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CONVERGENCE RATE FOR A RADAU HP COLLOCATION
METHOD APPLIED TO CONSTRAINED OPTIMAL CONTROL ∗

WILLIAM W. HAGER† , HONGYAN HOU‡ , SUBHASHREE MOHAPATRA§, ANIL V. RAO¶

, AND XIANG-SHENG WANG‖

Abstract. For control problems with control constraints, a local convergence rate is established
for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the
discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian
satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a
neighborhood of the continuous solution, and as either the number of collocation points or the
number of mesh intervals increase, the discrete solution convergences to the continuous solution in
the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on
each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage
of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh
is sufficiently small, while the convergence result for global polynomials requires that a norm of the
linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.

Key words. hp collocation, Radau collocation, convergence rate, optimal control, orthogonal
collocation
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1. Introduction. A convergence rate is established for an hp-orthogonal collo-
cation method applied to a constrained control problem of the form

minimize C(x(1))
subject to ẋ(t) = f(x(t),u(t)), u(t) ∈ U , t ∈ Ω0,

x(0) = a, (x,u) ∈ C1(Ω0)× C0(Ω0),







(1.1)

where Ω0 = [0, 1], the control constraint set U ⊂ R
m is closed and convex with

nonempty interior, the state x(t) ∈ Rn, ẋ denotes the derivative of x with respect to
t, f : Rn × Rm → Rn, C : Rn → R, and a is the initial condition, which we assume
is given; Cl(Ω0) denotes the space of l times continuously differentiable functions
mapping Ω0 to Rd for some d. The value of d should be clear from context; states and
costates always have n components and controls have m components. It is assumed
that f and C are at least continuous. When the dynamics in (1.1) can be solved for
the state x as a function of the control u, the control problem reduces to a constrained
minimization over u.

The development of hp-techniques in the context of finite element methods for
boundary-value problems began with the work of Babuška and Gui in [25, 26, 27], and
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Babuška and Suri in [1, 2, 3]. In the hp-collocation approach that we develop for (1.1),
the time domain Ω0 is initially partitioned into a mesh. To simplify the discussion,
we focus on a uniform mesh consisting of K intervals [tk−1, tk] defined by the mesh
points tk = k/K where 0 ≤ k ≤ K. The dynamics of (1.1) are reformulated using a
change of variables. Let tk+1/2 = (tk + tk+1)/2 be the midpoint of the mesh interval
[tk, tk+1]. We make the change of variables t = tk−1/2 + hτ , where h = 1/(2K) is
half the width of the mesh interval and τ ∈ Ω := [−1, 1]; let us define xk : Ω → Rn

by xk(τ) = x(tk−1/2 + hτ). Thus xk corresponds to the restriction of x to the mesh
interval [tk−1, tk]. Similarly, we define a control uk corresponding to the restriction of
u to the mesh interval [tk−1, tk]. In the new variables, the control problem reduces to
finding K state-control pairs (xk,uk), 1 ≤ k ≤ K, each pair defined on the interval
[−1, 1], to solve the problem

minimize C(xK(1))
subject to ẋk(τ) = hf(xk(τ),uk(τ)), uk(τ) ∈ U , τ ∈ Ω,

xk(−1) = xk−1(1), 1 ≤ k ≤ K,
(xk,uk) ∈ C1(Ω)× C0(Ω).















(1.2)

Since the function x0 does not exist (there is no 0-th mesh interval), we simply define
x0(1) = a, the initial condition. The condition

xk(−1) = xk−1(1) (1.3)

in (1.2) corresponds to the initial condition x(0) = a when k = 1 and to continuity of
the state across a mesh interval boundary when k > 1. Throughout the paper, (1.3)
is referred to as the continuity condition.

In the hp-scheme developed in this paper, the dynamics for xk are approximated
by the Radau collocation scheme developed in [10, 22, 23, 31]. Let PN denote the
space of polynomials of degree at most N defined on the interval Ω, and let Pn

N denote
the n-fold Cartesian product PN × . . .×PN . We analyze a discrete approximation to
(1.2) of the form

minimize C(xK(1))
subject to ẋk(τi) = hf(xk(τi),uki), 1 ≤ i ≤ N, uki ∈ U ,

xk(−1) = xk−1(1), 1 ≤ k ≤ K, xk ∈ Pn
N .







(1.4)

Note that there is no polynomial associated with the control; uki corresponds to the
value of the control at tk−1/2 + hτi. In (1.4) the dimension of PN is N + 1 and there
are K mesh intervals, so a component of the state variable is chosen from a space of
dimension K(N + 1). Similarly, there are KN +K equations in (1.4) corresponding
to the collocated dynamics at KN points and the K continuity conditions, the initial
condition at t = 0 and the K − 1 continuity conditions for the state at the interior
mesh points.

For simplicity in the analysis, the same degree polynomials are used in each
mesh interval, while in practical implementations of the hp-scheme [10, 11, 38, 40],
polynomials of different degrees are often used on different intervals. On intervals
where the solution is smooth, high degree polynomials are employed, while on intervals
where the solution is nonsmooth, low degree polynomials are used.

We focus on a collocation scheme based on the N Radau quadrature points sat-
isfying

−1 < τ1 < τ2 < . . . < τN = 1.
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The Radau points are related to the zeros of a Jacobi polynomial. Recall that the

Jacobi polynomials P
(α,β)
N are a class of polynomials orthogonal with respect to the

weight (1−τ)α(1+τ)β for τ ∈ [−1, 1]; the subscriptN specifies the polynomial degree.
The interior Radau abscissa τi, 1 ≤ i ≤ N − 1, are the zeros of the Jacobi polynomial

P
(1,0)
N−1 associated with the weight 1−τ . These quadrature points are sometimes called

the flipped Radau points, while the standard Radau points are −τi, 1 ≤ i ≤ N . The
analysis is the same for either set of points, while the notation is a little cleaner for
the flipped points. Besides the N collocation points, our analysis also utilizes the
noncollocated point τ0 = −1.

It is pointed out in [32] that for a global collocation scheme where K = 1, the
discrete dynamics may be infeasible for certain choices of N . In contrast, the analysis
in this paper implies that locally, for each choice of the discrete control, there exists
a unique discrete state which satisfies the discrete dynamics when K is sufficiently
large, or equivalently, when h is sufficiently small, regardless of the choice for N . In
this respect, the hp-collocation approach is more robust than a global scheme.

Other global collocation schemes that have been presented in the literature are
based on the Lobatto quadrature points [17, 20], on the Chebyshev quadrature points
[18, 21], on the Gauss quadrature points [4, 23], and on the extrema of Jacobi poly-
nomials [45]. Kang [36, 37] considers control systems in feedback linearizable normal
form, and shows that when the Lobatto discretized control problem is augmented with
bounds on the states and control, and on certain Legendre polynomial expansion coef-
ficients, then the objectives in the discrete problem converge to the optimal objective
of the continuous problem at an exponential rate. Kang’s analysis does not involve
coercivity assumptions for the continuous problem, but instead imposes bounds in the
discrete problem. Also, in [24] a consistency result is established for a scheme based
on Lobatto collocation.

Any of the global schemes could be developed into an hp-collocation scheme. Our
rationale for basing our hp-scheme on the Radau collocation points was the following:
In numerical experiments such as those in [23], there is often not much difference
between the convergence speed of approximations based on either Gauss or Radau
collocation, while the Lobatto scheme often converged much slower; and in some
cases, the Lobatto costate approximation did not converge due to a null space that
arises in the first-order optimality conditions – see [23]. On the other hand, the imple-
mentation of an hp-scheme based on the Radau quadrature points was much simpler
than the implementation based on the Gauss quadrature points. The Gauss points
lie in the interior of each mesh interval, which requires the introduction of the state
value at the mesh points. Since one of the Radau points is a mesh point, there is
no need to introduce an additional noncollocated point. The implementation ease
of Chebyshev quadrature should be similar to that of Gauss and was not pursued.
The hp-collocation scheme analyzed in this paper corresponds to the scheme imple-
mented in the popular GPOPS-II software package [42] for solving optimal control
problems. This paper, in essence, provides a theoretical justification for the algorithm
implemented in the software.

For x ∈ C0(Ω0), we use the sup-norm ‖ · ‖∞ given by

‖x‖∞ = sup{|x(t)| : t ∈ Ω0},
where | · | is the Euclidean norm. Given y ∈ Rn, the ball with center y and radius ρ
is denoted

Bρ(y) = {x ∈ R
n : |x− y| ≤ ρ}.



4 W. W. HAGER, H. HOU, S. MOHAPATRA, A. V. RAO, AND X.-S. WANG

The following regularity assumption is assumed to hold throughout the paper.
Smoothness. The problem (1.1) has a local minimizer (x∗,u∗) in C1(Ω0) ×

C0(Ω0). For some ρ > 0 and open set O ⊂ Rm+n such that

Bρ(x
∗(t),u∗(t)) ⊂ O for all t ∈ Ω0,

the first two derivative of f and C are Lipschitz continuous on the closure of O and
on Bρ(x

∗(1)) respectively.
Let λ∗ denote the solution of the linear costate equation

λ̇∗(t) = −∇xH(x∗(t),u∗(t),λ∗(t)), λ∗(1) = ∇C(x∗(1)), (1.5)

where H is the Hamiltonian defined by H(x,u,λ) = λTf(x,u) and ∇ denotes gra-
dient. By the first-order optimality conditions (Pontryagin’s minimum principle), we
have

−∇uH(x∗(t),u∗(t),λ∗(t)) ∈ NU(u
∗(t)) for all t ∈ Ω0. (1.6)

For any u ∈ U ,

NU(u) = {w ∈ R
m : wT(v − u) ≤ 0 for all v ∈ U},

while NU(u) = ∅ if u 6∈ U .
We will show in Proposition 2.1 that the first-order optimality conditions (Karush-

Kuhn-Tucker conditions) for (1.4) are equivalent to the existence of λk ∈ Pn
N−1,

1 ≤ k ≤ K, such that

λ̇k(τi) = −h∇xH (xk(τi),uki,λk(τi)) , 1 ≤ i < N, (1.7)

λ̇k(1) = −h∇xH (xk(1),ukN ,λk(1)) + (λk(1)− λk+1(−1)) /ωN , (1.8)

where λK+1(−1) := ∇C (xK(1))

NU(uki) ∋ −∇uH (xk(τi),uki,λk(τi)) , 1 ≤ i ≤ N. (1.9)

Since the K+1 mesh interval does not exist, (1.8) includes a definition for λK+1(−1).
As we will see in Proposition 2.1, λk(−1) for k ≤ K is the multiplier associated with
the continuity condition (1.3). Throughout the paper, ωi, 1 ≤ i ≤ N , is the Radau
quadrature weight associated with τi. The weight ωi is the integral over [−1, 1] of
the i-th Lagrange polynomial associated with the Radau points τi, 1 ≤ i ≤ N . This
Lagrange polynomial of degree N − 1 equals 1 at the i-th Radau point and 0 at the
other Radau points. By [43, Eq. (3.134b)],

ωi =
2(1 + τi)

[(1 − τ2i )Ṗ
(1,0)
N−1 (τi)]

2
, 1 ≤ i ≤ N − 1, ωN =

2

N2
,

where Ṗ
(1,0)
N−1 (τi) is the derivative of the Jacobi polynomial P

(1,0)
N−1 evaluated at it i-th

zero. Hence, the Radau quadrature weights are all positive. Szegő in [44, Thm. 8.9.1]
provides tight estimates for both the τi and the derivatives of the Jacobi polynomial
at τi which yield a bound of the form

ωi ≤ cN−1
√

1− τ2i , 1 ≤ i < N.
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By [43, Thm. 3.26],

∫ 1

−1

p(τ)dτ =

N
∑

i=1

ωip(τi)

for every p ∈ P2N−2. Taking p = 1, we see that the quadrature weights sum to 2.
Notice that the system (1.7)–(1.9) for the costate approximation does not contain

a continuity condition as in the primal discretization (1.4), so the costate approxi-
mation could be discontinuous across the mesh points. Since PN−1 has dimension N
and 1 ≤ k ≤ K, the approximation to a component of the costate has dimension KN ,
while (1.7)–(1.8) provides KN equations. Hence, if a continuity condition for the
costate were imposed at the mesh points, the system of equations (1.7)–(1.9) along
with the continuity condition would be overdetermined.

The following two assumptions are utilized in the convergence analysis.
(A1) For some α > 0, the smallest eigenvalue of the Hessian matrices ∇2C(x∗(1))

and ∇2
(x,u)H(x∗(t),u∗(t),λ∗(t)) is greater than or equal to α, uniformly for

t ∈ Ω0.
(A2) K is large enough, or equivalently h is small enough, that 2hd1 < 1 and

2hd2 < 1, where

d1 = sup
t∈Ω0

‖∇xf(x
∗(t),u∗(t))‖∞ and d2 = sup

t∈Ω0

‖∇xf(x
∗(t),u∗(t))T‖∞. (1.10)

Here ‖ · ‖∞ is the matrix sup-norm (largest absolute row sum).

