
1 23

Computational Optimization and
Applications
An International Journal

ISSN 0926-6003
Volume 77
Number 1

Comput Optim Appl (2020) 77:1-27
DOI 10.1007/s10589-020-00192-0

On the convergence of steepest descent
methods for multiobjective optimization

G. Cocchi, G. Liuzzi, S. Lucidi &
M. Sciandrone

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)

Computational Optimization and Applications (2020) 77:1–27
https://doi.org/10.1007/s10589-020-00192-0

1 3

On the convergence of steepest descent methods
for multiobjective optimization

G. Cocchi1 · G. Liuzzi2 · S. Lucidi3 · M. Sciandrone1

Received: 25 July 2019 / Published online: 5 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper we consider the classical unconstrained nonlinear multiobjective opti-
mization problem. For such a problem, it is particularly interesting to compute as
many points as possible in an effort to approximate the so-called Pareto front. Con-
sequently, to solve the problem we define an “a posteriori” algorithm whose generic
iterate is represented by a set of points rather than by a single one. The proposed
algorithm takes advantage of a linesearch with extrapolation along steepest descent
directions with respect to (possibly not all of) the objective functions. The sequence
of sets of points produced by the algorithm defines a set of “linked” sequences of
points. We show that each linked sequence admits at least one limit point (not neces-
sarily distinct from those obtained by other sequences) and that every limit point is
Pareto-stationary. We also report numerical results on a collection of multiobjective
problems that show efficiency of the proposed approach over more classical ones.

Keywords  Multiobjective optimization · A posteriori method · Steepest descent
algorithm

Mathematics Subject Classification  90C30 · 90C56 · 65K05

 *	 G. Liuzzi
	 giampaolo.liuzzi@iasi.cnr.it

	 G. Cocchi
	 guido.cocchi@unifi.it

	 S. Lucidi
	 lucidi@diag.uniroma1.it

	 M. Sciandrone
	 marco.sciandrone@unifi.it

1	 Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Florence, Italy
2	 Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi e Informatica, Rome, Italy
3	 Dipartimento di Ingegneria Informatica Automatica e Gestionale, Università di Roma

“Sapienza”, Rome, Italy

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00192-0&domain=pdf

2	 G. Cocchi et al.

1 3

1  Introduction

We consider the following unconstrained multiobjective optimization problem:

where the functions fi ∶ ℝ
n
→ ℝ , for i = 1,… ,m are continuously differentiable.

Many competing objective functions have to be minimized simultaneously and, to
this aim, we need to employ the well-known concept of Pareto optimality. A point is
Pareto optimal if there does not exist another point with not greater objective func-
tion values and such that there is a strict decrease in at least one objective function
value.

One of the most important classes of algorithms for multiobjective optimiza-
tion is represented by the so-called scalarization methods (see, e.g. [8, 10, 15,
18]), where candidate Pareto solutions of problem (1) are computed by solving
one or several parametrized single-objective optimization problems. The main
drawback of scalarization methods is the need of defining suitable parameters to
obtain a “good” scalarization function, and this requires an insight on the prob-
lem structure which might not be available in general.

Here we focus on a class of parameter-free multiobjective optimization algo-
rithms, recently studied, that extends classic optimization methods to multiobjec-
tive (both constrained and unconstrained) optimization problems [9, 11, 12, 19].
The common strategy of these methods, that do not exploit a priori information
on the objectives, is to compute, starting from the current point, a feasible and
descent (for all the objectives) direction and to perform a linesearch along it that
produces a new point where a strict decrease of all the objectives is obtained.
The computation of the search direction usually involves the solution of a convex
quadratic programming problem, while the linesearch is the natural extension to
the multiobjective case of the standard backtracking strategy.

These descent methods, similarly to standard algorithms for single-objective
optimization, generate a sequence of points and exhibit convergence properties.
The convergence analysis shows that, under suitable assumptions, the sequence
generated by a descent algorithm admits limit points and each (or at least one)
limit point is a Pareto-stationarity point. However, the main aim of a multiob-
jective optimization algorithm consists in obtaining an approximation to the
Pareto front, so that it could be useful to define descent algorithms generating a
sequence of sets of non-dominated points with guaranteed convergence proper-
ties. Up to our knowledge the only descent algorithm presenting these features
has been presented in [13] for constrained multiobjective optimization. The pro-
posed algorithm is based on two main stages: the first one is aimed to enrich the
set of non-dominated points using separately each individual objective function,
and can be viewed as a heuristic to spread feasible points along the Pareto front;
the second one is designed to drive each non-dominated point towards optimality.

Other multiobjective algorithms for generating an approximation of the whole
Pareto-front are natural extension of well-known global optimization techniques

(1)min
x∈ℝn

f1(x),… , fm(x),

Author's personal copy

3

1 3

On the convergence of steepest descent methods for…

(see e.g. [5, 6, 14]). Derivative-free multiobjective optimization algorithms for
retrieving an approximation of the Pareto front are proposed, e.g., in [3, 4, 17].

In this work we present a different approach and we propose a steepest descent algo-
rithm for unconstrained multiobjective optimization that produces a set of non-domi-
nated points, i.e. an approximation of the Pareto front for problem (1). The key ingredi-
ents that characterize the proposed approach are the following: (i) not all the objective
functions are necessarily considered to define the search direction; (ii) a sequence of
sets of non-dominated points (rather than a sequence of points) is produced at each iter-
ation; (iii) an Armijo-type linesearch (taking into account all the elements of the cur-
rent set of non-dominated points) is suitably designed to couple with (i) and (ii). The
convergence analysis is based on the concept of linked sequences introduced in [17]
and leads to define the theoretical properties of the sequence of sets of non-dominated
points produced by the algorithm. We remark that a typical output of standard descent
algorithms is a single non-dominated point, while our proposed algorithm generates a
sequence of sets of points trying to approximate the Pareto front. This makes the con-
vergence analysis both non-trivial and non-standard. The results of some computational
experiments show the validity of the proposed framework.

The paper is organized as follows. In Sect. 2 we introduce some definitions and we
report some preliminaries about multiobjective optimization. We also introduce the
standard steepest descent method. The proposed steepest descent algorithm that, in
contrast to the standard descent approach, produces a set (instead of a single point) of
non-dominated points, is defined in Sect. 3. The algorithm is based on a suitable back-
tracking linesearch whose correctness is proved in the same section. The theoretical
properties of the framework are stated and proved in Sect. 4. A different linesearch,
where the initial stepsize can vary at every iteration and an extrapolation phase can be
performed along the search direction, is presented in Sect. 5 together with the related
convergence analysis. The results of computational experiments are shown in Sect. 6.
Finally, Sect. 7 contains some conlcuding remarks.

2 � Preliminaries on multiobjective optimization

With reference to Problem (1), we denote by F ∶ ℝ
n
→ ℝ

m the vector-valued function
defined by

and by J ∶ ℝ
n
→ ℝ

m×n its Jacobian matrix function, i.e.,

Given any two vectors u, v ∈ ℝ
m,

F(x) = (f1(x), f2(x),… , fm(x))
⊤,

J(x) = (∇f1(x) ∇f2(x)… ∇fm(x))
⊤.

u < v ⇔ ui < vi, for all i = 1,… ,m

u ≦ v ⇔ ui ≤ vi, for all i = 1,… ,m

u ≤ v ⇔ u ≦ v and u ≠ v.

