
Algorithms for Positive Semidefinite Factorization

Arnaud Vandaele∗ François Glineur† Nicolas Gillis∗

Abstract

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generaliza-
tion of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the
PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices
{A1, ..., Am} and {B1, ..., Bn} such that Xi,j = trace(AiBj) for i = 1, ...,m, and j = 1, ..., n. PSD factor-
ization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a
fast projected gradient method and two algorithms based on the coordinate descent framework. The main
application of PSD factorization is the computation of semidefinite extensions, that is, the representations
of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of
the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we
compute the PSD extensions of size k = 1 + dlog2(n)e for the regular n-gons when n = 5, 8 and 10. We also
show how to generalize our algorithms to compute the square root rank (which is the size of the factors in
a PSD factorization where all factor matrices Ai and Bj have rank one) and completely PSD factorizations
(which is the special case where the input matrix is symmetric and equality Ai = Bi is required for all i).

Keywords. positive semidefinite factorization, extended formulations, fast gradient method, coordinate
descent method

1 Introduction

Given an m-by-n nonnegative matrix X and an integer k < min{m,n}, the standard nonnegative matrix
factorization (NMF) problem seeks a matrix X̃ such that the (i, j)th entry of X̃ is equal the inner product
of two size-k nonnegative vectors wi and hj , and which is as close to X as possible. For all i = 1, ...,m and
j = 1, ..., n, we have

Xij ≈ X̃ij = 〈wi, hj〉 = wTi hj with wi and hj ∈ Rk+. (1)

Considering the set {w1, ..., wm} as the rows of a matrix W and the set {h1, ..., hn} as the columns of a matrix
H, the approximating matrix X̃ is the product of two nonnegative matrices W ∈ Rm×k and H ∈ Rk×n. This
leads to the following optimization problem for NMF:

min
W≥0,H≥0

‖X −WH‖2F , (2)

where ||X||2F =
∑
i,j X

2
ij is the Frobenius norm of matrix X. NMF (2) has become a widely-used approach for

linear dimensionality reduction. In fact, when the columns of the matrix X represent the elements of a data
set, the nonnegative factorization allows to interpret the jth column of X as a nonnegative linear combination
of the columns of W where the weights are given by the jth column of H. Unlike other comparable techniques,
the nonnegativity imposed on the entries of W and H leads to a better interpretability of the decomposition

∗Department of Mathematics and Operational Research, Faculté Polytechnique, Université de Mons, Rue de Houdain 9, 7000
Mons, Belgium. Email: {arnaud.vandaele,nicolas.gillis}@umons.ac.be. NG acknowledges the support by the F.R.S.-FNRS
(incentive grant for scientific research no F.4501.16) and by the ERC (starting grant no 679515).
†Center for Operations Research and Econometrics, Université catholique de Louvain, Voie du Roman Pays, 34, B-1348

Louvain-La-Neuve, Belgium; ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium. Email:
francois.glineur@uclouvain.be. This paper presents research results of the Concerted Research Action (ARC) programme sup-
ported by the Federation Wallonia-Brussels (contract ARC 14/19-060).

1

ar
X

iv
:1

70
7.

07
95

3v
1

 [
m

at
h.

O
C

]
 2

5
Ju

l 2
01

7

and NMF has been proved successful in many fields of data analysis such as image processing, text mining and
hyperspectral imaging; see [10] and the references therein.

The problem of PSD factorization addressed in this paper is a recently introduced generalization of NMF [13].
In a PSD factorization problem, the cone of positive semidefinite matrices replaces the nonnegative orthant of
NMF. More precisely, the inputs of a PSD factorization problem are the same as for NMF, namely, a m-by-n
nonnegative matrix X and an integer k < min{m,n}. However, instead of using the inner product between
two vectors of size k, the (i, j)th entry of the approximating matrix X̃ is given by the inner product between
two symmetric k-by-k positive semidefinite matrices, Ai and Bj . The inner product of two matrices is a
generalization of the dot product of two vectors, and is equal to the trace of the product of the two matrices.
Hence, we have for i = 1, ...,m and j = 1, ..., n,

Xij ≈ X̃ij = 〈Ai, Bj〉 = tr(AiBj) with Ai and Bj ∈ Sk+.

As in NMF, the optimization problem corresponding to PSD factorization consists in minimizing the quantity
‖X − X̃‖2F . It can be expressed by the following non-convex and NP-hard problem [26] where the variables are
the two sets of matrices {A1, ..., Am} and {B1, ..., Bn} belonging to the positive semidefinite cone Sk+:

min
Ai,Bj∈Sk+
i=1,...,m
j=1,...,n

m∑
i=1

n∑
j=1

(
Xij −

〈
Ai, Bj

〉)2
. (3)

In this work, we propose several algorithms for solving (3) numerically. To our knowledge, no algorithm
has been proposed in the literature to solve this problem. The paper is organized as follows. In Section 2, we
introduce the PSD factorization problem in more details, highlighting its connection with extended formulations.
In Section 4, we propose several algorithms to compute PSD factorizations (namely, a fast projected gradient
method and two algorithms based on the coordinate descent framework). In Section 4, we compare the efficiency
of the presented methods on a benchmark of nonnegative matrices. In Section 5, we show how to use our
algorithms to compute (i) PSD factorizations of the slack matrices of regular n-gons, (ii) symmetric PSD
factorizations related to completely PSD matrices, and (iii) the square root rank of nonnegative matrices.

2 Linear and semidefinite extensions, and factorizations

In the context of the NMF of an m-by-n nonnegative matrix X, the minimum value of the inner dimension k
for which it is possible to find W ∈ Rm×k+ and H ∈ Rk×n+ such that X = WH is called the nonnegative rank of
X, and is denoted rank+(X). The search for such an exact factorization has tight connections with the study of
linear extensions of polyhedrons. Let P be a polyhedron described by a system of linear inequalities. A linear
extension of P is another polyhedron Q of higher dimension which projects linearly onto P , that is, for which
there exists a linear map π such that π(Q) = P . Such linear extensions are particularly useful when the size
(measured by the number of facets) of a linear extension is (much) smaller than the size of the initial polyhedron.
For example, the left picture of Figure 1 illustrates a linear extension of an irregular (planar) heptagon, which
is three-dimensional but features only six facets. Among all possible linear extensions of a polyhedron P , the
size of the smallest one is the linear extension complexity of P and is denoted by xc(P).

An outstanding result of Yannakakis establishes a strong link between NMF and linear extensions [31]: the
linear extension complexity of a polyhedron P is equal to the nonnegative rank of a particular matrix related
to P , called the slack matrix SP :

xc(P) = rank+(SP). (4)

For a polyhedron P featuring f facets and v vertices, the slack matrix SP is a f -by-v nonnegative matrix whose
(i, j)th entry is the slack between the ith facet and the jth vertex. Furthermore, Yannakakis showeed that
any rank-k nonnegative factorization of SP (implicitly) provides a size-k linear extension of P . This result
connecting the two fields has been at the core of many recent developments; see, e.g., [19] and the references
therein.

2

Figure 1: Left: linear extension of size 6 of an irregular hexagon. Right: psd-lift of size 3 of the square.

Recently, the work of Yannakakis was generalized to allow for arbitrary closed convex cones K instead of
the nonnegative orthant [13]. From the point of view of extensions, linear extensions (for which K = Rk+) are
replaced by conic extensions, that is, representations as projections under a linear map of an affine slice of a cone
K. These generalized extensions are also called K-lifts. In this paper, we focus on the case where K = Sk+, the
cone of positive semidefinite matrices. In that case, given a polyhedron P , we are looking for a spectrahedron (an
affine slice of a positive semidefinite cone) which projects onto P under a linear map. Moreover, we are trying to
find such a semidefinite extension whose size (as measured by the dimension of the positive semidefinite cone)
is as small as possible. This minimal size is called the semidefinite extension complexity of P , and is denoted
xcpsd(P) .

The semidefinite extension complexity never exceeds the linear extension complexity, but can be strictly
lower. For example, the linear extension complexity of the square is 4, but there exists a spectrahedron of size
3 which projects linearly onto the square (see the picture on the right of Figure 1). Yannakakis’ result (4) can
be generalized in the following way, which uses the positive semidefinite rank (abbreviated psd-rank or rankpsd)
to a special rank of the slack matrix of P [13, Theorem 3.3]:

xcpsd(P) = rankpsd(SP).