The coercivity assumption (A1) ensures that the solution of the discrete prob-
lem is a local minimizer. The condition (A2) enters into the analysis of stability for
the perturbed dynamics; as we will see, it ensures that for any choice of the discrete
control, there exists a unique choice for the discrete state that satisfies the linearized
dynamics. In [32, p. 804], where we analyze a Gauss collocation scheme on a single
interval, there is no h in the analogue of (A2). Hence, the convergence theory in
[32] only applies to problems for which ∇xf(x

∗(t),u∗(t)) is sufficiently small. Conse-
quently, the convergence theory for the hp-scheme is more robust since it applies to a
broader class of problems.

In addition to the two assumptions, the analysis utilizes four properties of the
Radau collocation scheme. Let D be the N by N + 1 matrix defined by

Dij = L̇j(τi), where Lj(τ) :=

N
∏

l=0
l 6=j

τ − τl
τj − τl

, 1 ≤ i ≤ N and 0 ≤ j ≤ N. (1.11)

The matrix D is a differentiation matrix in the sense that for any p ∈ RN+1, (Dp)i =
ṗ(τi), 1 ≤ i ≤ N , where p ∈ PN is the polynomial that satisfies p(τj) = pj for
0 ≤ j ≤ N . The submatrix D1:N , consisting of the trailing N columns of D, has the
following properties:

(P1) D1:N is invertible and ‖D−1
1:N‖∞ = 2.

(P2) If W is the diagonal matrix containing the Radau quadrature weights ω on
the diagonal, then the rows of the matrix [W1/2D1:N ]−1 have Euclidean norm
bounded by

√
2.

The proof of (P1) and (P2) are given in Appendix 1.
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There is a related matrix that enters into the convergence analysis of the hp-
scheme. Let D‡ be the N by N matrix defined by

D‡
ij = −

(

ωj

ωi

)

Dji, 1 ≤ i ≤ N, 1 ≤ j ≤ N. (1.12)

The matrix D‡ arises in the analysis of the costate equation. In Section 4.2.1 of [23],
we introduce a matrix D† which is a differentiation matrix for the collocation points
τi, 1 ≤ i ≤ N . That is, if p is a polynomial of degree at most N − 1 and p is the
vector with components p(τi), 1 ≤ i ≤ N , then (D†p)i = ṗ(τi). The matrix D‡ only

differs from D† in a single entry: D‡
NN = D†

NN − 1/ωN . As a result,

(D‡p)i = ṗ(τi), 1 ≤ i < N, (D‡p)N = ṗ(τN )− p(1)/ωN . (1.13)

If D‡p = 0, then ṗ(τi) = 0 for i < N by the first equality in (1.13). Since ṗ has degree
N − 2 and it vanishes at N − 1 points, ṗ is identically zero and p is constant. By the
final equation in (1.13), p(1) = 0 when D‡p = 0, which implies that p is identically
zero. This shows that D‡ is invertible. We find that D‡ has the following properties:

(P3) D‡ is invertible and ‖(D‡)−1‖∞ ≤ 2.
(P4) The rows of the matrix [W1/2D‡]−1 have Euclidean norm bounded by

√
2.

In Proposition 11.1 at the end of the paper, an explicit formula is given for the
inverse of D‡. However, it is not clear from the formula that ‖(D‡)−1‖∞ is bounded
by 2. It is shown in Appendix 1, in inequality (10.7), that (P2) implies (P1). By
the same inequality, (P4) implies (P3). Unlike (P1) where the norm ‖D−1

1:N‖∞ is 2 as
shown in Lemma 10.1, it is observed numerically that the norm ‖(D‡)−1‖∞ is strictly
less than 2, and it approaches 2 in the limit as N tends to infinity. In the Appendix,
we observe that for N up to 300, these norms increase monotonically towards the
given bounds. Again, the proof of (P4) for general N is currently open. Properties
(P1)–(P4) differ from the assumptions (A1)–(A2) in the sense that (A1)–(A2) only
hold for certain control problems; while (P1)–(P4) seem to hold in general.

In the analysis of the Gauss scheme [32], properties (P3) and (P4) follow immedi-
ately from (P1) and (P2) since the analogue ofD‡ in [32] is related toD1:N through an
exchange operation. However, due to the asymmetry of the Radau collocation points
and the lower degree of the polynomials in the discrete adjoint system (1.7)–(1.9), a
corresponding relationship between D‡ and D1:N in the Radau scheme does not seem
to hold. Nonetheless, the bounds in (P3) and (P4) are observed to be the same as
the bounds in (P1) and (P2).

Given a local minimizer (x∗,u∗) of (1.1), let x∗
k, u

∗
k, and λ∗

k be the state, control,
and costate associated with the mesh interval [tk−1, tk] and the change of variables t =
tk−1/2 + hτ , and define tkj = tk−1/2 + hτj . The domain of x∗

k, u
∗
k, or λ

∗
k is [−1,+1]

where −1 corresponds to tk−1 and +1 corresponds to tk. We define the following
related discrete variables:

X∗
kj = x∗

k(τj) = x∗(tkj), 0 ≤ j ≤ N, 1 ≤ k ≤ K,

U∗
kj = u∗

k(τj) = y∗(tkj), 1 ≤ j ≤ N, 1 ≤ k ≤ K,

Λ∗
kj = λ∗

k(τj) = λ∗(tkj), 0 ≤ j ≤ N, 1 ≤ k ≤ K.







(1.14)

Suppose that xN
k ∈ Pn

N , 1 ≤ k ≤ K, is a polynomial which is a stationary point of
(1.4) for some discrete controls uN

k , and suppose that λN
k ∈ Pn

N−1 satisfy (1.7)–(1.9).
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We define the following related discrete variables:

XN
kj = xN

k (τj), 0 ≤ j ≤ N, 1 ≤ k ≤ K,

UN
kj = uN

kj , 1 ≤ j ≤ N, 1 ≤ k ≤ K,

ΛN
kj = λN

k (τj), 0 ≤ j ≤ N, 1 ≤ k ≤ K.

Thus capital letters always refer to discrete variables. As noted earlier, the costate
polynomials associated with the discrete problem are typically discontinuous across
the mesh points, and ΛN

kN 6= ΛN
k+1,0.

The convergence analysis only involves the smoothness of the optimal state and
associated costate on the interior of each mesh interval. Let Hp(a, b) denote the
Sobolev space of functions with square integrable derivatives on (a, b) through order p.
Let PHp(Ω0) denote the space of continuous functions whose restrictions to (tk−1, tk)
are contained in Hp(tk−1, tk) for each k between 1 and K (piecewise Hp). The norm
on PHp(Ω0) is the same as the norm on Hp(Ω0) except that the integral is computed
over the interior of each mesh interval. In this paper, the error bounds are expressed
in terms of a seminorm | · |PHp(Ω0) which only involves the p-th order derivative:

|x|PHp(Ω0) =

(

K
∑

k=1

∫ tk

tk−1

∣

∣

∣

∣

dpx(t)

dtp

∣

∣

∣

∣

2

dt

)1/2

.

The following convergence result relative to the vector sup-norm (largest absolute
element) will be established.

Theorem 1.1. If (x∗,u∗) is a local minimizer for the continuous problem (1.1)
with x∗ and λ∗ ∈ PHη(Ω0) for some η ≥ 2, and (A1), (A2), and (P4) hold, then for

N sufficiently large or for h sufficiently small with N ≥ 2, the discrete problem (1.4)
has a local minimizer and associated multiplier satisfying (1.7)–(1.9), and we have

max
{∥

∥XN −X∗∥
∥

∞ ,
∥

∥UN −U∗∥
∥

∞ ,
∥

∥ΛN −Λ∗∥
∥

∞
}

≤ hp−1
( c

N

)p−1

|x∗|PHp(Ω0) + hq−1
( c

N

)q−1.5

|λ∗|PHq(Ω0), (1.15)

where p = min(η,N + 1), q = min(η,N), and c is independent of h, N , and η.

The proof of Theorem 1.1 begins in Section 2 where the discrete first-order opti-
mality conditions are formulated as an inclusion of the form T (X,U,Λ) ∈ F(U). In
Section 4 a bound is obtained for the distance d∗ from T (X∗,U∗,Λ∗) to F(U∗), where
(X∗,U∗,Λ∗) denotes the optimal discrete variables defined in (1.14). This bound is
based on an estimate given in Section 3 for the H1 approximation error of the poly-
nomial that interpolates x∗ at τi, 0 ≤ i ≤ N . The remainder of the paper focuses
on showing that the bound for d∗ is also a bound for the distance from (X∗,U∗,Λ∗)
to a solution of the inclusion T (X,U,Λ) ∈ F(U). The analysis is based on Proposi-
tion 2.2, where it is shown that such a bound can be obtained if a linearized version of
the original inclusion is stable under perturbations. More precisely, we need to show
that the problem of finding (X,U,Λ) such that

∇T (X∗,U∗,Λ∗)[X,U,Λ] +Y ∈ F(U)

has a unique solution which depends Lipschitz continuously on the perturbation Y.
This analysis, which utilizes assumptions (A1)–(A2) and properties (P1)–(P4), begins
in Section 5 where perturbations in the linearized state and costate discrete dynamics
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are analyzed. In Section 6 it is shown that solving the linearized inclusion is equiva-
lent to solving a quadratic program, where perturbations in the inclusion appear as
linear terms in the quadratic program; the strong convexity assumption (A1) implies
the existence of a unique solution to the quadratic program, which in turn implies
the existence of a unique solution to the inclusion. Finally, in Section 7 the unique
solution of the linearized inclusion is shown to depend Lipschitz continuously on the
perturbation. This Lipschitz property and the bound for d∗ are combined with Propo-
sition 2.2 to obtain (1.15). The tightness and possible extensions of the error bound
(1.15) are explored in Section 8 using some problems with known solutions. In the
proof of Theorem 1.1, we need to make the right side of (1.15) sufficiently small to
establish the existence of the claimed solution to the discrete problem. The conditions
η ≥ 2 and N ≥ 2 in the statement of the theorem ensure that as h goes to zero, hp−1

and hq−1 go to zero, and as N tends to infinity, (c/N)p−1 and (c/N)q−1.5 go to zero.

Since the discrete costate could be discontinuous across a mesh point, Theorem 1.1
implies convergence of the discrete costate on either side of the mesh point to the
continuous costate at the mesh point. The discrete problem provides an estimate for
the optimal control at t = 1 in the continuous problem, but not at t = 0 since this
is not a collocation point. Due to the strong convexity assumption (A1), an estimate
for the discrete control at t = 0 can be obtained from the minimum principle (1.6)
since the initial state is given, while we have an estimate for the associated costate at
t = 0. Alternatively, polynomial interpolation could be used to obtain estimates for
the optimal control at t = 0.

In a recent paper [34], where we analyze a Gauss collocation scheme on a single
interval, p = q = min(η,N+1). The differences between Radau and Gauss collocation
are due to the asymmetry of the Radau points, and the asymmetry in the Radau first-
order optimality conditions; that is, for the Radau points, λk ∈ Pn

N−1 while xk ∈ Pn
N .

Notation. We let Ω denote the interval [−1, 1], while Ω0 is the interval [0, 1]. Let
PN denote the space of polynomials of degree at most N , while P0

N is the subspace
consisting of polynomials in PN that vanish at t = −1 and t = 1. The meaning of
the norm ‖ · ‖∞ is based on context. If x ∈ C0(Ω), then ‖x‖∞ denotes the maximum
of |x(t)| over t ∈ [−1, 1], where | · | is the Euclidean norm. For a vector v ∈ Rm,
‖v‖∞ is the maximum of |vi| over 1 ≤ i ≤ m. If A ∈ Rm×n, then ‖A‖∞ is the
largest absolute row sum (the matrix norm induced by the ℓ∞ vector norm). We let
|A| denote the matrix norm induced by the Euclidean vector norm. Throughout the
paper, the index k is used for the mesh interval, while the indices i and j are associated
with collocation points. If p ∈ RKNn, then pk for 1 ≤ k ≤ K refers to vector with
components pkj ∈ R

n, for 1 ≤ j ≤ N . The dimension of the identity matrix I is often
clear from context; when necessary, the dimension of I is specified by a subscript.
For example, In is the n by n identity matrix. The gradient is denoted ∇, while ∇2

denotes the Hessian; subscripts indicate the differentiation variables. Throughout the
paper, c is a generic constant which has different values in different equations. The
value of c is always independent of h, N , and η. The vector 1 has all entries equal to
one, while the vector 0 has all entries equal to zero; again, their dimension should be
clear from context. If D is the differentiation matrix introduced in (1.11), then Dj is
the j-th column ofD and Di:j is the submatrix formed by columns i through j. We let
⊗ denote the Kronecker product. If U ∈ Rm×n and V ∈ Rp×q, then U⊗V is the mp
by nq block matrix whose (i, j) block is uijV. We let L2(Ω) denote the usual space
of square integrable functions on Ω, while Hp(Ω) is the Sobolev space consisting of
functions with square integrable derivatives through order p. The seminorm in Hp(Ω),
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corresponding to the L2(Ω) norm of the p-order derivatives, is denoted | · |Hp(Ω). The
subspace of H1(Ω) corresponding to functions that vanish at t = −1 and t = 1 is
denoted H1

0(Ω).