Author's personal copy

4	 G. Cocchi et al.

1 3

We can state the following definition of (Pareto) dominance.

Definition 1  (Pareto dominance) Given two vectors x, y ∈ ℝ
n , we say that x

(strictly) Pareto dominates y when

Then, with reference to problem (1), an ideal solution would be a point x∗ ∈ ℝ
n

that Pareto dominates each other feasible point, i.e.,

Unfortunately, such a point x∗ very seldom exists, which is why the following defini-
tions of optimality are introduced for multiobjective problems.

Definition 2  (Weak Pareto optimality) A point x∗ ∈ ℝ
n is a weak Pareto optimal

point for Problem (1), if there does not exist any x ∈ ℝ
n such that

Definition 3  (Pareto optimality) A point x∗ ∈ ℝ
n is a Pareto optimal point for

Problem (1), if there does not exist any x ∈ ℝ
n such that

By means of these two definitions, we are able to identify a set of non-dom-
inated points (the so-called Pareto front or frontier) which is constituted by the
“optimal” solutions of the multiobjective problem (1).

Finally, we state the definition of Pareto-stationarity.

Definition 4  (Pareto stationarity) A point x∗ ∈ ℝ
n is Pareto-stationary for Problem

(1) if, for all d ∈ ℝ
n , an index j ∈ {1,… ,m} exists such that

If x ∈ ℝ
n is not a Pareto-stationary point, then there exists a descent direction

v for all the objective functions fi , i ∈ {1,… ,m} at x. Given x, let gx ∶ ℝ
n
→ ℝ be

the function defined as follows

Note that gx is continuous, piecewise linear, and convex. Let us consider the follow-
ing optimization problem:

We observe that the above problem is well-defined, i.e., it admits a unique solu-
tion, since the objective function is the maximum of m coercive and stricly

F(x) ≦ F(y)
(
F(x) ≤ F(y)

)
.

F(x∗) ≦ F(x), for all x ∈ ℝ
n.

F(x) < F(x∗).

F(x) ≤ F(x∗).

∇fj(x
∗)⊤d ≥ 0.

(2)gx(v) = max
i∈{1,…,m}

∇fi(x)
⊤v.

(3)min
v∈ℝn

gx(v) +
1

2
‖v‖2

Author's personal copy

5

1 3

On the convergence of steepest descent methods for…

convex functions, so that, it is coercive and stricly convex. Now let v ∶ ℝ
n
→ ℝ

n and
� ∶ ℝ

n
→ ℝ be the functions such that

From [12] we get the following result.

Proposition 1  Let v ∶ ℝ
n
→ ℝ

n and � ∶ ℝ
n
→ ℝ be the functions defined as in (4)

and (5) respectively. Then the following statements hold:

	 (i)	 �(x) ≤ 0 for all x ∈ ℝ
n;

	 (ii)	 x⋆ is Pareto-stationary if and only if 𝜃(x⋆) = 0;
	 (iii)	 the mappings x → v(x) and x → �(x) are continuous.

Finally, we briefly recall the standard steepest descent method for unconstrained
multiobjective optimization (see, e.g., [12]). For every iteration k we compute
the multiobjective steepest descent direction solving the following optimization
problem:

Let us call vk the solution of problem (6). If vk ≠ � , then we can use it with an Arm-
ijo-type linesearch technique to look for a new solution which dominates xk . Then,
we update the current point as

.

Algorithm 1: multiobjective steepest descent algorithm

Data: x0 ∈ Rn

for k = 0, 1 . . . , do

vk ← argmin
v∈Rn

max
i∈{1,...,m}

∇fi(xk)�v +
1
2
||v||2

if vk = 0 then
return stationary point xk

end
αk ← armijo line search(xk, vk, J(xk))
xk+1 ← xk + αkvk

end

Here we describe a multiobjective adaptation for an Armijo-type linesearch:

(4)v(x) = argmin
v∈ℝn

gx(v) +
1

2
‖v‖2,

(5)�(x) = min
v∈ℝn

gx(v) +
1

2
‖v‖2 = gx(v(x)) +

1

2
‖v(x)‖2.

(6)min
v∈ℝn

max
i∈{1,…,m}

∇fi(xk)
⊤v +

1

2
||v||2.

xk+1 = xk + �kvk

Author's personal copy

6	 G. Cocchi et al.

1 3

Algorithm 2: armijo line search

Data: xk ∈ Rn, vk ∈ Rn, J(xk), γ ∈ (0, 1), δ ∈ (0, 1), ∆ > 0
α ← ∆
while F (xk + αkvk) �� F (xk) + γαJ(xk)vk do

α ← αδ
end
αk = α

Remark 1  In Algorithm 2, the computed stepsize �k is such that

i.e. the point xk + �kvk is such that F(xk + �kvk) strictly (or sufficiently) dominates
the corresponding vector of reference values F(xk).

The following global convergence result holds [12].

Proposition 2  Let {xk} be the sequence generated by the algorithm. If F has
bounded level sets in the sense that {x ∈ ℝ

n ∶ F(x) ≦ F(x0)} is compact, then each
limit point of {xk} is a Pareto-stationary point.

Newton and Quasi-Newton methods for multiobjective optimization which,
similarly to the steepest descent algorithm, are based on the employment of a joint
descent direction, have been proposed in several papers (see, e.g., [11, 19])

To our knowledge, steepest descent algorithms and their extensions proposed in
the literature are guaranteed to converge to a single non-dominated solution. In the
sequel, we present an approach leading to define an algorithm that theoretically con-
verges to a set of non-dominated points.

3 � An algorithm for the computation of a set of non‑dominated
points

In this section, we are interested in the definition of an algorithm that produces a set
of non-dominated points, i.e. an approximation of the Pareto front for the multiob-
jective problem (1).

The key ingredients that characterize the proposed approach are the following:

	 (i)	 not all the objective functions are necessarily considered to define the search
direction;

	 (ii)	 a sequence of sets of points (rather than a sequence of points) is produced;
	 (iii)	 an Armijo-type linesearch is suitably defined to cope with (i) and (ii).

With respect to standard steepest descent methods, point (i) allows to compute more
easily the possible search directions. In particular, at every iteration k, for a given
subset of objective function indices I ⊆ {1,… ,m} and for a (non-dominated) point
xc , it is possible to define

F(xk + �kvk) ≦ F(xk) + ��kJ(xk)vk,

Author's personal copy

7

1 3

On the convergence of steepest descent methods for…

In particular, by setting I = {1,… ,m} , we have

We note that the possibility to choose subsets of indices I ⊂ {1,… ,m} may intro-
duce sort of a controlled randomicity in the optimization process which could help
to obtain a better approximation of the Pareto front.

Point (ii) is connected with the idea of trying to approximate the Pareto front
instead of a single Pareto point. To this aim, the algorithm produces a sequence of
sets of points (rather than a sequence of points as usual in the single-objective case)
{Lk} . More in particular, for each iteration k, we indicate by

the current finite set of non-dominated solutions computed by the algorithm. For sim-
plicity, in the definition of Lk we omit the dependence on k of every point xh ∈ Lk.