The positive semidefinite rank is related to the PSD factorization problem (3) in the same way than the
nonnegative rank is connected to NMF. Formally, the psd-rank of a m-by-n nonnegative matrix X is the smallest
integer k for which there exist two sets of k-by-k positive semidefinite matrices {A1, ..., Am} and {B1, ..., Bn}
such that Xij = 〈Ai, Bj〉 holds for all i = 1, ...,m and j = 1, ..., n. We refer the reader to the survey [6] for
further informations on the psd-rank.

Example 2.1 In order to illustrate the concept of the size of a PSD factorization, let the following 4-by-4
matrix be a slack matrix of the square,

S4 =

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

 .

Already highlighted by the picture on the right of Figure 1, it is possible to find a S3
+ factorization of S4, for

example with the following factors:

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 , A4 =

 1 −1 1
−1 1 −1
1 −1 1

 ,

B1 =

0 0 0
0 0 0
0 0 1

 , B2 =

1 0 0
0 0 0
0 0 0

 , B3 =

1 1 0
1 1 0
0 0 0

 , B4 =

0 0 0
0 1 1
0 1 1

 .

Designing algorithms for solving (3) is therefore of great interest in the search of psd-lifts based on the factor-
ization of the corresponding slack matrices, and is the main objective of this paper.

3

3 Algorithms for PSD factorization

The PSD factorization problem (3) is nonconvex. However, when one of the two sets of matrix variables
{A1, ..., Am} or {B1, ..., Bn} is fixed, optimizing over the other set reduces to a convex problem. For this reason,
we develop in this work algorithms using an alternating strategy for solving (3), by optimizing alternately over
the sets {A1, ..., Am} and {B1, ..., Bn}. The same approach is used by nearly all NMF algorithms for solving (2),
which is also a nonconvex problem that becomes convex when one of the two factors is fixed. The pseudo-code
of the general alternating scheme for PSD factorization is detailed in Algorithm 1.

Algorithm 1 Alternating Strategy for PSD Factorization

1: INPUT: X ∈ Rm×n+ and initial iterates {A1, ..., Am} and {B1, ..., Bn}.
2: OUTPUT: {A1, ..., Am} and {B1, ..., Bn}.
3: while stopping criterion not satisfied do
4: {A1, ..., Am} ← optimize subproblem(X, {B1, ..., Bn}),
5: {B1, ..., Bn} ← optimize subproblem(XT , {A1, ..., Am}).
6: end while

Since the subproblems are symmetric, we can assume without loss of generality for the presentation of the
algorithms that the set {B1, ..., Bn} is fixed and that we want to optimize over the Ai’s. The corresponding
problem can be written formally as:

min
Ai∈Sk+
i=1,...,m

m∑
i=1

n∑
j=1

(
Xij −

〈
Ai, Bj

〉)2
. (5)

Matrices Ai do not influence each other in (5), that is, the problem is separable, hence it reduces to m
independent convex problems, each corresponding to the optimization over a single factor Ai (corresponding to
a single row of X). Hence, our first idea consists in solving each of these problems to optimality as described
by Algorithm 2, which is an instance of a semidefinite program. The combination of Algorithms 1 and 2 leads
to an exact two-block coordinate descent scheme. Since each block of variables belong to a closed convex set
and the objective function is continuously differentiable, a stationary point of (3) is obtained in the limit [16].

Algorithm 2 optimize subproblem (exact)

1: INPUT: X ∈ Rm×n+ and Bj ∈ Sk+ with j = 1, ..., n.
2: OUTPUT: {A1, ..., Am}
3: for i = 1 to m do
4: Ai ← arg minAi∈Sk+

∑n
j=1

(
Xij −

〈
Ai, Bj

〉)2
5: end for

We implemented Algorithm 2 with the general convex solver YALMIP [23]. However, this approach has
proven to be far too slow in comparison with the other methods developed hereafter. As is also the case in
the context of NMF, the reason for the poor performance is that it is not worth solving the subproblems (5)
to optimality at each iteration. Once the objective function has decreased by some amount, it is preferable to
move quickly to the other set of variables rather than performing extra work to refine the subproblem solution
to optimality. Based on that observation, we propose in the following two iterative methods for solving (5):
an algorithm based on the (accelerated) gradient method described in Section 3.1, and implementations of
coordinate descent methods introduced in Section 3.2.

3.1 A fast projected gradient method

One of the most widely used method in continuous optimization is the gradient method. From a given starting
point x0, a sequence of points {xt} is built by taking a step in the direction−∇f(xt−1) for each iterate t = 1, 2,

4

The next point is then computed as xt = xt−1 − αt−1∇f(xt−1), where quantity αt−1 is the step size along the
steepest descent direction. The gradient method admits accelerated schemes, which were first introduced in [24].
The scheme used in this work is described as Algorithm 3 for the general problem minx∈Q f(x) with Q a closed
convex set.

Algorithm 3 Nesterov’s accelerated gradient method

1: INPUT: x0 ∈ Q
2: OUTPUT: xmaxiter

3: Set x−1 = x0

4: for t = 1 : maxiter do
5: yt = xt−1 + t−2

t+1 (xt−1 − xt−2)

6: xt = ProjQ(yt − 1
L∇f(yt))

7: end for

The accelerated gradient method presented as Algorithm 3 has roughly the same computational cost as the
usual gradient method. The difference lies in the fact that the gradient step (line 6) is made at an extrapolation
point yt (computed in line 5) instead of the previous iterate xt−1. When using a step size equal to 1

L (with
L the Lipschitz constant of the objective function’s gradient ∇f), the accelerated gradient method exhibits a
convergence rate of O(1/t2), with t the number of iterations (see [24] for more details). In order to apply the
accelerated scheme of Algorithm 3 to the PSD factorization problem (5), several issues must first be addressed.

• Computing the gradient. Let f denote the quantity to minimize in (5). Using the Frobenius norm, f
can be written as follows,

f =

m∑
i=1

n∑
j=1

(
Xij −

〈
Ai, Bj

〉)2
=
∥∥X −ATB∥∥2

F
, (6)

with A =
(
vec(A1) ... vec(Am)

)
and B =

(
vec(B1) ... vec(Bn)

)
being k2-by-m and k2-by-n matrices

respectively. Using this notation, the gradient of f with respect to the variable A is:

∇f = −2
(
X −ATB

)
BT .

From (6), we can also derive the Lipschitz constant L needed in Algorithm 3, which will be equal to the
largest eigenvalue of the Hessian ∇2f , hence L = 2λmax

(
BBT

)
.

• Projecting on Sk+. For our problem, the closed convex set Q that we need to project onto (see line 6
of Algorithm 3) is the cone of symmetric and positive semidefinite matrices, that is, Q = Sk+. For every
k-by-k real symmetric matrix C, we have C = UΛUT where U is an orthogonal matrix, and Λ is a diagonal
matrix whose entries are the eigenvalues of C. Defining Λ+ = diag (max(0, λ1), ...,max(0, λk)), we have
the following closed-form formula for the projection

ProjSk+ (C) = arg min
X∈Sk+

‖X − C‖ = UΛ+U
T . (7)

The main computational cost of the projection (7) is spent computing the spectral decomposition of C.

The pseudo-code of the accelerated gradient method for PSD factorization is presented as Algorithm 4
and denoted FPGM (for Fast Projected Gradient Method). Recall that Algorithm 4 is used for solving the
subproblems of the general alternating scheme of Algorithm 1. We choose to perform a (fixed) number of
accelerated gradient steps proportional to the size of the factors, equal to k∆ where ∆ is a parameter (line 7 of
Algorithm 4). In Section 4, performance of the algorithm is compared for different values of ∆.

Algorithm 4 has two drawbacks. First, in the current form of the algorithm, it is not possible to adjust easily
the rank of the Ai’s and the Bj ’s while it is interesting to obtain low-rank factors (observe that the factors of

5

Algorithm 4 optimizesubproblem (FPGM)

1: INPUT: X ∈ Rm×n+ and Bj ∈ Sk+ with j = 1, ..., n, parameter ∆.
2: OUTPUT: {A1, ..., Am}
3: {A1, ..., Am} ← Initialization
4: Construct A0 from {A1, ..., Am} and B from {B1, ..., Bn}.
5: L← λmax

(
BBT

)
6: Set A−1 = A0

7: for t = 1 : k∆ do
8: Yt = At−1 + t−2

t+1 (At−1 −At−2)

9: At = ProjSk+

(
Yt + 1

L (XBT − YTt BBT)
)

10: end for
11: Extract {A1, ..., Am} from Ak∆.