2. Abstract setting. Given a feasible point for the discrete problem (1.4), de-
fine Xkj = xk(τj) and Uki = uki. As noted earlier, D is a differentiation matrix in
the sense that

N
∑

j=0

DijXkj = ẋk(τi), 1 ≤ i ≤ N.

Hence, the discrete problem (1.4) can be reformulated as

minimize C(XKN )

subject to
∑N

j=0 DijXkj = hf(Xki,Uki), Uki ∈ U , 1 ≤ i ≤ N,

Xk0 = Xk−1,N , 1 ≤ k ≤ K,







(2.1)

where X0N = a, the starting condition.

We introduce multipliers µki associated with the constraints in (2.1) and write
the Lagrangian as

L(µ,X,U) =

C (XKN ) +

K
∑

k=1

N
∑

i=1

〈

µki, hf(Xki,Uki)−
N
∑

j=0

DijXkj

〉

+

K
∑

k=1

〈µk0, (Xk−1,N −Xk0)〉 .

The first-order optimality conditions for (2.1), often called the Karush-Kuhn-Tucker
(KKT) conditions, lead to the following relations (we show the variable with which
we differentiate the Lagrangian followed by the associated condition):

Xk0 ⇒
N
∑

i=1

Di0µki = −µk0, (2.2)

Xkj ⇒
N
∑

i=1

Dijµki = h∇xH(Xkj ,Ukj ,µkj), 1 ≤ j < N, (2.3)

XkN ⇒
N
∑

i=1

DiNµki = h∇xH(XkN ,UkN ,µkN ) + µk+1,0, (2.4)

µK+1,0 := ∇C(XKN ), (2.5)

Uki ⇒ −∇uH (Xki,Uki,µki) ∈ NU(Uki). (2.6)

We first relate the KKT multipliers in (2.2)–(2.6) to the polynomials satisfying
(1.7)–(1.9).

Proposition 2.1. The multipliers µk ∈ RNn satisfy (2.2)–(2.6) if and only if

the polynomial λk ∈ Pn
N−1 given by λk(τi) = µki/ωi, 1 ≤ i ≤ N , satisfies (1.7)–(1.9).

Moreover, µk0 = λk(−1).

Proof. We start with multipliers µk satisfying (2.2)–(2.6). Define Λki = µki/ωi

for 1 ≤ i ≤ N , and let λk ∈ Pn
N−1 be the polynomial that satisfies λk(τi) = Λki.

Also, set Λk0 = µk0. In terms of Λki and the matrix D‡
ij = −ωjDji/ωi, the equations
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(2.3), (2.4), and (2.6) become

N
∑

j=1

D‡
ijΛkj = −h∇xH(Xki,Uki,Λki), 1 ≤ i < N, (2.7)

N
∑

i=1

D‡
NiΛki = −[h∇xH(XkN ,UkN ,ΛkN ) +Λk+1,0/ωN ], (2.8)

NU (Uki) ∋ −∇uH(Xki,Uki,Λki), 1 ≤ i ≤ N. (2.9)

Since the polynomial that is identically equal to 1 has derivative 0 and since D
is a differentiation matrix, we have D1 = 0, which implies that D0 = −∑N

j=1 Dj ,
where Dj is the j-th column of D. Hence, the first definition in (2.2) can be written

Λk0 = −
N
∑

i=1

µkiDi0 =
N
∑

i=1

N
∑

j=1

µkiDij =
N
∑

i=1

N
∑

j=1

ωj

(

µki

ωi

)

(ωiDij/ωj)

= −
N
∑

i=1

N
∑

j=1

ωiD
‡
ijΛkj (2.10)

= Λk+1,0 + h

N
∑

i=1

ωi∇xH(Xki,Uki,Λki), (2.11)

where (2.11) is due to (2.7)–(2.8).
As noted in (1.13),

N
∑

j=1

D‡
ijΛkj = λ̇k(τi), 1 ≤ i < N, and (2.12)

N
∑

j=1

D‡
NjΛkj = λ̇k(1)− λk(1)/ωN . (2.13)

This substitution in (2.10) yields

Λk0 = λk(1)−
N
∑

i=1

ωiλ̇k(τi). (2.14)

Since λ̇k ∈ Pn
N−2 and N -point Radau quadrature is exact for these polynomial, we

have

N
∑

i=1

ωiλ̇k(τi) =

∫ 1

−1

λ̇k(τ)dτ = λk(1)− λk(−1). (2.15)

Combine (2.14) and (2.15) to obtain

Λk0 = λk(−1). (2.16)

Let xk ∈ Pn
N be the polynomial that satisfies xk(τj) = Xkj for all 0 ≤ j ≤ N .

By (2.12), (1.7) is equivalent to (2.7) which is equivalent to (2.3) after a change of
variables. By (2.13) and (2.16), (1.8) is equivalent to (2.8), which is equivalent to
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(2.4) after a change of variables. Finally, (1.9) is the same as (2.9) which is equivalent
to (2.6) after a change of variables. The equivalence between Λk0 and λk(−1) was
derived in (2.16). This shows that the polynomial λk(τ) satisfies (1.7)–(1.9). The
converse of the proposition follows by reversing all the steps in the derivation.

The dynamics for (2.1), the first-order optimality conditions (2.7)–(2.9), the for-
mula (2.11) for Λk0, and the terminal costate condition (2.5) can be written as
T (X,U,Λ) ∈ F(U) where

T1ki(X,U,Λ) =





N
∑

j=0

DijXkj



− hf(Xki,Uki), 1 ≤ i ≤ N, (2.17)

T2k(X,U,Λ) = Xk0 −Xk−1,N , (2.18)

T3ki(X,U,Λ) =





N
∑

j=1

D‡
ijΛkj



+ h∇xH(Xki,Uki,Λki), 1 ≤ i < N, (2.19)

T3kN (X,U,Λ) =

N
∑

j=1

D‡
NjΛkj + h∇xH (XkN ,UkN ,ΛkN ) +Λk+1,0/ωN , (2.20)

T4k(X,U,Λ) = Λk0 −Λk+1,0 − h
N
∑

i=1

ωi∇xH(Xki,Uki,Λki), (2.21)

T5(X,U,Λ) = ∇C(XKN )−ΛK+1,0, (2.22)

T6ki(X,U,Λ) = −h∇uH(Xki,Uki,Λki), 1 ≤ i ≤ N, (2.23)

where 1 ≤ k ≤ K. The initial state is X0N = X10 = a. The components of F are
given by

F1 = F2 = F3 = F4 = F5 = 0, and F6ki(U) = NU(Uki).

The proof of Theorem 1.1 is based on [16, Proposition 3.1], given below in a
slightly simplified form. Other results like this are contained in Theorem 3.1 of [15],
in Proposition 5.1 of [29], in Theorem 2.1 of [30], and in Theorem 1 of [28].

Proposition 2.2. Let X be a Banach space and let Y be a linear normed space

with the norms in both spaces denoted ‖ · ‖. Let F : X 7→ 2Y and let T : X 7→ Y with

T continuously Fréchet differentiable in Br(θ
∗), the ball with center θ∗ and radius

r, for some θ∗ ∈ X and r > 0. Suppose that the following conditions hold for some

δ ∈ Y and scalars ǫ and γ > 0:
(C1) T (θ∗) + δ ∈ F(θ∗).
(C2) ‖∇T (θ)−∇T (θ∗)‖ ≤ ǫ for all θ ∈ Br(θ

∗).
(C3) The map (F−∇T (θ∗))−1 is single-valued and Lipschitz continuous with Lip-

schitz constant γ.
If ǫγ < 1 and ‖δ‖ ≤ (1 − γǫ)r/γ, then there exists a unique θ ∈ Br(θ

∗) such that

T (θ) ∈ F(θ). Moreover, we have the estimate

‖θ − θ∗‖ ≤ γ

1− γǫ
‖δ‖. (2.24)

Proof. Define Φ(θ) = [F − ∇T (θ∗)]−1[T − ∇T (θ∗)](θ). For all θ1 and θ2 ∈
Br(θ

∗), a Taylor expansion with integral remainder term yields

[T −∇T (θ∗)](θ2) = [T −∇T (θ∗)](θ1)+

∫ 1

0

[∇T (θ1+s(θ2−θ1))−∇T (θ∗)] ds (θ2−θ1).
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By (C2), it follows that

‖[T −∇T (θ∗)])(θ2)− [T −∇T (θ∗)](θ1)‖ ≤ ǫ‖θ2 − θ1‖. (2.25)

By (C3) and (2.25), we have

‖Φ(θ1)− Φ(θ2)‖
= ‖[F −∇T (θ∗)]−1[T −∇T (θ∗)](θ1)− [F −∇T (θ∗)]−1[T −∇T (θ∗)](θ2)‖
≤ γ‖[T −∇T (θ∗)](θ1)− [T −∇T (θ∗)](θ2)‖
≤ ǫγ‖θ1 − θ2‖.

Since ǫγ < 1, Φ is a contraction on Br(θ
∗). Subtracting ∇T (θ∗)(θ∗) from each side

of (C1) gives

[T −∇T (θ∗)]θ∗ + δ ∈ [F −∇T (θ∗)](θ∗),

and utilizing the uniqueness in (C3) yields

θ∗ = [F −∇T (θ∗)]−1[(T −∇T (θ∗))θ∗ + δ].

With this substitution, it follows from (2.25), (C3), and (C2) that

‖Φ(θ)− θ∗‖
= ‖[F −∇T (θ∗)]−1[T −∇T (θ∗)](θ)− [F −∇T (θ∗)]−1[(T −∇T (θ∗))(θ∗) + δ]‖
≤ γ‖[T −∇T (θ∗)](θ)− [T −∇T (θ∗)](θ∗)− δ]‖
≤ γ(ǫ‖θ − θ∗‖+ ‖δ‖) ≤ γ(ǫr + ‖δ‖) (2.26)

for all θ ∈ Br(θ
∗). The assumption that ‖δ‖ ≤ (1 − γǫ)r/γ can be rearranged to

obtain γ(ǫr + ‖δ‖) ≤ r, which implies that ‖Φ(θ)− θ∗‖ ≤ r by (2.26). Since Φ maps
Br(θ

∗) into itself and Φ is a contraction on Br(θ
∗), the contraction mapping principle

yields the existence of a unique fixed point θ ∈ Br(θ
∗). Since ‖Φ(θ)−θ∗‖ = ‖θ−θ∗‖

for this fixed point, (2.24) is a consequence of (2.26).

We use Proposition 2.2 with θ∗ = (X∗,U∗,Λ∗) defined in (1.14) and θ =
(XN ,UN ,ΛN ). The norm on X is given by

‖θ‖ = ‖(X,U,Λ)‖∞ = max{‖X‖∞, ‖U‖∞, ‖Λ‖∞}. (2.27)

The space Y corresponds to the codomain of T . If y ∈ Y, then we let yl denote the
part of y associated with Tl, 1 ≤ l ≤ 6. The norm of y ∈ Y is given by

‖y‖Y = ‖y1‖ω + |y2|+ ‖y3‖ω + |y4|+ h1/2|y5|+ h−1/2‖y6‖∞,

where for z ∈ RKNn, the ω-norm is defined by

‖z‖ω =

(

K
∑

k=1

N
∑

i=1

ωi|zki|2
)1/2

, zki ∈ R
n.

For z ∈ RNn, the ω-norm is

‖z‖ω =

(

N
∑

i=1

ωi|zi|2
)1/2

, zi ∈ R
n.
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3. Interpolation error in H1. Our estimate for the distance from T (X∗,U∗,Λ∗)
to F(U∗) utilizes the following bound for the H1(Ω) error of the interpolant based on
the point set τi, 0 ≤ i ≤ N .