Finally, concerning point (iii) on the computation of the stepsize, as in the case of
single objective optimization where the linesearch must produce a stepsize satisfy-
ing a condition of sufficient decreasing, i.e., the stepsize must yield a “sufficiently
good” point, here the Armijo-type linesearch determines a stepsize such that the new
point is “sufficiently non-dominated” by any other point in the current list {L̃k} . This
means that, given the current point xc , the subset of indices I, the search direction
vI
k
(xc) , the tentative stepsize � , if there exists a point xj ∈ L̃k such that

then the stepsize must be reduced.

Definition 5  (Non-dominated solutions with respect to I) LI ⊆ ℝ
n is a non-dom-

inated set of points if, for all x ∈ LI , there does not exist any y ∈ LI such that
FI(y) ≤ FI(x).

In this context, given two points x, y ∈ ℝ
n , a subset of indices I ⊆ {1,… ,m} and

a positive constant 𝛿 > 0 , we say that x is “not weakly better” than y when

i.e. when an index i ∈ I exists such that fi(y) ≤ fi(x) − � , that is, fi(y) sufficiently
improves w.r.t. fi(x).

Regarding function �I
k
(xc) , it is possible to state the following result.

(7)vI
k
(xc) ∶= argmin

v∈ℝn

�
max
i∈I

∇fi(xc)
⊤v +

1

2
‖v‖2

�
,

(8)𝜃I
k
(xc) ∶= max

i∈I
∇fi(xc)

⊤vI
k
(xc) +

1

2
‖vI

k
(xc)‖2,

(9)FI(x) = |I|-dimensional vector with components fi(x), i ∈ I.

𝜃I
k
(xc) = 𝜃k(xc) = min

v∈ℝn

�
max

i∈{1,…,m}
∇fi(xk)

⊤v +
1

2
‖v‖2

�
.

Lk = {xh ∈ ℝ
n, h = 1,… , rk}

FI(xj) + �𝛾𝛼𝜃I
k
(xc) < FI(xc + 𝛼vI

k
(xc))

FI(x) − �𝛿 ≮ FI(y),

Author's personal copy

8	 G. Cocchi et al.

1 3

Proposition 3  If xc is not a Pareto Stationary point then for any I ⊆ {1,… ,m} we
have

Proof  For any v ∈ ℝ
n e can write

so that we have

where the strict inequality holds since xk is not a Pareto Stationary point.	� ◻

Algorithm 3: front steepest descent algorithm

input: an initial set of non-dominated points L0.
output: a final list of non-dominated points L∗.
k ← 0
while stopping criterion not satisfied do

L̃k ← Lk

for c = 1, . . . , rk do
if xc ∈ L̃k and ∃Ick ⊆ {1, . . . ,m} such that
- xc ∈ L̃

Ic
k

k , where L̃
Ic
k

k ⊆ L̃k is the set of non-dominated points
w.r.t Ick (see Definition 5)

- θI
c
k

k (xc) < 0 then
Let vI

c
k

k (xc) be the direction associated with θ
Ic
k

k (xc)
α ← armijo type line search(xc, v

Ic
k

k (xc), θ
Ic
k

k (xc), L̃
Ic
k

k)
L̃k ← {xj ∈ L̃k | F (xc+αv

Ic
k

k (xc)) �≤ F (xj)}∪{xc+αv
Ic
k

k (xc)}
else

if xc ∈ L̃k (i.e. xc has not been filtered out by previous inner
iterations) then

xc is a Pareto Stationary point.
end

end
end
Lk+1 ← L̃k

k ← k + 1
end
L∗ ← Lk

return L∗

𝜃I
k
(xc) < 0.

max
i∈I

�
∇fi(xc)

⊤v +
1

2
‖v‖2

�
≤ max

i∈{1,…,m}

�
∇fi(xc)

⊤v +
1

2
‖v‖2

�
,

𝜃I
k
(xc) ≤ 𝜃(xc) < 0,

Author's personal copy

9

1 3

On the convergence of steepest descent methods for…

Algorithm 4: armijo type line search

input: xc ∈ L̃
Ic
k

k , vI
c
k

k (xc), θ
Ic
k

k (xc), L̃
Ic
k

k , ∆ > 0, δ ∈ (0, 1)
output: an optimal stepsize α
Set α ← ∆
while ∃ xj ∈ L̃

Ic
k

k s.t. FIc
k
(xj) + 1γαθI

c
k

k (xc) < FIc
k
(xc + αv

Ic
k

k (xc)) do
Set α ← δα

end
return α

Remark 2  In Algorithm 4, the computed stepsize � is such that any other point
xj ∈ L̃

Ic
k

k
 is “not weakly better” than xc + �v

Ic
k

k
(xc) , with respect to Ic

k
 . Namely,

i.e. for every xj ∈ L̃
Ic
k

k
 , an index hj ∈ Ic

k
 exists such that

Remark 3  We note that, when m = 1 (i.e. only one objective function is present) and
Lk = {xk} , for all k, both Algorithms 2 and 4 boil down to the standard Armijo inex-
act linesearch. Consequently, both Algorithms 1 and 3 become the standard steepest
descent algorithm for single objective optimization.

Instead, if m > 1 and Lk = {xk} , for all k, then Algorithm 4 tends to produce a
bigger stepsize �k since it must satisfies the weaker requirement

namely that an index s ∈ Ik exists such that

This condition appears to be the weakest extension of the Armjio strategy to the
multiobjective case. We recall that in Algorithm 2, inequality (10) must hold for all
s ∈ Ik.

Remark 4  Algorithm 3 points out that there is a strict connection between the prop-
erties required to the search direction vc and the possibility of improving a point xc
by using Algorithm 4 along such direction. More precisely, if the current point xc
and the selection of the index set I ⊆ {1,… ,m} were uncoupled, even though we
could be able to compute a descent direction with respect to the objective functions
with indices in I, the points produced by the linesearch could all be unacceptable
because they could all be dominated by the points in the current list L̃ . In order
to avoid such possibility, we preliminary check whether xc is non-dominated with
respect to fi , i ∈ I . In this case, a linesearch along a descent direction with respect
to the objective function with indices in I, is guaranteed to produce non-dominated
points with respect to L̃.

∀ xj ∈ L̃
Ic
k

k
, FIc

k
(xj) + �𝛾𝛼𝜃

Ic
k

k
(xc) ≮ FIc

k
(xc + 𝛼v

Ic
k

k
(xc)),

fhj (xc + �v
Ic
k

k
(xc)) ≤ fhj (xj) + ���

Ic
k

k
(xc).

FIk
(xk) + �𝛾𝛼k𝜃

Ik
k
(xk) ≮ FIk

(xk + 𝛼kvk),

(10)fs(xk + �kvk) ≤ fs(xk) + ��k�
Ik
k
(xk).

Author's personal copy

10	 G. Cocchi et al.

1 3

For example, if an index s ∈ {1,… ,m} exists such that

then every vector vk which is a suitable descent direction for the function fs can be
fruitfully used in Algorithm 4 starting from xc.

In the following proposition we show that, given a subset Ic
k
⊆ {1,…m} , Algo-

rithm 4 is able to add a new non-dominated solution to L̃k.

