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Abstract

Most numerical methods for conic problems use the homogenous primal-dual embedding, which
yields a primal-dual solution or a certificate establishing primal or dual infeasibility. Following
Patrinos [STP18], we express the embedding as the problem of finding a zero of a mapping
containing a skew-symmetric linear function and projections onto cones and their duals. We focus
on the special case when this mapping is regular, i.e., differentiable with nonsingular derivative
matrix, at a solution point. While this is not always the case, it is a very common occurrence in
practice. We propose a simple method that uses LSQR, a variant of conjugate gradients for least
squares problems, and the derivative of the residual mapping to refine an approximate solution,
i.e., to increase its accuracy. LSQR is a matrix-free method, i.e., requires only the evaluation of
the derivative mapping and its adjoint, and so avoids forming or storing large matrices, which
makes it efficient even for cone problems in which the data matrices are given and dense, and
also allows the method to extend to cone programs in which the data are given as abstract linear
operators. Numerical examples show that the method almost always improves an approximate
solution of a conic program, and often dramatically, at a computational cost that is typically
small compared to the cost of obtaining the original approximate solution. For completeness
we describe methods for computing the derivative of the projection onto the cones commonly
used in practice: nonnegative, second-order, semidefinite, and exponential cones. The paper is
accompanied by an open source implementation.

1 Conic problem and homogeneous primal-dual embedding

We consider a conic optimization problem in its primal (P) and dual (D) forms (see, e.g., [BV04,
§4.6.1] and [BTN01]):

(P) minimize cTx
subject to Ax+ s = b

s ∈ K

(D) minimize bT y
subject to AT y + c = 0

y ∈ K∗.
(1)

Here x ∈ Rn is the primal variable, y ∈ Rm is the dual variable, and s ∈ Rm is the primal slack
variable. The set K ⊆ Rm is a nonempty closed convex cone and the set K∗ ⊆ Rm is its dual cone,
K∗ =

{
y ∈ Rm

∣∣ infk∈K y
Tk ≥ 0

}
. The problem data are the matrix A ∈ Rm×n, the vectors b ∈ Rm,

c ∈ Rn and the cone K.
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Applications of conic problems. Conic problems are widely used in practice. Any convex
optimization problem can be formulated as a conic problem [BTN01]. Popular convex optimiza-
tion solvers, such as ecos [DCB13], scs [OCPB16], mosek [MOS17], sedumi [Stu99], solve prob-
lems formulated as conic problems. Convex optimization frameworks, such as yalmip [L0̈4], cvx

[GB14, GB08], cvxpy [DB16], Convex.jl [UMZ+14], and cvxr [FNB17], let the user formulate
a convex optimization problem in high level mathematical language and then transform it to a
conic problem. Classes of problems of practical importance, such as financial portfolio optimization
[BBD+17, BRB16] and power grid management [Tay15], are increasingly specified, and solved, as
conic problems.

Optimality conditions. Let (x, y, s) ∈ Rn × Rm × Rm. If (x, y, s) satisfies the optimality or
Karush–Kuhn–Tucker (KKT) conditions

Ax+ s = b, AT y + c = 0, s ∈ K, y ∈ K∗, sT y = 0, (2)

then (x, s) is primal optimal, y is dual optimal, and we say that (x, y, s) is a solution of the primal-dual
pair (1).

Primal and dual infeasibility. If y satisfies

AT y = 0, y ∈ K∗, bT y = −1, (3)

then y serves as a proof or certificate that the primal problem is infeasible (equivalently, the dual
problem is unbounded). If (x, s) satisfies

Ax+ s = 0, s ∈ K, cTx = −1, (4)

then the pair (x, s) serves as a proof or certificate that the primal problem is unbounded (equivalently,
the dual problem is infeasible).

Solving a conic program. It is easy to show that (2) and (3) are mutually exclusive, and that
(2) and (4) are mutually exclusive. For non-degenerate conic programs, (3) and (4) are also mutually
exclusive. (There exist degenerate conic programs for which both (3) and (4) are feasible, but such
problems do not arise in applications.) By solving the conic program (1), we mean finding a solution
of (2), (3), or (4).