Lemma 3.1. If u ∈ Hη(Ω) for some η ≥ 2, then there exists a constant c,
independent of N and η, such that

|u− uI |H1(Ω) ≤ (c/N)p−1|u|Hp(Ω), p = min{η,N + 1}, (3.1)

where uI ∈ PN is the interpolant of u satisfying uI(τi) = u(τi), 0 ≤ i ≤ N , and

N > 0. In the case η = p = 1, there exists a constant c, independent of N , such that

|u− uI |H1(Ω) ≤ c|u|H1(Ω), (3.2)

Proof. Throughout the analysis, c denotes a generic constant whose value is
independent of N and η, and which may have different values in different equations.
We first show that if the lemma holds for all u ∈ H1

0(Ω) ∩ Hη(Ω), then it holds for
all u ∈ Hη(Ω). Suppose u ∈ Hη(Ω) and let ℓ denote the linear function for which
ℓ(±1) = u(±1). Since ℓI = ℓ, it follows that

|u− uI |H1(Ω) = |(u− ℓ)− (u − ℓ)I |H1(Ω).

Since u− ℓ ∈ H1
0(Ω), (3.1) gives

|u− uI |H1(Ω) ≤ (c/N)p−1|u− ℓ|Hp(Ω)

when η ≥ 2. Moreover, when η ≥ 2, |u− ℓ|Hp(Ω) = |u|Hp(Ω) since derivatives of order
two or larger applied to the linear function ℓ are zero. This establishes (3.1) for all
u ∈ Hη(Ω) with η ≥ 2. If η = 1, then by (3.2), we have

|u− uI |H1(Ω) ≤ c|u− ℓ|H1(Ω) ≤ c
(

|u|H1(Ω) + (|ℓ|H1(Ω)

)

. (3.3)

Since ℓ̇ = (u(1)− u(−1))/2, the Schwarz inequality gives

|ℓ|H1(Ω) =
|u(1)− u(−1)|√

2
=

1√
2

∣

∣

∣

∣

∫ 1

−1

u̇(τ) dτ

∣

∣

∣

∣

≤ |u|H1(Ω). (3.4)

Combine (3.3) and (3.4) to obtain (3.2) for all u ∈ H1(Ω). Henceforth, it is assumed
that u ∈ H1

0(Ω) ∩Hη(Ω).
Let πNu denote the projection of u into P0

N relative to the norm | · |H1(Ω). Define
EN = u− πNu and eN = EI

N = (u− πNu)I = uI − πNu. Since EN − eN = u− uI , it
follows that

|u− uI |H1(Ω) ≤ |EN |H1(Ω) + |eN |H1(Ω). (3.5)

In [19, Prop. 3.1] it is shown that for η ≥ 1,

|EN |H1(Ω) ≤ (c/N)p−1|u|Hp(Ω), where p = min{η,N + 1}. (3.6)

We will establish the bound

|eN |H1(Ω) ≤ c|EN |H1(Ω). (3.7)
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Combine (3.5)–(3.7) to obtain (3.1) and (3.2) for an appropriate choice of c.

By [5, Lem. 4.4] and the fact that eN ∈ P0
N , it follows that

|eN |H1(Ω) ≤ cN

(∫

Ω

e2N (τ)

1− τ2
dτ

)1/2

. (3.8)

Since eN ∈ P0
N and e2N (τ)/(1 − τ2) ∈ P0

2N−2, N -point Radau quadrature is exact,
and we have

(∫

Ω

e2N (τ)

1− τ2
dτ

)1/2

=

(

N−1
∑

i=1

ωie
2
N (τi)

1− τ2i

)1/2

=

(

N−1
∑

i=1

ωiE
2
N (τi)

1− τ2i

)1/2

. (3.9)

The last equality holds since eN = EN at τi, 0 ≤ i ≤ N . Although Lemma 4.3 in
[5] was given for Lobatto quadrature, exactly the same proof can be used for both
Gauss and Radau quadrature. Consequently, since EN ∈ H1

0(Ω), it follows from [5,
Lem. 4.3] that

(

N
∑

i=1

ωiE
2
N (τi)

1− τ2i

)1/2

≤ c

[

(∫

Ω

E2
N (τ)

1− τ2
dτ

)1/2

+N−1|EN |H1(Ω)

]

. (3.10)

By [34, Prop. 9.1], we have

N

[

(∫

Ω

E2
N (τ)

1− τ2
dτ

)1/2

+N−1|EN |H1(Ω)

]

≤ 2|EN |H1(Ω). (3.11)

Combine (3.8–3.11) to obtain (3.7).

Remark 3.1. In the analogue of Lemma 3.1 for the Gauss quadrature points

given in [34, Lem. 4.1], the exponent in the error bound is p − 1.5 instead of p − 1.
The difference in the exponent is due to the treatment of endpoints. In the Radau

result, the polynomial interpolates at both τ = −1 and τ = 1, while in the Gauss

result, the polynomial interpolates only at τ = −1.

4. Analysis of the residual. The distance from T (X∗,U∗,Λ∗) to F(U∗) is
now estimated.

Lemma 4.1. If x∗ and λ∗ ∈ PHη(Ω0) for some η ≥ 2, then there exists a constant

c, independent of N , h, and η, such that

dist[T (X∗,U∗,Λ∗),F(U∗)]Y

≤ hp−1/2
( c

N

)p−1

|x∗|PHp(Ω0) + hq−1/2
( c

N

)q−1.5

|λ∗|PHq(Ω0), (4.1)

where p = min(η,N + 1) and q = min(η,N).

Proof. Since T (X∗,U∗,Λ∗) appears throughout the analysis, it is abbreviated
T ∗. Since the minimum principle (1.6) holds for all t ∈ Ω0, it holds at the collocation
points, which implies that T ∗

6 ∈ F6(U
∗). Also, T ∗

2 = T ∗
5 = 0 since the optimal state is

continuous and it satisfies the terminal condition (1.5) in the costate equation. Thus
we only need to analyze T ∗

1 , T ∗
3 , and T ∗

4 .
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Let us first consider T ∗
1 . Since D is a differentiation matrix associated with the

collocation points, we have

N
∑

j=0

DijX
∗
kj = ẋI

k(τi), 1 ≤ i ≤ N, (4.2)

where xI
k ∈ Pn

N is the (interpolating) polynomial that passes through x∗
k(τj) for

0 ≤ j ≤ N . Since x∗ satisfies the dynamics of (1.1),

hf(X∗
ki,U

∗
ki) = ẋ∗

k(τi). (4.3)

Combine (4.2) and (4.3) to obtain

T ∗
1ki = ẋI

k(τi)− ẋ∗
k(τi) = ẋI

k(τi)− (ẋ∗
k)

J (τi), (4.4)

where (ẋ∗
k)

J ∈ Pn
N−1 is the interpolant that passes through ẋ∗

k(τi) for 1 ≤ i ≤ N .
Since both ẋI and (ẋ∗)J are polynomials of degree N − 1 and Radau quadrature is
exact for polynomials of degree 2N − 2, it follows that

‖T ∗
1 ‖2ω =

K
∑

k=1

N
∑

i=1

ωi|ẋI
k(τi)− (ẋ∗

k)
J (τi)|2

=

K
∑

k=1

∫ 1

−1

|ẋI
k(τ) − (ẋ∗

k)
J (τ)|2 dτ

≤ 2
K
∑

k=1

∫ 1

−1

(

|ẋI
k(τ) − ẋ∗

k(τ)|2 + |ẋ∗
k(τ)− (ẋ∗

k)
J (τ)|2

)

dτ. (4.5)

By Lemma 3.1, we have

‖ẋI
k − ẋ∗

k‖L2(Ω) ≤ (c/N)p−1|x∗
k|Hp(Ω), p = min{η,N + 1}. (4.6)

The second term in (4.5) involves the difference between between ẋ∗
k ∈ H(η−1) and its

interpolant (ẋ∗
k)

J ∈ Pn
N−1 at the N Radau points. By the bound given in [9, (5.4.33)]

for the L2 error in Radau interpolation, this term has exactly the same bound as that
on the right side of (4.6). Since xk(τ) = x(tk−1/2 + hτ), the derivatives contained in
the right side of (4.6) satisfy

dpx∗
k(τ)

dτp
= hp dpx∗(t)

dtp

∣

∣

∣

∣

t=tk−1/2+hτ

.

Consequently, after a change of variables, we have
∫ 1

−1

∣

∣

∣

∣

dpx∗
k(τ)

dτp

∣

∣

∣

∣

2

dτ = h2p−1

∫ tk

tk−1

∣

∣

∣

∣

dpx∗(t)

dtp

∣

∣

∣

∣

2

dt.

Combine this with (4.5) and (4.6) to deduce that ‖T ∗
1 ‖ω is bounded by the first term

on the right side side of (4.1).
The analysis of T ∗

3 is similar to the analysis of T ∗
1 . Let λI

k ∈ Pn
N−1 be the

polynomial that interpolates λ∗
k(τj) for 1 ≤ j ≤ N . By (2.12) and (2.13), we have

N
∑

j=1

D‡
ijΛ

∗
kj = λ̇I

k(τi), 1 ≤ i < N, (4.7)

N
∑

j=1

D‡
NjΛ

∗
kj = λ̇I

k(τi)− λ∗
k(1)/ωN . (4.8)
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Since λ∗ satisfies (1.5), it follows that

h∇xH(X∗
ki,U

∗
ki,Λ

∗
ki) = h∇xH(x∗

k(τi),u
∗
k(τi),λ

∗
k(τi)) = −λ̇∗

k(τi), (4.9)

1 ≤ i ≤ N . We substitute (4.7)–(4.9) in the definition of T3 to obtain

T3ki(X∗,U∗,Λ∗) = λ̇I
k(τi)− λ̇∗

k(τi) = λ̇I
k(τi)− (λ̇∗

k)
J (τi), 1 ≤ i ≤ N,

where (λ̇∗
k)

J ∈ Pn
N−1 is the polynomial that passes through λ̇∗

k(τi), 1 ≤ i ≤ N . Note
that the term −λ∗

k(1)/ωN in (4.8) cancels the corresponding term in T3k due to the

continuity of λ∗. Since λ̇I
k ∈ Pn

N−2 and (λ̇∗
k)

J ∈ Pn
N−1, and since Radau quadrature

is exact for polynomials of degree 2N − 2, we obtain, as in (4.5),

‖T ∗
3 ‖2ω ≤ 2

K
∑

k=1

∫ 1

−1

(

|λ̇I
k(τ) − λ̇∗

k(τ)|2 + |λ̇∗
k(τ) − (λ̇∗

k)
J (τ)|2

)

dτ. (4.10)

The last term in (4.10) has the bound

‖(λ̇∗
k)

J − λ̇∗
k‖L2(Ω) ≤ hp(c/N)p−1|λ∗|Hp(tk−1,tk), p = min{η,N + 1}, (4.11)

corresponding to the L2 error in interpolation at the Radau points. The other term,
however, is different from the state since λI

k has degree N − 1 while the state xI
k has

degree N , and the state interpolates at both the quadrature points and at τ = −1,
while λI

k only interpolates at the quadrature points. The error in the derivative of
the interpolant at the Radau points has the bound [9, (5.4.34)]

‖λ̇I
k − λ̇∗

k‖L2(Ω) ≤ hq(c/N)q−1.5|λ∗|Hq(Ω), q = min{η,N}. (4.12)

The exponent changes from p− 1 in (4.11) to q− 1.5 due to the fact that λI
k does not

interpolate at τ = −1, and q ≤ p since the polynomial associated with λI
k has degree

N − 1. Note that if λ∗ ∈ PHη(Ω0), then λ∗ ∈ PH(η−1)(Ω0), so we can always ensure
that the error bound (4.12) dominates the error bound (4.11) by lowering η in (4.11)
if necessary. Utilizing the bound (4.12) in (4.10) and changing variables from τ to t,
we deduce that ‖T3‖ω is bounded by the second term on the right side of (4.1).

Finally, let us consider T ∗
4 . Applying (4.9) and utilizing the continuity of λ∗ and

the exactness of Radau quadrature, we have

T ∗
4k = λ∗

k(−1)− λ∗
k+1(−1) +

N
∑

i=1

ωiλ̇
∗
k(τi)

= λ∗
k(−1)− λ∗

k(1) +

N
∑

i=1

ωi(λ̇
∗
k)

J (τi)

= λ∗
k(−1)− λ∗

k(1) +

∫ 1

−1

(λ̇∗
k)

J (τ) dτ =

∫ 1

−1

[(λ̇∗
k)

J (τ)− λ̇∗
k(τ)] dτ.

By (4.11) and the Schwarz inequality, we have

|T ∗
4k| ≤

√
2‖(λ̇∗

k)
J − λ̇∗

k‖L2(Ω) ≤ hp(c/N)p−1|λ∗|Hp(Ω), p = min{η,N + 1}.