Proposition 4  Let Ic
k
⊆ {1,… ,m} , xc ∈ L̃

Ic
k

k
 be such that 𝜃I

c
k

k
(xc) < 0 , i.e. vI

c
k

k
(xc)

exists such that

∀s ∈ Ic
k
 . Then ∃𝛼 > 0 , sufficiently small, such that

i.e. the while loop of Algorithm 4 terminates in a finite number of iterations. Fur-
thermore the produced point is not dominated with respect to the set L̃k.

Proof  First we note that, since xc ∈ L̃
Ic
k

k
 , there cannot exist any xj ∈ L̃

Ic
k

k
 such that

that is to say that xj dominates xc . Now, we proceed by contradiction, and assume
that, for all h = 1, 2,… , an xjh ∈ L̃

Ic
k

k
 exists such that

By recalling (12), for all h an index sh ∈ Ic
k
 exists such that:

Since |Ic
k
| is finite, it is possible to consider a subsequence H ⊆ {1, 2,…} such that

sh = s̄ , for all h ∈ H . Hence, for all h ∈ H , we would have

On the other hand, since vI
c
k

k
(xc) is a descent direction for all fs with s ∈ Ic

k
 , we have

that, for h ∈ H , it must result

By the Mean-value Theorem, we have that

(11)xc = argmin
x∈L̃k

fs(x)

∇fs(xc)
⊤v

Ic
k

k
(xc) +

1

2
||vI

c
k

k
(xc)||2 < 0

FIc
k
(xj) + �𝛾𝛼𝜃

Ic
k

k
(xc) ≮ FIc

k
(xc + 𝛼v

Ic
k

k
(xc)), ∀xj ∈ L̃

Ic
k

k
,

(12)fs(xj) ≤ fs(xc), ∀s ∈ Ic
k

FIc
k
(xjh) + �𝛾𝛿hΔ𝜃

Ic
k

k
(xc) < FIc

k
(xc + 𝛿hΔv

Ic
k

k
(xc)).

fsh(xc) + 𝛾𝛿hΔ𝜃
Ic
k

k
(xc) < fsh(xc + 𝛿hΔv

Ic
k

k
(xc)).

fs̄(xc) + 𝛾𝛿hΔ𝜃
Ic
k

k
(xc) < fs̄(xc + 𝛿hΔv

Ic
k

k
(xc)).

(13)fs̄(xc + 𝛿hΔv
Ic
k

k
(xc)) − fs̄(xc) > 𝛾𝛿hΔ∇fs̄(xc)

⊤v
Ic
k

k
(xc).

Author's personal copy

11

1 3

On the convergence of steepest descent methods for…

with

Then, by (13) and (14), we can write

Now, by taking the limit for h → ∞, h ∈ H , we would contradict that
v
Ic
k

k
(xc) is a descent direction for fs̄.

Finally the acceptability criterion implies that the produced point is not domi-
nated. In fact, let 𝛼̄ denote the stepsize produced by the Armijo-type linesearch then
for every xj ∈ L̃

Ic
k

k
 an index hj ∈ Ic

k
 exists such

Then, by definition of L̃I
c
k

k
 , every x̃j ∈ L̃k ⧵ L̃

Ic
k

k
 is dominated by a point xj ∈ L̃

Ic
k

k
 with

respect the functions fi , for all i ∈ Ic
k
 , i.e.

Therefore, the considered index hj ∈ Ic
k
 is such that

 	� ◻

4 � Convergence analysis

In order to give convergence properties of the algorithm, a definition of linked
sequences is reported [17].

Definition 6  Let {Lk} be the sequence of sets of non-dominated points produced
by Algorithm 3. We define a linked sequence as a sequence {xjk} such that, for any
k = 1, 2,… , xjk ∈ Lk is generated at iteration k − 1 of Algorithm 3-4 by the point
xjk−1 ∈ Lk−1.

Hence, xjk = xjk−1 + �jk v
Ik−1
k−1

(xjk−1) and it results

(14)fs̄(xc + 𝛿hΔv
Ic
k

k
(xc)) − fs̄(xc) = 𝛿hΔ∇fs̄(𝜉h)

⊤v
Ic
k

k
(xc)

�h = xc + th�
hΔv

Ic
k

k
(xc), th ∈ (0, 1).

∇fs̄(𝜉jh)
⊤v

Ic
k

k
(xc) ≥ 𝛾∇fs̄(xc)

⊤v
Ic
k

k
(xc).

fhj(xj) > fhj (xj) + 𝛾𝛼̄𝜃
Ic
k

k
(xc) ≥ fhj (xc + 𝛼̄v

Ic
k

k
(xc)).

fi(x̃j) ≥ fi(xj), for all i ∈ Ic
k

fhj (x̃j) ≥ fhj (xj) > fhj (xj) + 𝛾𝛼̄𝜃
Ic
k

k
(xc) ≥ fhj (xc + 𝛼̄v

Ic
k

k
(xc)).

FIk−1
(x

�j
) + �𝛾𝛼jk𝜃

Ik−1
k−1

(xjk−1) ≮ FIk−1
(xjk)

Author's personal copy

12	 G. Cocchi et al.

1 3

for all x
�j
∈ L

Ik−1
k−1

= {x ∈ Lk−1 , non-dominated with respect to fi, i ∈ Ik−1} , where
Ik−1 ⊆ I (for simplicity we have not reported the dependence of set Ik−1 from the
point xjk−1).

Then we introduce the following assumption needed to prove the convergence
results.

Assumption 1  Given a list L0 ⊂ ℝ
n of non-dominated points, a point x0 ∈ L0 exists

such that:

	 (i)	 x0 is not Pareto stationary and
	 (ii)	 the set

 is compact.

We note that point (ii) of Assumption 1 is stronger than the assumption required
to prove convergence of the algorithm in [12], see Proposition 2. However, this is
not strange since our acceptance condition in the linesearch (see Algorithm 4) is
weaker than that used in Algorithm 2 from [12].

Proposition 5  Let us assume that Assumption 1 holds. Let {Lk} be the sequence
of sets of non-dominated points produced by Algorithm 3. Let {xjk} be a linked
sequence, then it admits limit points and every limit point is Pareto-stationary for
problem (1).

Proof  First of all, we show that the every linked sequence {xjk} admits a limit point
x̄ . The steps of the Algorithm 3 guarantee that

and that ∀k there exists an index ijk such that

Therefore we can conclude that

Then Assumption 1 ensures that the linked sequence {xjk} is bounded.
Now, in order to state the main result, we consider a limit point x̄ of a linked

sequence {xjk} , namely a subsequence {xjk}K such that

L(x0) =

m⋃

i=1

{
x ∈ ℝ

n ∶ fi(x) ≤ fi(x0)

}

F(x0) ≮ F(xjk), ∀k

xjk ∈ {x ∈ ℝ
n ∶ fijk

(x) ≤ fijk
(x0)}.

xjk ∈ L0, ∀k.

lim
k→∞,k∈K

xjk = x̄.