Homogenous self-dual embedding. The homogenous self-dual embedding of (1), introduced
by Ye and others (see, e.g., [YTM94] and [OCPB16]), can be used to solve a conic problem. The
embedding is as follows:

Qu = v, u ∈ K, v ∈ K∗, um+n+1 + vm+n+1 > 0, (5)

where
K = Rn ×K∗ ×R+, K∗ = {0}n ×K ×R+,

and Q is the skew-symmetric matrix

Q =

 0 AT c
−A 0 b
−cT −bT 0

 .
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The homogeneous self-dual embedding (5) is evidently positive homogeneous.
Constructing a solution of the conic problem (1), from a solution of the homogeneous embedding

(5) proceeds as follows. We partition u as u = (u1, u2, τ), and v as v = (v1, v2, κ), with

u1 ∈ Rn, u2 ∈ K∗, τ ≥ 0, v1 = 0 ∈ Rn, v2 ∈ K, κ ≥ 0.

If (u, v) satisfies (5) then we have

uT v = uT1 v1 + uT2 v2 + τκ = uT2 v2 + τκ = 0,

from which we conclude that uT2 v2 = 0 and τκ = 0. Thus, one of τ and κ is positive, and the other
is zero. We distinguish three cases.

• τ > 0. Then x = u1/τ , y = u2/τ , s = v2/τ is a primal-dual solution of the conic program, i.e.,
they satisfy (2).

• κ > 0 and bTu2 < 0. Then y = u2/(b
Tu2) is a certificate of primal infeasibility, i.e., satisfies

(3).

• κ > 0 and cTu1 < 0. Then x = u1/(c
Tu1), s = v2/(c

Tu1) is a certificate of dual infeasibility,
i.e., satisfies (4).

Any solution of the homogenous self-dual embedding (5) must fall in one of the above three cases. To
see this, suppose κ > 0. Then τ = 0 and the last equation in v = Qu becomes −cTu1−bTu2 = κ > 0,
which implies that at least one of bTu2 and cTu1 is negative. These correspond to the second and
third cases. (If both are negative, the conic program is degenerate.)

A converse also holds.

• If (x, y, s) satisfies (2), then u = (x, y, 1) and v = (0, s, 0) satisfy (5).

• If y satisfies (3), then u = (0, y, 0) and v = (0, 0, 1) satisfy (5).

• If x, s satisfy (4), then u = (x, 0, 0), v = (0, s, 1) satisfy (5).

2 The residual map

The conic complementarity set. We define the conic complementarity set as

C =
{

(u, v) ∈ K×K∗
∣∣ uT v = 0

}
.

C is evidently a closed cone, but not necessarily convex. We let Π denote Euclidean projection on
K, and Π∗ denote Euclidean projection on −K∗. We observe that (see, e.g., [Mor65])

Π∗ = I −Π,

where I denotes the identity operator.
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Minty’s parametrization of the complementarity set. The mapping M : Rm+n+1 → C given
by

M(z) = (Πz,−Π∗z)

is called the Minty parametrization of C. It is a bijection, with inverse M−1 : C → Rm+n+1

M−1(u, v) = u− v.

(See, e.g., [Roc70, Corollary 31.5.1] or [BC17, Remark 23.23(i)].) Since Π is (firmly) nonexpansive,
we conclude that M is Lipschitz continuous with constant 1.

Using this parametrization of C, we can express the self-dual embedded conditions (5) in terms
of z as

−Π∗z = QΠz, zm+n+1 6= 0. (6)

We slightly stretch our notation and say that z ∈ Rm+n+1 is a solution of the homogenous self-dual
embedding (5) if M(z) is a solution.

Residual map. We define the residual map R : Rm+n+1 → Rm+n+1 by

R(z) = QΠz + Π∗z = ((Q− I)Π + I)z. (7)

The map R is positively homogenous and differentiable almost everywhere (see Appendix A).