Example 2.1 are all rank one); see the discussion in Section 3.2.5. Second, if we know beforehand the values of
some entries of the Ai’s and the Bj ’s, it is not straightforward to keep them constant during the iterations of the
algorithm (the projection step would become even more computationally expensive, as a linearly constrained
semidefinite program would have to be solved). In the next section, we present coordinate-descent algorithms
overcoming these limitations.

3.2 Coordinate descent algorithms

Although known for many yeras, coordinate descent (CD) methods have recently received a new lease of life
[30]. This increase of interest is mainly due to the increasing number of large-scale optimization problems in
data mining and machine learning applications for which the simplicity of the CD methodology allows efficient
and competitive implementations (while high solution accuracy is usually not needed since data is typically
rather noisy). In many of these applications, fixing all variables except one leads to an univariate optimization
problem for which computation of a minimizer is cheap. For example, in the case of the NMF problem, the
corresponding univariate optimization problem is quadratic, and its optimal solution can therefore be written in
closed form. First introduced in [5] under the name HALS (for Hierarchical Alternating Least Square), methods
based on the CD scheme have proven to be among the most effective ones for the NMF problem [4, 18, 11].

3.2.1 Change of variables

If we want to successfully apply the CD scheme to the PSD factorization problem, it is crucial that the update
of one variable is computationally cheap and easy to implement. However, it is not straightforward to update
the entries of the factors Ai and Bj : unlike NMF where nonnegativity of the variables had to be taken into
account, which can be ensured separately in each variable (a separable constraint), matrices Ai and Bj are
required to remain positive semidefinite, which is no longer separable. Hence, in order to adapt the problem (5)
to the application of the CD scheme, we perform a simple change of variables popularized by the works of Burer
and Monteiro on semidefinite programming [2]. Since every symmetric positive semidefinite matrix L can be
written in the form L = HHT , we introduce new (matrix) variables ai ∈ Rk×ri for i = 1, ...,m and bj ∈ Rk×rj
for j = 1, ..., n linked to the original factors Ai and Bj as follows:

Ai = aiai
T

and Bj = bjbj
T
.

With this reformulation, entries of the new variables ai and bj are unconstrained, and poitive semidefiniteness
of the Ai’s and Bj ’s is automatically guaranteed. Another benefit is the ability to easily adjust the inner rank
of the factors Ai and Bj by choosing the number of columns r of the new variables, as the rank will be at most
equal to this number. Moreover, if some entries of ai or bj are known and fixed, they can simply be ignored in

the CD scheme. Since we have
〈
Ai, Bj

〉
=
∑ri
h=1

∑rj
l=1

(
ai:,h

T
bj:,l

)2

, the optimization problem (5) is now written

6

as follows with the new variables:

min
ai∈Rk×ri ,i=1,...,m

f =

m∑
i=1

n∑
j=1

(
Xi,j −

ri∑
h=1

rj∑
l=1

(
ai:,h

T
bj:,l

)2
)2

. (8)

Since we use an alternating scheme, we assume in the remainder of the section that the bj ’s are given and that
only the ai’s must be optimized. Note that the matrix ai ∈ Rk×ri is made of kri entries, so that the number of
variables of the problem (8) is k

∑m
i=1 ri, and mk2 in the full-rank case (ri = k for all i).

3.2.2 Update of one variable

In order to apply the CD scheme to (8), we need to derive the expression of the univariate function to minimize
when all the variables of (8) are fixed but one, say the entry (p, q) of the factor ai denoted aip,q. Only the ith

factor is impacted when the entry aip,q is updated since the factors Ai’s are independent from one another. By

highlighting aip,q, the part of the objective function influenced by the variable is

n∑
j=1

Xi,j − r∑
h=1
h 6=q

r∑
l=1

(
ai:,h

T
bj:,l

)2
−

r∑
l=1

(
aip̄,q

T
bjp̄,l

)2
− aip,q

(
2aip̄,q

T

(
r∑
l=1

bjp,lb
j
p̄,l

))
− aip,q

2 ‖bjp,:‖2

2

, (9)

where p̄ = {1, ..., k}\{p}. We observe that the function to minimize is a fourth degree polynomial in aip,q and
its gradient has therefore the form of a cubic polynomial,

∇aip,qf = c3a
i
p,q

3
+ c2a

i
p,q

2
+ c1a

i
p,q + c0, (10)

where

c3 = 4

n∑
j=1

‖bjp,:‖4,

c2 = 12aip̄,q
T

n∑
j=1

(
‖bjp,:‖2

rj∑
l=1

bjp,lb
j
p̄,l

)

= 12ai:,q
T

n∑
j=1

(
‖bjp,:‖2

rj∑
l=1

bjp,lb
j
:,l

)
− 3c3a

i
p,q,

c1 = 4

n∑
j=1

‖bjp,:‖2
 ri∑
h=1
k 6=q

rj∑
l=1

(
ai:,h

T
bj:,l

)2

+

rj∑
l=1

(
aip̄,q

T
bjp̄,l

)2

−Xi,j

+ 8

n∑
j=1

(
aip̄,q

T
rj∑
l=1

bjp,lb
j
p̄,l

)2

= 4

n∑
j=1

(
‖bjp,:‖2

(
ri∑
h=1

rj∑
l=1

(
ai:,h

T
bj:,l

)2

−Xi,j

))
+ 8

n∑
j=1

(
ai:,q

T
rj∑
l=1

bjp,lb
j
:,l

)2

− 2c2a
i
p,q − 3c3a

i
p,q

2
,

c0 = 4ai:,q
T

n∑
j=1

((
ri∑
h=1

rj∑
l=1

(
ai:,h

T
bj:,l

)2

−Xi,j

) rj∑
l=1

bjp,lb
j
:,l

)
− c1aip,q − c2aip,q

2 − c3aip,q
3
.

For every entry aip,q, we need to compute the different coefficients and find the root of (10) which minimizes the
objective function (9). Computing the roots of a third degree polynomial can be done in O(1) operations with
Cardano’s method (see Appendix A for more details).

3.2.3 Computational complexity of the updates

The computation of the coefficients ci’s must be implemented very carefully in order to avoid a high computa-
tional cost during the updates of the variables one after the other. For example, we notice that the computation
of the coefficient c0 from scratch needs O(nk3) operations for a specific triplet (i, p, q). Updating once the

7

mk2 entries would therefore cost O(mnk5). In the following, we explain how to reach a computational cost of
O(mk5) for one pass over the mk2 entries of the problem. A loop over the ‘large’ dimension (n) can be avoided
with the precomputation of some quantities independent of aip,q and used during all the iterations. For example,

the term
∑n
j=1 ‖bjp,:‖4 can be precomputed and the computation of c3 takes only O(1) operations. However,

the situation is more complicated for some other terms, especially c1 and c0. We describe below how to handle
efficiently these computations and which quantities need to be precomputed.

Computing c0 In order to compute the coefficient c0, the value of the gradient is precomputed and maintained
for all the variables during the iterations. For the purpose of clarity, we denote the quantity ∇aip,qf as gip,q.

From the expression of the coefficients of (10), we have:

gip,q = 4ai:,q
T

n∑
j=1

((
ri∑
h=1

rj∑
l=1

(
ai:,h

T
bj:,l

)2

−Xi,j

)
rj∑
l=1

bjp,lb
j
:,l

)
,

= 4ai:,q
T

n∑
j=1

(〈
Ai, Bj

〉
−Xi,j

)
Bj:,p = 4ai:,q

T
Ci:,p,

where the different matrices Ci =
∑n
j=1

(〈
Ai, Bj

〉
−Xi,j

)
Bj , i = 1, ...,m, can be precomputed for a total of

O(mnk2) operations. With the Ci matrices available, it is possible to compute gip,q in O(mk3) operations for

any triplets (i, p, q). However, Ci depends on the variable aip,q and once aip,q has been assigned to its optimal

value, all the entries of Ci must be updated. The entry (u, v) of Ci can be updated in the following way,

Ciu,v ← Ciu,v −
n∑
j=1

〈
Ai
old
, Bj

〉
Bju,v +

n∑
j=1

〈
Ai
new

, Bj
〉
Bju,v = Ciu,v −

〈
Ai
old −Ainew,

n∑
j=1

Bju,vB
j

〉
,

and since Ai
old − Ainew is a matrix with only one non-zero row and column, the update of the (u, v)th entry

can be done in O(k) operations if the quantity
∑n
j=1B

j
u,vB

j is available. To this end, we precompute Du,v,:,: =∑n
j=1B

j
u,vB

j for all u and v. To sum up, if gi is available, the coefficient c0 can be computed in O(1) operations.