Author's personal copy

13

1 3

On the convergence of steepest descent methods for…

Now we recall that x̄ is Pareto-stationary for problem (1) if and only if 𝜃(x̄) = 0 .
Assume, by contradiction, x̄ is not Pareto-stationary. This is equivalent to say that
there exists a scalar 𝜀 > 0 such that

and

Now, we prove that

In fact, let us assume, by contradiction, that there exists a set K̄ ⊆ K such that:

Since {xjk} is a linked sequence, for all x
�j
∈ L

Ik
k
 and k ∈ K̄ , it results

By using (17), we obtain that, for all x
�j
∈ L

Ik
k
 and k ∈ K̄,

Now, let k̃ be the smallest index such that k̃ ∈ K̄ and k̃ > k , then for all x̃
�j
∈ L

Ik̃

k̃
,

If xjk ∈ L
Ik̃

k̃
 , it satisfies (20). On the other hand, if xjk ∉ L

Ik̃

k̃
 , it is dominated by a point

x̃
�j
∈ L

Ik̃

k̃
 and, again, it satisfies (20). Therefore an index sk̃ ∈ Ik̃ exists such that

Now, since sk̃ ∈ {1,… ,m} and Ik̃ ⊆ {1,… ,m} , a subset K̃ ⊆ K̄ exist such that, for
all k ∈ K̃ , sk̃ = s̄ and Ik̃ = Ī and where, again k̃(k) is the smallest index such that
k̃(k) ∈ K and k̃(k) > k.

Then, the definitions of K̃ and k̃(k) imply that

But then (21) points out the contradiction that

𝜃(xjk) ≤ −𝜀 < 0, ∀k ∈ K

(15)�
Ik
k
(xjk) ≤ −�, ∀k ∈ K,

(16)lim
k→∞,k∈K

�jk+1�
Ik
k
(xjk) = 0.

(17)−𝛼jk+1𝜃
Ik
k
(xjk) ≥ 𝛿 > 0 ∀k ∈ K̄.

(18)FIk
(x

�j
) + 𝛾𝛼jk+1𝜃

Ik
k
(xjk) ≮ FIk

(xjk+1).

(19)FIk
(x

�j
) − 𝛾𝛿 ≮ FIk

(xjk+1).

(20)FIk̃
(x̃

�j
) − 𝛾𝛿 ≮ FIk̃

(xjk̃).

(21)fsk̃ (xjk) − 𝛾𝛿 ≥ fsk̃ (xjk̃).

lim
k→∞,k∈K̃

xjk = x̄ lim
k→∞,k∈K̃

xjk̃(k) = x̄.

−𝛾𝛿 ≥ lim
k→∞,k∈K̃

[
fs̄(xjk̃(k)) − fs̄(xjk)

]
= 0.

Author's personal copy

14	 G. Cocchi et al.

1 3

Therefore, in this first part of the proof, we have shown that if the accumulation
point x̄ of the sequence {xjk} is not a Pareto stationary point then, by using (15) and
(16), we have that:

This limit implies that, for sufficiently large values of k, we have that 𝛼jk+1 < Δ , i.e.
the condition of the while-loop in Algorithm 4 is eventually satisfied. Then the steps
of Algorithm 4 and the definition of Lk imply that there exists xh

�j

∈ Lk and k ∈ K ,
such that

Now (23) and (24) yield that an index sk ∈ Ik exists such that

namely

Now, since sk ∈ Ik and Ik ⊆ {1,… ,m} , we can consider a subset K̃ ⊆ K such that,
for all k ∈ K̃ , sk = s̄ and Ik = Ī , so that

By the Mean-value Theorem, we have that

with

Then, we can write

from which we get

(22)lim
k→∞,k∈K

�jk+1 = 0.

(23)FIk
(xh

�j

) + 𝛾
𝛼jk+1

𝛿
𝜃
Ik
k
(xjk) < FIk

(
xjk +

𝛼jk+1

𝛿
v
Ik
k
(xjk)

)
,

(24)FIk
(xh

�j

) ≮ FIk
(xjk).

fsk (xjk) + 𝛾
𝛼jk+1

𝛿
𝜃
Ik
k
(xjk) < fsk

(
xjk +

𝛼jk+1

𝛿
v
Ik
k
(xjk)

)

fsk

(
xjk +

𝛼jk+1

𝛿
v
Ik
k
(xjk)

)
− fsk (xjk) > 𝛾

𝛼jk+1

𝛿
𝜃
Ik
k
(xjk).

fs̄

(
xjk +

𝛼jk+1

𝛿
vĪ
k
(xjk)

)
− fs̄(xjk) > 𝛾

𝛼jk+1

𝛿
𝜃 Ī
k
(xjk).

fs̄

(
xjk +

𝛼jk+1

𝛿
vĪ
k
(xjk)

)
− fs̄(xjk) =

𝛼jk+1

𝛿
∇fs̄(𝜉jk)

⊤vĪ
k
(xjk)

𝜉jk = xjk + tjk

𝛼jk+1

𝛿
vĪ
k
(xjk), tjk ∈ (0, 1).

∇fs̄(𝜉jk)
⊤vĪ

k
(xjk) ≥ 𝛾𝜃 Ī

k
(xjk),

Author's personal copy

15

1 3

On the convergence of steepest descent methods for…

The definition of function 𝜃 Ī
k
 gives

and

Using (15) we have

By taking the limit for k → ∞ and k ∈ K̃ , recalling that �jk+1 → 0 and considering
the boundedness of vĪ

k
(xjk) , we obtain the contradiction:

and this concludes the proof. 	� ◻

5 � The Armijo‑type extrapolation technique

In order to improve the ability of Algorithm 3 of spanning the space, we introduce a
new Armijo-type linesearch technique (see Algorithm 5). This new linesearch differs
from Algorithm 4 for the following reasons:

	 (i)	 the initial stepsize can vary at every iteration;
	 (ii)	 if the initial stepsize satisfies the acceptability criterion, the algorithm per-

forms an extrapolation along the considered direction;
	 (iii)	 the algorithm can produce more than one stepsize, i.e., a set 𝛼⋆ of stepsizes.

In order to satisfy points (i) and (ii), it is possible to draw inspiration from Armijo-
type linesearches with extrapolation. When m = 1 and Lk = {xk} for all k, these line-
searches start from any initial value of the steplength and then updates it to determine a
steplength �k such that:

with � ∈ (0, 1).
When m > 1 and Lk = {xk} for all k (where xk = xc as used in the Algorithm), Algo-

rithm 4 suggests that condition (25) can be replaced by the requirement that a function
fs , s ∈ Ik exists such that (25) holds, namely by the condition:

∇fs̄(xjk)
⊤vĪ

k
(xjk) + (∇fs̄(𝜉jk) − ∇fs̄(xjk))

⊤vĪ
k
(xjk) ≥ 𝛾𝜃 Ī

k
(xjk).

𝜃 Ī
k
(xjk) + (∇fs̄(𝜉jk) − ∇fs̄(xjk))

⊤vĪ
k
(xjk) ≥ 𝛾𝜃 Ī

k
(xjk)

(1 − 𝛾)𝜃 Ī
k
(xjk) + (∇fs̄(𝜉jk) − ∇fs̄(xjk))

⊤vĪ
k
(xjk) ≥ 0.