Normalized residual. The normalized residual map N : {z ∈ Rm+n+1 | zm+n+1 6= 0} → Rm+n+1

is given by
N (z) = R(z/|w|) = R(z)/|w|, (8)

where we use w to denote zm+n+1 to lighten the notation. The second equality follows from positive
homogeneity of R. Note that by (6), if z ∈ Rm+n+1 satisfies the self-dual embedding (5), then
N (z) = 0. Conversely, if N (z) = 0, then z satisfies the self-dual embedding (5). The idea of
formulating the homogeneous self-dual embedding problem as finding a zero of mapping has been
used in other work, e.g., [STP18].

For z ∈ Rm+n+1, with w = zm+n+1 6= 0, we use ‖N (z)‖2 as a practical measure of the sub-
optimality of z, i.e., how far z deviates from being a solution of (5). We refer to ‖N (z)‖2 as the
normalized residual norm of a candidate z.

Derivatives of residual and normalized residual maps. Let z ∈ Rm+n+1 be such that Π is
differentiable at z. Then R is differentiable at z, with derivative

DR(z) = (Q− I)DΠ(z) + I. (9)

Now suppose z ∈ Rm+n+1, with w 6= 0. In view of (8) and (9), N is differentiable at z, with
derivative

DN (z) =
DR(z)

w
− R(z)

w2
eT =

(Q− I)DΠ(z) + I

w
− ((Q− I)Π + I)z

w2
eT ,

where e = (0, . . . , 0, 1) ∈ Rm+n+1, and we remind the reader that w = zm+n+1.
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3 Cone projections and matrix-free derivative evaluations

Here we consider some of the standard cones used in practice, and for each one, describe the projec-
tion, and also how to evaluate its derivative mapping and its adjoint efficiently. Many of these results
have appeared in other works [KFF09, AWK18, MS06, PB14]. We give them here for completeness,
to put them in a common notation, and to point out how the derivative mappings can be efficiently
evaluated.

Cartesian product of cones. In many cases of interest the cone K is a Cartesian product of
simpler closed convex cones, i.e., K = K1 × · · · × Kp. The projection Π onto K is evidently the
Cartesian product of the projections, Π = ΠK1 × · · · × ΠKp . It is clear that Π is differentiable at
x = (x1, . . . , xp) if and only if each ΠKi is differentiable at xi, and its derivative is

DΠ = DΠK1 × · · · × DΠKp .

(When the derivative is represented as a matrix, the Cartesian product here is a block diagonal
matrix.)

So it suffices to discuss the simpler cones, where for simplicity of notation, we drop the subscript
and refer to the (smaller) cones as K.

The computational cost of the projection, and evaluating its derivative, on a Cartesian product
of cones is the sum of the costs of the operations carried out on each of the individual cones. Also,
these operations can be easily parallelized.

Zero and free cones. For K = {0}, we have Πx = 0; Π is differentiable everywhere and, for every
x ∈ R, DΠ(x) = 0. For K = R, Πx = x; Π is differentiable everywhere and, for every x ∈ R,
DΠ(x) = 1.

Nonnegative cone. For the nonnegative cone R+ the projection is given by Πx = max(x, 0). It
is differentiable for x 6= 0, with derivative DΠ(x) = 1

2(sign(x) + 1).

Second-order cone. For the second-order cone (also known as the Lorentz cone)

K = {(t, x) ∈ R+ ×Rn | ‖x‖2 ≤ t},

we have

Π(t, y) =


(t, y), if ‖y‖2 ≤ t
(0, 0), if ‖y‖2 ≤ −t
t+‖y‖2

2

(
1, y/‖y‖2

)
, otherwise.

It follows from [KFF09, Lemma 2.5] that Π is differentiable at (t, x) whenever ‖x‖2 6= |t|, in which
case we have

DΠ(t, x) =


I, if ‖x‖2 < t

0, if ‖x‖2 < −t

1
2‖x‖2

[
‖x‖2 xT

x (t+ ‖x‖2)I − t x
‖x‖2

xT

‖x‖2

]
, otherwise.

(Note that DΠ is symmetric, a consequence of K being self-dual.) Evaluating DΠ(t, x)(t̃, x̃) efficiently
is easy in the first two cases. In the third case one does not form the matrix, but rather evaluates
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it by computing xT x̃, and then forming the result vector using vector operations. This requires a
number of flops (floating point operations) that is linear in the dimension of the cone, as opposed to
quadratic.

