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Abstract

We consider the stochastic variational inequality problem in which the map is expectation-
valued in a component-wise sense. Much of the available convergence theory and rate statements
for stochastic approximation schemes are limited to monotone maps. However, non-monotone
stochastic variational inequality problems are not uncommon and are seen to arise from prod-
uct pricing, fractional optimization problems, and subclasses of economic equilibrium problems.
Motivated by the need to address a broader class of maps, we make the following contribu-
tions: (i) We present an extragradient-based stochastic approximation scheme and prove that
the iterates converge to a solution of the original problem under either pseudomonotonicity
requirements or a suitably defined acute angle condition. Such statements are shown to be
generalizable to the stochastic mirror-prox framework; (ii) Under strong pseudomonotonicity,
we show that the mean-squared error in the solution iterates produced by the extragradient
SA scheme converges at the optimal rate of O

(
1
K

)
, statements that were hitherto unavailable

in this regime. Notably, we optimize the initial steplength by obtaining an ε-infimum of a dis-
continuous nonconvex function. Similar statements are derived for mirror-prox generalizations
and can accommodate monotone SVIs under a weak-sharpness requirement. Finally, both the
asymptotics and the empirical rates of the schemes are studied on a set of variational problems
where it is seen that the theoretically specified initial steplength leads to significant performance
benefits.

1 Introduction

Several applications arising in engineering, science, finance, and economics lead to a broad range
of optimization and equilibrium problems. Under suitable convexity assumptions, the equilibrium
conditions of such problems may be compactly stated as as a variational inequality problem [1, 2,
Ch. 1]. Recall that given a set X ⊆ Rn and a map F : Rn → Rn, the variational inequality
problem, denoted by VI(X,F ), requires an x∗ ∈ X such that (x− x∗)TF (x∗) ≥ 0 for all x ∈ X. In
a multitude of settings, either the evaluation of the map F (x) is corrupted by error or its components
are expectation valued, a consequence of the original model being a stochastic optimization or
equilibrium problem. Consequently, Fi(x) , E[Fi(x, ξ)] for i = 1, · · · , n. Note that ξ : Ω → Rd,
F : X × Rd → Rn and (Ω, F, P ) is the associated probability space. As a result, the stochastic
variational problem requires finding a vector x∗ ∈ X such that

(x− x∗)TE[F (x∗, ξ(ω))] ≥ 0, ∀x ∈ X. (1)
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{aswinkannan1987@gmail.com,udaybag@psu.edu}. This research has been partially supported by NSF Awards
1246887 (CAREER), 1538193, and 1408366.
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Throughout, we use F (x;ω) to refer to F (x, ξ(ω)) and refer to our problem as SVI(X,F ). We begin
by providing some motivation for weakening the monotonicity requirement.

1.1 Motivation

We draw motivation from three classes of problems.

(a) Competitive exchange economy. We consider a competitive exchange economy [3] in
which there is a collection of n goods with an associated price vector p ∈ Rn++ and a positive
budget w. The consumption vector F (p, w;ω) specifies the uncertain consumption level and the
consumption has to satisfy budget constraints in an expected-value sense, as specified by

E[pTF (p, w;ω)] ≤ w.

This demand function is assumed to be homogeneous with degree zero or F (λp, λw;ω) = F (p, w;ω)
for any positive λ. Furthermore, F (p, w) , E[F (p, w;ω)]. An additional condition satisfied by
F (p, w;ω) is the (expected) Weak Weak Axiom of revealed preference (EWWA), which requires
that for all pairs (p1, w1) and (p2, w2)

pT2 E[F (p1, w1;ω)] ≤ w2 =⇒ pT1 E[F (p2, w2;ω)] ≥ w1.

This axiom is an expected-value variant of WWA which itself represents a weakening of the Weak
Axiom of revealed preference [4]. Before proceeding, we provide some intuition for this axiom. At
prices p2 and budget w2, an agent chooses a bundle F (p2, w2). If at the same prices, she can also
afford F (p1, w1), then we have that pT2 F (p1, w1) ≤ w2. Consequently, the consumer believes that
the bundle F (p2, w2) is at least as good as F (p1, w1). If at p1 and w1, the bundle F (p2, w2) is
cheaper than the chosen bundle F (p1, w1), it follows that she can afford a bundle b such that b
contains more of each commodity than F (p2, w2). It may then be concluded that the agent prefers b
to F (p2, w2). But F (p2, w2) is at least as good as F (p1, w1), implying that the bundle b is preferable
to F (p1, w1). But bundle b is cheaper than F (p1, w1), contradicting the choice of F (p1, w1) and one
can conclude that F (p2, w2) cannot be cheaper than F (p1, w1) or pT1 F (p2, w2) ≥ w1. If w1 = w2,
we have the following:

pT2 F (p1, w) ≤ w =⇒ pT1 F (p2, w) ≥ w.

By the budget identity, pT1 F (p1, w) = pT2 F (p2, w) = w, implying that

(p2 − p1)TF (p1, w) ≤ 0 =⇒ (p2 − p1)TF (p2, w) ≤ 0.

It follows that F (•, w) is a pseudomonotone map in (•) for any positive w. Formally, the property
of pseudomonotonicity can be defined as follows.

Definition 1 (Pseudomonotonicity). A continuous mapping F : X ⊆ Rn → Rn is pseudomonotone
on X if for all x, y ∈ X, (x− y)TF (y) ≥ 0 =⇒ (x− y)TF (x) ≥ 0.

We now present how one may model the notion of equilibrium in a general consumption sector
with a finite set of agents, denoted by A. An agent a ∈ A is characterized by an endowment
ea ∈ Rn++ and a demand function Fa(p, p

T ea), implying that the consumption of agent a is given
by ϕa(p) = pTFa(p, p

T ea). The aggregate demand, given by the function F (p), is defined as F (p) =∑
a∈A Fa(p, p

T ea). Note that F (p) is homogeneous in p with degree zero and by the individual
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budget identities, we have Walras’ law; for all p, pTF (p) = pT e = pT (
∑

a ea), where e denotes the
sector-wide initial endowment. The demand function F (p) satisfies the WWA if

p2
TF (p1) ≤ pT2 e =⇒ pT1 F (p2) ≥ pT1 e.

The WWA can be presented in a more convenient fashion if Z(p) = F (p)−e. While the consumption
sector is captured by Z(p), the set Y represents the set of technology available and y ∈ Y represents
either input (negative) or output (positive) based on sign. The set Y satisfies two requirements: (i)
Free disposal : goods may be aribitrarily wasted without using further inputs or −R+

n ⊆ Y ; and (ii)
“No free lunch”: production requires some inputs or Y ∩ Rn+ = {0}. Consequently, an equilibrium
of the economy (Y,Z) is given by a p ∈ P such that

(a)Z(p) ∈ Y and (b) pT y ≤ 0, for all y ∈ Y.

Condition (a) implies that demand is met at equilibrium while (b) implies that firms maximize
profits by choosing plans y = Z(p). In fact, by [3, Th. 1], p is an equilibrium of the economy (Y,Z)
if and only if p is a solution of VI(Q,Z), where Q , P ∩ Y ◦ and Y ◦ , {d : dT y ≥ 0, y ∈ Y }. But
by leveraging the WWA, Z(p) = E[Z(p; ξ(ω)] is a pseudomonotone map from the EWWA, leading
to a pseudomonotone stochastic variational inequality problem.

(b) Stochastic fractional programming. Fractional programs involve the optimization of met-
rics such as lift-to-drag ratios in aircraft design [5], fuel economy to engine performance ratios in
automotive design [6], and signal-to-noise ratios in wireless networks [7]; these problems can often
be cast as pseudomonotone. More recently, efforts in financial engineering optimize the Omega ra-
tio [8,9] which quantifies the ratio of gain probability to loss probability. All of the above problems
fall under the umbrella of “fractional programming” and we consider the stochastic generalization
of this problem:

min
x∈X

h(x),E
[
f(x; ξ(ω))

g(x; ξ(ω))

]
, (2)

where f, g : Rn×Rd → R and ξ : Ω→ Rd. While h(x) cannot be guaranteed to be pseudoconvex in
general, in automotive problems [6], f(x; ξ(ω)) corresponds to the uncertain time taken to accelerate
from 0 to vmax miles per hour while g(x; ξ(ω)) denotes the uncertain fuel economy. The design space
x corresponds to engine design specifications such as gear ratios and transmission switching levels.
Consequently, the equilibrium conditions are given by a pseudomonotone stochastic variational
inequality problem. We present an extended version of Lemma 2.1 from [10] as a definition (proof
omitted). It provides conditions for the pseudoconvexity of h(x) under some basic assumptions.
Note that h(x) is pseudoconvex if and only if −h(x) is pseudoconcave.

Lemma 1 (Stochastic pseudoconvex function). Suppose the following hold. (i) f : X ×Rd → R is
a nonnegative convex function in a.s. fashion; (ii) g : X × Rd → R is a positive concave (strictly
concave) function in an a.s. sense; and (iii) f(•;ω), g(•;ω) ∈ C1 in a.s. sense, then the function
h : X → R, given by h(x) = E[f(x, ω)/g(x, ω)], is a pseudoconvex (strongly pseudoconvex) function.

(c) Stochastic product pricing. Consider an oligopolistic market with a set of substitutable
goods in which firms compete in prices. In such Bertrand markets [11, 12], the quantity sold by a
particular firm is contingent on the prices set by the firms (and possibly other product attributes)
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and this firm-specific demand is captured by the Generalized Extreme Value (GEV) model [12–14].
and the Multiplicative Competitive Interaction (MCI) model [15, 16] have been very useful in
characterizing consumer demand based on price and product attributes. The multinomial logit is
a commonly used GEV model that possesses some tractability and finds application in revenue
management problems in product pricing. We begin by defining the product pricing problem for
firm j:

max
pj∈Pj

fj(p) where fj(p) , E [pjζj(p;ω)],

pj denotes the price set by firm j and ζj(p;ω) denotes the demand for product j, defined as

ζj(p;ω) ,
e−αj(ω)pj

c+
∑N

i=1 e
−αi(ω)pi

,

where αj(ω) denote positive parameters for j = 1, . . . , N . The resulting revenue function has been
shown to be pseudoconcave (see [17]). The relevance of this observation can be traced to the
knowledge that under a pseudoconvexity assumption, given p∗−j , p

∗
j is a stationary point of this

problem if and only if p∗j is a global minimizer of this problem. Consequently, any solution to
the collection of pseudomonotone variational inequality problems is a Nash-Bertrand equilibrium.
Note that in Cournot or quantity games, suitably specified inverse demand functions also lead to
pseudoconcave revenue functions [18, Th. 3.4].

1.2 Stochastic approximation schemes

The stochastic counterpart of the variational inequality has received relatively less attention com-
pared to its deterministic counterpart. Early efforts focused on the use of sample average approxi-
mation (SAA) techniques and developed consistency statements of the resulting estimators [19]. In
fact, such techniques have been applied towards the computation of solutions stochastic variational
inequality problems [20]. More recently, such avenues have been utilized to develop confidence
regions with suitable central limit results [21, 22]. An alternative approach inspired by the semi-
nal work by Robbins and Monro [23] is that of stochastic approximation [24–26]. Via averaging
techniques [27–30], optimal rates in function values can be derived (also see related work [31, 32]
and prior work [33] on averaging). In the last decade, there has been a surge of interest in the
development of techniques for stochastic convex optimization with a focus on optimal constant
steplengths [34], composite problems [35, 36] and nonconvexity [37, 38]. However, in the context
of stochastic variational inequality problems, much of the prior work has been in the context of
monotone operators. Almost-sure convergence of the solution iterates was first proven by Jiang
and Xu [39] under either strong/strict monotonicity or a variant of the acute angle condition, while
regularized schemes for addressing merely monotone but Lipschitzian maps were subsequently de-
veloped by Koshal et al. [40]. In [41], Yousefian et al. weakened the Lipschitzian requirement by
developing an SA scheme that combined local smoothing and iterative regularization. From a rate
standpoint, there has been relatively less in the context of SVIs. A particularly influential paper by
Tauvel et al. [42] proved that the mirror-prox stochastic approximation scheme admits the optimal
rate of O(1/

√
K) in terms of the gap function when employing averaging over monotone SVIs. In

related work [43], Yousefian et al. develop optimal extragradient-based robust smoothing schemes
for monotone SVIs in non-Lipshitzian regimes. Noteworthy amongst past efforts is the develop-
ment of a class of accelerated techniques for deterministic and stochastic variational inequality
problems [44]. We summarize much of the prior results in Table 1. We believe that this is amongst
the first efforts to contend with this problem class but it is worth noting that subsequent to the
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conference version of this paper [45], there have been at least two papers that have considered
the solution of stochastic pseudomonotone variational inequality problems. Of these, the first1

utilizes a similar extragradient scheme with a.s. and rate statements that incorporates variable
batch size [46], leading to an improved rate of O( 1

K ) in terms of dist2(x̄K , X
∗). In addition, the

second author of this paper has also recently jointly coauthored work on a block-coordinate variant
of such schemes that incorporates a novel averaging scheme in the context of stochastic mirror-prox
schemes [47].