As in the analysis of T3, we square this, sum over k, change variables from τ to t, and
take the square root to obtain a bound that can be dominated by the last term in
(4.1). This completes the proof.
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5. Invertibility of linearized dynamics. The inclusion

T (X,U,Λ) ∈ F(U),

corresponding to the first-order optimality conditions for the discrete problem (1.4),
will be linearized around (X∗,U∗,Λ∗). Given Y ∈ Y, the linearized problem is to
find (X,U,Λ) such that

(∇T ∗)[X,U,Λ] +Y ∈ F(U), (5.1)

where ∇T ∗ denotes ∇T (X∗,U∗,Λ∗), the derivative of T evaluated at (X∗,U∗,Λ∗).
Since Λ enters T in an affine manner, the linearization with respect to Λ is trivial.
On the other hand, the discrete state X and the discrete control U generally enter T
in a nonlinear fashion. The derivative of T in (2.17)–(2.23) is built from the following
matrices for 1 ≤ k ≤ K:

Aki = ∇xf(x
∗(tki),u

∗(tki)), Bki = ∇uf(x
∗(tki),u

∗(tki)),
Qki = ∇2

xxH (x∗(tki),u
∗(tki),λ

∗(tki)) , Ski = ∇2
xuH (x∗(tki),u

∗(tki),λ
∗(tki)) ,

Rki = ∇2
uuH (x∗(tki),u

∗(tki),λ
∗(tki)) , T = ∇2C(x∗(1)).

As pointed out in (1.14), the optimal variables (x∗,u∗,λ∗) evaluated at the tki are
equivalent to the transformed optimal variables (x∗

k,u
∗
k,λ

∗
k) evaluated at the τi. The

elements of ∇T ∗[X,U,Λ] are the following:

∇T ∗
1ki[X,U,Λ] =





N
∑

j=0

DijXkj



− h(AkiXki +BkiUki), 1 ≤ i ≤ N,

∇T ∗
2k[X,U,Λ] = Xk0 −Xk−1,N , where X0N = 0,

∇T ∗
3ki[X,U,Λ] =





N
∑

j=1

D‡
ijΛkj



+ h(AT

kiΛki +QkiXki + SkiUki), 1 ≤ i < N,

∇T ∗
3kN [X,U,Λ] =





N
∑

j=1

D‡
NjΛkj



+ h(AT

kNΛkN +QkNXkN + SkNUkN )

+Λk+1,0/ωN , (5.2)

∇T ∗
4k[X,U,Λ] = Λk0 −Λk+1,0 − h

N
∑

i=1

ωi(A
T

kiΛki +QkiXki + SkiUki),

∇T ∗
5k[X,U,Λ] = TXKN −ΛK+1,0,

∇T ∗
6ki[X,U,Λ] = −h(BT

kiΛki + ST

kiXki +RkiUki), 1 ≤ i ≤ N,

where 1 ≤ k ≤ K.
The following result establishes invertibility of the linearized state dynamics.

Lemma 5.1. If (A2) holds, then for each q ∈ RKn and p ∈ RKNn with qk and

pki ∈ R
n, the linear system

N
∑

j=0

DijXkj = hAkiXki + pki, 1 ≤ i ≤ N, (5.3)

Xk0 = Xk−1,N + qk, X0N = 0, (5.4)
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1 ≤ k ≤ K, has a unique solution X ∈ RK(N+1)n. This solution has the bound

sup
1≤k≤K
1≤j≤N

‖Xkj‖∞ ≤ h−1/2

(√
2‖p‖ω + |q|

(1− 2hd1)K

)

. (5.5)

Remark 5.1. Recall that d1 is defined in (1.10). Since the denominator expres-

sion (1 − 2hd1)
K = (1 − d1/K)K in the bound (5.5) approaches e−d1 as K tends to

infinity, the denominator is bounded away from zero, uniformly in K. Hence, (5.5)
also implies a uniform bound, independent of K.

Proof. We first show that for given Xk0, the linear system (5.3) uniquely deter-
mines Xk1 through XkN . Since X0N = 0, it follows from (5.4) that X10 = q1 is
known. Consequently, for k = 1 up to k = K, we can use (5.3) to compute Xk1

through XkN , and then (5.4) to evaluate Xk+1,0. This shows that (5.3)–(5.4) has a
unique solution that can be computed by a recursive process.

Let Xk be the vector obtained by vertically stacking Xk1 through XkN , let Ak

be the block diagonal matrix with i-th diagonal block Aki, 1 ≤ i ≤ N , define D =
D1:N ⊗ In where ⊗ is the Kronecker product, and let D0 denote the first column of
D. With this notation, (5.3)–(5.4) reduce to

(D− hAk)Xk = p− (D0 ⊗ In)Xk0 = p− (D0 ⊗ In)(Xk−1,N + qk). (5.6)

By (P1), D1:N is invertible and ‖D−1
1:N‖∞ = 2. Hence, ‖D−1‖ = ‖D−1

1:N ⊗ In‖ = 2,
and by (A2), we have 2h‖Ak‖∞ ≤ 2hd1 < 1, which implies that

h‖D−1
Ak‖∞ ≤ h‖D−1‖∞‖Ak‖∞ ≤ 2hd1 < 1.

By [35, p. 351], I− hD
−1

Ak is invertible and

‖(I− hD
−1

A)−1‖∞ ≤ 1/(1− 2hd1). (5.7)

Multiply (5.6) first by D
−1

and then by (I− hD
−1

Ak)
−1 to obtain

Xk = (I− hD
−1

Ak)
−1
(

D
−1

pk +D
−1

(D0 ⊗ In)(Xk−1,N + qk)
)

.

It is shown in [34, Lem. 5.1] that (D)−1[D0 ⊗ In] = −1⊗ In. Consequently,

Xk = (I− hD
−1

Ak)
−1
(

D
−1

pk − 1⊗ (Xk−1,N + qk)
)

.

Take norms and apply (5.7) to get

‖X‖∞ ≤
(

1

1− 2hd1

)

(

‖D−1
pk‖∞ + ‖Xk−1,N‖∞ + ‖qk‖∞

)

. (5.8)

In [34, Lem. 5.1] it is shown that by (P2), we have

‖D−1
pk‖∞ ≤

√
2‖pk‖ω, ‖pk‖ω =

(

N
∑

i=1

ωi|pki|2
)

.
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Insert this bound in (5.8) and utilize the trivial inequality ‖qk‖∞ ≤ |qk| to obtain

‖Xk‖∞ ≤
(

1

1− 2hd1

)

(

‖Xk−1,N‖∞ +
√
2‖pk‖ω + |qk|

)

. (5.9)

Since XkN = 0 for k = 0 and ‖Xk,N‖∞ ≤ ‖Xk‖∞ for k > 0, (5.9) yields

‖Xk‖∞ ≤
k
∑

j=1

√
2‖pj‖ω + |qj |

(1 − 2hd1)k−j+1
(5.10)

for 1 ≤ k ≤ K. The upper bound (5.5) is obtained by replacing 1/(1 − 2hd1)
k−j+1

by its maximum 1/(1− 2hd1)
K and by utilizing the Schwarz inequality as in

k
∑

j=1

‖pj‖ω ≤
√
k‖p‖ω ≤ h−1/2‖p‖ω and

k
∑

j=1

|qj | ≤
√
k|q| ≤ h−1/2|q|. (5.11)

The linearized costate dynamics has an analogous bound.

Lemma 5.2. If (P4) and (A2) hold, then for each q ∈ RKn, p ∈ RKNn, and

ΛK+1,0 ∈ Rn with qk and pki ∈ Rn, the linear system

N
∑

j=1

D‡
ijΛkj = pki − hAT

kiΛki, 1 ≤ i < N, (5.12)

N
∑

j=1

D‡
NjΛkj = pkN − hAT

kNΛkN −Λk+1,0/ωN , (5.13)

Λk0 = Λk+1,0 + qk + h

N
∑

i=1

ωiA
T

kiΛki, (5.14)

1 ≤ k ≤ K, has a unique solution Λ ∈ RK(N+1)n. This solution has the bound

‖Λ‖∞ ≤ ‖ΛK+1,0‖∞ + h−1/2
√
2‖p‖ω +

∑K
k=1 |qk|

(1− 2hd2)K
. (5.15)

Proof. The proof is similar to the proof of Lemma 5.1 except that the recursive
solution of (5.12)–(5.14) starts from k = K and descends to k = 1. In particular, we
first show that for given Λk+1,0, the linear system (5.12)–(5.13) uniquely determines
Λk1 through ΛkN ; then (5.14) can be used to evaluate Λk0.

Define D
‡
= D‡ ⊗ In, where ⊗ is the Kronecker product. Equations (5.12) and

(5.13) can be combined into the single equation

D
‡
Λk = pk − hAT

kΛk − (eN ⊗ In)Λk+1,0/ωN , (5.16)

where Λk is obtained by vertically stacking Λk1 through ΛkN and eN is the vector
whose N components are all zero except for the last component which is 1. By (2.12)
and (2.13), D‡1 = −eN/ωN , which implies that

D‡ −1eN = −ωN1. (5.17)
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Hence, we have

D
‡ −1

(eN ⊗ In)/ωN = [D‡ −1 ⊗ In](eN ⊗ In)/ωN = −1⊗ In.

Multiply (5.16) by D
‡ −1

and rearrange to obtain

(I+ hD
‡ −1

AT

k )Λk = D
‡ −1

pk + (1⊗ In)Λk+1,0. (5.18)

As noted in Section 1, (P4) implies that (P3) holds; that is, ‖D‡ −1‖∞ ≤ 2. By (A2),

h‖D‡ −1
AT

k‖∞ ≤ 2hd2 < 1. Consequently, the matrix I+hD
‡ −1

AT

k is invertible with

∥

∥

∥

∥

(

I+ hD
‡ −1

AT

k

)−1
∥

∥

∥

∥

∞
≤ 1

1− 2hd2
.

Multiply (5.18) by (I+ hD
‡ −1

AT

k )
−1 and take the norm of each side to obtain

‖Λk‖∞ ≤
(

1

1− 2hd

)

(‖Λk+1,0‖∞ + ‖D‡ −1
pk‖∞) (5.19)

≤
(

1

1− 2hd

)

(‖Λk+1,0‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞) (5.20)

The norm of (5.14) gives

‖Λk0‖∞ ≤ ‖Λk+1,0‖∞ + ‖qk‖∞ + h

N
∑

i=1

ωi‖AT

ki‖∞‖Λki‖∞

≤ ‖Λk+1,0‖∞ + ‖qk‖∞ + 2hd2‖Λk‖∞

since the ωi sum to 2. Using the bound for ‖Λk‖∞ from (5.19) and the fact that
2hd2 < 1, we have

‖Λk0‖∞ ≤ ‖qk‖∞ +

(

1

1− 2hd2

)

(‖Λk+1,0‖∞ + 2hd2‖D
‡ −1

pk‖∞)

≤
(

1

1− 2hd2

)

(‖Λk+1,0‖∞ + 2hd2‖D
‡ −1

pk‖∞ + ‖qk‖∞)

≤
(

1

1− 2hd2

)

(‖Λk+1,0‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞). (5.21)

Since Λk,0 is contained in Λk, it follows that ‖Λk,0‖∞ ≤ ‖Λk‖∞. Combine (5.20) and
(5.21) to obtain

‖Λk‖∞ ≤
(

1

1− 2hd2

)

(‖Λk+1‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞),

where we define ΛK+1,j = 0 for j > 0 so that ‖ΛK+1‖∞ = ‖ΛK+1,0‖∞. This
inequality is applied recursively to obtain

‖Λk‖∞ ≤ ‖ΛK+1‖∞
(1− 2hd2)K+1−k

+

K
∑

j=k

(

‖D‡ −1
pj‖∞ + ‖qj‖∞

(1− 2hd2)j−k+1

)

.
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To bound the right side, the factors 1/(1−2hd2)
j−k+1 are replaced by their maximum

1/(1− 2hd2)
K to obtain

‖Λk‖∞ ≤
‖ΛK+1‖∞ +

∑K
j=k

[

‖D‡ −1
pj‖∞ + |qj |

]

(1− 2hd2)K
.

By the analysis given in [34, Lem. 5.1], (P4) implies that ‖D‡ −1
pj‖∞ ≤

√
2‖pj‖ω.

Hence, we have

‖Λk‖∞ ≤
‖ΛK+1‖∞ +

∑K
j=k

[√
2‖pj‖ω + |qj |

]

(1− 2hd2)K
.

The first inequality in (5.11) completes the proof of (5.15).