Semidefinite cone. The semidefinite cone Sn+ is the cone of n× n positive semidefinite matrices.
Let X ∈ Sn (the set of symmetric n× n matrices) and let

X = Udiag(λ)UT

be its eigendecomposition, with UTU = I and λ is the vector of eigenvalues of X. The projection of
X onto Sn+ is given by

ΠX = Udiag(λ+)UT , (10)

where λ+ = max(λ, 0) (elementwise). It is known that (see, e.g., [MS06, Theorem 2.7]) Π is differ-
entiable at X whenever detX 6= 0. For detX 6= 0, let DΠ(X) : Sn → Sn be the derivative of Π at
X, and let X̃ ∈ Sn. Then (see [MS06, Theorem 2.7] and also Appendix B below)

DΠ(X)(X̃) = U(B ◦ (UT X̃U))UT , (11)

where ◦ denotes the Hadamard (i.e., entrywise) product, and the symmetric matrix B is given by

Bij =


0, if i ≤ k, j ≤ k;

(λ+)i
(λ−)j+(λ+)i

, if i > k, j ≤ k;
(λ+)j

(λ−)i+(λ+)j
, if i ≤ k, j > k;

1, if i > k, j > k.

(12)

(See (25).) This derivative is symmetric (self-adjoint) and is readily evaluated at X̃ using matrix-
matrix products, which cost order n3 flops. If we represent X ∈ Sn as a vector x ∈ Rm, with
m = n(n+ 1)/2, the cost is order m3/2.

The exponential cone. The exponential cone is given by

K = {(x, y, z) ∈ R3 | y ex/y ≤ z, y > 0} ∪ R− × {0} ×R+,

and its dual cone is given by

K∗ = {(u, v, w) ∈ R3 | u < 0, − uev/u ≤ ew} ∪ {0} ×R+ ×R+.

We have four cases (see [PB14, §6.3.4]):

• Case 1: (x, y, z) ∈ K. Then Π(x, y, z) = (x, y, z).

• Case 2: (x, y, z) ∈ −K∗ \ {(0, 0, 0)}. Then Π(x, y, z) = (0, 0, 0).

• Case 3: x < 0 and y < 0. Then Π(x, y, z) = (x, 0,max(z, 0)).

• Case 4: Otherwise, we have Π(x, y, z) = (x∗, y∗, z∗), where (x∗, y∗, z∗) is the unique solution of

minimize ‖(x, y, z)− (x, y, z)‖22
subject to z = yex/y, y > 0.

(13)
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The optimization problem (13) can be solved by a primal-dual Newton method (see [PB14,
§6.3.4]). (The existence and uniqueness of (x∗, y∗, z∗) follow from the fact that K is closed and
convex.) The derivative DΠ is given in the following cases:

• Case 1: (x, y, z) ∈ int K. Then DΠ(x, y, z) = (x, y, z).

• Case 2: (x, y, z) ∈ −int K∗. Then DΠ(x, y, z) = (0, 0, 0).

• Case 3: x < 0, y < 0 and z 6= 0. Then DΠ(x, y, z) = (1, 0, 12(1 + sign(z))).

• Case 4: (x, y, z) ∈ int (R3 \ (K∪K∗∪R−×R−×R)). See the system of equations (27) below.

4 Refinement

Suppose that ẑ ∈ Rm+n+1, ẑm+n+1 6= 0, is a given approximate solution of the self-dual embedding
(5), by which we mean that it has a small positive normalized residual norm ‖N (ẑ)‖2. Our goal is
to refine the approximate solution, i.e., to produce a vector δ for which

‖N (ẑ + δ)‖2 < ‖N (ẑ)‖2 (14)

(and, implicitly, ẑm+n+1 + δm+n+1 6= 0). We refer to z = ẑ+ δ as the refined (approximate) solution.

Related work. Refinement of an approximate solution of an optimization problem is a very old
idea; in linear programming, for example, it relies on guessing the active set and then solving a set
of linear equations, see, e.g., [NW06, §16.5]. In more general conic problems, it was introduced in,
e.g., [EGL97]. Refinement is used in numerical solvers, such as the quadratic programming solver
OSQP [SBG+17], where it is called polishing.