Ref. Applicability SA Algorithm Avg. Metric Rate a.s.

Strongly monotone

[39]
Strongly monotone,
Lipschitz map

Proj. based N Iterates - Y

[48]
Strongly monotone,
non-Lipschitz map

Proj. based
+ self-tuned step.

N MSE (Soln. Iter.) - Y

Monotone +
Single Proj.

[39]
Monotone,
acute-angle condn.

Proj. based N Iterates - Y

[40]
Monotone,
Lipschitz map

Proj. based
+ Regularization

N Iterates - Y

[41]
Monotone,
non-Lipschitz

Proj. based
+ Regularization
+ smoothing

N Iterates - Y

[49]
Monotone,
Lipschitz

X , ∩mi=1Xi

Proj-based
+Regularization

Y Gap fn. O
(

ln(k)√
k

)
Y

Monotone +
Extragradient-based

[42]
Monotone,
‖F (x)− F (y)‖∗
≤ L‖x− y‖+B

Mirror-prox Y Gap fn. O
(

1√
k

)
N

[43]
Monotone,
Non-Lipschitz,
Bounded map

Extragradient
+ Rand. smoothing

Y Gap fn. O
(

1√
k

)
Y

[50]
Monotone
Non-Lipschitz

Extragradient Y Gap fn. O
(

1
k1/6

)
Y

[44]

Monotone,
F (x) = ∇G(x) +H(x),
G is LG-smooth,
H is LH -Lipschitz

Mirror-prox
+ accelerated

Y − O
(
LG
k2

+ LH
k

+ c√
k

)
N

Pseudomonotone +
Extragradient-based

[46]
Pseudomonotone
Lipschitz

Extragradient
+var. redn

Y
E[r(xk)2]
(exp. squared-resid)

O
(
1
k

)
Y

Sec. 3.3
Strongly pseudo. or
Strictly pseudo. or
Pseudomonot.-plus

Extragradient,
Mirror-prox

N Y

Sec. 3.4
Strongly pseudo. or
monotone+weak-sharp

Extragradient,
Mirror-prox

N MSE (Soln. Iter) O
(
1
k

)
Y

Table 1: SA based approaches for Stochastic Variational Inequality Problems (bold represents the
current work)

1.3 Contributions and outline:

This paper makes the following contributions:

1Note that this paper references our conference paper and a preprint of the current paper.
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(i) Almost-sure convergence . In Section 2, we consider a stochastic extragradient method
and show that the generated sequence of iterates converges to a solution in an almost-sure sense.
We refine these statements to a subclass of non-monotone problems and extend the convergence
statement to the mirror-prox regime. To the best of our knowledge, there appears to be no prior
a.s. convergence theory for this class of SVIs.

(ii) Rate analysis . Under slightly stronger settings of pseudomonotonicty, in Section 3, we prove
that the extragradient scheme displays the optimal rate for strongly pseudomonotone maps. Ad-
ditionally, a similar statement is proved for the mirror-prox generalization as well as for problems
characterized by the weak-sharpness property. In particular, we emphasize that our work derives
rate estimates for the iterates without resorting to averaging, in contrast with available statements
for monotone SVIs that provide rate statements in terms of the gap function. Notably, in all three
cases, we further refine the bound by selecting a suitable initial steplength by deriving an (ε-)
infimum of a nonconvex discontinuous function in terms of problem-specific constants (the strong
pseudomonotonicity constant, Lipschitz constant, compactness measures, etc.) Again, this appears
to be amongst the first rate statements in the regime of pseudomonotone problems.

(iii) Numerical Results: In Section 4, based on a test suite of problems, we examine the empirical
behavior of our schemes and note the benefits seen from optimizing the initial steplength.

2 Extragradient-based stochastic approximation schemes

2.1 Background and Assumptions

Given an x0 ∈ X in a traditional SA scheme and a steplength sequence {γk}, a sequence {xk} is
constructed via the following update rule:

xk+1 := ΠX(xk − γk(F (xk) + wk)), k ≥ 0, (SA)

where wk is defined as wk , F (x;ωk)−F (xk). We consider a stochastic extragradient scheme akin
to that presented in [42]. Given an x0 ∈ X and a steplength sequence {γk}, this scheme comprises
of two steps for k ≥ 0:

xk+1/2 := ΠX(xk − γk(F (xk) + wk)),

xk+1 := ΠX(xk − γk(F (xk+1/2) + wk+1/2)),
(ESA)

where wk+1/2 , F (xk+1/2;ωk+1/2)− F (xk+1/2). At any iteration k, the history Fk and Fk+1/2 are

defined as Fk , σ
{
x0, ω0, ω1/2, ω1, . . . , ωk−1/2

}
and Fk+1/2 , Fk ∪ {ωk}, respectively. Next, we

define the property of pseudomonotonicity and its variants and denote the solution set of SVI(X,F )
by X∗:

Definition 2 (Pseudomonotonicity and variants). Consider a continuous mapping F : X ⊆ Rn →
Rn. Then, the following hold:

(i) F is pseudomonotone on X if for all x, y ∈ X, (x− y)TF (y) ≥ 0 =⇒ (x− y)TF (x) ≥ 0.

(ii) F is pseudomonotone-plus on X if it is pseudo-monotone on X and for all vectors x and y in
X, (x− y)TF (y) ≥ 0, (x− y)TF (x) = 0 =⇒ F (x) = F (y).

(iii) F is strictly pseudomonotone onX, if for all x, y ∈ X, (x−y)TF (y) ≥ 0 =⇒ (x−y)TF (x) > 0
where x 6= y.
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(iv) F is strongly pseudomonotone on X if for all x, y ∈ X, there exists σ > 0 such that (x −
y)TF (y) ≥ 0 =⇒ (x− y)TF (x) ≥ σ‖x− y‖2, where x 6= y.

(v) The acute angle relation holds if for any x ∈ X\X∗ and x∗ ∈ X∗ ,

(x− x∗)TF (x) > 0. (3)

(vi) The weak sharpness property holds if there exists an α > 0 such that

(x− x∗)TF (x∗) ≥ α min
x∗∈X∗

‖x− x∗‖, ∀x ∈ X, ∀x∗ ∈ X∗.

It is worth recalling that strict pseudomonotonicity implies the acute angle condition. Next, we
make the following assumptions on the conditional first and second moments:

Assumption 1 (Unbiasedness and boundedness of conditional second moments). At an
iteration k, the following hold in an a.s. sense:

(A1) The conditional first moments E[wk | Fk] and E[wk+1/2 | Fk+1/2] are zero;

(A2) The conditional second moments are bounded a.s. in that there exists a ν > 0 such that
E[‖wk‖2 | Fk] ≤ ν2 and E[‖wk+1/2‖2 | Fk+1/2] ≤ ν2 for all k.

We now provide assumptions on steplength sequences consistent with most SA schemes.

Assumption 2 (Square summability and non-summability of steplength sequences).
The diminishing sequence {γk} satisfies the following:

(A3) The steplength sequence is square-summable:
∑∞

k=0γ
2
k <∞.

(A4) The steplength sequence is non-summable:
∑∞

k=0γk =∞.

We impose a further requirement on the map given by the following:

Assumption 3 (Lipschitz continuity and boundedness of F ). (A5) F (x) is Lipschitz con-
tinuous and bounded over X i.e. there exist positive scalars L and B such that for all x, y ∈ X
‖F (x)− F (y)‖ ≤ L‖x− y‖ and ‖F (x)‖ ≤ B

2 .

We use the following super-martingale convergence results [51, Lemma 10,11, page 49,50].

Lemma 2. Let Vk be a sequence of nonnegative random variables adapted to σ-algebra Fk and such
that E[Vk+1 | Fk] ≤ (1 − δk)Vk + ψk, ∀k ≥ 0, a.s. where 0 ≤ δk ≤ 1, ψk ≥ 0, and

∑∞
k=0 δk =

∞,
∑∞

k=0 ψk <∞, and limk→∞
ψk
δk

= 0. Then, Vk → 0 in a.s. sense.

Lemma 3. Let Vk, uk, ψk and γk be nonnegative random variables adapted to σ algebra Fk. If
a.s

∑∞
k=0 δk < ∞,

∑∞
k=0 ψk < ∞, and E[Vk+1 | Fk] ≤ (1 + δk)Vk − uk + ψk, ∀k ≥ 0, then Vk is

convergent in an a.s. sense and
∑∞

k=0 uk <∞ in an a.s. sense.
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2.2 An extragradient SA scheme

In this subsection, we prove that the iterates generated by the (ESA) scheme converge to the
solution set of the original problem in an almost sure sense by leveraging ideas drawn from the
proof of the deterministic version presented in [1, Lemma 12.1.10]. A challenge in this scheme arises
due to the two independent stochastic errors respectively from the two sub-steps at every iteration
and the lack of a direct expression of xk+1 in terms of F (xk) unlike the standard projection scheme.
We begin by relating any two successive iterates in Lemma 4.

Lemma 4. Consider the stochastic variational inequality problem defined by SVI(X,F ) and let
x∗ denote any solution of SVI(X,F ). Suppose Assumption (A5) holds and consider the sequence
of the iterates be generated by the extragradient scheme (ESA) and let uk , 2γkF (xk)

T (xk − x∗).
Then, the following holds for any iterate k:

‖xk+1 − x∗‖2 ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 − uk − 2γkw

T
k+1/2(xk − x∗) + γ2

ktk, (4)

where the scalar tk ≥ 0 is an appropriately defined scalar.

Proof. Let yk = xk − γk(F (xk+1/2) + wk+1/2). Then,

‖xk+1 − x∗‖2 = ‖ΠX(yk)− x∗‖2 = ‖yk − x∗‖2 + ‖ΠX(yk)− yk‖2 + 2 (ΠX(yk)− yk)T (yk − x∗).