However, after the optimization of the variable aip,q, all the entries of gi and Ci must be updated and it can be
done in at total of O(k3) operations, which does not depend on n.

Computing c1 The second issue is the term
∑n
j=1

(
ai:,q

T ∑rj
l=1 b

j
p,lb

j
:,l

)2

appearing in the computation of c1.

The loop over the dimension n can be avoided since we have

Eip,q =

n∑
j=1

(
ai:,q

T
rj∑
l=1

bjp,lb
j
:,l

)2

=

〈
ai:,qa

i
:,q

T
,

n∑
j=1

Bj:,pB
j
:,p

T

〉
.

In fact, if the quantity
∑n
j=1B

j
:,pB

j
:,p
T

is available (and it is the case via the precomputed tensor D), we can

maintain and update the column q of Ei in O(k2) operations:

Eil,q ← Eil,q + 2(aip,q
new − aip,q

old
)ai:,q

T
D:,l,p,l.

Table 1 gathers the different quantities to precompute before the start of the iterations. Assuming that
m and n are of the same order of magnitude, the overall computational complexity of the precomputations is
O(mk2 max(n, k2)). In the point of view of the space complexity, we observe that given the Ai’s and the Bj ’s,
the approximation matrix X̃ or the residual X − X̃ are never computed. In this way, the storage of a dense
m-by-n matrix is avoided (which could be impractical with a large and sparse matrix X).

8

computational complexity space complexity

Ai ← aiai
T

for all i ∈ [m] O(mk3) O(mk2)

Bj ← bjbj
T

for all j ∈ [n] O(nk3) O(nk2)
Ci ←

∑n
j=1

(〈
Ai, Bj

〉
−Xi,j

)
Bj for all i ∈ [m], O(mnk2) O(mk2)

gi ← 4ai
T
Ci for all i ∈ [m] O(mk3) O(mk2)

Du,v,:,: ←
∑n
j=1 B

j
u,vB

j for all u, v = 1, ..., k O(nk4) O(k4)

Eip,q ←
〈
ai:,qa

i
:,q
T
,
∑n
j=1 B

j
:,pB

j
:,p
T
〉

for all i ∈ [m], p, q ∈ [k] O(mk4) O(mk2)

Table 1: List of precomputations for the CD methods

3.2.4 Variables selection: cyclic or greedy

Algorithm 5 illustrates a cyclic run of a CD scheme over all the variables. After the computation of the optimal
value of one of the mk2 entries of the problem, the updates of Ci and gi in O(k3) operations are the bottleneck
of the method causing the overall O(mk5) complexity.

Algorithm 5 Optimize subproblem (8) (cyclic coordinate descent)

1: INPUT: X ∈ Rm×n+ , {b1, ..., bn} ∈ Rk×r.
2: OUTPUT: {a1, ..., am} ∈ Rk×r.
3: {a1, ..., am} ← Initialization
4: [C,D,E, g]←Precomputation(X, {a1, ..., am}, {b1, ..., bn})
5: for i = 1 : m do
6: for p = 1 : k do
7: for q = 1 : r do
8: x← aip,q
9: c3 ← 4Dp,p,p,p

10: c2 ← 12ai:,q
T
Dp,p,p,: − 3c3x

11: c1 ← 4Cip,p + 8Eip,q − 2c2x− 3c3x
2

12: c0 ← 4gip,q − c1x− c2x2 − c3x3

13: aip,q ← CardanoMethod(c3, c2, c1, c0)

14: Update Ci, gi, and Ei:,q
15: end for
16: end for
17: end for

As explained above, the gradient of any variable is always available in Algorithm 5. In order to improve
the efficiency of the algorithm, we propose to use the information given by the gradient for selecting first the
coordinates in a greedy way instead of processing them cyclically. This is called the Gauss-Southwell rule: at
each iteration, the variable with the largest gradient is updated. It allows to guide the CD scheme towards
the coordinates that will potentially decrease the objective function the most. Algorithm 6 describes the
implementation of the Gauss-Southwell strategy for PSD factorization. The main difference with Algorithm 5
lies in the selection of the variables to optimize.

We propose to make a number of iterations on each factor i proportional to kr (the number of variables)
using the parameter α. In Section 4, the performances of Algorithm 6 are compared for different values of α.

3.2.5 Inner rank of the factors

In many cases, the factors Ai’s and the Bj ’s are rank deficient. For example, in the exact case (Xij = 〈Ai, Bj〉
for all i, j), if Xij = 0 and the ith row of X and jth column of X are not identically zero (implying Ai 6= 0 and
Bj 6= 0), Ai and Bj cannot be full rank otherwise 〈Ai, Bj〉 > 0. For slack matrices, there is at least one zero

9

Algorithm 6 optimizesubproblem (Gauss-Southwell coordinate descent)

1: INPUT: X ∈ Rm×n+ , {b1, ..., bn} ∈ Rk×r, α ∈ R+.
2: OUTPUT: {a1, ..., am} ∈ Rk×r.
3: {a1, ..., am} ← Initialization
4: [C,D,E, g]←Precomputation(X, {a1, ..., am}, {b1, ..., bn})
5: for i = 1 : m do
6: for t = 1 : dαkre do
7: (p∗, q∗) = arg maxp,q |gip,q|
8: x← aip∗,q∗
9: c3 ← 4Dp∗,p∗,p∗,p∗

10: c2 ← 12ai:,q∗
T
Dp∗,p∗,p∗,: − 3c3x

11: c1 ← 4Cip∗,p∗ + 8Eip∗,q∗ − 2c2x− 3c3x
2

12: c0 ← 4gip∗,q∗ − c1x− c2x2 − c3x3

13: aip∗,q∗ ← CardanoMethod(c3, c2, c1, c0)

14: Update Ci, gi, and Ei:,q
15: end for
16: end for

per row and per column in X, hence ri ≤ k − 1 for all i. In fact, this idea can be generalized [22] to improve
the upper bound on the ri’s, and was used for example in [7].

With the CD methods previously presented, it is easy to allow different values for the rank of the Ai’s by
using initial factors ai’s with appropriate sizes. However, for the numerical experiments in Section 4, we will use
ri = k for all i to have a fair comparison with FPGM and to check whether the coordinate descent algorithms
are able to generate low-rank factors. Moreover, this possibility to handle rank deficient factors will allow us to
focus on the problem of the square root rank where ri = 1 for all factors; see Section 5.3.

4 Numerical experiments

The algorithms presented in the previous section are the first numerical methods developed for solving the
optimization problem (3). It is therefore not possible to any make experimental comparisons with algorithms
from the literature. However, this section has two main goals:

• In Algorithms 4 and 6, there are parameters that may influence the effectiveness of the methods, ∆ and
α respectively. Hence the first goal is to compare the performances of these two algorithms for different
values of the parameters.

• Once the best values of the parameters are known, the second goal is to compare the Algorithms 4, 5
and 6. This will allow us to select the most effective algorithm to solve the PSD factorization problems
discussed in Section 5.

4.1 Initialization and scaling

Algorithms 4, 5 and 6 are iterative and need starting points. In this paper, the entries of the ai’s and the bj ’s

are initialized using the normal distribution N (0, 1). Note that for Algorithm 4, we use aiai
T

and bjbj
T

as
random initial iterates so that all algorithms are initialized with the same values.