−(1 − 𝛾)𝜀 + (∇fs̄(𝜉jk) − ∇fs̄(xjk))
⊤vĪ

k
(xjk) ≥ 0

−(1 − �)� ≥ 0

(25)f1(xk + 𝛼kvk) ≤ f1(xk) + 𝛾𝛼k∇f1(xk)
⊤vk,

(26)f1

(
xk +

𝛼k
𝛿
vk

)
> f1(xk) + 𝛾

𝛼k
𝛿
∇f1(xk)

⊤vk,

Author's personal copy

16	 G. Cocchi et al.

1 3

As regards condition (26), its weakest extension is to require that condition (26)
holds for all the functions fs , s ∈ Ik , namely:

In Algorithm 5, since m > 1 and Lk ⊇ {xk} , conditions (27) and (28) are replaced by
the following:

It is worth noting the different roles that an extrapolation technique can play in the
case of a single-objective optimization, as opposed to a multi-objective minimiza-
tion. In the first case, every intermediate trial value of the steplength produces a
point where the objective function is better than the starting point but it is worse
than the function value obtained in the final value of the steplength (in terms of
multi-objective optimization we can say that the intermediate points produced by
the extrapolation phase are dominated by the last one). Instead, in a multi-objective
minimization, an extrapolation technique may produce intermediate trial points that
are not dominated (i) by all the points belonging to the set L̃I

c
k

k
 and (ii) by the other

points produced by the extrapolation phase. Such intermediate trial points can be
very useful in trying to approximate a Pareto curve. For this reason, Algorithm 5
return a set A∗ of steplengths. In fact, in addition to determining the steplength satis-
fying conditions (29) and (30), Algorithm 5 also returns the steplengths for which a
function fs , with s ∈ Ic

k
 exists such that:

The particular structure of Eq. (32) is able to guarantee the theoretical properties of
the proposed method (see the next section). From the intuitive point of view, if we
set

we can rewrite (32) in the following way:

(27)FIk
(xk) + �𝛾𝛼k𝜃

Ic
k

k
(xk) ≮ FIk

(xk + 𝛼kvk).

(28)FIk
(xk) + �𝛾

𝛼k
𝛿
𝜃
Ic
k

k
(xk) < F

(
xk +

𝛼k
𝛿
vk

)
.

(29)FIc
k
(xj) + �𝛾𝛼c𝜃

Ic
k

k
(xk) ≮ FIc

k
(xk + 𝛼cv

Ic
k

k
(xk)), ∀ xj ∈ L̃

Ic
k

k
,

(30)FIc
k
(xj) + �𝛾

𝛼c
𝛿
𝜃
Ic
k

k
(xk) < FIc

k

(
xk +

𝛼c
𝛿
v
Ic
k

k
(xk)

)
, ∃ xj ∈ L̃

Ic
k

k
.

(31)FIc
k
(xj) + �𝛾𝛼𝜃

Ic
k

k
(xc) ≮ FIc

k
(xc + 𝛼v

Ic
k

k
(xc)), ∀ xj ∈ L̃

Ic
k

k
,

(32)fs(xc + �v
Ic
k

k
(xc)) + �

1 − �

�
��

Ic
k

k
(xc) ≤ fs

(
xc +

�

�
v
Ic
k

k
(xc)

)
.

x̃c = xc + 𝛼v
Ic
k

k
(xc), 𝛼̃ = (1 − 𝛿)𝛼

fs(x̃c) + 𝛾
𝛼̃

𝛿
𝜃
Ic
k

k
(xc) ≤ fs

(
x̃c +

𝛼̃

𝛿
v
Ic
k

k
(xc)

)
,

Author's personal copy

17

1 3

On the convergence of steepest descent methods for…

which has a structure similar to that of condition (26) for single-objective
minimization.

Algorithm 5: armijo type line search with extrapolation

input: xc ∈ L̃
Ic
k

k , vI
c
k

k (xc), θ
Ic
k

k (xc), L̃k, ∆k > 0, δ ∈ (0, 1) , γ ∈ (0, 1)
output: a set of steps A∗

A∗ ← ∅
α ← ∆k

if ∃ xj ∈ L̃
Ic
k

k s.t FIc
k
(xj) + 1γαθI

c
k

k (xc) < FIc
k
(xc + αv

Ic
k

k (xc)) then
while ∃ xj ∈ L̃

Ic
k

k s.t FIc
k
(xj) + 1γαθI

c
k

k (xc) < FIc
k
(xc + αv

Ic
k

k (xc)) do
α ← δα

end
A∗ ← {α}

else
while FIc

k
(xj) + 1γ α

δ θ
Ic
k

k (xc) �< FIc
k
(xc + α

δ v
Ic
k

k (xc)), ∀ xj ∈ L̃
Ic
k

k do
if FIc

k
(xc + αv

Ic
k

k (xc)) + 1γ 1−δ
δ αθ

Ic
k

k (xc) �> FIc
k
(xc + α

δ v
Ic
k

k (xc))
then

A∗ ← A∗ ∪ {α}
end
α ← α

δ

end
end
return A∗

The following proposition states that Algorithm 5 is well defined.

Proposition 6  Let L̃k be the current list of non-dominated points, Ic
k
⊆ {1,… ,m}

and xc ∈ L̃
Ic
k

k
 be such that 𝜃I

c
k

k
(xc) < 0 , i.e. vI

c
k

k
(xc) exists such that

Then Algorithm 5 is well defined, namely it cannot infinitely cycle and it produces at
least a point which is not dominated with respect to the set L̃k.

Proof  In case that the first if-instruction of the algorithm is satisfied, the same rea-
sonings used in the proof of Proposition 4 prove that the first while loop of Algo-
rithm 5 cannot infinitely cycle and a point is produced which is not dominated with
respect to L̃k.

Therefore, by contradiction, we assume that the second while loop of the algo-
rithm infinitely cycles, i.e., a monotonically increasing sequence of positive num-
bers {�h} , where �h = Δk∕�

h , h → ∞ , exists such that:

(33)∇fs(xc)
⊤v

Ic
k

k
(xc) +

1

2
||vI

c
k

k
(xc))||2 < 0, ∀s ∈ Ic

k
.

Author's personal copy

18	 G. Cocchi et al.

1 3

and, in particular if xj = xc,

The previous (34) implies that, for all h, an index sh ∈ Ic
k
 exists such that

Recalling, again, that sh ∈ {1,… ,m} and that Ic
k
= Ī , we can consider a subset K,

such that, for all h ∈ K , it results sh = s̄ , so that

This relation and the fact that �h → ∞ contradict Assumption 1.
Now we prove that, during the second while loop, the set A∗ is updated at least

once.
Since the second while loop terminates in a finite number of steps, an index h̄ , a

step 𝛼h̄ and a point x̃j ∈ L̃
Ic
k

k
 exist such that

Namely, the test of the while loop is not satisfied. Instead, at the previous step, the
test is verified:

This means that for x̃j ∈ L̃
Ic
k

k
 an index sj ∈ Ic

k
 exists such that:

On the other hand (35) yields:

By combining (36) and (37) it is possible to obtain:

This inequality show that the if-condition in the second while loop is satisfied (by
setting 𝛼 =

𝛼h̄
𝛿h̄−1

 ) and hence the set A∗ is updated. Then, the same arguments of the

FIc
k
(xj) + �𝛾

𝛼h

𝛿
𝜃
Ic
k

k
(xc) ≮ FIc

k

(
xc +

𝛼h

𝛿
v
Ic
k

k
(xc)

)
, ∀xj ∈ L̃

Ic
k

k
,

(34)FIc
k
(xc) + �𝛾

𝛼h

𝛿
𝜃
Ic
k

k
(xc) ≮ FIc

k

(
xc +

𝛼h

𝛿
v
Ic
k

k
(xc)

)
.

fsh(xc) + �
�h

�
�
Ic
k

k
(xc) ≥ fsh

(
xc +

�h

�
v
Ic
k

k
(xc)

)
.

fs̄(xc) + 𝛾
𝛼h

𝛿
𝜃 Ī
k
(xc) ≥ fs̄

(
xc +

𝛼h

𝛿
vĪ
k
(xc)

)
.