Note that 2‖yk −ΠX(yk)‖2 + 2(ΠX(yk)− yk)T (yk − x∗)
= 2‖yk −ΠX(yk)‖2 + 2(ΠX(yk)− yk)T (yk −ΠX(yk) + ΠX(yk)− x∗)
= 2‖yk −ΠX(yk)‖2 − 2‖yk −ΠX(yk)‖2 + 2(ΠX(yk)− yk)T (ΠX(yk)− x∗)
= 2(ΠX(yk)− yk)T (ΠX(yk)− x∗) ≤ 0,

where the last inequality follows from the projection property. As a consequence, we have that

‖yk −ΠX(yk)‖2 + 2(ΠX(yk)− yk)T (yk − x∗) ≤ −‖yk −ΠX(yk)‖2. (5)

By invoking (5) in the expansion of ‖xk+1 − x∗‖2, we obtain

‖xk+1 − x∗‖2 = ‖yk − x∗‖2 + ‖ΠX(yk)− yk‖2 + 2(ΠX(yk)− x∗)T (yk − x∗)
≤ ‖yk − x∗‖2 − ‖yk −ΠX(yk)‖2

= ‖xk − γk(F (xk+1/2) + wk+1/2)− x∗‖2 − ‖xk − γk(F (xk+1/2) + wk+1/2)− xk+1‖2

= ‖xk − x∗‖2 + γ2
k‖F (xk+1/2) + wk+1/2)‖2 − 2γk(xk − x∗)T (F (xk+1/2) + wk+1/2)

− ‖xk+1 − xk‖2 − γ2
k‖F (xk+1/2) + wk+1/2)‖2 + 2γk(xk − xk+1)T (F (xk+1/2) + wk+1/2)

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk(x
∗ − xk+1)T (F (xk+1/2) + wk+1/2).
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By adding and subtracting xTk (F (xk+1/2) + wk+1/2), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk(x
∗ − xk+1)T (F (xk+1/2) + wk+1/2)

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk(x
∗ − xk)T (F (xk+1/2) + wk+1/2)

+ 2γk(xk − xk+1)T (F (xk+1/2) + wk+1/2)

≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2γk(x
∗ − xk)T (F (xk+1/2) + wk+1/2)

+ ‖xk − xk+1‖2 + γ2
k‖F (xk+1/2) + wk+1/2‖2

= ‖xk − x∗‖2 + 2γk(x
∗ − xk)TF (xk) + 2γk(x

∗ − xk)T (F (xk+1/2)− F (xk))︸ ︷︷ ︸
Term a

+ 2γk(x
∗ − xk)Twk+1/2 + γ2

k‖F (xk+1/2) + wk+1/2‖2.

Next, we observe that Term a can be bounded as follows:

Term a ≤
γ2
k

β
‖x∗ − xk‖2 + β‖F (xk+1/2 − F (xk))‖2 ≤

γ2
k

β
‖x∗ − xk‖2 + βL2‖xk+1/2 − xk‖2

≤
γ2
k

β
‖x∗ − xk‖2 + βL2‖ΠX(xk − γk(F (xk) + wk))−ΠX(xk)‖2

=
γ2
k

β
‖x∗ − xk‖2 + γ2

kβL
2‖F (xk) + wk‖2.

As a consequence, we have that

‖xk+1 − x∗‖2 ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 − 2γk(xk − x∗)TF (xk) + 2γk(x

∗ − xk)Twk+1/2

+ γ2
k

(
‖F (xk+1/2)‖2 + ‖wk+1/2‖2 + βL2‖F (xk)‖2 + βL2‖wk‖2

)
+ 2γ2

k

(
βL2wTk F (xk) + wTk+1/2F (xk+1/2)

)
≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 −

=uk︷ ︸︸ ︷
2γk(xk − x∗)TF (xk) +2γk(x

∗ − xk)Twk+1/2 (6)

+ γ2
k

=tk︷ ︸︸ ︷(
B2(1 + βL2)

4
+ ‖wk+1/2‖2 + βL2‖wk‖2 + 2wTk+1/2F (xk+1/2) + 2βL2wTk F (xk)

)
,

where the last expression follows by invoking the boundedness of F over X.

While the above Lemma relates iterates for general mappings F , we begin with an analysis on
pseudomonotone-plus problems.

Proposition 1 (a.s. convergence of ESA). Consider SVI(X,F ) where F is assumed to be a
pseudomonotone-plus mapping. Suppose assumptions (A1)–(A5) hold. Then, the extragradient
scheme (ESA) generates a sequence {xk} such that {xk} is bounded a.s. and any limit point of
{xk} is a solution of SVI(X,F ) in an a.s. sense.

Proof. Consider the recursion (6). Taking expectations conditioned on Fk, we have that
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E[‖xk+1 − x∗‖2 | Fk] ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 − uk − 2γkE[(xk − x∗)Twk+1/2 | Fk]

+ γ2
k

(
B2(1 + βL2)

4
+ E[‖wk+1/2‖2 | Fk] + βL2E[‖wk‖2 | Fk]

)
+ γ2

k

(
E[2wTk+1/2F (xk+1/2) | Fk] + 2βL2E[wTk F (xk)|Fk]

)
=

(
1 +

γ2
k

β

)
‖xk − x∗‖2 − uk − 2γkE[E[(xk − x∗)Twk+1/2 | Fk+1/2]| Fk]

+ γ2
k

(
B2(1 + βL2)

4
+ E[E[‖wk+1/2‖2 | Fk+1/2] | Fk] + βL2E[‖wk‖2 | Fk]

)
+ γ2

k

(
E[E[2wTk+1/2F (xk+1/2) | Fk+1/2] | Fk] + 2βL2E[wTk F (xk) | Fk]

)
≤ (1 + δk) ‖xk − x∗‖2 − uk + ψk, (7)

where δk ,
γ2
k

β
and ψk , γ2

k

(
(B2 + 8ν2)(1 + βL2)

4

)
,

and the inequalities follow from using the tower law and assumption (A1). The remainder of the
proof requires application of the super-martingale convergence theorem (Lemma 3). This requires
that uk ≥ 0 for all k, a fact that follows from noting that F is a pseudomonotone map over X,
implying that

(xk − x∗)TF (x∗) ≥ 0 =⇒

,
uk
γk︷ ︸︸ ︷

(xk − x∗)TF (xk) ≥ 0.

From the solution property of F (x∗)T (xk − x∗) ≥ 0 and from the pseudomonotonicity of F (x),
uk = 2γkF (xk)

T (xk − x∗) ≥ 0. Using assumption (A3), it is observed that
∑

k ψk < ∞. Invoking
Lemma 3, we have that {‖xk − x∗‖2} is a convergent sequence in an a.s. sense. Then in an a.s.
sense, it follows that {xk}k≥0 is a bounded sequence and has a convergent subsequence {xk}k∈K. We
proceed by contradiction; suppose xk converges to x̂ along subsequence K where x̂ is not necessarily
a solution to SVI(X,F ). Since {δk} is summable in an a.s. sense, {uk} is summable a.s. and from
the non-summability of γk, we have that a.s., the following implication holds.∑

k∈K
uk =

∑
k∈K

2γkF (xk)
T (xk − x∗) <∞ =⇒ lim

k∈K
F (xk)

T (xk − x∗) = 0.

Since xk
a.s.−−−→
k→∞

x̂ along the subsequence K from (7) and by the continuity of F over X, we obtain

F (x̂)T (x̂− x∗) = 0. (8)

By recalling that x∗ is a solution of VI(X,F ) and by invoking the pseudomonotone-plus property
of F together with (8), we have[

F (x∗)T (x̂− x∗) ≥ 0 and F (x̂)T (x̂− x∗) = 0
]

=⇒ F (x̂) = F (x∗). (9)

Therefore from (9), the following holds:

∀x ∈ X, F (x̂)T (x− x̂) = F (x∗)T (x− x̂) = F (x∗)T (x− x∗) + F (x∗)T (x∗ − x̂)

≥ F (x∗)T (x∗ − x̂) = F (x̂)T (x∗ − x̂) = 0,

where the last equality follows from (8). It follows that x̂ is a solution to SVI(X,F ) and any limit
point of {xk} is a solution of SVI(X,F ) in an a.s. sense.

10



Next, we extend the convergence theory to accommodate variants of pseudomonotonicity as well
as problems satisfing the acute angle property.

Proposition 2 (a.s. convergence of ESA under weaker conditions). Consider SVI(X,F )
and let assumptions (A1-A5) hold. Consider one of the following statements:

(i) F satisfies the acute angle relation at X∗ given by (3).

(ii) F is strictly pseudomonotone on X.

(iii) F is strongly pseudomonotone on X.

(iv) F is pseudomonotone on X and is given by the gradient of E[f(x, ω)].

Then, the extragradient scheme (ESA) generates a sequence {xk} such that {xk} is bounded a.s.
and any limit point of {xk} is a solution of SVI(X,F ) in an a.s. sense.

Proof. We begin from (7) in the proof of Prop. 1 and instead of the pseudomonotone-plus property,
we impose properties imposed by (i) – (iv).

(i) From (3), uk = 2γkF (xk)
T (xk − x∗) > 0 and δk and ψk are summable since γk is a square

summable sequence. Invoking Lemma 3, we have that
∑

k uk < ∞ a.s. and {‖xk − x∗‖2} is a
convergent sequence in an a.s. sense, implying that {xk}k≥0 is a bounded sequence in an a.s. sense.
It follows that {xk} has a convergent subsequence indexed by K with limit point x̂. We proceed by
contradiction and assume that x̂ 6∈ X∗. Recall that

∑
k γk =∞ and

∑
k∈K uk <∞, implying that

limk→∞ F (xk)
T (xk − x∗) = 0 in an a.s. sense. Consequently, by continuity of F and by recalling

that xk
k→∞−−−→
a.s.

x̂ along K, we have that F (x̂)T (x̂ − x∗) = 0. But this contradicts the acute angle

property and it follows that x̂ ∈ X∗.

(ii) Since F is strictly pseudomonotone, F satisfies the acute angle relation and the result follows.

(iii) Since F is strongly pseudomonotone, F is strictly pseudomonotone and the result follows.

(iv) From the first part of the proof of Prop. 1, since the map is pseudomonotone we have that
‖{xk − x∗‖2} is a convergent sequence in an a.s. sense, implying that in an a.s. sense, {xk}k≥0

is a bounded sequence and has a convergent subsequence with index set K and limit point x̂.
We proceed by contradiction and assume that x̂ 6∈ X∗. By the pseudoconvexity of f(x), for any
x1, x2 ∈ X, ∇f(x1)T (x2 − x1) ≥ 0 =⇒ f(x2) ≥ f(x1), implying that

∇f(x∗)T (x̂− x∗) ≥ 0 =⇒ f(x̂) ≥ f(x∗). (10)

But from (8), we have that ∇f(x̂)T (x∗ − x̂) = 0 implying that f(x̂) ≤ f(x∗). It follows that
f(x̂) = f(x∗) and x̂ is a global minimizer of E[f(x, ξ)] over X and a solution of SVI(X,F ).

Next, we consider a monotone regime where VI(X,F ) satisfies a weak sharpness property. Prior
to providing our main convergence statement, we provide an intermediate lemma.

Proposition 3 (a.s. convergence under weak-sharpness and monotonicity). Let (A1-A5) hold.
Consider SVI(X,F ) where F is a continuous monotone map over X. Suppose the weak sharpness
property holds for the mapping F and the solution set X∗ with parameter α. Then, the extragra-
dient scheme (ESA) generates a sequence {xk} such that {xk} converges to a solution of SVI(X,F )
in an a.s. sense.
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Proof. We begin by restating (7) as follows:

E[‖xk+1 − x∗‖2 | Fk] ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 − uk + γ2

k

(
(B2 + 8ν2)(1 + βL2)

4

)
. (11)

where −uk = −2γkF (xk)
T (xk − x∗) ≤ −2γkαdist(xk, X

∗) by the weak-sharpness property. This
further implies that

E[‖xk+1 − x∗‖2 | Fk] ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 − γkαdist(xk, X

∗)

+ γ2
k

(
(B2 + 8ν2)(1 + βL2)

4

)
. (12)

From the super-martingale convergence Lemma, it can be seen that the following hold in an a.s.
sense: (i) {‖xk − x∗‖2} is a convergent sequence; and (ii)

∑
k γkαdist(xk, X

∗) <∞. We proceed to

show that dist(xk, X
∗)

k→∞−−−→
a.s.

0; equivalently, this implies that almost every subsequence {xk}k∈K →
X∗ as k →∞. Suppose this is false. Then for ω ∈ Ω1 ⊂ Ω and µ(Ω1) > 0 (i.e. finite probability),

{xk}k∈K(ω) → x̂(ω), dist(xk, X
∗)

k→∞−−−→
a.s.

v(ω) > 0 where K(ω) denotes a random subsequence with

limit point x̂(ω), v(ω) is a random positive scalar and infω∈Ω1 v(ω) ≥ v̄. Then for every ω ∈ Ω1

and for v̄ > 0, there exists a K(ω) such that ‖xk − x̂(ω)‖ ≤ v̄/2 for k ∈ K(ω) and k ≥ K(ω). It
follows that that for ω ∈ Ω1 (with finite probability), we have that∑

k∈K(ω)

γkdist(xk, X
∗) ≥

∑
k≥K(ω),k∈K(ω)

γkdist(xk, X
∗) =∞.