Refinement approach. Our approach to refinement requires the assumptions that Π is differ-
entiable at ẑ, hence N is differentiable at ẑ, and that DN (ẑ) is invertible. In other words, the
normalized residual mapping is regular at the point ẑ. While this condition need not hold, it does
in many practical cases.

With our assumption, ‖N (z)‖22 is differentiable at ẑ. The condition (14) holds for ‖δ‖ sufficiently
small, whenever δ is a descent direction of ‖N (z)‖22 at ẑ, i.e.,

δT (DN (ẑ))TN (ẑ) < 0. (15)

Such a descent direction always exists, by our assumption that ẑ is not a solution (i.e., N (ẑ) 6= 0)
and DN (ẑ) is invertible; for example, δ = −t(DN (ẑ))TN (ẑ), with t > 0 sufficiently small. (This
is the negative gradient descent direction.) There are many other ways to choose δ for which the
descent condition (15) holds. We now propose a specific method to find a descent direction δ.

Levenberg–Marquardt refinement. The Levenberg–Marquardt nonlinear least squares method
uses the direction δ that minimizes

‖N (ẑ) + DN (ẑ)δ‖22 + λ‖δ‖22, (16)

where λ > 0 is a regularization parameter (see, e.g., [WH85, Nas00, BV18]). Many other methods
for constructing a descent method could be used, for example Newton-type methods; see, e.g.,
[NW06, QS93, QS99, Jia99] and the references therein.
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Levenberg–Marquardt refinement with truncated LSQR. Finding a δ that minimizes (16)
is a least squares problem; we propose to use the iterative algorithm LSQR [PS82], a variant of
the conjugate gradient method, to find an approximate minimizer. Specifically, we run the LSQR
algorithm for some number of steps, and use the resulting δ as our descent direction. Because
(DN (ẑ))TN (ẑ) 6= 0, it can be shown that δ obtained using this truncated LSQR method is a descent
direction, i.e., (15) holds; see [LMW67].

We have two motivations for using LSQR to compute δ. First, LSQR does not require forming
the matrix DN (ẑ); it simply requires us to multiply a vector by it, and its transpose. This gives us
all the computational advantages described in the previous section. The second reason is that with
relatively few iterations of LSQR, a quite good descent direction is typically found.

Line search. We take as our refined approximate solution ẑ + tδ, where the step-size t > 0 is
obtained via backtracking line search [BV04, §9.2]. Specifically, we choose t = 2−p where p is the
smallest nonnegative integer, not exceeding a given maximum K > 0, for which ‖N (ẑ + tδ)‖2 <
‖N (ẑ)‖2 holds (and, implicitly, ẑm+n+1 + tδm+n+1 6= 0). When ‖N (ẑ+ tδ)‖2 < ‖N (ẑ)‖2 fails to hold
for t = 2−K , we exit the refinement process, using t = 0, i.e., z = ẑ. We refer to this as a case of
failed refinement. We find that K = 10 is a good choice in practice; in almost all cases, far fewer
backtracking steps are needed to produce a refined point.

Iterated refinement. The refinement method described above can be iterated, provided that at
each of the points produced, N is regular. One might even imagine that iterated refinement could be
used to solve a conic problem, by starting from some arbitrary point with large normalized residual,
and iteratively refining it. But we note that the regularity condition on the iterates need not hold,
and even when they do, the method can fail to converge to a solution, and even when they converge
to a solution, the convergence can be very slow. For these reasons we cannot recommend iterated
refinement as a general method for solving a conic problem. We propose refinement, and iterated
refinement, as nothing more than a method that can, and often does, produce a more accurate
approximate solution, given an approximate solution produced by another method.

Refinement algorithm parameters. Our refinement method has only a few parameters: The
number of LSQR iterations to carry out to determine the descent direction δ, the maximum number
of backtracking steps in the line search, the regularization parameter λ, and the number of steps of
refinement. Default values such as 30 LSQR iterations, 10 backtracking steps, λ = 10−8, and 2 steps
of iterated refinement seem to provide very good results across a variety of problem instances.