However, it may happen that with such random factors, we have an initial approximation matrix X̃ way
larger or smaller than X. In order to avoid such situations, we scale the initial factors compared to X: given
intial iterates ai and bj , we compute

λ∗ = arg min
λ

m∑
i=1

n∑
j=1

(
Xi,j − λ

〈
Ai, Bj

〉)2
= arg min

λ

∥∥X − λATB∥∥2

F
=

〈
XBT ,A

〉
〈BBT ,AAT 〉

,

10

with A =
(
vec(A1) ... vec(Am)

)
and B =

(
vec(B1) ... vec(Bn)

)
. The initial error is therefore

e0 =
∥∥∥X − X̃∥∥∥

F
=

√
‖X‖22 −

〈XBT ,A〉2

〈BBT ,AAT 〉
≤ ‖X‖F ,

with the appropriate scaling,

• Ai ← λ∗Ai for i = 1, ...,m for FPGM and,

• ai ←
√
λ∗ai for i = 1, ...,m for the CD methods.

4.2 Data sets

The matrices used for the numerical comparisons are slack matrices; see the discussion in Section 2. Table 2
summarizes the different matrices used in the tests. The factorization rank k used in the experiments is specified
in the fourth column. Note that this is not necessarily the true value of the rankpsd which is used, but it is
either a conjecture or an upper bound. The data set is composed of three types of matrices:

• The slack matrices of regular n-gons are n-by-n circulant matrices for which the (i, j)th entry is the slack
between the ith facet and the jth vertex of the regular n-gon (see [29] for more details on the construction
of such matrices). The values of the factorization rank k are given by the conjecture made on the rankpsd

of regular n-gons in Section 5.1.

• For a given positive integer n, let Un (resp. Vn) be the {0, 1}(
n
bn

2
c)×n (resp. {0, 1}(

n
dn

2
e)×n) matrix where

the rows correspond to the subsets of {1, ..., n} of size
(
n
bn2 c
)

(resp.
(
n
dn2 e
)
). Let Pn be the

(
n
bn2 c
)
-by-

(
n
dn2 e
)

matrix defined as
Pn = UnV

T
n .

These matrices have an interpretation in terms of an inscribed polytope in the (n−2)-sphere (see Problems
9.1 and 9.2 in [6]). The exact value of rankpsd(Pn) is not known but it is bounded as follows,⌈√

1 + 8n− 1

2

⌉
≤ rankpsd(Pn) ≤ 2

⌈√
n
⌉
,

except for n = 5 for which 3 ≤ rankpsd(P5) ≤ 4. The values of the factorization rank k of the matrices Pn
used in the tests are the upper bounds mentioned above.

• The correlation polytope is the convex hull of all n-by-n rank-one 0/1 matrices. Let CORn be a submatrix
of the slack matrix of the correlation polytope. The rows and columns of this 2n-by-2n matrix are indexed
by vectors u, v ∈ {0, 1}n such that

CORn(u, v) =
(
1− uT v

)2
.

Although the nonnegative rank of CORn has been proved to be exponential in n, there exists an explicit
PSD factorization such that rankpsd(CORn) = n+ 1 [8]. These values are used for the factorization rank
in the tests.

4.3 Comparisons for different values of the parameters

In order to compare the performances of the algorithms, we use the measure E(t) defined by

E(t) =
e(t)

e0
(11)

where e0 is the initial error (see Section 4.1), and e(t) is the error ‖X − X̃‖F achieved by an algorithm for a
given initialization within t seconds. Since our algorithms are nonincreasing, we have E(t) ∈ [0, 1] for all t, with

11

m n k
slack matrix of the 12-gon 12 12 5
slack matrix of the 16-gon 16 16 5
slack matrix of the 20-gon 20 20 6
slack matrix of the 24-gon 24 24 6
slack matrix of the 28-gon 28 28 6
slack matrix of the 32-gon 32 32 6

P5 10 10 4
P6 20 20 6
P7 35 35 6

COR3 8 8 4
COR4 16 16 5
COR5 32 32 6

Table 2: Benchmark of nonnegative matrices used in the numerical comparisons.

E(0) = 1 and E(t) →t→∞ 0 if the corresponding algorithm converges towards an exact factorization. In order
to illustrate the efficiency of a given algorithm, (11) has the advantage that it makes sense to take the average
of E(t) for several initializations and data sets and display a single curve. The algorithms were run 10 times
with different initializations during 60 seconds for the following parameters values:

• ∆ = { 1
k , 0.5, 1, 5, 10, 20, 30} for Algorithm 4, and

• α = {0.05, 0.1, 0.5, 1, 5, 20, 40} for Algorithm 6.

FPGM was implemented with Matlab while the CD methods were developed in C with a Matlab interface using
Mex files. The reason is that Matlab is not a well-suited language when one requires to perform many loops
as in Algorithms 5 and 6. The codes are available at https://sites.google.com/site/exactnmf/. All tests
were performed on a PC Intel CORE i5-4570 CPU @3.2GHz × 4, with 7.7G RAM.

The results are displayed on Figure 2.
For FPGM, we observe that the number of inner steps does not influence the efficiency significantly. We

observe that the best average performances are obtained around ∆ = 5. For the Gauss-Southwell algorithm,
the best value of the parameter α is between 0.5 and 1. It means that the number of updated entries must be
roughly the same as in the cyclic case. For the numerical tests that follow, we use the following algorithms:

• FPGM with ∆ = 5.

• The cyclic CD algorithm.

• The Gauss Southwell CD algorithm with α = 0.5.

In the remaining of the section, we compare the performances of these algorithms. Instead of ploting an
average measure, for each matrix and each method, we display the curves of the error ‖X − X̃‖F corresponding
to five different initializations. It allows us to observe the behavior of the methods for different starting points.
The data sets used are those described in Table 2. For each type of matrices, we present the results for two
instances: the matrices with the smallest and the largest size.

From Figure 3, we observe the following:

• There is a general trend emerging from these numerical tests: the Gauss-Southwell CD method outperforms
the cyclic strategy, while this last method performs better than FPGM.

• Algorithm are very sensitive to initialization. For example, the solutions obtained with FPGM on the
12-gon after 60 seconds are rather different, illustrating the fact the local algorithms can get stuck in local
minima. This is clear from the results obtained with the COR3 matrix where most of the runs get stuck
in local minima.

12

https://sites.google.com/site/exactnmf/

10 20 30 40 50 60

10
−3

10
−2

cputime (s.)

E
(t

)

Fast Gradient for PSD Factorization

delta=1/k
delta=0.5
delta=1
delta=5
delta=10
delta=20
delta=30

0 10 20 30 40 50 60

10
−3

10
−2

cputime (s.)

E
(t

)

Coordinate Descent for PSD Factorization

alpha=0.05
alpha=0.1
alpha=0.5
alpha=1
alpha=5
alpha=20
alpha=40

(a) (b)

Figure 2: Evolution of the average measure E(t) for different values of the parameters ∆ and α on the data sets of
Table 2.

• Although the results presented on the left of Figure 3 are instances of small sizes, the final error ‖X−X̃‖F
remains relatively large even after 60 seconds. It contrasts with NMF where the convergence on small
matrices is faster [27].

In conclusion, we recommend to use the Gauss-Southwell CD method which performs best in most cases.
This algorithm will therefore be used in the next section for several applications where the rankpsd is sought.

5 Applications

In this section, we discuss the use of our numerical algorithms for the computation of the psd-rank of particular
matrices. In this purpose, let us give the following (obvious) fact.

Observation 1 For a given matrix X with rankpsd(X) = k, let us denote X̃∗l the best approximation matrix
with l-by-l PSD factors. By definition of rankpsd, we have

‖X − X̃∗l ‖F = 0 for all l ≥ k, and ‖X − X̃∗l ‖F > 0 for all l < k.

Given a matrix X and a target factorization rank k, our nonlinear local optimization methods provide no
guarantee; we can only hope to identify good local minima of the nonconvex problem (3). However, as experi-
mentally demonstrated in [27] for exact NMF, such algorithms can be used in multi-start strategies to detect if
the error ‖X − X̃‖F gets (close) to zero. Moreover, beside conjectures on the psd-rank, Algorithms 5 and 6 can
be helpful to find exact factorizations by trial and error and by fixing manually some entries to specific values.

As an illustration, we discuss the value of the psd-rank of the regular polygons in Section 5.1. With the help
of Algorithm 6, a conjecture is proposed which is confirmed showing exact factorizations, for the first time, for
n = 5, n = 8 and n = 10. In Sections 5.2 and 5.3, we show how to adapt our methods in order to deal with two
related problems, the completely PSD Factorization problem and the problem of computing the square root
rank.