But this contradicts that claim that
∑∞

k=1 γkdist(xk, X
∗) < ∞ almost surely. Consequently,

dist(xk, X
∗)

k→∞−−−→
a.s.

0.

Remark: A natural question emerges as to the relevance of this result, given that monotone
maps have been studied in the past (cf. [40, 42]). First, we present statements that show that
the original sequence converges almost surely to a point in the solution set, rather than showing
the averaged counterpart coverges to the solution set. Second, in contrast with [40], we do not
resort to regularization in deriving almost-sure convergence statements. Third, we proceed to show
that under the prescribed assumptions, we obtain the optimal rate of convergence in the solution
estimators, rather than the gap function. Finally, we do not require that X be bounded for claiming
the a.s. convergence of solution iterates in this regime.

2.3 Mirror-prox generalizations

Given a point and a set, the Euclidean projection computes the closest point in this set by using
the Euclidean norm as the distance metric. A generalization to this operation [34, 52] utilizes a
class of distance functions that include the Euclidean norm as a special case. Given a distance
metric s(x), the prox function V (x, z) takes the form:

V (x, z) , s(z)−
[
s(x) +∇s(x)T (z − x)

]
, (13)

where s(x) is assumed to be a strongly convex and differentiable function in x. The resulting prox
subproblem is given by the following:

PX(x, r) , arg min
z∈X

(
rT z + V (x, z)

)
. (14)
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It may be observed that when s(x) = 1
2‖x‖

2, then V (x, z) = 1
2‖x−z‖

2. Furthermore, if r = γF (x), it
can be shown that (14) represents the standard gradient projection. Recent work [53] proposes prox
generalizations to the extragradient scheme for monotone as well as pseudomonotone deterministic
variational inequality problems and forms the inspiration for our analysis. In monotone regimes,
stochastic variants to these prox schemes have been suggested in [42] while inexact oracles regimes
have also been recently examined in [54]. However, those settings derive error bounds under
a monotone setting. We consider a prox-based generalization of the extragradient scheme for
stochastic variational problems (referred to as mirror-prox in [42]). Our contribution lies in showing
that the sequence of iterates converges a.s. to the solution set under pseudomonotone settings
as shown earlier under appropriate choices of steplengths. Formally, the mirror prox stochastic
approximation (MPSA) scheme is defined as follows:

xk+1/2 := PX(xk, γkF (xk;ωk)), k ≥ 0

xk+1 := PX(xk, γkF (xk+1/2;ωk+1/2)), k ≥ 0.
(MPSA)

From the strong convexity of s(x), it can be seen that there exists a positive scalar θ ≥ 1 such that

V (x, z) ≥ θ

2
‖x− z‖2. (15)

Next, we recall the definition of the dual norm.

‖x‖∗ = sup
{
zTx | ‖z‖ ≤ 1

}
. (16)

Based on the dual norm, we provide a modified statement for Assumptions (A2) and (A5), given
by the following.

Assumption 4 (Dual Norms).

(A6) For any x, y ∈ X, there exist L∗ and B∗ such that ‖F (x)−F (y)‖∗ ≤ L∗‖x−y‖ and ‖F (x)‖∗ ≤
B∗
2 .

(A7) The conditional second moment of the error is bounded with respect to the dual norm as
specified by E

[
‖wk‖2∗ | Fk

]
≤ ν2
∗ and E

[
‖wk+1/2‖2∗ | Fk+1/2

]
≤ ν2
∗ .

Under the assumption that ∇s(x) is Lipschitz continuous with a positive constant LV , the
following holds [55, Lemma 1.2.3]:

V (x, z) ≤ L2
V ‖x− z‖2. (17)

We use the following result from [53].

Lemma 5. Let X ⊆ Rn be a convex set and p : X → R be a differentiable convex function. If u∗

is an optimal solution of min{p(u) + V (x̃;u) : u ∈ X}, the following holds:

p(u∗) + V (u∗;u) + V (x̃;u∗) ≤ p(u) + V (x̃;u) for all u ∈ X.

The next lemma relates prox functions over successive iterates and is the generalization of
Lemma 4 from standard extragradient schemes to the mirror-prox regime.

Lemma 6. Consider SVI(X,F ) and suppose Assumption (A6) holds. Suppose x∗ is any solution
of SVI(X,F ). Consider the iterates generated by (MPSA). Then the following holds for any k:

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − 2γkw

T
k+1/2(xk − x∗)− uk + γ2

ktk,

where uk = γkF (xk)
T (xk − x∗), c is a positive scalar, and tk is defined accordingly.
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Proof. From the definition of the iterates, with xk+1 being the solution to the second prox-
subproblem (MPSA) and using Lemma 5, we obtain that for all x ∈ X,

V (xk, x) ≥ γkF (xk+1/2, ωk+1/2)T (xk+1 − x) + V (xk, xk+1) + V (xk+1, x), (18)

where γkF (xk+1/2, ωk+1/2)T (xk+1−x) takes the form of p(u) defined earlier. Adding and subtract-
ing xk from the first term on the right hand side, we have

V (xk, x) ≥ γkF (xk+1/2;ωk+1/2)T (xk − x) + γkF (xk+1/2;ωk+1/2)T (xk+1 − xk)
+ V (xk, xk+1) + V (xk+1, x

∗). (19)

Setting x = x∗, adding and subtracting γkF (xk)
T (xk − x∗) from the first term on the right, (19)

can be rewritten as follows.

V (xk, x
∗) ≥ γkF (xk)

T (xk − x∗) + γkw
T
k+1/2(xk − x∗) + γk

(
F (xk+1/2)− F (xk)

)T
(xk − x∗)

+ γkF (xk+1/2;ωk+1/2)T (xk+1 − xk) + V (xk, xk+1) + V (xk+1, x
∗). (20)

Rearranging and completing squares, for any positive β and c, the following holds:

V (xk, x
∗) +

γ2
k

β
‖xk − x∗‖2 + β‖F (xk+1/2)− F (xk)‖∗2 + cγ2

k‖F (xk+1/2;ωk+1/2)‖∗2 +
1

c
‖xk+1 − xk‖2

≥ uk + γkw
T
k+1/2(xk − x∗) + V (xk, xk+1) + V (xk+1, x

∗), (21)

where uk = γkF (xk)
T (xk − x∗). By invoking the property V (xk, xk+1) ≥ θ

2‖xk − xk+1‖2, we have

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − γkwTk+1/2(xk − x∗)− uk

+ βL∗
2‖xk+1/2 − xk‖2 + cγ2

k

(
‖F (xk+1/2)‖2∗ + ‖wk+1/2‖2∗ + 2wTk+1/2F (xk+1/2)

)
. (22)

From the definition of the iterates, with xk+1/2 being the solution to the first prox-subproblem (MPSA),
from Lemma 5 for any x̃ ∈ X, we have that

γkx
T
k+1/2 (F (xk) + wk) + V (xk, xk+1/2) + V (x̃, xk+1/2) ≤ γkxTk F (xk + wk) + V (x̃, xk).

By choosing x̃ = xk, we obtain that

γkx
T
k+1/2 (F (xk) + wk) + V (xk, xk+1/2) ≤ γkxTk F (xk + wk) + V (xk, xk) = γkx

T
k F (xk + wk),

since V (xk, xk) = 0 and V (xk, xk+1/2) ≥ 0. A consequence of this inequality is that

θ

2
‖xk+1/2 − xk‖2 ≤ V (xk, xk+1/2) ≤ γk(xk − xk+1/2)T (F (xk) + wk) . (23)

=⇒ θ

2
‖xk+1/2 − xk‖2 ≤

1

2
‖xk − xk+1/2‖2 +

γ2
k

2
‖F (xk) + wk‖2∗

=⇒ ‖xk+1/2 − xk‖2 ≤ γ2
k

‖F (xk) + wk‖2∗
θ − 1

=
γ2
k

θ − 1

(
‖F (xk)‖2∗ + ‖wk‖2∗ + 2F (xk)

Twk
)

≤
γ2
k

θ − 1

(
B2
∗

4
+ ‖wk‖2∗ + 2F (xk)

Twk

)
.
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Substituting the above expression in (22), our claim follows.

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − γkwTk+1/2(xk − x∗)− uk

+ γ2
k

(
c‖F (xk+1/2)‖2∗ + c‖wk+1/2‖2∗ + 2cwTk+1/2F (xk+1/2)

)
+
βL∗

2γ2
k

θ − 1

(
B∗

2

4
+ ‖wk‖2 + 2F (xk)

Twk

)
. (24)

It can be observed that we may recover the statement of Lemma 4 by choosing V (x, z) as the
squared Euclidean norm. We now proceed to use (22) to prove the almost sure convergence of the
sequence produced by the (MPSA) scheme.

Proposition 4 (a.s. convergence of MPSA scheme for pseudomonotone-plus map-
pings). Consider the SVI(X,F ) and let F be a pseudomonotone-plus map on X. Let assumptions
(A1),(A2), (A3), (A4), (A6) and (A7) hold. Additionally let β > 0 and c > 0 be chosen such that
θ/2 − (1/c) ≥ 0. Let {xk} denote a sequence of iterates generated by (MPSA) and suppose X∗

denotes the set of solutions to the SVI(X,F ). Then {xk} is bounded a.s. and any limit point of
{xk} is a solution of SVI(X,F ) in an a.s. sense.

Proof. Considering (24) and by taking conditional expectations with respect to Fk and using the
tower law,

E[V (xk+1, x
∗) | Fk] ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)− γk

= 0︷ ︸︸ ︷
E[E[wTk+1/2(xk − x∗)|Fk+1/2]|Fk]−uk

+ γ2
k

(
c‖F (xk+1/2)‖2 + cE[E[‖wk+1/2‖2|Fk+1/2] | Fk]

)
+ 2γ2

kc

E[

= 0︷ ︸︸ ︷
E[wTk+1/2F (xk+1/2) | Fk+1/2] | Fk]


+
γ2
kβL∗

2

θ − 1

B∗2
4

+ E[‖wk‖2∗ | Fk] + 2

= 0︷ ︸︸ ︷
E[F (xk)

Twk | Fk]

 .

Note that the term −((θ/2) − (1/c))‖xk − xk+1/2‖2 ≤ 0 by the definition of θ and c and hence is
dropped from the right hand side of the above expression. Invoking assumptions (A1-A2), we have

E[V (xk+1, x
∗) | Fk] ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)− uk +

sk︷ ︸︸ ︷
γ2
k

(
B2
∗ + 4ν2

∗
4

)(
c(θ − 1) + βL2

∗
θ − 1

)
.

This inequality is analogous to (7) in Prop. 1 and the remainder of the proof follows by replacing
1
2‖x− y‖

2 by V (x, y).

Corollary 1 (a.s. convergence of MPSA scheme under sub-classes of non-monotonicity).
Consider the SVI(X,F ). Let assumptions (A1), (A2), (A3), (A4), (A6), and (A7) hold. Consider
a sequence of iterates {xk} generated by the MPSA scheme where γ0 is chosen to be sufficiently
small. Suppose one of the following statements hold:
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(i) F satisfies the acute angle relation at X∗ given by (3).

(ii) F is strictly pseudomonotone on X.

(iii) F is strongly pseudomonotone on X.

(iv) F is pseudomonotone on X and is given by the gradient of E[f(x, ω)].

Then {xk} is bounded a.s. and any limit point of {xk} is a solution of SVI(X,F ) in an a.s. sense.

Proof. We begin by restating (22)

V (xk, x
∗) ≥ γkF (xk)

T (xk − x∗) + γkw
T
k+1/2(xk − x∗) + γk

(
F (xk+1/2)− F (xk)

)T
(xk − x∗)

+ γkF (xk+1/2;ωk+1/2)T (xk+1 − xk) + V (xk, xk+1) + V (xk+1, x).