Computational complexity. Here we summarize the computational complexity of our refinement
method. Each LSQR iteration requires one matrix vector multiplication by Q, one by its transpose,
one by DN , one by its transpose, and a few vector operations. Each evaluation of the residual
function requires a multiplication by Q, one evaluation of ΠK, and a few vector operations. These
operations have costs that depend on the format of A (e.g., dense or sparse) and the size and types
of the cones that form K. Using the default parameter values of 30 LSQR iterations and 2 steps of
iterated refinement, we have 60 (or fewer) LSQR iterations and between 3 and 20 evaluations of the
normalized residual function.

More specific estimates depend on the structure of A and K. If A is sparse with nnz(A) nonzero
entries, multiplications byQ andQT cost roughly≈ nnz(A)+n+m flops. Perhaps the most expensive
evaluations of the normalized residual, and its derivative, occur with K a single semidefinite cone. In
this case, the projection ΠK and multiplications by DN and its transpose require a number of flops
proportional to m3/2.
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Reference implementation. This paper is accompanied by a reference implementation, written
in Python and available at

https://github.com/cvxgrp/cone_prog_refine.

The code implements the refinement method described in this paper, using Numpy [Oli06], Scipy
[JOPO01], and Numba [Tea15], a just-in-time compiler, to run faster. Refining an approximate
solution requires a single function call, with the problem data expressed in the same way used by the
open source solvers ECOS [DCB13] and SCS [OCPB16]: A is a sparse compressed-column matrix,
b and c are Numpy arrays. The cone K is the Cartesian product of a sequence of zero, nonnegative,
second order, semi-definite, and primal or dual exponential cones. We represent it with a Python
dictionary containing the dimensions of the component cones.

5 Numerical experiments

We test the refinement algorithm on a variety of randomly generated problems, including feasible,
infeasible, and unbounded problems. We report results obtained on an (Apple) laptop with a 2.7 GHz
quad-core processor and 16 Gb of RAM. The Python environment used is the Anaconda distribution
(with Python 3.7, Numpy 1.15, Scipy 1.1, and Numba 0.36). All the experiments can be reproduced
by running the experiments.ipynb notebook (in the examples folder of the software repository).

Problem generation. The random problem instances are generated as follows.

• The cone K is the Cartesian product of a zero cone of size random uniform in {10, . . . , 50}, a
nonnegative cone of size random uniform in {20, . . . , 100}, a number of Lorentz cones random
uniform in {2, . . . , 100} where each has size random uniform in {5, . . . , 20}, a number of semi-
definite cones random uniform in {5, . . . , 20} where each has size random uniform in {2, . . . , 10},
and a number of primal, and dual, exponential cones both random uniform in {2, . . . , 10}. This
determines the value of m, and we choose n random uniform in {1, . . . ,m}. The (empirical)
10th and 90th quantiles of the distribution of n and m are about (100, 1000) and (500, 1500),
respectively.

• The matrix A has a random sparsity pattern with density chosen random uniformly in [0.1, 0.3].
Its entries, and the entries of the optimal x and r = (s − y), are chosen random uniformly in
[−1, 1]. A is then divided by its Frobenius norm, so that ‖A‖F = 1. We compute s = Π(r), and
y = s − r. Then, we choose randomly between a feasible, infeasible, or unbounded problem,
with probabilities 0.8, 0.1, and 0.1, respectively, and proceed as follows:

– For a feasible problem instance, we set b = Ax+ s, and c = −AT y.

– For an infeasible problem instance, for each column j of A we pick the first nonzero
element, if there are any, say Aij . We check that yi 6= 0, and if not choose the next
nonzero Aij , and substitute Aij with Aij − (AT y)j/yi, so now AT y = 0. We then set
b = −y/‖y‖22, and c with random uniform entries in [−1, 1].

– For an unbounded problem instance, for any element xj of the solution x that is zero,
i.e., xj = 0, we set xj = 1. Then, for each row i of A, we pick the first nonzero element,
say Aij , or, if there are none, Ai1. We substitute Aij with Aij − (Ax + s)i/xj , so now
Ax+ s = 0. We then set c = −x/‖x‖22, and b with random uniform entries in [−1, 1].