6. Invertibility of F −∇T ∗. Now let us consider the invertibility of F −∇T ∗.
Proposition 6.1. If (A1)–(A2) and (P4) hold, then for each Y ∈ Y, there is a

unique solution (X,U,Λ) to (5.1).

Proof. Similar to the strategy used in [12, 13, 14, 16, 28, 31, 32, 34], a strongly
convex quadratic programming problem is formulated; the quadratic program is con-
structed so that the first-order optimality conditions reduce to (5.1). In particular,
we consider the problem

minimize 1
2Q(X,U) + L(X,U,Y)

subject to
∑N

j=0 DijXkj = h(AkiXki +BkiUki)− y1ki, Uki ∈ U ,
Xk0 = Xk−1,N − y2k, X0N = 0,











(6.1)

where 1 ≤ i ≤ N and 1 ≤ k ≤ K. The quadratic and linear terms in the objective are

Q(X,U) = XT

KNTXKN + h
K
∑

k=1

N
∑

i=1

ωi

[

Xki

Uki

]T [

Qki Ski

ST

ki Rki

] [

Xki

Uki

]

, (6.2)

L(X,U,Y) = yT

5XKN +

K
∑

k=1

N
∑

i=1

ωi

(

yT

3kiXki − yT

6kiUki

)

(6.3)

−
K
∑

k=1

XT

k0

(

y4k +

N
∑

i=1

ωiy3ki

)

. (6.4)

In (6.1), the minimization is over X and U, while Y is a fixed parameter. By
Lemma 5.1, the quadratic programming problem (6.1) is feasible, and by the con-
tinuity condition, Xk0 can be eliminated from (6.1). Since the Radau quadrature
weights ωi are strictly positive, it follows from (A1) that Q is strongly convex relative
to Xki and Uki, where 1 ≤ i ≤ N and 1 ≤ k ≤ K. Hence, there exists a unique opti-
mal solution to (6.1) for any choice of Y. We now show that the first-order optimality
conditions for (6.1) reduce to ∇T ∗[X,U,Λ] +Y ∈ F(U). The first-order optimality
conditions hold since U has nonempty interior. Since the first-order optimality con-
ditions are both necessary and sufficient for optimality in this convex setting, there
exists a solution to (5.1). Uniqueness of X and U is due to (A1) and the strong
convexity of (6.1). Uniqueness of Λ is by Lemma 5.2.
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The derivation of the first-order optimality conditions for (6.1) is essentially the
same process that we used in Section 2 to write the first-order optimality conditions
for the discrete problem (1.4) as T (X,U,Λ) ∈ F(U). The first two components of
∇T ∗[X,U,Λ] +Y ∈ F(U) are simply the constraints of (6.1). The Lagrangian L for
(6.1) is

L(λ,X,U) = 1
2Q(X,U) + L(X,U,Y) +

K
∑

k=1

〈λk0, (Xk−1,N − y2k −Xk0)〉

+

K
∑

k=1

N
∑

i=1

〈

λki, h(AkiXki +BkiUki)− y1ki −
N
∑

j=0

DijXkj

〉

The negative derivative of the Lagrangian with respect to Uki is

−h
[

BT

kiλki + ωi(S
T

kiXki +RkiUki)
]

+ ωiy6ki.

After the substituting λki = ωiΛki, the requirement that this vector lies in NU (Uki)
leads the 6th component of (5.1). Equating to zero the derivative of the Lagrangian
with respect to Xkj , 1 ≤ j < N , yields the relation

N
∑

i=1

Dijλki = h
[

AT

kjλkj + ωj(QkjXkj + SkjUkj)
]

+ ωjy3kj .

Equating to zero the derivative of the Lagrangian with respect to XkN yields the
relation

N
∑

i=1

Dijλki = h
[

AT

kjλkj + ωj(QkjXkj + SkjUkj)
]

+ ωjy3kj + λk+1,0,

where λK+1,0 = TXKN +y5. After substituting Dij = −D‡
jiωj/ωi, λki = ωiΛki, and

λk0 = Λk0, we obtain the 3rd and 5th components of (5.1).
Finally, we equate to zero the derivative of the Lagrangian with respect to Xk0:

N
∑

i=1

Di0λki = −
(

λk0 + y4k +

N
∑

i=1

ωiy3ki

)

.

Utilizing the identity (2.10), it follows that

N
∑

i=1

N
∑

j=1

ωiD
‡
ijΛkj = −

(

Λk0 + y4k +

N
∑

i=1

ωiy3ki

)

. (6.5)

Multiply the equations in the 3rd component of (5.1) by ωi and sum over i to obtain

N
∑

i=1

N
∑

j=1

ωiD
‡
ijΛkj = −Λk+1,0 −

N
∑

i=1

ωi

[

y3ki + h
(

AT

kiΛki +QkiXki + SkiUki

)]

.

By (6.5), it follows that

Λk0 −Λk+1,0 − h

N
∑

i=1

ωi(A
T

kiΛki +QkiXki + SkiUki) + y4k = 0,

which is the 4th component of (5.1). This completes the proof.
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7. Lipschitz continuity of (F −∇T ∗)−1 and proof of the main theorem.
We begin by making the change of variables X = Z+χ(Y) where χ(Y) denotes the
solution of the state dynamics (5.3) corresponding to pki = −y1ki and qk = −y2k.
With this change of variables, y1 and y2 disappear from the dynamics of the quadratic
program (6.1) and the quadratic program in Z and U reduces to

minimize 1
2Q(Z,U) + L(Z,U,Y)

subject to
∑N

j=0 DijZkj = h(AkiZki +BkiUki), Uki ∈ U ,
Zk0 = Zk−1,N , Z0N = 0,











(7.1)

where 1 ≤ i ≤ N , 1 ≤ k ≤ K, and

L(Z,U,Y) = L(Z,U,Y) + χKN(Y)TTZKN

+h
K
∑

k=1

N
∑

i=1

ωi

[

χT

ki(Y)QkiZki + χT

ki(Y)SkiUki

]

. (7.2)

Note that Zk0 can be eliminated from the optimization problem with the sub-
stitution Zk0 = Zk−1,N . In the analysis that follows, it is assumed that the Zk0

component of Z has been deleted. Note that Q does not depend on Zk0, the Zk0 in L
can be replaced by Zk−1,N , and the ω-norm of Z does not depend on Zk0. If (Z

j ,Uj)
denotes the solution of (7.1) corresponding to Yj ∈ Y, j = 1 and 2, then by [13,
Lem. 4], the solution change ∆Z = Z1 −Z2 and ∆U = U1 −U2 satisfies the relation

Q(∆Z,∆U) ≤ |L(∆Z,∆U,∆Y)| (7.3)

where ∆Y = Y1 −Y2.
Observe that the quadratic Q in (6.2) is expressed in terms of the Hessian with

respect to x and u of the Hamiltonian H evaluated at (x∗(tki),u
∗(tki),λ

∗(tki)); by
(A1), the Hessian of H evaluated at (x∗(t),u∗(t),λ∗(t)) for any t ∈ [0, 1] has smallest
eigenvalue greater than or equal to α > 0. It follows that

Q(∆Z,∆U) ≥ α
(

|∆ZKN |2 + h‖∆Z‖2ω + h‖∆U‖2ω
)

.

Now consider the terms in L. By the Schwarz inequality,

∣

∣

∣

∣

∣

K
∑

k=1

N
∑

i=1

ωi∆yT

3ki∆Zki

∣

∣

∣

∣

∣

≤ ‖∆y3‖ω‖∆Z‖ω ≤ ‖∆Y‖Y‖∆Z‖ω.

Let c denote a generic constant which is independent of K and N . For the control
term in L, the triangle and Schwarz inequalities give

∣

∣

∣

∣

∣

K
∑

k=1

N
∑

i=1

ωi∆yT

6ki∆Uki

∣

∣

∣

∣

∣

≤ c‖∆y6‖∞
K
∑

k=1

N
∑

i=1

ωi|∆Uki| ≤ c‖∆y6‖∞
K
∑

k=1

‖∆Uk‖ω

≤ ch−1/2‖∆y6‖∞‖∆U‖ω ≤ c‖∆Y‖Y‖∆U‖ω.

The last inequality is due to the h−1/2 factor in the Y-norm.
For the Zk0-term in L, we have

∣

∣

∣

∣

∣

∆ZT

k0

(

∆y4k +

N
∑

i=1

ωi∆y3ki

)∣

∣

∣

∣

∣

≤ c‖∆Z‖∞
(

|∆y4k|+
N
∑

i=1

ωi|∆y3ki|
)

. (7.4)
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By Lemma 5.1 with pki = hBkiUki and qk = 0, we have ‖∆Z‖∞ ≤ ch1/2‖∆U‖ω.
Inserting this in (7.4) and applying the Schwarz inequality gives

∣

∣

∣

∣

∣

K
∑

k=1

∆ZT

k0

(

∆y4k +

N
∑

i=1

ωi∆y3ki

)∣

∣

∣

∣

∣

≤ ‖∆U‖ω (|∆y4|+ ‖∆y3‖ω) ≤ c‖∆U‖ω‖∆Y‖Y .

For the latter χ terms in (7.2), we have a bound such as

h

∣

∣

∣

∣

∣

K
∑

k=1

N
∑

i=1

ωiχ
T

ki(∆Y)Qki∆Zki

∣

∣

∣

∣

∣

≤ ch‖χ(∆Y)‖ω‖∆Z‖ω. (7.5)

By Lemma 5.1, we have

‖χ(∆Y)‖∞ ≤ ch−1/2(‖∆y1‖ω + |∆y2|) ≤ ch−1/2‖∆Y‖Y . (7.6)

Since ‖χ(∆Y)‖ω ≤ h−1/2‖χ(∆Y)‖∞, it follows from (7.5) and (7.6) that

h

∣

∣

∣

∣

∣

K
∑

k=1

N
∑

i=1

ωiχ
T

ki(∆Y)Qki∆Zki

∣

∣

∣

∣

∣

≤ c‖∆Y‖ω‖∆Z‖ω.

For the terminal term in (7.2), we have the bound

|χKN(∆Y)TT∆ZKN | ≤ c|χKN (∆Y)||∆ZKN | ≤ ch−1/2(‖∆y1‖ω + |y2|)|∆ZKN |.

The y5 term in L is similar. By the Schwarz inequality,

|∆yT

5∆ZKN | ≤ |∆y5||∆ZKN | ≤ h−1/2‖∆Y‖Y |∆ZKN |,

where the h−1/2 on the right cancels the h1/2 factor inside the Y-norm.
Combine these bounds for the linear term to obtain

|L(∆Z,∆U,∆Y)| ≤ c‖∆Y‖Y
(

h−1/2|∆ZKN |+ ‖∆Z‖ω + ‖∆U‖ω
)

= ch−1/2‖∆Y‖Y
(

|∆ZKN |+
√
h‖∆Z‖ω +

√
h‖∆U‖ω

)

≤ ch−1/2‖∆Y‖Y
(

|∆ZKN |2 + h‖∆Z‖2ω + h‖∆U‖2ω
)1/2

.

Combining the lower bound for Q with the upper bound for L gives

(

|∆ZKN |2 + h‖∆Z‖2ω + h‖∆U‖2ω
)1/2 ≤ ch−1/2‖∆Y‖Y . (7.7)

Next, the ω-type norm on the left side of (7.7) will be converted to an ∞-norm.
To do this, we first apply Lemma 5.1 with pki = ∆y1ki + hBki∆Uki and qk = 0.
The bound (7.7) implies that ‖∆U‖ω ≤ ch−1‖∆Y‖Y ; consequently,

‖p‖ω ≤ c (‖∆y1‖ω + h‖∆U‖ω) ≤ c‖∆Y‖Y . (7.8)

It follows from (5.5) that ‖∆Z‖∞ ≤ ch−1/2‖∆Y‖Y . Hence, by (7.6) we deduce that

‖∆X‖∞ = ‖∆Z+ χ(∆Y)‖∞ ≤ ch−1/2‖∆Y‖Y . (7.9)

Since ∆Xk0 = ∆Xk−1,0 +∆y2k, it also follows that

‖∆Xk0‖∞ ≤ ‖∆X‖∞ + |∆y2| ≤ ch−1/2‖∆Y‖Y .
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Let us now apply Lemma 5.2 with

pki = ∆y3ki + h(Qki∆Xki + Ski∆Uki), ∆ΛK+1,0 = T∆XKN , and

qk =

N
∑

i=1

ωi (h [Qki∆Xki + Ski∆Uki] + ∆y4ki) .