Since uk = γkF (xk)
T (xk−x∗), we obtain the following bound by using Young’s inequality to derive

an upper bound on γkF (xk+1/2;ωk+1/2)T (xk+1 − xk) and completing squares.

V (xk, x
∗) +

γ2
k

β
‖xk − x∗‖2 + β‖F (xk+1/2)− F (xk)‖2∗ + cγ2

k‖F (xk+1/2;ωk+1/2)‖2∗ +
1

c
‖xk+1 − xk‖2

≥ uk + γkw
T
k+1/2(xk − x∗) + V (xk+1, x

∗) + V (xk, xk+1), (25)

Since ‖F (xk+1/2;ωk+1/2)‖2∗ ≤ 2‖F (xk+1/2)‖2∗ + 2‖wk+1/2‖2∗ and proceedingin a similar fashion to
Lemma 6, we have that

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − γkwTk+1/2(xk − x∗)− uk

+ 2γ2
kc
(
‖F (xk+1/2)‖2∗ + ‖wk+1/2‖2∗

)
+ γ2

kβL
2
∗
(
‖xk+1/2 − xk‖2

)
. (26)

By proceeding in a similar fashion to Lemma 6, we obtain the following.

θ

2
‖xk+1/2 − xk‖2 ≤ V (xk, xk+1/2) ≤ γk(xk − xk+1/2)T (F (xk) + wk)

≤ γk‖xk − xk+1/2‖‖F (xk) + wk‖∗ ≤
1

2
‖xk − xk+1/2‖2 +

γ2
k

2
‖F (xk) + wk‖2∗

=⇒ ‖xk+1/2 − xk‖2 ≤
‖F (xk) + wk‖2∗

θ − 1
≤ 2‖F (xk)‖2∗ + 2‖wk‖2∗

θ − 1
.

Proceeding analogously to Lemma 6, we have that

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − γkwTk+1/2(xk − x∗)− uk

+ 2cγ2
k

(
B2
∗

4
+ ‖wk+1/2‖2∗

)
+

2βL2
∗γ

2
k

θ − 1

(
B2
∗

4
+ ‖wk‖2∗

)
. (27)

For the case of pseudomonotone-plus regimes, the proof follows along the lines of Proposition 4.
The other non-monotone extensions mentioned above are straightforward and we do not provide
the corresponding proofs.

Without loss of generality, the assumptions (A6) and (A7) on the dual norm ‖.‖∗ above can be
replaced with those ((A2) and (A5)) on the standard norm ‖.‖ and the distance function s(x) can
be defined with respect to the dual norm. The above proofs for MPSA follow since ‖.‖∗∗ = ‖.‖.
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3 Optimal rate statements

In the prior section, we proved the a.s. convergence of iterates generated by the ESA and the
MPSA schemes. In this section, we consider the development of error bounds. Rate statements for
the gap function have been provided in the context of monotone stochastic variational inequality
problems by Tauvel et al. [42]. Here, we generalize these findings in deriving rate statements
under two requirements, strong pseudomonotonicity and mere monotonicity with a weak sharpness
requirement. In the remainder of this section, we assume that the steplength sequence is given by

γk =
γ0

k
, (28)

where γ0 is a finite scalar. It is easy to observe that this satisfies assumptions (A3)–(A4).

Proposition 5 (Rate statements under strong pseudomonotonicity). Suppose assumptions
(A1)–(A5) hold. Let F be σ−strongly pseudomonotone over X and let the sequence of iterates
{xk} be generated by (ESA). Additionally let X be compact such that for all x ∈ X, ‖x‖ ≤ U ,
where U is a positive constant. If x∗ denotes a solution to the SVI(X,F ) and MB and Mν are
appropriately defined constants, then the following hold:

(a) For any k > 0, we have that

E
[
‖xk − x∗‖2

]
≤ M(γ0)

k
,

where M(γ0) is a suitably defined positive scalar.

(b) In addition, if γ0 = (2− ε)/(2σ) where ε ∈ (0, 1/2), we have that

E
[
‖xk − x∗‖2

]
≤ 1

k
max

{
7(MB +Mν)

4σ2
, ‖x0 − x∗‖2

}
.

Proof. (a). We begin by considering (6) as follows:

‖xk+1 − x∗‖2 ≤
(

1 +
γ2
k

β

)
‖xk − x∗‖2 −

, uk︷ ︸︸ ︷
2γk(xk − x∗)TF (xk) +2γk(x

∗ − xk)Twk+1/2

+ γ2
k

, tk︷ ︸︸ ︷(
B2(1 + βL2)

4
+ ‖wk+1/2‖2 + βL2‖wk‖2 + 2βL2F (xk)

Twk + 2wTk+1/2F (xk+1/2)

)
.

Since x∗ is a solution of VI(X,F ), we have that for any feasible xk, F (x∗)T (xk − x∗) ≥ 0. By
recalling the definition of strong pseudomonotonicity,

−uk = −2γkF (xk)
T (xk − x∗) ≤ −2γkσ‖xk − x∗‖2. (29)

Employing the bound (29) in (6),

‖xk+1 − x∗‖2 ≤ (1− 2σγk) ‖xk − x∗‖2 + 2γk(x
∗ − xk)Twk+1/2 +

γ2
k

β
‖xk − x∗‖2

+ γ2
k

(
B2(1 + βL2)

4
+ ‖wk+1/2‖2

+βL2‖wk‖2 + 2βL2F (xk)
Twk + 2wTk+1/2F (xk+1/2)

)
. (30)
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Taking expectations on both sides of (30),

E[‖xk+1 − x∗‖2] ≤ E[(1− 2σγk)‖xk − x∗‖2]︸ ︷︷ ︸
Term A

+ γ2
kE
[
B2(1 + βL2)

4
+
‖xk − x∗‖2

β
+ 2γk(x

∗ − xk)Twk+1/2

]
︸ ︷︷ ︸

Term B

+ γ2
k E
[
‖wk+1/2‖2 + βL2‖wk‖2 + 2βL2F (xk)

Twk + 2wTk+1/2F (xk+1/2)
]

︸ ︷︷ ︸
Term C

.

We begin by deriving a bound on Term C by noting that the conditional first moments E[wk |
Fk] = 0 and E[wk+1/2 | Fk+1/2] = 0.

Term C = E
[
E
[
‖wk+1/2‖2|Fk+1/2

]]
+ βL2E

[
E
[
‖wk‖2|Fk

]]
+ 2βL2E

[
E
[
F (xk)

Twk|Fk
]]

+ E
[
E
[
2wTk+1/2F (xk+1/2)|Fk+1/2

]]
≤ γ2

k(1 + βL2)ν2 , c(β).

Next, Term B can be bounded as follows:

Term B = γ2
k

B2(1 + βL2)

4
+ γ2

kE
[
‖xk − x∗‖2

β

]
+ 2γkE

[
E
[
(x∗ − xk)Twk+1/2|Fk+1/2

]]
≤ γ2

k

(
B2(1 + βL2)

4
+

4U2

β

)
, b(β).

To minimize c(β) + b(β), it suffices to minimize the following expression.

s0(β) = β

(
B2L2

4
+ L2ν2

)
+

4U2

β
.

Setting β∗ = 4U
L
√
B2+4ν2

by minimizing the above expression, we obtain that

E[‖xk+1 − x∗‖2] ≤ (1− qk)E[‖xk − x∗‖2] + tk,

where qk =
2σγ0

k
, tk =

γ2
0(Mν +MB)

k2
, MB =

B2

4
, and Mν = ν2 + 2UL

√
B2 + 4ν2.

By assuming that 2σγ0 > 1 and by invoking Lemma 8 presented in the appendix, we obtain that

E
[
‖xk − x∗‖2

]
≤ M(γ0)

k
, where M(γ0) , max

{
γ2

0(Mν +MB)

2σγ0 − b2σγ0c
, ‖x0 − x∗‖2

}
.

(b). Recall that M(γ0) may be defined as follows:

M(γ0) = max
{
t0(γ0)(Mν +MB), ‖x0 − x∗‖2

}
, where t0(γ0) =

(
γ2

0

2σγ0 − b2σγ0c

)
.

Based on Lemma 7, an ε-infimum of t0(γ0) is achieved by choosing γ0 = γ, where γ = (2− ε)/(2σ)

and ε ∈ (0, 1/2). Since b2σγc = 1, it follows that t0(γ) = (2−ε)2
4σ2(1−ε) , which may be bounded as

follows when ε ∈ (0, 1/2):

t0

(
(2− ε)
(2σ)

)
=

(2− ε)2

4σ2 (1− ε)
=

(1− ε)2

4σ2 (1− ε)
+

3− 2ε

4σ2 (1− ε)
≤ (1− ε)

4σ2
+

3

2σ2
≤ 7

4σ2
.

It follows that

E[‖xk − x∗‖2] ≤ 1

k
max

{
7(MB +Mν)

4σ2
, ‖x0 − x∗‖2

}
.
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Remark: This result is notable from several standpoints. First, in contrast to rate statements for
settings that lack strong monotonicity, we provide a rate statement in terms of solution iterates,
rather than in terms of the gap function. Second, our rate statement is optimal from a rate
standpoint with a slightly poorer constant, in part due to the use of B2 instead of B2/4. Notably,
in strongly convex optimization problems (cf. [19]), it can be seen that based on the optimal initial

steplength, we have that E[‖xK − x∗‖]2 ≤ 1
K max

(
2(B2+ν2)

σ2 , ‖x0 − x∗‖2
)
. Next, we generalize the

above rate result to prox functions with general distance functions.

Corollary 2 (Rate statements for MPSA). Suppose assumptions (A1),(A2), (A3, (A4), (A6),
and -(A7) hold. Let F be σ−strongly pseudomonotone over X and let the sequence of iterates
{xk} be generated by (MPSA). Additionally let X be compact such that for all x ∈ X, ‖x‖ ≤ U ,
where U is a positive constant. If x∗ denotes a solution to the SVI(X,F ) and M∗B and M∗ν are
appropriately defined constants, then the following hold:

(a) For any k > 0, we have that

E
[
‖xk − x∗‖2

]
≤ M(γ0)

k
,

where M(γ0) is a suitably defined positive scalar.

(b) In addition, if σ̃ = σ
L2
V

and γ0 = (2− ε)/(2σ̃), where ε ∈ (0, 1/2), we have that

E
[
‖xk − x∗‖2

]
≤ 1

k
max

{
7(M∗B +M∗ν )

4σ̃2
, ‖x0 − x∗‖2

}
.

Proof. We begin by recalling the inequality given by (24):

V (xk+1, x
∗) ≤

(
1 +

2γ2
k

θβ

)
V (xk, x

∗)−
(
θ

2
− 1

c

)
‖xk+1 − xk‖2 − γkwTk+1/2(xk − x∗)− uk

+ γ2
k

(
c‖F (xk+1/2)‖2∗ + c‖wk+1/2‖2∗ + 2cwTk+1/2F (xk+1/2)

)
+ γ2

k

(
βL2
∗

θ − 1

(
B2
∗

4
+ ‖wk‖2∗ + 2F (xk)

Twk

))
.

Using uk ≥ −2γkσ‖xk − x∗‖2 from (29) and by noting that V (xk, x
∗) ≤ L2

V ‖xk − x∗‖2 ≤ 4L2
V U

2

based on compactness and Lipschitzian properties, we have the following by taking expectations
on both sides.

E[V (xk+1, x
∗)] ≤

(
1− 2σγk

L2
V

)
E[V (xk, x

∗)]−
(
θ

2
− 1

c

)
E[‖xk+1 − xk‖2]︸ ︷︷ ︸
Term H

+ E
[
−γkwTk+1/2(xk − x∗) + γ2

k

(
βL2
∗B

2
∗

4(θ − 1)
+

8L2
V U

2

θβ

)]
︸ ︷︷ ︸

Term B

+ γ2
kE
[(
c‖F (xk+1/2)‖2∗ + c‖wk+1/2‖2∗ + 2cwTk+1/2F (xk+1/2) +

βL2
∗

θ − 1

(
‖wk‖2∗ + 2F (xk)

Twk
))]

︸ ︷︷ ︸
Term C

.