9
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Experiments. We generate 1000 such problems, and for each we obtain an approximate solution
(or a certificate of infeasibility or unboundedness) with the numerical solver SCS (if the cone includes
semi-definite or exponential cones), or ECOS (otherwise). We then pass the approximate solution
returned by the solver to the refinement algorithm, and obtain a refined approximate solution. We
use default parameters for both the solvers and the refinement algorithm.

Results. Figure 1 shows the scatter plot, for each problem, of ‖N (zunref)‖2 against ‖N (zref)‖2,
where zunref is the approximate solution returned by the solver and zref is the refined solution re-
turned by the refinement algorithm. We see that the refined solutions always have smaller residual
norm than the unrefined ones, and sometimes significantly so. (More details can be seen in the
experiments.ipynb notebook in the software repository.) Figure 2 shows the distribution of the
refinement factor ‖N (zunref)‖2/‖N (zref)‖2, i.e., the change in solution quality before and after re-
finement. We see that in most cases the refinement algorithm improves the solution quality by about
an order of magnitude, and sometimes by a few orders of magnitude. The geometric mean of the
refinement factor over our 1000 problems is around 30.

Timing. Using the default parameters, the time required for refinement of the 1000 example prob-
lems is either insignificant compared to the original solver, or comparable in some cases. For very
small problems, for which the base solvers ECOS and SCS are very fast (in the few millisecond range),
our current Python implementation of the refinement method requires (relatively) more time, but a
C implementation of refinement would rectify this.

Acknowledgement
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Figure 1: Residual norm of unrefined and refined approximate solutions, for the experi-
ments of §5.
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Figure 2: Distribution of refinement factor ‖N (zunref)‖2/‖N (zref)‖2 over the experiments
of §5.
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Appendix A

Differentiability properties of the residual map. Let C be a nonempty closed convex subset
of Rn. It is well known that the projection ΠC onto C is (firmly) nonexpansive (see, e.g., [Bro67,
Proposition 2]), hence it is Lipschitz continuous with a Lipschitz constant at most 1. Consequently,
if A : Rn → Rm is linear then the composition A ◦ ΠC is also Lipschitz continuous. Therefore, by
the Rademacher’s Theorem (see, e.g., [RW98, Theorem 9.60] or [EG92, Theorem 3.2]) both ΠC and
A ◦ΠC are differentiable almost everywhere. This allows us to conclude that the residual map (7) is
differentiable almost everywhere. Moreover, let z ∈ Rm+n+1. Clearly R is differentiable at z if Π is
differentiable at z.

Appendix B

Semi-definite cone projection derivative. Let X ∈ Sn, let X = Udiag(λ)UT be an eigende-
composition of X and suppose that det(X) 6= 0. Without loss of generality, we can and do assume
that the entries of λ are in an increasing order. That is, there exists k ∈ {1, . . . , n} such that

λ1 ≤ · · · ≤ λk < 0 < λk+1 ≤ · · · ≤ λn. (17)

We also note that
ΠX −X = Udiag(λ−)UT , (18)

where λ− = −min(λ, 0). It follows from (10), (18), and the orthogonality of U that

UTΠXU = diag(λ+), UT (ΠX −X)U = diag(λ−). (19)

Note that
ΠX(ΠX −X) = Udiag(λ+)diag(λ−)UT = 0. (20)

Let DΠ(X) : Sn → Sn be the derivative of Π at X, and let X̃ ∈ Sn. We now show that (11)
holds.