13

0 10 20 30 40 50 60

10
−3

10
−2

10
−1

10
0

P5 − k=4

cputime (s.)

||X
−

X
t||

FastGrad
CD−cycl.
CD−GauSouth

0 10 20 30 40 50 60

10
−1

10
0

P7 − k=6

cputime (s.)

||X
−

X
t||

0 10 20 30 40 50 60

10
−2

10
−1

12−gon − k=5

cputime (s.)

||X
−

X
t||

0 10 20 30 40 50 60

10
−1

32−gon − k=6

cputime (s.)

||X
−

X
t||

0 10 20 30 40 50 60

10
−4

10
−2

10
0

COR3 − k=4

cputime (s.)

||X
−

X
t||

0 10 20 30 40 50 60

10
−2

10
0

COR5 − k=6

cputime (s.)

||X
−

X
t||

Figure 3: Evolution of the error for the different algorithms on the dataset.

14

5.1 Conjecture on the psd-rank of regular n-gons

Let Sn denote the slack matrix of the regular n-gon. We have that

Ω

(
log n

log log n

)
≤ rankpsd(Sn) ≤ 2dlog2(n)e,

where the first inequality comes from quantifier elimination theory [13, 14] and the second inequality uses the
upper bound on rank+(Sn) [9]. The exact value of rankpsd(Sn) is unknown for general n. However, it is known
that (i) the psd-rank of the square is three, (ii) all pentagons and hexagons have psd-rank exactly four and
(iii) the psd-rank of the heptagons is either four or five [14]. Moreover, to the best of our knowledge, an explicit
factorization for regular n-gons is only known for n = 3, n = 4 and n = 6.

For different values of n and k, we run Algorithm 6 on Sn with the inner rank of the factors r = k − 2

(see Section 3.2.5). Table 3 reports the smallest relative error ‖X−X̃‖F‖X‖F found after 100 runs of 10 seconds with

different initializations.

k = 3 k = 4 k = 5 k = 6 k = 7
n = 3 3.1e-7
n = 4 1.3e-7 6.6e-7
n = 5 0.065 2.4e-6 3.8e-6
n = 6 0.049 5.5e-6 5.4e-6
n = 7 0.036 3.9e-5 1.3e-5
n = 8 0.028 1.9e-5 3.4e-5
n = 9 0.022 0.004 8.5e-5 3.7e-5
n = 10 0.018 0.003 8.1e-5 4.9e-5
n = 11 0.015 0.006 1.4e-4 5.4e-5
n = 12 0.012 0.007 2.7e-4 1.2e-4
n = 13 0.01 0.007 5.5e-4 1.6e-4
n = 14 0.009 0.006 6.9e-4 2.8e-4
n = 15 0.008 0.005 8e-4 4e-4
n = 16 0.007 0.005 0.001 5e-4
n = 17 0.006 0.004 0.002 5.6e-4 4.6e-4

Table 3: Smallest relative error obtained over 100 different runs of 10 seconds.

In order to guess a value for the psd-rank of Sn, we have to look at the corresponding row of Table 3. If
an exact factorization is possible for k, the error should be close to zero in the entry (n, k) and larger in the
entry (n, k− 1). For the smallest regular n-gons (n = 3, 4, 5, and 6), the obtained errors are consistent with the
known values of the psd-rank. For n = 7 and n = 8, the results suggest1 that rankpsd(S7) = rankpsd(S8) = 4.
Actually, there is a pattern emerging for n ≥ 7 leading to the following conjecture:

Conjecture 1 The psd-rank of Sn, the slack matrix of the regular n-gon, is given by

rankpsd(Sn) = 1 + dlog2(n)e.

In Table 3, the entries corresponding to the conjecture are highlighted in bold. We have not pursued the
computations beyond n > 17 because the results are less and less clear. The reason is that as n gets bigger, the
regular n-gon get closer to the circle which has a psd-lift of size 2.

1Example 5.2 provides an explicit PSD factorization of size 4 for S8. For S7, we were not able to obtain such an exact factorization
of size 4, although we have tried many different initializations. It is possible that rankpsd(S7) = 5 since there is no result about
the monotonicity of the PSD rank of regular n-gons (this is, as far as we know, an open question). In fact, [12] showed that
monotonicity does not hold for the PSD rank over the complex numbers with rankC

psd(S6) = 3 < 4 ≤ rankC
psd(S5).

15

By trial and error and by fixing more and more entries manually in the factors, we were able to construct, for
the first time, an exact PSD factorization of the 5-gon, the 8-gon and the 10-gon with respective sizes consistent
with Conjecture 1; see the examples below.

Example 5.1 With φ = 1+
√

5
2 , a slack matrix of the regular 5-gon is given by:

S5 =

0 1 φ 1 0
0 0 1 φ 1
1 0 0 1 φ
φ 1 0 0 1
1 φ 1 0 0

 .

A S4
+-factorization of S5 is given by the following factors:

ai =

1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

 ,

1

1+
√
φ

1
1+
√
φ

1
φ− 1√

φ

 ,

bj =

0 0
0 0

1−(
√
φ)3

2

√
1−

(
1−(
√
φ)3

2

)2

√
φ 0

 ,

1
0
0
1

 ,

√
φ

1
0
0

 ,

1
a
−1
0

 ,

0
−1√
φ
−1

 .

Example 5.2 A slack matrix of the 8-gon is given by

S8 =

0 1 1 +
√

2 2 +
√

2 2 +
√

2 1 +
√

2 1 0

0 0 1 1 +
√

2 2 +
√

2 2 +
√

2 1 +
√

2 1

1 0 0 1 1 +
√

2 2 +
√

2 2 +
√

2 1 +
√

2

1 +
√

2 1 0 0 1 1 +
√

2 2 +
√

2 2 +
√

2

2 +
√

2 1 +
√

2 1 0 0 1 1 +
√

2 2 +
√

2

2 +
√

2 2 +
√

2 1 +
√

2 1 0 0 1 1 +
√

2

1 +
√

2 2 +
√

2 2 +
√

2 1 +
√

2 1 0 0 1

1 1 +
√

2 2 +
√

2 2 +
√

2 1 +
√

2 1 0 0

.

Let α1 =
√

1 +
√

2, α2 =
√

2 +
√

2, α3 = 1
α1
− α1, α4 =

√√
2 and α5 =

√
1− 1

α2
1
. A S4

+-factorization of

S8 is given by the following factors:

ai =

1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

1
−α1

−α1

0

 ,

1
α3

α3
−1
α1

 ,

0
−1
−2
1

 ,

0
0
1
−1

 ,

−1
−1
α1−1
α1
1
α1

 ,

b
j

=

 0 0

0 0
−1 0
−1 α1

 ,

−1 0
0 0
0 0
0 −α2

 ,

α1 0
1 0
0 0
1 α1

 ,

−α2 0
−α4 1

0 −1
−α4 0

 ,

α2 0
0 α2

1
α4

−α2
1

α2
2
α4

−
√

2
2

 ,

α1 0

−
√

2 α4√
2 −α4√
2 −α4

 ,

 −1 0
α1 0
−α1 1
−α1 1

 ,

0 0
−1
α1

α5

α1 0
−α3 α5

 .

Example 5.3 A slack matrix of the 10-gon with φ = 1+
√

5
2 is given by

S10 =

0 0 φ−2 1 φ 2 2 φ 1 φ−2

φ−2 0 0 φ−2 1 φ 2 2 φ 1
1 φ−2 0 0 φ−2 1 φ 2 2 φ
φ 1 φ−2 0 0 φ−2 1 φ 2 2
2 φ 1 φ−2 0 0 φ−2 1 φ 2
2 2 φ 1 φ−2 0 0 φ−2 1 φ
φ 2 2 φ 1 φ−2 0 0 φ−2 1
1 φ 2 2 φ 1 φ−2 0 0 φ−2

φ−2 1 φ 2 2 φ 1 φ−2 0 0
0 φ−2 1 φ 2 2 φ 1 φ−2 0

.