Choosing c = 2/θ allows from dropping Term H while Terms B and C can be bounded in a fashion
similar to Proposition 5, where we have

Term B ≤ γ2
k

(
βL2
∗B

2
∗

4(θ − 1)
+

8L2
V U

2

βθ

)
and Term C ≤ γ2

k

(
B2
∗ + 4ν2

2θ
+
βL2
∗ν

2

θ − 1

)
.
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Akin to Proposition 5, we minimize the bounds on Term B(β) + Term C(β) and it suffices to
minimize s0(β), defined as

s0(β) = β

(
L2
∗B

2
∗

4(θ − 1)
+
L2
∗ν

2

θ − 1

)
+

8L2
V U

2

βθ
.

Noting that β∗ = 4LV U
L∗

√
2(θ−1)

θ(B2+4ν2)
minimizes s0(β), we have that

E[V (xk+1, x
∗)] ≤ (1− qk)E[V (xk, x

∗)] + tk, where

qk ,
2σγ0

L2
V k

=
2σ̃γ0

k
, tk , γ2

k (M∗B +M∗ν ) ,M∗B ,
B2
∗

2θ
, and M∗ν ,

{
2ν2

θ
+ 2L∗ULV

√
2(B2 + 4ν2)

θ(θ − 1)

}
.

By assuming that 2σγ0 > 1 and by invoking Lemma 8 presented in the appendix, we obtain that

E
[
‖xk − x∗‖2

]
≤ M(γ0)

k
, where M(γ0) , max

{
γ2

0(M∗ν +M∗B)

2σ̃γ0 − b2σ̃γ0c
, ‖x0 − x∗‖2

}
.

(b). From Proposition 5(b), by setting γ0 = (2− ε)/(2σ̃), it follows that

E[‖xk − x∗‖2] ≤ 1

k
max

{
7(M∗B +M∗ν )

4σ̃2
, ‖x0 − x∗‖2

}
.

Remark: It can be observed that when the Euclidean norm is used as the distance function (θ =
2 and LV = 1), the MPSA scheme reduces to the standard extragradient scheme and we obtain
the same upper bound as with the case of ESA.

We conclude this section with a rate analysis on the solution iterates under mere monotonicity of
the map but under an additional requirement of weak-sharpness. We observe that the specification
of the initial steplength requires globally minimizing a product of positive functions over a Cartesian
product of convex sets. While there are settings where this product is indeed convex, it may also
turn out to be nonconvex. Yet, we observe that the global minimizer can be tractably obtained by
solving two optimization problems. Lemma 9 provides the necessary support for this result. Note
that in our setting, one of these functions is a discontinuous nonconvex function and its infima are
analyzed in Lemma 7.

Next, under a monotonicity and weak-sharpness requirement, the ESA scheme is shown to
display the optimal rate of convergence in solution iterates. Additionally, we prescribe the optimal
initial steplength that minimizes the mean-squared error by deriving the global minimizer of a
nonconvex function in closed-form.

Proposition 6 (Rate statement under monotonicity and weak sharpness). Consider the
SVI(X,F ). Suppose assumptions (A1)–(A5) hold and let γk be defined as per (28). Let F (x) be
a monotone map over the set X. Let the mapping F (x) and solution set X∗ possess the weak-
sharpness property with constant α and let X be compact such that ‖x‖ ≤ U for all x ∈ X.
Suppose xk is generated by (ESA). Then the following hold.

(a) For any k > 0, we have that

E[dist2(xk, X
∗)] ≤ M(γ0)

k
,

where M(γ0) is a suitably defined scalar.
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(b) In addition, if γ0 = (2 − ε)/(2σ̄) and σ̄ , α
2U where ε ∈ (0, 1/2) and s∗0 is a suitably defined

positive scalar, we have that

E[dist2(xk, X
∗)] ≤ 1

k
max

{
7s∗0
4σ̄2

,dist2(x0, X
∗)

}
.

Proof. (a). By taking expectations on both sides of (6) and by leveraging the property of weak-
sharpness, uk = −2γkF (xk)

T (xk − x∗) ≤ −2γkαdist(xk, X
∗), we have

E[‖xk+1 − x∗‖2] ≤ E[‖xk − x∗‖2]− 2γkαdist(xk, X
∗) + E[tk] +

γ2
k

β
E[‖xk − x∗‖2]. (31)

Since dist2(xk+1, X
∗) ≤ ‖xk+1 − x∗‖2 and ‖xk − x∗‖2 ≤ 4U2, by minimizing the expression on the

right of (31) in x∗ over X∗, we have

E[dist2(xk+1, X
∗)] ≤ E[dist2(xk, X

∗)]− 2γkαdist(xk, X
∗) + E[tk] +

4γ2
kU

2

β
. (32)

Since dist(xk, X
∗) ≤ 2U , it follows that −2γkαdist(xk, X

∗) ≤ −γkα
U dist2(xk, X

∗). Furthermore,
bounding tk along the lines of Proposition 5, we have

E[dist2(xk+1, X
∗)] ≤

(
1− αγk

U

)
E[dist2(xk, X

∗)] + γ2
k (Mν +MB) = (1− qk)E[dist2(xk, X

∗)] + sk,

where

Mν(β) , (1 + βL2)ν2,MB(β) , (1 + βL2)
B2

4
+

4U2

β
,

qk =
2σ̄γ0

k
, sk =

s0(β)γ2
0

k2
, σ̄ =

α

2U
, and s0(β) = MC(β) +Mν(β). (33)

Through the application of Lemma 8, we obtain the following bound on mean-squared error for
every positive integer K:

E[dist2(xK , X
∗)] ≤ 1

K
max

{
h(γ0)s0(β), dist2(x0, X

∗)
}
,

where h(γ0) ,
γ2

0

2σ̄γ0 − b2σ̄γ0c
and s0(β) , (Mν(β) +MB(β)).

(b.) Suppose Γ0 and Z are sets defined as

Γ0 , {γ0 : 2 > 2σ̄γ0 > 1} and Z , {β : β ≥ 0} .

Moreover, h(γ0)s0(β) is a product of two positive functions and a global minimizer of this product
can be obtained by getting a global minimizer of each by invoking Lemma 9. Of these, an ε-infimum
of h(γ0) can be obtained as γ∗0 = (2 − ε)/(2σ̄) where ε ∈ (0, 1/2). A minimizer β∗ of the convex
function s0(β) is given by the following.

min
β

((
1 + βL2

)(
ν2 +

B2

4

)
+

4U2

β

)
=⇒ β∗ =

4U

L
√
B2 + 4ν2

,
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implying that

s∗0 =
B2

4
+ ν2 + 2UL

√
B2 + 4ν2.

We may then conclude that

E[dist2(xK , X
∗)] ≤ 1

K
max

{
7s∗0
4σ̄2

, dist2(x0, X
∗)

}
.

Remark: In past research, the optimality of the rate of convergence has been proved for monotone
SVIs but in terms of the gap function. Our result shows that under a suitable weak-sharpness
property, rate optimality also holds in terms of the solution iterates in a non-ergodic sense. No-
tably, we further refine the statement by selecting the initial steplength by (globally) minimizing a
nonconvex function.2

4 Numerical Results

In this section, we examine the performance of the presented schemes on a suite of four test problems
described in Section 4.1 while the algorithm parameters are defined in Section 4.2. In Section 4.3,
we compare the performance of the ESA scheme with the MPSA schemes over the suite of test
problems. Finally in Section 4.4, we compare the empirical rates with the theoretically predicted
rates and quantify the benefits of optimal initial steplength.

4.1 Test Suite

The first two test problems are stochastic fractional convex quadratic and nonlinear, both of which
lead to pseudomonotone stochastic variational inequality problems. The third set of test problems
are stochastic variational inequality problems that represent the (sufficient) equilibrium conditions
of a stochastic Nash-Cournot game. While the players maximize pseudoconcave expectation-valued
functions, the resulting stochastic variational inequality problem is not necessarily pseudomonotone.
However, some choices of parameters lead to pseudomonotone SVIs. Our fourth test problem is
Watson’s complementarity problem [56], which is not necessarily monotone.

(i) Fractional Convex Quadratic Problems: Maximizing or minimizing ratios in engineering settings
often leads to stochastic fractional convex problems of the form: minx∈X E [f(x;ω)/g(x)] where
E[f(x;ω)] and g(x) are strictly positive convex quadratic and linear functions, respectively, defined
as f(x;ω) , 0.5xT (θUUT + λV (ω))x+ 0.5((c+ c̄(ω))Tx+ 4n)2 and g(x) , rTx+ t+ 4n. We note
that V (ω) and c̄(ω) are randomly generated from standard normal and uniform distributions, U
and c are deterministic constants generated once from the standard normal distribution, while r
and t are generated once from uniform distributions. We note that θ = 0.025 and λ = ε‖θUUT ‖F /
‖V (ω)‖F , where ‖.‖F denotes the Frobenius norm and ε = 0.025. The set X is defined as X ,
{x | Ax ≤ v, 0 ≤ x ≤ 4} , where A ∈ Rm×n and v ∈ Rm×1 are generated once from standard normal
and uniform distributions respectively. Note that m = dn/10e is a variable dependent integer. It
is easily seen that the resulting SVI is pseudomonotone.

2We prefer not to qualify the initial steplength as “optimal” since the error bound in general is a function of γ0
and β.
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(ii) Fractional Convex Nonlinear Problems: We consider a nonlinear variant of (i) with the same

parameters and numerator but an exponential denominator g(x) = 104(λ−e(rT x+t+4n)/2000), where
λ = e(8n+2)/2000.

(iii) Nash-Cournot Games: Next we consider a Nash-Cournot game with n selfish players, all of
which sell the same commodity [18, 57] at a price given by the function of the aggregate sales
as per the Cournot specification [11, 58]. Specifically, the ith agent solves the following problem:
maxxi∈Xi fi(x) = E[p(x̄;ω)xi], where p(x̄;ω) = (a − bωx̄)κ, x̄ =

∑n
i=1 xi, κ ∈ (0, 1) and Xi =

{xi | Ax ≤ v, 0 ≤ xi ≤ 3n} . We note that a = 100dn/3e while bω is generated from a uniform
distribution with mean 1 and standard deviation ε, where ε = 0.025. We note that A and v are also
generated randomly as stated earlier. The equilibrium of this shared constraint Nash game [59] is
given by a variational inequality problem. Note that agent payoffs are pseudoconcave [18, Theorem
3.4] and the (sufficient) equilibrium conditions are given by a variational inequality VI(X,F ), which
is not necessarily pseudomonotone and where F (x) =

(
∇xifi(x)

)n
i=1

.

(iv) Watson’s Problem: Finally, we consider a stochastic variant of the ten variable non-monotone
linear complementarity problem, first proposed by Watson [56]: 0 ≤ x ⊥ E [(M + εMω)x+ q + εqω]
≥ 0, where Mω and qω are randomly generated matrices and vectors (from the standard normal
distribution) respectively and ε = 0.025 refers to the level of noise. We omit the definition of the
ten-dimensional matrix M, which can be found in [56, Example 3]. Note that q = ei and we
consider ten different instances, each corresponding to a coordinate direction ei.

4.2 Algorithm parameters and termination criteria

We conduct two sets of tests, the first of these pertains to the a.s. convergence behavior while the
second set compares the empirical rate estimates with the theoretically prescribed levels. All the
numerics were generated with Matlab R2012a on a Linux OS with a 2.39 GHZ processor and 16
GB of memory. For the first two test problem sets, x0 = 2e and γ0 is 1 and 2.5 respectively while
for the second two test problem sets, x0 = 0 and γ0 is 2.5 and 0.6, respectively.