(35)FIc
k
(x̃j) + �𝛾

𝛼h̄

𝛿h̄
𝜃
Ic
k

k
(xc) < FIc

k

(
xc +

𝛼h̄

𝛿h̄
v
Ic
k

k
(xc)

)
.

FIc
k
(xj) + �𝛾

𝛼h̄

𝛿h̄−1
𝜃
Ic
k

k
(xc) ≮ FIc

k

(
xc +

𝛼h̄

𝛿h̄−1
v
Ic
k

k
(xc)

)
, ∀xj ∈ L̃

Ic
k

k
.

(36)fsj(x̃j) + 𝛾
𝛼h̄

𝛿h̄−1
𝜃
Ic
k

k
(xc) ≥ fsj

(
xc +

𝛼h̄

𝛿h̄−1
v
Ic
k

k
(xc)

)
.

(37)fsj (x̃j) + 𝛾
𝛼h̄

𝛿h̄
𝜃
Ic
k

k
(xc) < fsj

(
xc +

𝛼h̄

𝛿h̄
v
Ic
k

k
(xc)

)
.

fsj

(
xc +

𝛼h̄

𝛿h̄−1
v
Ic
k

k
(xc)

)
+ 𝛾(1 − 𝛿)

𝛼h̄

𝛿h̄
𝜃
Ic
k

k
(xc) < fsj

(
xc +

𝛼h̄

𝛿h̄
v
Ic
k

k
(xc)

)
.

Author's personal copy

19

1 3

On the convergence of steepest descent methods for…

proof of Proposition 6 imply that it is produced a point which is not dominated with
respect to Lk.	� ◻

Since Algorithm 5 generates a sequence of steps along the direction vI
k
(xc) , in

order to correctly update the list L̃k , line 10 of Algorithm 3 have to be changed as
follows:

Finally we prove the global convergence properties of Algorithm 3 where Algo-
rithm 5 is used in place of Algorithm 4, which we denote Algorithm 3-5 in the
following.

Proposition 7  Let us assume that Assumption 1 holds. Let {Lk} be the sequence of
sets of non-dominated points produced by the Algorithms 3–5. Let {xjk} be a linked
sequence, then it admits limit points and every limit point is Pareto-stationary for
problem (1).

Proof  By using Assumption 1 and by repeating the same reasoning of the first
part of the proof of Proposition 5, it is possible to prove that the sequence {xjk} is
bounded.

Now, let x̄ be a limit point of a linked sequence {xjk} and let {xjk}K be a subse-
quence such that

Assume, by contradiction, that x̄ is not Pareto-stationary and that there exist a scalar
𝜀 > 0 such that

and

Now we note that the steps of Algorithm 5 ensure that also the points of every linked
sequence {xjk} produced by Algorithm 3-5 satisfy the property that, for all x

�j
∈ Lk

therefore it possible to use the same arguments of the proof of Proposition 5 and to
ensure that

��� 𝛼 ∈ A
∗
��

L̃k ← {xj ∈ L̃k | F(xc + 𝛼vI
k
(xc)) ≰ F(xj)} ∪ {xc + 𝛼vI

k
(xc)}

���

lim
k→∞,k∈K

xjk = x̄.

𝜃(xjk) ≤ −𝜀 < 0, ∀k ∈ K

(38)�
Ik
k
(xjk) ≤ −�, ∀k ∈ K,

(39)FIk
(x

�j
) + 𝛾𝛼jk+1𝜃

Ik
k
(xjk) ≮ FIk

(xjk+1),

(40)lim
k→∞,k∈K

�jk+1�
Ik
k
(xjk) = 0,

Author's personal copy

20	 G. Cocchi et al.

1 3

which, by using (38), yields that

The same reasoning of the proof of Proposition 5 proves the thesis of the proposition
in case that a subsequence {xjk}K̄ , with K̄ ⊆ K , where the points xjk are produced by
if-test in the first while-loop of Algorithm 5.

Now we consider the case that the points of the subsequence {xjk}K̂ , with K̂ ⊆ K ,
are produced by the if-test in the second while-loop. This implies that for all k ∈ K̂

which, by setting x̃jk = xjk + 𝛼jk+1v
Ik
k
(xjk) , gives

which yields that an index sk ∈ Ik exists such that

namely

Recalling that sk ∈ Ik and Ik ⊆ {1,… ,m} , we can consider a subset K̃ ⊆ K̂ such that,
for all k ∈ K̃ , sk = s̄ and Ik = Ī , so that

By the Mean-value Theorem, we have that

with

Then, we can write

By using, again, the definition of function 𝜃 Ī
k
 we have:

(41)lim
k→∞,k∈K

�jk+1 = 0.

FIk

(
xjk +

𝛼jk+1

𝛿
v
Ik
k
(xjk)

)
≮ FIk

(xjk + 𝛼jk+1v
Ik
k
(xjk)) + �𝛾

1 − 𝛿

𝛿
𝛼jk+1𝜃

Ik
k
(xjk)

FIk

(
x̃jk +

1 − 𝛿

𝛿
𝛼jk+1v

Ik
k
(xjk)

)
≮ FIk

(x̃jk) + �𝛾
1 − 𝛿

𝛿
𝛼jk+1𝜃

Ik
k
(xjk)

fsk

(
x̃jk +

1 − 𝛿

𝛿
𝛼jk+1v

Ik
k
(xjk)

)
≥ fsk (x̃jk) + 𝛾

1 − 𝛿

𝛿
𝛼jk+1𝜃

Ik
k
(xjk)

fsk

(
x̃jk +

1 − 𝛿

𝛿
𝛼jk+1v

Ik
k
(xjk)

)
− fsk (x̃jk) ≥ 𝛾

1 − 𝛿

𝛿
𝛼jk+1𝜃

Ik
k
(xjk).

fs̄

(
x̃jk +

1 − 𝛿

𝛿
𝛼jk+1v

Ī
k
(xjk)

)
− fs̄(x̃jk) ≥ 𝛾

1 − 𝛿

𝛿
𝛼jk+1𝜃

Ī
k
(xjk)

fs̄

(
x̃jk +

1 − 𝛿

𝛿
𝛼jk+1v

Ī
k
(xjk)

)
− fs̄(x̃jk) =

1 − 𝛿

𝛿
𝛼jk+1∇fs̄(𝜉jk)

⊤vĪ
k
(xjk)

𝜉jk = x̃jk + tjk
1 − 𝛿

𝛿
𝛼jk+1v

Ī
k
(xjk), tjk ∈ (0, 1).

∇fs̄(𝜉jk)
⊤vĪ

k
(xjk) ≥ 𝛾𝜃 Ī

k
(xjk).