16

Let α1 = (
√

2φ)−1/2, α2 = (
√

2/φ)1/2, α3 =
√

2/φ, α4 =
√√

2φ, α5 = −φ3/2 and α6 =
√√

5− 1. A S5
+-

factorization of S10 is given by the following factors:

a
i

=

0 α

−1
1 0

0 α4 0
1 α5 0
0 −1 0
0 0 1

 ,

0 (α1φ)
−1 0

α2 α4φ
−1 0

−1 α5φ
−1 0

0 −φ−1 0
0 0

√
φ

 ,

0 0 0
α2 0 0
−1 0 0

0 φ−1 0
0 0

√
φ

 ,

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ,

α2 0 0
0 0 0
0 φ 0
0 0 α3
0 0 0

 ,

0 0 α
−1
1

0 0 α2
1 0

√
2φ − 1

0 1 0
0 0 −1

 ,

0 0 α4
α2 0 21/4

−1 0
√

2φ −
√
φ

0 φ−1 0
0 0 −

√
φ

 ,

0 (α1φ)
−1 α4

α2 α4φ
−1 21/4

−1 α5φ
−1 √

2φ −
√
φ

0 −φ−1 0
0 0 −

√
φ

 ,

0 α
−1
1 α

−1
1

0 α4 α2
1 α5

√
2φ − 1

0 −1 0
0 0 −1

 ,

α2 0 α3φ

−1

0 0 α4α3
0 φ α5α3
0 0 −α3
0 0 0

,

bj =

0
α1

0√
φ

0

 ,

α1

0
0
1
0

 ,

0
α1

φ−1

0
0

 ,

α1

0
0
0
0

 ,

0
α1

0
0
0

 ,

0
α1

0
0
φ−1

 ,

α1

0
0
0
1

 ,

0
α1

φ−1

0
α6

 ,

α1

0
0
1
1

 ,

0
α1

0√
φ

φ−1

 .

5.2 Adaptation for Completely PSD matrices

For NMF (2) involving a symmetric n-by-n matrix X, the additional constraint requiring W and H to be
equal to each other leads to an optimization problem known as symmetric NMF (SymNMF). Specific numerical
algorithms have been designed for this problem having applications in data mining [17, 20, 28]. When an exact
factorization is possible, that is, X = HHT for a nonnegative n-by-k matrix H, the matrix X is said to be
completely positive. The smallest integer k for which such an exact factorization exists is referred as the cp-rank
of X [1].

By analogy with completely positive matrices, a completely positive semidefinite matrix X is defined as a
n-by-n symmetric matrix for which there exists a set A1, ..., An ∈ Sk+ such that Xi,j =

〈
Ai, Aj

〉
. The smallest

integer k for which it is possible to write such a factorization is called the cpsd-rank of X; see, e.g., [15, 25]. As
opposed to problem (5), the symmetric version

min
Ai∈Sk+
i=1,...,n

n∑
i=1

n∑
j=1

(
Xi,j −

〈
Ai, Aj

〉)2
, (12)

is no longer convex even when all factors Ai’s are fixed but one. However, it is possible to adapt the methods
developed in Section 3.2 in order to handle (12). We propose to keep the problem with two sets of variables
but we add a penalty term to (8) with a scalar γ > 0 in order to enforce the similarity between ai and bi for
i = 1, ..., n, similarly as done for Symmetric NMF in [17, 20]:

min
ai∈Rk×ri
i=1,...,n

f =

n∑
i=1

n∑
j=1

(
Xi,j −

ri∑
h=1

rj∑
l=1

(
ai:,h

T
bj:,l

)2
)2

+ γ

n∑
i=1

‖ai − bi‖22.

This modification of the objective function has limited consequences on Algorithms 5 and 6 since the additional
terms are quadratic. The entry of the gradient corresponding to the variable aip,q is given by

∇aip,qf = c3a
i
p,q

3
+ c2a

i
p,q

2
+ (c1 + 2γ)aip,q + (c0 − 2γbip,q).

With this change, we are now able to compute symmetric factorizations.

Example 5.4 The symmetric 6-by-6 matrix

P4 =

2 1 1 1 1 0
1 2 1 1 0 1
1 1 2 0 1 1
1 1 0 2 1 1
1 0 1 1 2 1
0 1 1 1 1 2

 ,

17

as defined in Section 4.2 has a symmetric factorization with k = 4 with the factors

ai =

1 0
0 1
0 0
0 0

 ,

1 0
0 0
0 1
0 0

 ,

1 0
0 0
0 0
0 1

 ,

0 0
0 1
1 0
0 0

 ,

0 0
1 0
0 0
0 1

 ,

0 0
0 0
1 0
0 1

 .

The choice of the parameter γ can be made in different ways and should be increased in the course of the
optimization process in order to ensure that ai converges to bi for all i. For this particular example, we simply
used γ = 1 which gave us the desired result.

5.3 Adaptation for the square root rank

Given a nonnegative matrix X, a Hadamard square root of X is defined as a matrix obtained by replacing the
(i, j)th entry of X by either

√
Xi,j , or −

√
Xi,j . Hence there are 2N possible Hadamard square root matrices for

a matrix X with N non-zero entries. The square root rank of a nonnegative matrix X is defined as the minimum
rank among the ranks of all the Hadamard square root of X. If a nonnegative matrix X has square root rank
k, then there is an exact PSD factorization of X with rank-1 factors of size k; see Proposition 6.2. in [6] (hence
the square root rank of X is an upper bound on the psd-rank of X). Therefore, we can use Algorithms 5 and 6
with ri = 1 for all i to try to compute the square root rank of X. Note that computing this quantity is NP-hard
as well [6].

Example 5.5 For the 8-gon (and its slack matrix S8; see Example 5.2), we have computed such a rank-one
decomposition with k = 6 and ri = 1 for all i. Note that to compute this decomposition, we had to use many
different starting points (around a thousand) and manually fix some entries of the ai’s and bj’s to zero. In order
to present this decomposition, let us define

S =

0 −1 −1 1 −1 −1 1 0
0 0 1 1 1 −1 1 −1
1 0 0 −1 −1 1 −1 1
1 −1 0 0 −1 −1 1 −1
1 −1 1 0 0 1 1 1
1 1 1 −1 0 0 −1 −1
1 1 1 1 1 0 0 1
−1 1 −1 1 −1 −1 0 0

,

W =

0 −1 −α1 α2 −α2 −α1

0 0 1 α1 α2 −α2

1 0 0 −1 −α1 α2

α1 −1 0 0 −1 −α1

α2 −α1 1 0 0 1
α2 α2 α1 −1 0 0
α1 α2 α2 α1 1 0
−1 α1 −α2 α2 −α1 −1

, and H =

1 0 0 0 0 0 α2
α1−1

0

0 1 0 0 0 0 0 1−α1
α2

0 0 1 0 0 0 1+α1
1−α1

0

0 0 0 1 0 0 0 1
0 0 0 0 1 0 α2

α1−1
0

0 0 0 0 0 1 0 1+α1
α2

,

with α1 =
√

1 +
√

2 and α2 =
√

2 +
√

2. Denoting +
√
S8 the nonnegative Hadamard square root of S8, one can check

that S ◦ +
√
S8 = WH implying that the square root rank of S8 is at most 6. Our algorithms were not able to compute

such a decomposition for k = 5 (relative error always at least 0.6%).

6 Conclusion

In this work, we introduced different algorithms for solving numerically the PSD factorization problem (3).
These algorithms are based on an alternating strategy in order to solve convex subproblems. The first method
proposed uses PSD matrices as variables and implements a fast projected gradient method. The second idea
is to apply the coordinate descent (CD) framework after having expressed the problem as an unconstrained

18

optimization problem. Numerical experiments have been conducted to assess the performances of the different
methods, and we observed that CD with the Gauss-Southwell rule performs consistently the best. Finally, we
have illustrated the ability of our algorithms to help in the computation of non-trivial factorizations for regular
n-gons, for symmetric PSD factorizations and for the square root rank. Note that an earlier version of our code
was also used successfully in [21].

An important direction for future research is the development of a globalization framework, such as in [27] for
NMF, in order to escape local minima and generate, in average, better solutions than with a simple multi-start
strategy as used in this paper.

References

[1] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific, 2003.

[2] S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank
factorization. Mathematical Programming, 95(2):329–357, 2003.

[3] G. Cardano. Ars magna or the rules of algebra. Dover Publications, 1968.