(i) a.s. convergence: Here, n was varied from 10 to 30 in steps of 2 for the first three test problems
while ten different instances of q were generated as stated earlier for the Watson’s problem, leading
to a total of 40 test instances. Recalling that x is a solution of VI(X,F ) if and only if F nat

X (x) =
x−ΠX(x− F (x)) = 0, a.s. convergence can be empirically verified based on the value of ψ(xk) =
‖F nat

X (xk)‖. Note that our problem choices allow for evaluating the expectation, which is generally
not possible in stochastic regimes.

(ii) Rate statements: When evaluating the rate estimates, we consider a modified Nash-Cournot
game. The price was made affine, κ = 1 and the linear constraints were dropped. We generated ten
different problem instances for n ranging from 10 to 19 and set a = 0.1dn/10e and b = a/n. Note
that bω was generated from a normal distribution with mean b and standard deviation ε, where
ε = 0.025b. The associated set and mapping are defined to be F (x) = b(I + eeT )x − ae, X =
{x | 0 ≤ xi ≤ 1, i = 1, . . . , n} , where e and I denote the vector of ones and the identity matrix.
We note that ∇F (x) = b(I + eeT ), is strongly monotone (implies strongly pseudomonotone) with
constant σ = b. The stochastic error can be bounded as follows:

E[‖F (x;ω)− F (x)‖2] = E[|b− bω|2]‖(I + eeT )x‖2 ≤ n(n+ 1)2ε2 = ν2.

Further, we have that ‖F (x)‖ = ‖b(I + eeT )x− ae‖ = a
∥∥n(I + eeT )s− e

∥∥ ≤ a
√
n, where the last

inequality follows from b = a/n and 0 ≤ s ≤ e. This implies that B = 2a
√
n. Since 0 ≤ xi ≤ 1, it

follows that ‖x‖ ≤
√
n = U . It is easy to observe that the Lipschitz constant L = b‖I + eeT ‖F =
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b
√
n2 − n+ 4n = a

√
(n+ 3)/(n). If x∗ denotes the unique solution of VI(X,F ), then the empirical

error ψe(xK) and theoretical error ψb(xK) are defined as follows (see Proposition 5):

ψe(xK) =
1

N

N∑
j=1

‖xjK − x
∗‖2, ψb(xK) =

M(γ0)

K
≥ E[‖xK − x∗‖2], M(γ0) =

γ2
0(Mν +MB)

2σγ0 − 1
, (34)

where ψe(xK) is a result of averaging over N sample paths. Setting β = 1, we have

MB =
(
1 + L2

)
(B2/4)+4U2 = n(a2+a4+4)+3a4, and Mν =

(
1 + L2

)
ν2 =

(
n+ na2 + 3a2

)
(n+1)ε2.

4.3 Almost sure convergence behavior

In this subsection, we compare the a.s. convergence behavior of the extragradient and mirror-prox
schemes under two different distance metrics. Table 2 displays ψ(xK) generated from the ESA
scheme for increasing number of major iterations for the four problems of interest. We observe
that in the fractional quadratic and nonlinear problems, the ESA scheme performs relatively well,
barring two instances. Notably, much of the progress is made in the first 1000 iterations.

n Error ψ(xK)
K = 1 K = 1000 K = 15000

Frac. Quad.
10 6.017e+00 4.690e-02 7.951e-04
15 7.473e+00 1.441e-01 2.959e-02

Frac. Nonlin.
10 5.345e+00 2.754e-02 2.955e-03
15 7.145e+00 9.433e-03 1.288e-02

Nash game
10 1.581e+01 4.624e-01 1.634e-01
15 2.165e+01 5.613e-01 2.377e-01

Watson-CP
10 9.695e-01 2.329e-01 2.477e-01
15 9.381e-01 1.357e-01 1.255e-01

Table 2: Asymptotics of ESA

Next, we compare the stochastic extragradient scheme with two prox-based generalizations that
employ two distance functions proposed by Nemirowski [52] given by sa(x) =

∑n
i=1(xi+δ) log(xi+δ)

and sb(x) = log(n)
∑n

i=1 x

(
1+ 1

log(n)

)
i . The variants of MPSA, referred to as MPSA-a and MPSA-

b respectively, are studied and the results are compared with the ESA scheme in Table 3 for ten
nonlinear fractional problems in the test set for progressively increasing number of major iterations.
It is observed that the ESA scheme sometimes (but not always) performs better than MPSA-a from
an error standpoint but each step of MPSA-a (and MPSA-b) tends to require more effort as captured
by the CPU time.

n K Projection Prox-A Prox-B
ψ(xK) Time (s) ψ(xK) Time(s) ψ(xK) Time (s)

10
1000 2.754e-02 1.411e+01 1.352e-01 2.662e+01 1.624e-01 2.229e+01
15000 2.955e-03 2.057e+02 1.019e-01 3.969e+02 8.953e-02 4.551e+02

15
1000 9.433e-03 1.388e+01 3.508e-02 4.528e+01 2.277e-02 2.464e+01
15000 1.288e-02 2.111e+02 1.578e-02 6.314e+02 1.107e-02 8.836e+02

19
1000 1.030e-01 1.734e+01 1.677e-01 4.998e+01 3.652e-01 5.098e+01
15000 8.360e-02 2.603e+02 1.179e-01 8.753e+02 2.398e-01 9.625e+02

Table 3: Comparison of SA schemes for frac. nonlin. problems

4.4 Error analysis and optimal choices of γ0

While the previous results focused on asymptotics, we now compare the empirical rates with the
theoretically predicted rates, as discussed in Sec. 3. In obtaining the empirical results, the initial
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steplength γ0 was set to be (1+
√

33)/(4σ) and fifteen different sample paths of ESA were generated
to compute Ψe (34). Note that the choice of such a steplength is to ensure that 1 ≤ σγ0 ≤ 2 to
further demonstrate the alignment with the theoretical rate statement. Given that the expectation
may be evaluated, we may solve the original problem to obtain an estimate of x∗. Table 4 compares
the analytical bounds with empirical results for the given set of problems in increasing iterations.
For the (monotone) problems considered, the theoretical bound is shown to be valid but relatively
weak.

Dim (n) K = 1 K = 100 K = 1000 K = 10000 K = 150000
ψe(xK) ψb(xK) ψe(xK) ψb(xK) ψe(xK) ψb(xK) ψe(xK) ψb(xK) ψe(xK) ψb(xK)

5 3.455e+00 6.007e+04 1.024e-04 6.007e+02 4.540e-05 6.007e+01 2.544e-05 6.007e+00 2.246e-05 4.005-01
6 4.382e+00 1.038e+05 3.227e-04 1.038e+03 5.512e-05 1.038e+02 3.779e-05 1.038e+01 3.372e-03 6.920e-01
7 5.324e+00 1.648e+05 3.323e-04 1.648e+03 9.332e-05 1.648e+02 5.180e-05 1.648e+01 5.823e-05 1.098e+00
8 6.275e+00 2.460e+05 2.218e-03 2.460e+03 2.218e-03 2.460e+02 2.218e-03 2.460e+01 2.218e-03 1.640e+00
9 7.234e+00 3.503e+05 5.531e-04 3.503e+03 1.397e-04 3.503e+02 1.241e-04 3.503e+01 1.055e-04 2.335e+00
10 8.197e+00 4.806e+05 5.201e-03 4.806e+03 5.201e-03 4.806e+02 5.201e-03 4.806e+01 5.201e-03 3.204e+00

Table 4: Analytical vs Empirical Bounds for stochastic Nash-Cournot Game.

We now investigate the benefit of utilizing steplength close to the optimal γ0, denoted by γ∗0 .
We choose ε = 0.02 and our steplength is further given by γ∗0 = ((2 − ε)/2σ) = 0.99/σ. Here,
we consider the same set of problems as in the previous section and report the behavior of the
proposed extragradient scheme in Table 5 for six different choices of γ0, ranging from 0.0017γ∗0 to
170γ∗0 in factors of 10. It can be seen that steplengths close to γ∗0 perform either the best (or close
to the best) for all schemes. In fact, a poorly chosen steplength leads to significant drop off in
performance.

Empirical error ψe

Dim (n) Iteration (K) 0.0017γ∗0 0.017γ∗0 0.17γ∗0 1.7γ∗0 17γ∗0 170γ∗0
5 15000 2.754e+00 3.660e-01 1.748e-05 1.716e-05 3.084e-05 9.780e-05
10 15000 5.406e+00 1.366e-01 1.346e-04 1.434e-04 2.113e-04 4.360e-04
14 15000 6.940e+00 6.410e-02 9.316e-04 9.316e-04 9.316e-04 1.486e-03

Table 5: Optimality error for varying choices of γ0 (Bold represents optimal γ0)

5 Concluding remarks

Variational inequality problems represent a useful tool for modeling a range of phenomena arising
in engineering, economics, and the applied sciences. As the role of uncertainty grows, there has
been a growing interest in the stochastic variational inequality problem. However, much of the past
research, particularly the algorithmic aspects, have focused on monotone stochastic variational in-
equality problems. In this context, we provide amongst the first results for claiming a.s. convergence
of the solution iterates to the solution set produced by a (stochastic) extragradient scheme as well
as mirror-prox generalizations. We also show that similar statements can be provided for monotone
SVIs under a weak-sharpness requirement; notably much of the prior research for monotone SVIs
uses averaging techniques in showing that the gap function convergence in an expected-value sense.
Under stronger assumptions on the map, we show that both the extragradient and the mirror-prox
schemes attain the optimal rate of convergence in terms of solution iterates, rather than in terms of
the gap function. Importanly, we further refine the rate statement by deriving the optimal initial
steplength. Notably, we see a modest degradation of the rate from strongly monotone SVIs to
strongly pseudomonotone SVIs. Preliminary numerics suggest that the schemes perform well on
a breadth of pseudomonotone and non-monotone problems. Furthermore, empirical observations
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suggest that significant benefit may accrue in terms of mean-squared error from employing the op-
timal initial steplength. Our work has made an initial step towards understanding how stochastic
approximation schemes can be extended to regimes where pseudomonotonicity, rather than mono-
tonicity, of the map holds. Yet, we believe much remains to be understood regarding how stochastic
approximation schemes can be extended/modified to contend with far weaker requirements on the
map.

6 Appendix

Lemma 7. Consider the function t0(γ0) defined as

t0(γ0) ,
γ2

0

2σγ0 − b2σγ0c
,

where σ0 denotes the strong pseudomonotonicity constant. Then the following hold:

(a) A minimizer of t0(γ0) cannot exist in an interval b2σγ0c ∈ [n, n+ 1] where n > 1.

(b) The infimum of t0(γ0) is given by the following:

f∗ , inf
γ0
{t0(γ0) | 1 < 2σγ0 < 2} =

1

σ2
.

(c) Suppose an ε-infimum of t0(γ0), denoted by f∗ε , satisfies f∗ε ≤ f∗ + βε for some β > 0. Then
f∗ε is achieved by γ0 = 2−ε

2σ and satisfies f∗ε ≤ f∗ + 2ε
σ2 , where ε ∈ (0, 1/2).

Proof. (a). We begin by observing that if 2σγ0 ∈ Z+, then t0(γ0) = +∞. Consequently, any
minimizer of t0(γ0) has to satisfy 2γ0σ 6∈ Z+. We proceed to show that t0(γ0) does not admit a
minimizer in (n, n+ 1) where n > 1. Assume this is false and suppose there exists a minimizer γ∗0
satisfying 2γ∗0σ ∈ (n, n+1). But there exists a γ̃0 such that 2σγ̃0 ∈ (n−1, n). In fact, t0(γ̃0) < t0(γ∗0)
as we show next and our claim follows.

t0(γ̃0) =

(
γ̃2

0

2σγ̃0 − b2σγ̃0c

)
<

(
(γ∗0)2

2σγ∗0 − b2σγ∗0c

)
= t0(γ∗0).