Indeed, using the first order Taylor approximation of Π around X, for ∆X ∈ Sn such that ‖∆X‖F
is sufficiently small (here ‖·‖F denotes the Frobenius norm) we have

Π(X + ∆X) ≈ ΠX + DΠ(X)(∆X). (21)

To simplify the notation, we set ∆Y = DΠ(X)(∆X). Now

0 = Π(X + ∆X)(Π(X + ∆X)−X −∆X) (22a)

≈ (ΠX + ∆Y )(ΠX + ∆Y −X −∆X) (22b)

= ΠX(ΠX −X) + ∆Y (ΠX −X) + ΠX(∆Y −∆X) + ∆Y (∆Y −∆X)

= ΠX(∆Y −∆X) + ∆Y (ΠX −X) (22c)

= UTΠX(∆Y −∆X)U + UT∆Y (ΠX −X)U (22d)

= (UTΠXU)UT (∆Y −∆X)U + UT∆Y U(UT (ΠX −X)U) (22e)

= diag(λ+)UT (∆Y −∆X)U + UT∆Y U(diag(λ+)). (22f)

Here, (22a) follows from applying (20) with X replaced by X + ∆X, (22b) follows from combining
(22a) and (21), (22c) follows from (20) by neglecting second order terms, (22d) follows from multi-
plying (22c) from the left by UT and from the right by U , (22e) follows from the fact that UUT = I
and finally (22f) follows from (19). We rewrite the Sylvester [Syl84, GLAM92] equation (22f) as

diag(λ+)UT∆Y U + UT∆Y Udiag(λ+) ≈ diag(λ+)UT∆XU. (23)
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Using (23), we learn that for any i ∈ {1, . . . , n} and j ∈ {1, . . . , n}, we have

((λ−)j + (λ+)i)(U
T∆Y U)ij ≈ (λ+)i(U

T∆XU)ij .

Recalling (17), if i ≤ k, j > k we have (λ−)j = (λ+)i = 0. Otherwise, (λ−)j + (λ+)i 6= 0 and

(UT∆Y U)ij ≈
(λ+)i

(λ−)j + (λ+)i︸ ︷︷ ︸
=Bij

(UT∆XU)ij . (24)

Proceeding by cases in view of (17), and using that ∆Y is symmetric (so is UT∆Y U), we conclude
that

Bij =


0, if i ≤ k, j ≤ k;

(λ+)i
(λ−)j+(λ+)i

, if i > k, j ≤ k;
(λ+)j

(λ−)i+(λ+)j
, if i ≤ k, j > k;

1, if i > k, j > k.

(25)

Therefore, combining with (24) we obtain

UT∆Y U ≈ B ◦ (UT∆XU),

where “◦” denotes the Hadamard (i.e., entrywise) product. Recalling the definition of ∆Y and using
that UUT = I we conclude that

DΠ(X)(∆X) ≈ U(B ◦ (UT∆XU))UT .

Letting ‖∆X‖F → 0 and applying the implicit function theorem, we conclude that (11) holds.

Appendix C

Exponential cone projection derivative. The Lagrangian of the constrained optimization prob-
lem (13) is

1
2‖(x, y, z)− (x, y, z)‖2 + µ(yex/y − z),

where µ ∈ R is the dual variable. The KKT conditions at a solution (x∗, y∗, z∗, µ∗) are

x∗ − x+ µ∗ex
∗/y∗ = 0 (26)

y∗ − y + µ∗ex
∗/y∗

(
1− x∗

y∗

)
= 0

z∗ − z − µ∗ = 0

y∗ex
∗/y∗ − z∗ = 0.

Considering the differentials dx, dy, dz and dx∗, dy∗, dz∗, dµ∗ of the KKT conditions in (26), the
authors of [AWK18, Lemma 3.6] obtain the system of equations

1 + µ∗ex
∗/y∗

y∗ −µ∗x∗ex
∗/y∗

y∗2
0 ex

∗/y∗

−µ∗x∗ex
∗/y∗

y∗2
1 + µ∗x∗2ex

∗/y∗

y∗3
0 (1− x∗/y∗)ex∗/y∗

0 0 1 −1

ex
∗/y∗ (1− x∗/y∗)ex∗/y∗ −1 0


︸ ︷︷ ︸

D


dx∗

dy∗

dz∗

dµ∗


︸ ︷︷ ︸
du∗

=


dx
dy
dz
0


︸ ︷︷ ︸
du

. (27)

Note that, since (13) is feasible, D is invertible. Therefore, du∗ = D−1(du). Consequently, the upper
left 3× 3 block matrix of D−1 is the Jacobian of the projection at (x, y, z) in Case 4.
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