[4] A. Cichocki and A.-H. Phan. Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations.
IEICE Trans. on Fundamentals of Electronics, Vol. E92-A No.3:708–721, 2009.

[5] A. Cichocki, R. Zdunek, and S.-i. Amari. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor
factorization. In International Conference on Independent Component Analysis and Signal Separation, pages 169–
176. Springer, 2007.

[6] H. Fawzi, J. Gouveia, P.A. Parrilo, R.Z. Robinson, and R.R. Thomas. Positive semidefinite rank. Mathematical
Programming, 153(1):133–177, 2015.

[7] H. Fawzi, J. Gouveia, and R.Z. Robinson. Rational and real positive semidefinite rank can be different. Operations
Research Letters, 44(1):59–60, 2016.

[8] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, and R. de Wolf. Linear vs. semidefinite extended formulations:
exponential separation and strong lower bounds. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 95–106. ACM, 2012.

[9] S. Fiorini, T. Rothvoss, and H.R. Tiwary. Extended formulations for polygons. Discrete & Computational Geometry,
48(3):658–668, 2012.

[10] N. Gillis. The why and how of nonnegative matrix factorization. In J.A.K. Suykens, M. Signoretto, and A. Argyriou,
editors, Regularization, Optimization, Kernels, and Support Vector Machines. Chapman & Hall/CRC, Machine
Learning and Pattern Recognition Series, 2014.

[11] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix
factorization. Neural Computation, 24(4):1085–1105, 2012.

[12] A.P. Goucha, J. Gouveia, and P.M. Silva. On ranks of regular polygons. arXiv preprint arXiv:1610.09868, 2016.

[13] J. Gouveia, P.A. Parrilo, and R.R. Thomas. Lifts of convex sets and cone factorizations. Mathematics of Operations
Research, 38(2):248–264, 2013.

[14] J. Gouveia, R.Z. Robinson, and R.R. Thomas. Worst-case results for positive semidefinite rank. Mathematical
Programming, 153(1):201–212, 2015.

[15] S. Gribling, D. de Laat, and M. Laurent. Matrices with high completely positive semidefinite rank. Linear Algebra
and its Applications, 513:122–148, 2017.

[16] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss–seidel method under convex
constraints. Operations research letters, 26(3):127–136, 2000.

[17] N.-D. Ho. Nonnegative matrix factorization algorithms and applications. PhD thesis, Univertsité catholique de
Louvain, 2008.

[18] C.-J. Hsieh and I.S. Dhillon. Fast coordinate descent methods with variable selection for non-negative matrix
factorization. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1064–1072. ACM, 2011.

[19] V. Kaibel. Extended Formulations in Combinatorial Optimization. Optima, 85:2–7, 2011.

19

[20] D. Kuang, S. Yun, and H. Park. SymNMF: nonnegative low-rank approximation of a similarity matrix for graph
clustering. Journal of Global Optimization, 62(3):545–574, 2015.

[21] K. Kubjas, E. Robeva, and R.Z. Robinson. Positive semidefinite rank and nested spectrahedra. arXiv:1512.08766,
2015.

[22] T. Lee and Dirk O. Theis. Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix.
arXiv preprint arXiv:1203.3961, 2012.

[23] Johan Löfberg. Yalmip: A toolbox for modeling and optimization in matlab. In Computer Aided Control Systems
Design, 2004 IEEE International Symposium on, pages 284–289. IEEE, 2004.

[24] Yurii Nesterov. A method of solving a convex programming problem with convergence rate 0(1/k2). In Soviet
Mathematics Doklady, volume 27, pages 372–376, 1983.

[25] A. Prakash, J. Sikora, A. Varvitsiotis, and Z. Wei. Completely positive semidefinite rank. arXiv preprint
arXiv:1604.07199, 2016.

[26] Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. arXiv preprint arXiv:1606.09065,
2016.

[27] A. Vandaele, N. Gillis, F. Glineur, and D. Tuyttens. Heuristics for exact nonnegative matrix factorization. Journal
of Global Optimization, 65(2):369–400, 2016.

[28] A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I.S. Dhillon. Efficient and non-convex coordinate descent for symmetric
nonnegative matrix factorization. IEEE Transactions on Signal Processing, 64(21):5571–5584, 2016.

[29] Arnaud Vandaele, Nicolas Gillis, and François Glineur. On the linear extension complexity of regular n-gons. Linear
Algebra and its Applications, 521:217–239, 2017.

[30] S.J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

[31] M. Yannakakis. Expressing Combinatorial Optimization Problems by Linear Programs. Journal of Computer and
System Sciences, 43(3):441–466, 1991.

A Minimizer of a quartic polynomial

This appendix is devoted to the description of the algorithm for computing the minimum value of the univariate
quartic polynomials arising in Section 3.2, which are of the form

f(x) = c3
x4

4
+ c2

x3

3
+ c1

x2

2
+ c0x+K.

Finding the minimizer of such a function can be done by enumerating the roots of f ′(x) and choosing the one
minimizing f . They are at most three roots to a cubic equation but we will show that in our case, we only
have to consider two of them. We use the well-known trick known under the name Cardano’s method (see for
example [3]) to reduce the identification of the solutions of c3x

3 + c2x
2 + c1x + c0 = 0 to the computation of

the roots of the following depressed cubic polynomial

p(t) = t3 + at+ b,

where a =
3c3c1−c22

3c23
, b =

2c32−9c3c2c1+27c23c0
27c33

and the substitution t− c2
3c3

for x.

• When the quantity ∆ = 4a3 + 27b2 is positive, there is only one real root which has a closed form
expression:

t∗ = 3

√√√√1

2

(
−b+

√
∆

27

)
+ 3

√√√√1

2

(
−b−

√
∆

27

)
.

• When ∆ is negative (which implies a < 0), there are at most three real roots

t∗l = r cos

(
θ +

2lπ

3

)
for l = 0, 1, 2,

20

with r = 2
√
−a
3 and θ = 1

3 arccos
(

3b
2a

√
−3
a

)
. It is easy to check that t1 ≤ t2 ≤ t0 and since the coefficient

of the leading term c3 ≥ 0 in our case, the root t2 always corresponds to a local maximum of f(x).

Taking into accounts the previous observations, Algorithm 7 is the pseudo-code of the method used in our CD
schemes to determine in O(1) operations the minimizer of the univariate quartic polynomials.

Algorithm 7 x = CardanoMethod(c3, c2, c1, c0)

1: INPUT: c3 ∈ R+
0 , c2 ∈ R, c1 ∈ R, c0 ∈ R

2: OUTPUT: x∗ = arg minx c3
x4

4 + c2
x3

3 + c1
x2

2 + c0x.

3: a =
3c3c1−c22

3c23

4: b =
2c32−9c3c2c1+27c23c0

27c33

5: ∆ = 4a3 + 27b2

6: if ∆ ≤ 0 then

7: t0 = 2
√
−a
3 cos

(
1
3 arccos

(
3b
2a

√
−3
a

))
8: t1 = 2

√
−a
3 cos

(
1
3 arccos

(
3b
2a

√
−3
a

)
+ 2π

3

)
9: if

t40
4 + a

t20
2 + bt0 <

t41
4 + a

t21
2 + bt1 then

10: t∗ = t0
11: else
12: t∗ = t1
13: end if
14: else

15: t∗ = 3

√
1
2

(
−b+

√
∆
27

)
+ 3

√
1
2

(
−b−

√
∆
27

)
16: end if
17: x∗ = t∗ − c2

3c3

21

	1 Introduction
	2 Linear and semidefinite extensions, and factorizations
	3 Algorithms for PSD factorization
	3.1 A fast projected gradient method
	3.2 Coordinate descent algorithms
	3.2.1 Change of variables
	3.2.2 Update of one variable
	3.2.3 Computational complexity of the updates
	3.2.4 Variables selection: cyclic or greedy
	3.2.5 Inner rank of the factors

	4 Numerical experiments
	4.1 Initialization and scaling
	4.2 Data sets
	4.3 Comparisons for different values of the parameters

	5 Applications
	5.1 Conjecture on the psd-rank of regular n-gons
	5.2 Adaptation for Completely PSD matrices
	5.3 Adaptation for the square root rank

	6 Conclusion
	A Minimizer of a quartic polynomial