By (5.15), we have

‖∆Λ‖∞ ≤ c

(

‖∆XKN‖∞ + h−1/2‖p‖ω +
K
∑

k=1

|qk|
)

. (7.10)

By (7.9), ‖∆XKN‖∞ ≤ ch−1/2‖∆Y‖Y . Exactly as in (7.8), ‖p‖ω ≤ c‖∆Y‖Y . The
Schwarz inequality yields

K
∑

k=1

|qk| ≤ c

K
∑

k=1

(‖∆y2k‖ω + h‖∆Xk‖ω + h‖∆Uk‖ω)

≤ ch−1/2‖∆y2‖ω + h1/2 [‖∆X‖ω + ‖∆U‖ω] ≤ ch−1/2‖∆Y‖ω.

The last inequality utilizes both (7.7) to bound the U term and (7.9) to bound the
X term. Inserting these bounds in (7.10) yields

‖∆Λ‖∞ ≤ ch−1/2‖∆Y‖Y . (7.11)

Recall that Rki := ∇2
uuH(x∗(tki),u

∗(tki),λ
∗(tki)). By (A1) the Hessian with

respect to x and u of the Hamiltonian H evaluated at (x∗(t),u∗(t),λ∗(t)) for any
t ∈ [0, 1] has smallest eigenvalue greater than or equal to α > 0. Consequently, the
principal submatrix Rki of the Hessian of the Hamiltonian is positive definite with
smallest eigenvalue greater than or equal to α. It follows from the 6th component of
the inclusion (5.1) that the control associated with Y solves the quadratic program

min
Uki∈U

h

(

1

2
UT

kiRki +XT

kiSki +ΛT

kiBki

)

Uki + yT

6kiUki.

Again by [13, Lem. 4], the solution change associated with the data change ∆Y has
the bound

hα|∆Uki|2 ≤
∣

∣h
(

∆XT

kiSki +∆ΛT

kiBki

)

∆Uki +∆y6ki∆Uki

∣

∣ .

Hence, we deduce that

‖∆Uki‖∞ ≤ |∆Uki| ≤ c
(

‖∆Xki‖∞ + ‖∆Λki‖∞ + h−1‖∆y6ki‖∞
)

.

Utilizing the bounds (7.9) and (7.11), and the h−1/2 factor associated with the 6-th
component of the Y-norm, yields

‖∆Uki‖∞ ≤ ch−1/2‖∆Y‖Y . (7.12)

The bounds (7.9), (7.11), and (7.12) combine to establish the following Lipschitz
continuity property:
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Lemma 7.1. If (A1), (A2), and (P4) hold, then there exists a unique solution of

(5.1) for each Y ∈ Y, and there exists a constant c, independent of K and N , such

that the solution change ∆X, ∆U, and ∆Λ relative to the change ∆Y satisfies

‖(∆X,∆U,∆Λ)‖∞ ≤ ch−1/2‖∆Y‖Y .

Theorem 1.1 is proved using Proposition 2.2. The Lipschitz constant γ of Propo-
sition 2.2 is given by γ = ch−1/2 where c is the constant of Lemma 7.1. The terms
involving D, D‡, Λk0, Λk+1,0, Xk0, and Xk−1,N are constants in the derivative ∇T
and hence these terms cancel when we compute the difference∇T (θ)−∇T (θ∗), where
θ = (X,U,Λ) and θ∗ = (X∗,U∗,Λ∗). We are left with terms involving the difference
of derivatives of f or C up to second order at points in a neighborhood of θ∗. By the
Smoothness assumption, these derivatives are Lipschitz continuous in a neighborhood
of (X∗,U∗). Hence, there exists constants τ and r > 0 such that

‖∇[f(Xki,Uki)− f(X∗
ki,U

∗
ki)]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇xH(Xki,Uki,Λki)−∇xH(X∗
ki,U

∗
ki,Λ

∗
ki)]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇uH(Xki,Uki,Λki)−∇uH(X∗
ki,U

∗
ki,Λ

∗
ki)]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇C(XKN )−∇C(X∗
KN )]‖∞ ≤ τ‖θ − θ∗‖∞,

whenever ‖θ − θ∗‖∞ ≤ r. In applying Proposition 2.2, we need a bound for the
Y-norm of ∇T (θ) − ∇T (θ∗). Taking into account the location of h’s in T and the
location of h’s in the Y-norm, it follows from the Lipschitz bounds relative to τ that
there exists a constant κ such that

‖∇T (θ)−∇T (θ∗)‖Y ≤ κh1/2‖θ − θ∗‖∞,

whenever ‖θ − θ∗‖∞ ≤ r. Choose r > 0 smaller if necessary to ensure that cκr < 1,
where c is the constant in Lemma 7.1. In Proposition 2.2, ǫ = κh1/2r and γ = ch−1/2.
Hence, γǫ = cκr < 1. Referring to Lemma 4.1, choose N large enough or h small
enough so that

dist[T (θ∗),F(U∗)] ≤ (1− γǫ)r

γ
.

Combine Lemma 4.1 with (2.24) and the formula γ = ch−1/2 to obtain the bound
(1.15) of Theorem 1.1.

The solution to T (X,U,Λ) ∈ F(U) corresponds to the first-order optimality
condition for either (2.1) or (1.4). We use the second-order sufficient optimality con-
ditions to show that this stationary point is a local minimum when it is sufficiently
close to (X∗,U∗,Λ∗). After replacing the KKT multipliers by the transformed quan-
tities given by Λki = λki/ωi, the Hessian of the Lagrangian is a block diagonal matrix
with the following matrices forming the diagonal blocks:

ωi∇2
(x,u)H(Xki,Uki,Λki), 1 ≤ i < N,

ωi∇2
(x,u)H(Xki,Uki,Λki) +∇2

(x,u)C(Xki), i = N,

where H is the Hamiltonian and 1 ≤ k ≤ K. In forming the Hessian with respect to X
andU, the variables are arranged as follows: Xk1, Uk1, Xk2, Uk2, . . ., XkN , UkN , 1 ≤
k ≤ K. By (A1) the Hessian is positive definite when evaluated at (X∗,U∗,Λ∗). Since



RADAU HP COLLOCATION FOR OPTIMAL CONTROL 27

the second derivatives of C and f are Lipschitz continuous and the iterates converge
to (X∗,U∗,Λ∗) in the sup-norm by Theorem 1.1, the Hessian of the Lagrangian
evaluated at the discrete iterates is positive definite for N sufficiently large or for
h sufficiently small with N ≥ 2. Hence, by the second-order sufficient optimality
condition [39, Thm. 12.6], the discrete state and control is a strict local minimizer of
(2.1). This completes the proof of Theorem 1.1.

8. Numerical illustrations. In this section we analyze the errors associated
with the proposed Radau hp-collocation method using numerical examples with known
analytic solutions. Consequently, it is possible to precisely determine the error in
the hp-approximations. More complex examples, which do not have known analytic
solutions, appear in both [42] and at the GPOPS-II examples website:

http://www.gpops2.com/Examples/Examples.html

In [42] it is observed that the solutions computed by Radau hp-collocation are in close
agreement to the solutions computed by Betts’ Sparse Optimization Suite (SOS) [6].

8.1. Example 1. First we consider the unconstrained control problem given by

min

{

−x(2) : ẋ(t) =
5

2
(−x(t) + x(t)u(t) − u2(t)), x(0) = 1

}

. (8.1)

The optimal solution and associated costate are

x∗(t) = 4/a(t), a(t) = 1 + 3 exp(2.5t),

u∗(t) = x∗(t)/2,

λ∗(t) = −a2(t) exp(−2.5t)/[exp(−5) + 9 exp(5) + 6].

The time domain [0,2] is divided into equally spaced mesh intervals, and on each mesh
interval, we collocate at the Radau points using polynomials of the same degree. We
consider polynomials of degree N = 2, 3, and 4. Convergence to the true solution
is achieved by increasing the number of mesh intervals. Figure 8.1 plots the base 10
logarithm of the error at the collocation points in the sup-norm versus the base 10
logarithm of mesh size. The results were obtained using the software GPOPS-II [41]
and the optimizer IPOPT [7] to solve the discrete nonlinear program. The markers
plotted in Figure 8.1 correspond to the sup-norm error at a given value for h, while
the lines have slope N + 2 for the state and control, and N + 1 for the costate. The
vertical placement of each line yields the least squares fit to the markers. Observe
that the error decays roughly linearly in this log-log plot, and the pointwise error is
roughly O(hN+2) in the state and control, and O(hN+1) in the costate for fixed N .

The bound given in Theorem 1.1 for fixed N is O(hN−1), which is much slower
than the observed convergence rate O(hN+1). This discrepancy could be due to either
the simple nature of the example, or to looseness in the analysis. In our analysis, the
exponent of h is reduced by the following effects:

(a) Although the state is approximated by a polynomial of degree N , the costate
is approximated by a polynomial of degree N−1. This difference between the
state and the costate becomes apparent in Proposition 2.1. We are not free
to choose the costate polynomial, its degree comes from the KKT conditions.
In the analysis of the residual given in Lemma 4.1, the reduced degree for the
costate polynomial implies that the exponent of h in the bound (4.1) is the
minimum of N and η rather than the minimum of N + 1 and η.

http://www.gpops2.com/Examples/Examples.html
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Fig. 8.1. The logarithm of the sup-norm error in Example 1 as a function of mesh size for
polynomials of degree N = 2, 3, and 4. The errors in the controls, marked by plus signs, are beneath
the state error plots. The errors in the costate, marked by diamonds, are above the state error plots.

(b) In our analysis at the end of Section 7, we showed that by taking r small
enough, the expression γǫ in the denominator of (2.24) was strictly bounded
from one. The analysis also showed that that the Lipschitz constant satisfied
γ ≤ ch−1/2. Hence, we lose a half power of h through the Lipschitz constant
in the error bound (2.24).

If example 1 indeed represents the typical behavior of the error, then the analysis
must be sharpened to address the losses described in (a) and (b).

It is interesting to compare the analysis in this paper to the analysis of Runge-
Kutta schemes given in [8, 29]. For a fixed N , the Radau scheme in this paper is
equivalent to a Runge-Kutta scheme where the A matrix and b vector of [29] describ-
ing the Runge-Kutta scheme are D−1

1:N/2 and the last row of D−1
1:N/2 respectively.

For N = 2 and N = 3, the corresponding Runge-Kutta schemes have order 3 and 4
respectively, which means that the error in the Runge-Kutta schemes are O(h3) and
O(h4) respectively. This exactly matches the costate error for the hp-scheme in this
example. A fundamental difference between the results of [29] and the results in this
paper is that [29] estimates the error at the mesh points, and there is no information
about the error at the intermediate points, while in Theorem 1.1, we estimate the
error at both collocation and mesh points. In the hp-framework, it is important to
have estimates at the collocation points since K could be fixed, and the convergence
is achieved by letting N grow.

Based on the theory developed in the paper [8] of Bonnans and Laurent-Varin,
many conditions must be satisfied to achieve high order convergence of a Runge-
Kutta scheme for optimal control (4116 conditions for order 7). Potentially, the hp-
scheme based on Radau collocation could be used to generate high order Runge-Kutta
schemes.

Next, we examine in Figure 8.2 the exponential convergence rate predicted by
Theorem 1.1 when there is a single interval and the degree of the polynomials is in-
creased. Since the plot of the base-10 logarithm of the error versus the degree of
of the polynomial is nearly linear, the error behaves like c10−αN where α ≈ 0.6 for
either the state or the control and α ≈ 0.8 for the costate. Since the solution to this
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Fig. 8.2. The base 10 logarithm of the error in the sup-norm as a function of the number of
collocation points for Example 1.

problem is infinitely smooth, we can take η = N in Theorem 1.1. The error bound
in Theorem 1.1 is somewhat complex since it involves the derivatives of the solution.
Nonetheless, when we take the base-10 logarithm of the error bound, the asymptot-
ically dominant term appears to be −N log10 N for Example 1. Consequently, the
slope of the curve in the error bound varies like − log10 N . For N between 4 and 16,
log10 N varies from about 0.6 to 1.2. Hence, our observed slopes 0.6 and 0.8 fall in
the anticipated range.

8.2. Example 2. Next we consider the problem [33] given by

minimize
1

2

∫ 1

0

[x2(t) + u2(t)] dt

subject to ẋ(t) = u(t), u(t) ≤ 1, x(t) ≤ 2
√
e

1− e
for all t ∈ [0, 1],

x(0) =
5e+ 3

4(1− e)
.

The exact solution to this problem is

0 ≤ t ≤ 1
4 : x∗(t) = t− 1

4 + 1+e
1−e , u∗(t) = 1,

1
4 ≤ t ≤ 3

4 : x∗(t) = et−
1

4

1−e (1 + e
3

2
−2t), u∗(t) = et−

1

4

1−e (1 − e
3

2
−2t),

3
4 ≤ t ≤ 1 : x∗(t) = 2

√
e

1−e , u∗(t) = 0.