(b). From (a), it follows that if a minimizer exists, it has to satisfy 2γ∗0σ ∈ (1, 2). It follows that
t0(γ0) reduces to γ2

0/(2σγ0 − 1). Consider the following optimization problem:

inf
γ0

{
γ2

0

(2σγ0 − 1)
| 1 < 2σγ0 < 2

}
.

We observe that t0(γ0) is a strictly decreasing function by noting that

t′0(γ0) =
2γ0

2σγ0 − 1
− 2σγ2

0

(2σγ0 − 1)2
=

2γ0

2σγ0 − 1

(
1− σγ0

2σγ0 − 1

)
=

2γ0

2σγ0 − 1

(
σγ0 − 1

2σγ0 − 1

)
< 0,

since σγ0 < 1. It follows that the infimum is at the end-point given by σγ0 = 1 implying that

inf
γ0

{
γ2

0

(2σγ0 − 1)
| 1 < 2σγ0 < 2

}
=

1

σ2
.

(c.) Suppose γ̂0 = 2−ε
2σ where ε ∈ (0, 1/2). Then we have that

f∗ε − f∗ =
(2− ε)2

4σ2(1− ε)
− 1

σ2
≤ 1

σ2

(
1

1− ε
− 1

)
=

1

σ2

ε

1− ε
=

2

σ2
ε.

It follows that f∗ε ≤ f∗ + 2ε
σ2 .
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Figure 1: A schematic of t0(γ0)

Example 1. Unfortunately, while one can derive an infimum of the above discontinuous optimiza-
tion problem, this infimum cannot be achieved and the problem lacks a minimizer as proved in the
above result. Yet, this infimum is informative in developing an approximate ε-solution as part (c)
shows. We proceed to use this ε-infimum in deriving rate statements and demonstrate this result
through an example. Suppose σ = 0.1

√
1.3. Then t0(γ0) is shown as a solid line with discontinuities

in Fig. 1 while the dashed flat line displays the infimum 1/σ2.

Lemma 8. Consider the following recursion: ak+1 ≤ (1− 2cθ/k)ak + 1
2θ

2M2/k2, where θ and M
are positive constants, ak ≥ 0, and (1− 2cθ) < 0. Then for k ≥ 1, we have that

2ak ≤
max

(
θ2

2cθ−b2cθcM
2, 2a1

)
k

.

Proof. We begin by noting that ε̄ > 0 and κ > 1 as seen next.

κ =

(
1 +

k̄ − 1

2cθ − k̄

)
=

(
2cθ − 1

2cθ − b2cθc

)
> 1.

We consider the following cases for k.

Case 1: Consider k = 1. Then the following holds: a2 ≤ (1−2cθ)a1 + 1
2θ

2M2. If (2cθ−1) > 0,
we may rearrange the inequalities as follows:

(2cθ − 1)a1 ≤ −a2 +
1

2
θ2M2 ≤ 1

2
θ2M2 or 2a1 ≤

1

2cθ − 1
θ2M2

=⇒ 2a1 ≤ max
(
(2cθ − 1)−1θ2M2, 2a1

)
≤ max

(
(2cθ − 1)−1θ2M2κ, 2a1

)
,

where κ > 1.

Case 2: 1 < k ≤ k̄. Recall that when k ≤ k̄, we have that

(1− 2cθ/k) ≤ (1− 2cθ/k̄) = (1− (2cθ)/(d2cθe)) < 0.
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Then the following holds:

ak+1 ≤
((

1− 2cθ

k

)
ak +

1

2

θ2M2

k2

)
ak

(
2cθ

k
− 1

)
≤ −ak+1 +

θ2M2

2k2
≤ θ2M2

2k2

=⇒ ak ≤
θ2M2

2k2

(
k

2cθ − k

)
=

θ2M2

2k(2cθ − k)
.

By the definition of κ and u , max
(
κθ2M2

(2cθ−1) , 2a1

)
, we may conclude the following:

2ak ≤
θ2M2

k(2cθ − k)
=

θ2M2

k(2cθ − 1)

(
2cθ − 1

2cθ − k

)
≤ θ2M2

k(2cθ − 1)

(
2cθ − k + k̄ − 1

2cθ − k

)
≤ θ2M2

k(2cθ − 1)

(
1 +

k̄ − 1

2cθ − k

)
≤ θ2M2

k(2cθ − 1)

(
1 +

k̄ − 1

2cθ − k̄

)
=

θ2M2

k(2cθ − 1)
κ

≤ 1

k
max

(
κθ2M2

(2cθ − 1)
, 2a1

)
=
u

k
,

Case 3: k > k̄. Suppose, this holds for k > k̄, implying that 2ak ≤ max(θ2M2(2cθ−1)−1κ,2a1)
k .

We proceed to show that this holds for k := k + 1 where u , max
(
θ2M2(2cθ − 1)−1κ, 2a1

)
and (1− 2cθ

k ) > 0 since k > k̄:

ak+1 ≤
(

1− 2cθ

k

)
u

2k
+

1

2

(
θ2M2

k2

)
=

(
1− 2cθ

k

)
u

2k
+

(2cθ − 1)

2k

(
θ2M2

(2cθ − 1)k

)
≤
(

1− 2cθ

k

)
u

2k
+

(2cθ − 1)

2k

(
θ2M2κ

(2cθ − 1)k

)
≤
(
u

2k
−
(

2cθ

k

)
u

2k

)
+

(
2cθ − 1

2k

)
u

k

=
u

2k
− 1

k

( u
2k

)
≤ u

2k
− 1

k + 1

( u
2k

)
=

u

2(k + 1)
.

Lemma 9. Consider the following problem: min {h(γ0)g(z) | γ0 ∈ Γ0, z ∈ Z} , where h and g are
positive functions over Γ0 and Z, respectively. If γ̄0 and z̄ denote global minimizers of h(γ0) and
g(z) over Γ0 and Z, respectively, then the following holds:

min
γ0∈Γ0,z∈Z

h(γ0)g(z) = h(γ̄0)g(z̄).
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Proof. The proof has two steps. First, we note that minγ0∈Γ0,z∈Z h(γ0)g(z) ≥ h(γ̄0)g(z̄), implying
that at any global minimizer (γ∗0 , z

∗),

h(γ∗0)g(z∗) ≥ h(γ̄0)g(z̄). (35)

Second, since (γ̄0, z̄) ∈ Γ0 × Z, we have that h(γ∗0)g(z∗) has an optimal value that is no smaller
than that the value associated with any feasible solution or

h(γ∗0)g(z∗) = min
γ0∈Γ0,z∈Z

h(γ0)g(z) ≤ h(γ̄0)g(z̄). (36)

By combining (35) and (36), the result follows.

Acknowledgements

The authors are grateful to Dr. Farzad Yousefian for his valuable suggestions on a previous version.
We particularly appreciate the comments of the referees and the editor, all of which have led to
significant improvements in the manuscript.

References

[1] F. Facchinei and J-S. Pang. Finite Dimensional Variational Inequalities and Complementarity
Problems: Vols I and II. Springer-Verlag, NY, Inc., 2003.

[2] I. V. Konnov. Equilibrium Models and Variational Inequalities. Elsevier, 2007.

[3] L. Brighi and R. John. Characterizations of pseudomonotone maps and economic equilibrium.
Journal of Statistics and Management Systems, 5(1-3):253–273, 2002.

[4] R. Kihlstrom, A. Mas-Colell, and H. Sonnenschein. The demand theory of the weak axiom of
revealed preference. Econometrica, 44(5):971–978, 1976.

[5] A.M. Elizarov. Maximizing the lift-drag ratio of wing airfoils with a turbulent boundary layer:
Exact solutions and approximations. Doklady Physics, 53(4):221–227, 2008.

[6] A. Rousseau, P. Sharer, S. Pagerit, and S. Das. Trade-off between fuel economy and cost
for advanced vehicle configurations. In Proceedings of the 20th International Electric Vehicle
Symposium, Monaco, 2005.

[7] G.R. Duensing, H.R. Brooker, and J.R. Fitzsimmons. Maximizing signal-to-noise ratio in the
presence of coil coupling. Journal of Magnetic Resonance, Series B, 111(3):230–235, 1996.

[8] W. Shadwick and C. Keating. A universal performance measure. Journal of Performance
Measurement, 6(3):59–84, 2002.

[9] K. Hossein, S. Thomas, and G. Raj. Omega as a performance measure. Preliminary Report,
Duke University, June 2003.

[10] S. Chandra. Strong pseudo-convex programming. Indian Journal of Pure and Applied Math-
ematics, 3(2):278–282, 1972.

[11] B. F. Hobbs. Mill pricing versus spatial price discrimination under bertrand and cournot
spatial competition. The Journal of Industrial Economics, 35(2):173–191, 1986.

29



[12] S. C. Choi, W. S. Desarbo, and P. T. Harker. Product positioning under price competition.
Management Science, 36(2):175–199, 1990.

[13] L. A. Garrow and F. S. Koppelman. Multinomial and nested logit models of airline passengers’
no-show and standby behaviour. Journal of Revenue Pricing Management, 3(3):237 – 253,
2004.

[14] J. P. Newman. Normalization of network generalized extreme value models. Transportation
Research Part B: Methodological, 42(10):958–969, December 2008.

[15] G. Cliquet. Implementing a subjective mci model: An application to the furniture market.
European Journal of Operational Research, 84(2):279–291, July 1995.

[16] M. Nakanishi and L. G. Cooper. Parameter estimation for a multiplicative competitive inter-
action model: Least squares approach. Journal of Marketing Research, 11(3):303–311, 1974.

[17] G. Gallego and M. Hu. Dynamic pricing of perishable assets under competition. Manage-
ment science: journal of the Institute for operations research and the management sciences,
60(5):1241–1259, 2014.

[18] C. Ewerhart. Cournot games with biconcave demand. Games and Economic Behavior, 85(0):37
– 47, 2014.

[19] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on stochastic programming: mod-
eling and theory. The society for industrial and applied mathematics and the mathematical
programming society, Philadelphia, USA, 2009.

[20] H. Xu. Sample average approximation methods for a class of stochastic variational inequality
problems. Asia-Pac. J. Oper. Res., 27(1):103–119, 2010.

[21] S. Lu and A. Budhiraja. Confidence regions for stochastic variational inequalities. Math. Oper.
Res., 38(3):545–568, 2013.

[22] S. Lu. Symmetric confidence regions and confidence intervals for normal map formulations of
stochastic variational inequalities. SIAM Journal on Optimization, 24(3):1458–1484, 2014.

[23] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[24] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Appli-
cations. Springer New York, 2003.

[25] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge Uni-
versity Press, 2008.

[26] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and
Control. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2005.

[27] A.S. Nemirovski and D.B. Judin. On cezari’s convergence of the steepest descent method
for approximating saddle point of convex-concave functions. Soviet Mathematics-Doklady, 19,
1978.

[28] D. Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Cornell
University Technical Report, Operations Research and Industrial Engineering, 1988.

30



[29] B. T. Polyak. New stochastic approximation type procedures. Automat. i Telemekh., 7:98–107,
1990.

[30] B. T. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

[31] H. J. Kushner and J. Yang. Stochastic approximation with averaging of the iterates: Optimal
asymptotic rate of convergence for general processes. SIAM J. Control Optim., 31(4):1045–
1062, July 1993.

[32] H. J. Kushner and J. Yang. Analysis of adaptive step-size SA algorithms for parameter tracking.
Automatic Control, IEEE Transactions on, 40(8):1403–1410, Aug 1995.

[33] A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience, Translated by: E. R. Dawson, 1983.

[34] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[35] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization i: A generic algorithmic framework. SIAM Journal on
Optimization, 22(4):1469–1492, 2012.

[36] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, ii: Shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23(4):2061–2089, 2013.

[37] D. Bertsekas and J. Tsitsiklis. Gradient convergence in gradient methods with errors. SIAM
Journal on Optimization, 10(3):627–642, 2000.

[38] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[39] H. Jiang and H. Xu. Stochastic approximation approaches to the stochastic variational in-
equality problem. IEEE Transactions on Automatic Control, 53(6):1462–1475, 2008.
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