure 3(a) shows the frequencies of
different speedup factors realized for the accelerated level set scheme
over the basic level set scheme. The bins on the horizontal axis de-
note the multiplication factor of how much faster the objective scores
(in case of Figure 3) decreased in the accelerated cases. “Frequency”
refers to the count of solver instances where the multiplication factor
was observed. It should be noted that the frequency for the 0 bin is
exactly the count of zero speedups, meaning that there were no cases
where the accelerated version was better in terms of faster function
decrease.

(a) Level set scheme (b) Bisection scheme

Figure 3. Factor of how much the objective func-
tion decreased faster in the accelerated versions of the
schemes (QPS problems). A speedup factor of 0 means
that no difference in speed was observed. Negative
speedups indicate that the indicated scheme performed
worse over the compared method.

For the bisection scheme and QPS problems, there is no difference
in the rate of objective decrease between accelerated and basic version.
Therefore, for certain problem types, the accelerated level set scheme
using CSPM has a great potential to speed up the rate of objective
decrease and only causes a very moderate increase in the number of
projections required by the algorithm (only about 1.5 times as many
for 17 problems).

4.4. Are the superiorized versions a good choice for the level
set scheme? The quality scores in Tables 2 and 3 seem to indicate
that the superiorized version outperform their basic variants in both
schemes. However, for the QPS problems, the t-tests for paired two
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sample mean comparisons showed that there is, in fact, no statisti-
cally significant difference in the means (p-values for two-tailed tests
were 0.148 for the level set scheme comparison between ls acc cspm
and ls acc sup cspm and 0.292 for the bisection scheme comparison be-
tween bis art3+ and bis sup art3+). Nevertheless, for our test cases,
the superiorized versions in the level set scheme outperformed their ba-
sic counterparts in more cases: the superiorized version ls sup acc cspm
produced a quality score at least as good as the basic version ls acc cspm
in about 68% of all cases, in 64% it could actually get a better score.

On the other hand, for the IMRT problems, the superiorized ver-
sions clearly outperform the basic versions in terms of objective func-
tion scores. Statistical tests are all significant up to a level of 0.0013
(p-value for two-tailed tests of test for mean difference being 0). This
clearly shows a promising feature of superiorized algorithms: they are
very often able to obtain better solutions, even when used in an op-
timization framework. The accelerated versions of the superiorized
schemes, however, did not differ in quality from their unaccelerated
versions.

However, the superiorized versions require more projections and ob-
jective evaluations than the normal versions (see Figures 4 and 5). In
these charts, the horizontal axis again denotes the multiplication factor
by which the number of projections or objective function evaluations
of the basic versions would have to be multiplied to be equal to the
values for the superiorized versions. An increase factor of 0 means
that the indicated scheme needed as many projections as the com-
pared method. In many instances, the superiorized versions required
more than 10 times the number of projections over the basic variant,
leading to significantly higher computation times.

Yet, for the QPS problems, there is also some potential when it comes
to the rate of decrease of the objective function, as shown in Figure 6.

For IMRT problems, this decrease was only marginal: the rate of
decrease of the superiorized versions is on average only about 0.5 times
faster than the basic versions (note that 0 times would indicate they
progress at the same rate).

Hence, the superiorized version of CSPM uses many more projections
and evaluations. However, if these are cheap to compute, then the
potential increase in objective function reduction in early iterations
could lead to a faster approach overall for some problems if the user is
willing to stop the optimization prematurely for practical reasons.

4.5. Which is the better optimization scheme? We compare the
level set scheme using the accelerated CSPM and the bisection scheme
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(a) Increase in projections (b) Increase in objective evalua-
tions

Figure 4. Factor of how much the complexity increases
by using the superiorized version of CSPM in the level
set scheme (QPS problems).

(a) Increase in projections (b) Increase in objective evalua-
tions

Figure 5. Factor of how much the complexity increases
by using the superiorized version of CSPM in the level
set scheme (IMRT problems).

with CSPM, as these are the most promising candidates for each opti-
mization scheme given the analysis above. For the QPS problems, there
is no statistically significant difference in the objective score between
the two methods (the p-value of the two-tailed test is 0.389). However,
ls acc cspm outperforms the bisection scheme significantly for IMRT
problems - even if 4 outliers of the 36 problems were removed (those
which skewed the average quality score of the bisection scheme to the
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Figure 6. Factor of speedup of the objective function
decrease by using the superiorized version of CSPM in
the level set scheme for QPS problems. A factor of 0
indicates no difference, negative factors indicate that the
superiorized version exhibited a slower decrease.

right). With a p-value of 0.007, ls acc cspm produces a better quality
score than the equivalent bisection scheme.

Moreover, as Figure 7 shows for QPS problems, on average, the bisec-
tion scheme requires many more projections and objective evaluations.
An intuitive explanation to the results is perhaps because in the bisec-
tion scheme one may be in an infeasible detecting stage several times,
and in each such a stage many calculations are done (which eventually
lead one to conclude that infeasibility has been detected). In the level-
set scheme an infeasibility stage can happen only one time, and in the
other stages usually feasibility is detected.

For IMRT problems, the increase is less pronounced, but consistent.
There the increase is up to factor 4.

In terms of rate of objective decrease, the results are mixed. In fact,
it seems that bisection can be expected to decrease the objective a little
faster than the level set scheme. However, Figure 8 shows that for the
QPS problems this does not happen very often.

For IMRT problems, the results are similar, however, it seems as if
a speedup of factor 2 occurred quite frequently.

The level set scheme seems to be the better optimization tool for
IMRT problems in terms of the quality and complexity. But, if one
allows superiorization, then this is not always the case and the differ-
ences might be very minor, compare for example ”ls sup cspm” and
”bis sup cspmsee” in Tables 2 and 3. Overall, although both strate-
gies are able to obtain similar qualities in the solutions for the QPS
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(a) Increase in projections (b) Increase in objective evalua-
tions

Figure 7. Factor of how much the complexity increases
for QPS problems by using the bisection scheme over the
level set scheme. ‘0’ indicates no difference, and negative
values indicate a decrease in complexity.

Figure 8. Factor of speedup of the objective function
decrease by using the bisection scheme over the level set
scheme (QPS problems).

problems, there is a clear advantage of the level set scheme over the
bisection scheme when it comes to complexity.

5. Concluding remarks and Further research

Projection methods are known for their computational efficiency and
simplicity. This is the reason we decided to use a well-known reformu-
lation of a convex optimization problem and apply projection methods
within that general scheme. While at this point the convergence proof
for the scheme is valid only when finite convergent algorithms are used,
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numerical experiments show that general convergent algorithms also
generate good solutions when the stopping rule is chosen in an edu-
cated way. We believe that the mathematical validity of this relies on
Remark 4.1 and is still under investigation.

Another direction we plan to investigate is based on Yamagishi and
Yamada results [75], which show how to replace the subgradient pro-
jections by a more efficient projection when additional knowledge, such
as lower bounds is provided. In addition we plan to study accelerat-
ing techniques for projection methods, for example the recent work of
Pang [68] and [69]. Another direction for investigation is the usage of
other type of projection methods, for example Bregman projection, see
e.g., [33].
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[53] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis,
Springer-Verlag, Berlin, Heidelberg, Germany, 2001.

[54] A. N. Iusem and L. Moledo, On finitely convergent iterative methods for the
convex feasibility problem, Bulletin of the Brazilian Mathematical Society 18
(1987), 11–18.
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