The solution of this problem is smooth on the three intervals [0, 0.25], [0.25, 0.75], and
[0.75, 1.0], however, at the contact points where one of the constraints changes from
active to inactive, there is a discontinuity in the derivative of the optimal control and
a discontinuity in the second derivative of the optimal state. The goal with this test
problem is to determine whether exponential convergence occurs for the hp-scheme
with a careful choice of the mesh, and whether a state constrained problem, which
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Fig. 8.3. The error in the solution to Example 2 as a function of the degree of the polynomials
used in the hp-approximation. In (a) the polynomials are defined on the interval [0, 1]. In (b) there
are three mesh intervals [0, 0.25], [0.25, 0.75], and [0.75, 1.0], and different polynomials of the same
degree are used on each mesh interval.

is not covered by the error analysis in this paper, possesses similar errors bounds to
those for control constrained problems.

First, we solve the problem using K = 1, in which case convergence is achieved
by increasing the degree N of the polynomials. In Figure 8.3(a) we plot the logarithm
of the error at the collocation points in the sup-norm versus the logarithm of the
polynomial degree. Convergence occurs, but it is slow due to the discontinuity in the
derivatives. The lines in Figure 8.3(a) have slope −2; their vertical placement was
chosen to achieve the best least squares fit to the markers (the measured error). Since
the logarithm of the error is approximately fit by a line of slope −2, the error decays
like c/N2, which is faster than what might be expected from a bound like that given
in Theorem 1.1 with regularity H2.5−ǫ for any ǫ > 0.

Next, we divide the time interval [0,1] into three subintervals [0, 0.25], [0.25, 0.75],
and [0.75, 1.0], and use different polynomials of the same degree on each subinterval.
By this careful choice of the mesh intervals, we obtain an exponential convergence
rate in Figure 8.3(b). Comparing Figures 8.3(a) and 8.3(b), we see that a huge
improvement in the error is possible when we have good estimates for the contact
points where the constraints change between active and inactive. Note that 16-digit
accuracy was obtained in Figure 8.3(b) by using MATLAB’s quadprog to solve the
quadratic program associated with the hp-discretization of Example 2.

In a very rough sense, the error bound given by Theorem 1.1 for a smooth problem
has the general form c1(c2/N)N . The continuous curves plotted in Figure 8.3(b) were
obtained by choosing c1 and c2 to achieve the least squares best fit to the markers
(the measured error). For the state variable, (c1, c2) = (0.0016, 0.1990), while for the
control (c1, c2) = (0.0950, 0.2801). Hence, it seems plausible that a state-constrained
control problem may possess an error bound similar to that established in Theorem 1.1
for control constrained problems.

9. Conclusions. A convergence rate is derived for an hp-orthogonal collocation
method based on the Radau quadrature points applied to a control problem with con-
vex control constraints. If the problem has a smooth local solution and a Hamiltonian
which satisfies a strong convexity assumption, then the discrete approximation has
a local minimizer in a neighborhood of the continuous solution. For the hp-scheme,
both the number of mesh intervals in the discretization and the degree of the poly-
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nomials on each mesh interval can be freely chosen. As the number of mesh intervals
increases, convergence occurs at a polynomial rate relative to the mesh width. When
there is control over the growth in derivatives, the convergence rate is exponentially
fast relative to the polynomial degree. Convergence rates were investigated further
using numerical examples. When the polynomial degree is fixed and the mesh width
tends to zero, the observed convergence rate was faster than the rate associated with
the error bound. For a problem with control and state constraints, exponentially
fast convergence was observed when mesh points are located at the contact points
where the constraints change between active and inactive. Based on the numerical re-
sults, it seems plausible that the convergence result established for control constrained
problem could extend to problems with state constraints.

10. Appendix 1: Proof of (P1) and (P2). We analyze (P1) and (P2) when
τi, 1 ≤ i ≤ N , are either the Radau quadrature points analyzed in this paper, or the
Gauss quadrature points studied in [34].

Lemma 10.1. For either the Gauss or Radau quadrature points, the rows of the

matrix [W1/2D1:N ]−1 have Euclidean length bounded by
√
2. For the Gauss quadrature

points, ‖D−1
1:N‖∞ ≤ 2, and ‖D−1

1:N‖∞ approaches 2 as N tends to infinity, while for

the Radau quadrature points, ‖D−1
1:N‖∞ = 2.

Proof. Given p ∈ RN , let p ∈ PN denote the polynomial that satisfies p(−1) = 0
and p(τi) = pi, 1 ≤ i ≤ N . Let ṗ ∈ RN denote the vector with components ṗi = ṗ(τi),
and let ℓj be the Lagrange polynomial defined by

ℓj(τ) =

N
∏

i=1
i6=j

τ − τi
τj − τi

, 1 ≤ j ≤ N.

The identity

ṗ(τ) =

N
∑

j=1

ℓj(τ)ṗj (10.1)

holds since ṗ ∈ PN−1 and the polynomials on each side of (10.1) are equal at the N
quadrature points. Integrate (10.1) to obtain

pi =

∫ τi

−1

ṗ(τ) dτ =

N
∑

j=1

(∫ τi

−1

ℓj(τ) dτ

)

ṗj. (10.2)

Since D is a differentiation matrix and p(−1) = 0, it follows that D1:Np = ṗ. If the
vector ṗ = 0, then the polynomial ṗ = 0 since ṗ has degree N − 1 and vanishes at
N points. Since p(−1) = 0, it follows that polynomial p = 0, which implies that the
vector p = 0. Hence, D1:N is invertible, and p = D−1ṗ. Comparing the equality
p = D−1ṗ to (10.2), we deduce that

(D−1)ij =

∫ τi

−1

ℓj(τ) dτ. (10.3)

Choose any s ∈ [−1, 1] and define

dj(s) =

∫ s

−1

ℓj(τ) dτ and R(s) =

N
∑

j=1

dj(s)
2

ωj
.
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Observe that (D−1)ij = dj(τi) and R(τi) is the square of the Euclidean length of row
i in (W1/2D)−1. Let q ∈ PN−1 be the polynomial defined by

q(τ) =

N
∑

j=1

dj(s)ℓj(τ)

ωj
.

Hence, by the triangle and Schwarz inequalities,

R(s) =

∫ s

−1

q(τ) dτ ≤
∫ 1

−1

|q(τ)| dτ ≤
√
2

(∫ 1

−1

q(τ)2 dτ

)1/2

. (10.4)

Since q2 ∈ P2N−2, both Radau and Gauss quadrature are exact, and

∫ 1

−1

q(τ)2 dτ =

N
∑

i=1

ωiq(τi)
2, (10.5)

where the τj are either the Radau or Gauss quadrature points and the ωj are the
associated weights. Since ℓj(τi) = 1 for i = j and ℓj(τi) = 0 otherwise, it follows from
the definition of q that q(τi) = di(s)/ωi. This substitution in (10.5) yields

∫ 1

−1

q(τ)2 dτ =

N
∑

i=1

di(s)
2

ωj
= R(s). (10.6)

Equating the expressions (10.4) and (10.6) implies that

(∫ 1

−1

q(τ)2 dτ

)1/2

≤
√
2.

By (10.6), R(s) ≤ 2 for any s ∈ [−1, 1]. In particular, R(τi) ≤ 2 for 1 ≤ i ≤ N .
Since R(τi) is the square of the Euclidean length of row i in (W1/2D)−1, the rows
of (W1/2D)−1 have Euclidean length bounded by

√
2. This result holds for both the

Radau and Gauss quadrature points since since q2 ∈ P2N−2, and both Radau and
Gauss quadrature are exact for polynomials of this degree.

If r is a row of D−1
1:N , then by the Schwarz inequality and the fact that the

quadrature weights sum to 2 and the rows of the matrix [W1/2D1:N ]−1 have Euclidean
length bounded by

√
2, we have

N
∑

i=1

|ri| =
N
∑

i=1

√
ωi (|ri|/

√
ωi) ≤

(

N
∑

i=1

ωi

)1/2( N
∑

i=1

r2i /ωi

)1/2

≤ 2. (10.7)

Consequently, the absolute row sums for D−1
1:N are all bounded by 2, or equivalently,

‖D−1
1:N‖∞ ≤ 2. Given any polynomial p ∈ PN with p(−1) = 0 and |ṗ(τi)| ≤ 1 for

1 ≤ i ≤ N , it is observed in Section 9 of [34] that ‖D−1
1:N‖∞ ≥ max{p(τi) : 1 ≤ i ≤ N}.

Take p(τ) = 1+ τ to deduce that ‖D−1
1:N‖∞ ≥ 1+ τN . Hence, 1+ τN ≤ ‖D−1

1:N‖∞ ≤ 2.
Since τN = 1 for the Radau points, it follows that ‖D−1

1:N‖∞ = 2. For the Gauss
points, τN approaches 1 as N tends to infinity; consequently, ‖D−1

1:N‖∞ approaches 2
as N tends to infinity for the Gauss points.
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11. Appendix 2: An analytic formula for (D‡)−1. Before stating property
(P3) in the Introduction, we showed that D‡ is an invertible matrix. In this section,
we give an analytic formula for the inverse.

Proposition 11.1. The inverse of D‡ is given by

D‡ −1
ij = ωNMj(1) +

∫ τi

1

Mj(τ)dτ, 1 ≤ i < N, 1 ≤ j < N,

D‡ −1
iN = −ωN , 1 ≤ i ≤ N,

D‡ −1
Nj = ωNMj(1), 1 ≤ j < N,

where Mj, 1 ≤ j < N , is the Lagrange interpolating basis relative to the point set τ1,
. . ., τN−1. That is,

Mj(τ) =
N−1
∏

i=1
i6=j

τ − τi
τj − τi

, j = 1, . . . , N − 1.

Proof. The relation (1.13) holds for any polynomial p of degree at most N − 1.
Let ṗ ∈ RN denote the vector with i-th component ṗ(τi). In vector form, the system
of equations (1.13) can be expressed D‡p = ṗ− eNp(1)/ωN . Multiply by D‡ −1 and
exploit the identity D‡ −1eN = −ωN1 of (5.17) to obtain

D‡ −1ṗ = p− 1p(1). (11.1)

Since ṗ is a polynomial of degree at most N−2, we can only specify the derivative
of p at N − 1 distinct points. Given any j satisfying 1 ≤ j < N , let us insert in (11.1)
a polynomial p ∈ PN−1 satisfying

ṗ(τj) = 1 and ṗ(τi) = 0 for all i < N, i 6= j.

A specific polynomial with this property is

p(τ) =

∫ τ

1

Mj(τ)dτ. (11.2)

Since pN = p(1) = 0, the last component of the right side of (11.1) vanishes to give

the relation D‡ −1
Nj + D‡ −1

NN ṗ(1) = 0. In (5.17) we showed that all the elements in

the last column of D‡ −1 are equal to −ωN , and by (11.2), ṗ(1) = Mj(1). Hence, we
obtain the relation

D‡ −1
Nj = −D‡ −1

NN ṗ(1) = ωN ṗ(1) = ωNMj(1), 1 ≤ j < N. (11.3)

Finally, let us consider D‡ −1
ij for i < N and j < N . We combine the i-th

component of (11.1) for i < N with (11.2) to obtain

(D‡ −1ṗ)i =

∫ τi

1

Mj(τ)dτ. (11.4)

Recall that all components of ṗ vanish except for the j-th, which is 1, and the N -th,
which is Mj(1) by (11.2). Hence, (11.4) and the fact that the elements in the last
column of D‡ −1 are all −ωN yield

D‡ −1
ij =

∫ τi

1

Mj(τ)dτ −D‡ −1
iN Mj(1) = ωNMj(1) +

∫ τi

1

Mj(τ)dτ
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This completes the proof.

Tables 11.1 and 11.2 show ‖D‡ −1‖∞ and the maximum Euclidean norm of the
rows of D‡ −1W−1/2 for an increasing sequence of dimensions. The norms in Ta-
ble 11.1 approach 2 as N grows, consistent with (P3), while the norms in Table 11.2
approach

√
2, consistent with (P4).

N 25 50 75 100 125 150
norm 1.995376 1.998844 1.999486 1.999711 1.999815 1.999871

N 175 200 225 250 275 300
norm 1.999906 1.999928 1.999943 1.999954 1.999962 1.999968

Table 11.1

‖D‡ −1‖∞

N 25 50 75 100 125 150
norm 1.412209 1.413691 1.413982 1.414083 1.414130 1.414156

N 175 200 225 250 275 300
norm 1.414171 1.414181 1.414188 1.414193 1.414196 1.414199

Table 11.2

Maximum Euclidean norm for the rows of [W1/2D‡]−1
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[1] I. Babuška and M. Suri, The h-p version of the finite element method with quasiuniform
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