𝜃 Ī
k
(xjk) + (∇fs̄(𝜉jk) − ∇fs̄(xjk))

⊤vĪ
k
(xjk) ≥ 𝛾𝜃 Ī

k
(xjk)

Author's personal copy

21

1 3

On the convergence of steepest descent methods for…

and

Then (38) implies:

By taking the limit for k → ∞ and k ∈ K̃ , (41) and the boundedness of vĪ
k
(xjk) , we

get the contradiction:

and this concludes the proof of the proposition. 	� ◻

6 � Preliminary numerical results

In this section, we report some preliminary numerical results, in order to assess
the effectiveness of the proposed framework.

The aim is to show how the proposed framework performs with respect to a
multistart version of an a posteriori steepest descent algorithm (namely, MULTI-
START-SD), which iteratively calls Algorithm 1 starting from different randomly
sampled points.

Then, considering that several selection techniques of the subset I could be
used in Algorithm 3, two variants are proposed and compared. Specifically,

•	 Front Steepest Descent (FRONT-SD): it represents a basic version of the
algorithm in which, at every iteration k and for each point xc ∈ Lk , only the
steepest descent direction is computed, i.e. I = {1,… ,m}.

•	 Front Incremental Steepest Descent (FRONT-INCREMENTAL-SD): in
this version of the algorithm, at every iteration k and for each point xc ∈ Lk , all
the elements of the power set 2{1,…,m} are used to compute search directions.

For what concerns the choice of the linesearch technique, a comparison between
the first proposed strategy for dealing with non-dominated solutions, namely
STANDARD (see Algorithm 4), and the extrapolation technique, namely EXTRA​
(see Algorithm 5), is reported.

Test problems: we considered the set of 10 different unconstrained multiobjec-
tive problems used for the Cec2009 competition [20], whose dimension n is equal
to 30 and with a number m of objectives belonging to the set {2, 3} . In order to
increase the dataset size, we vary the number of variables from 5 to 50 with step
5, obtaining a set of 100 problems.

Implementation details: we implemented Algorithm 3 in Python 3.6 using Ten-
sorflow 1.5 [1] for computing derivatives and Gurobi [16] for solving quadratic pro-
gramming problems like (789). Additional parameters for the linesearches are given:

(1 − 𝛾)𝜃 Ī
k
(xjk) + (∇fs̄(𝜉jk) − ∇fs̄(xjk))

⊤vĪ
k
(xjk) ≥ 0.

−(1 − 𝛾)𝜀 + (∇fs̄(𝜉jk) − ∇fs̄(xjk))
⊤vĪ

k
(xjk) ≥ 0

−(1 − �)� ≥ 0

Author's personal copy

22	 G. Cocchi et al.

1 3

The algorithms stop when one of the two following stopping conditions is met:

•	 a maximum number of function evaluations is reached (a Jacobian computa-
tion costs n).

•	 all points xc ∈ Lk are such that �Ic
k
(xc) ≥ 0 for any subset Ic ⊆ {1,… ,m}.

For our experiments, the maximum number of function evaluations is set to
20,000.

Since a box-constrained version for each problem is given in [20], then the
centroid of the hyperbox [�, u] is chosen as starting point, i.e. L0 = {x0} with x0
such that:

Since some test problems contain objective functions that are not defined every-
where, infinite values are assigned to the singularities, while points of non-differen-
tiability are not considered for space exploration.

Performance metrics: Purity, Spread Γ and Spread Δ metrics, defined in [4], have
been used with the performance profiles benchmarking technique [7] for comparing
the performance. We recall that the Purity metric measures the quality of the gener-
ated front, i.e. how good the non-dominated points computed by a solver are with
respect to those computed by any other solver. Note that, for each problem p, the
“reference” Pareto front Fp is calculated by first computing

where Fp,s denotes the set of non-dominated solutions found by solver s, and then
removing from this set any dominated solution, that is

On the other hand, the Spread metrics are essential to measure the uniformity of the
generated front in the objectives space. Particularly, Spread Γ measures the maxi-
mum “hole” between adjacent points in the objective space, while Spread Δ is quite
similar to the standard deviation of the “hole” sizes in the Pareto front.

First of all, we separately compared the two proposed variants with both line-
search techniques. The results of this preliminary experimentation showed the
effectiveness of the EXTRA​ variant, in terms of Purity and Spread Γ with respect
to the STANDARD one. Given these results, from now onward, the extrapolation
technique will always be used for all the other comparisons. In order not to over-
burden the notation in figure legends, we do not explicitly add the “EXTRA​” suf-
fix to algorithm names.

Δk = 1, � = 0.5, � = 10−4.

(42)(x0)i =
�i + ui

2
∀i ∈ {1,… , n}

F�
p
=
⋃

s

Fp,s,

(43)Fp = { x ∈ F�
p
∶ ∄y ∈ F�

p
s.t. F(y) ≤ F(x) }.

Author's personal copy

23

1 3

On the convergence of steepest descent methods for…

As a second step, we compare the two variants of our algorithm, FRONT-
INCREMENTAL-SD and FRONT-SD, in Fig. 1 from which the ability of FRONT-
INCREMENTAL-SD to produce high quality solutions is clearly apparent.

On the contrary, since FRONT-SD is not able to move away from Pareto-sta-
tionary points, it is more efficient in terms of number of function evaluations,
meaning that, in general, it does not reach the related stopping criterion.

Hence, for a more fair comparison in terms of function evaluations, we restrict
the test set to the problems in which all the algorithms reached the maximum num-
ber of function evaluations (see Fig. 2). Although FRONT-INCREMENTAL-SD

Fig. 1   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and FRONT-
SD 

Fig. 2   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and FRONT-
SD for the 62 problems in which both reaches 20,000 function evaluations

Author's personal copy

24	 G. Cocchi et al.

1 3

slightly decreases its performance in terms of Purity, the global behaviour
obtained on the whole dataset is confirmed.

Moreover, a further comparison between the two proposed variants has been
reported. Figure 3 compares the performance of the two variants only on prob-
lems with 3 objective functions. The figure shows that the gap in terms of both
Purity and Spread metrics becomes more relevant. This is an expected behaviour,
since FRONT-INCREMENTAL-SD uses a set of search directions whose size
exponentially increases with the number of objectives.

A further step of our numerical experimentation consists of separately com-
paring the best proposed variant, namely FRONT-INCREMENTAL-SD, with the
MULTISTART-SD algorithm.

Since MULTISTART-SD algorithm is non deterministic, 10 independent runs
for each problem were executed. For each problem, we merge the 10 retrieved
Pareto fronts to a unique reference Pareto front by filtering out dominated solu-
tions. Then, we identify the best run of the algorithm, namely MULTISTART-
SD-BEST, as the one which retrieves the front with the best Purity score with
respect to the reference Pareto front. Analogously, MULTISTART-SD-WORST
can be defined in a similar way.

From Figs. 4 and 5 it emerges that FRONT-INCREMENTAL-SD is better than
both versions of MULTISTART-SD algorithm with respect to all of the three
metrics. This comes as no surprise since our algorithm employs a higher number
of directions for searching new non-dominated solutions.

Finally, we have compared the performance of the best version FRONT-
INCREMENTAL-SD with the algorithm NSGA-II [6] (using a Python wrapper
implementation from PAGMO 2.1 package [2]). For the Pareto front approxima-
tion, we set up NSGA-II with a population of 100 points with 200 generations
corresponding to a total of 20,000 objective function evaluations.

Fig. 3   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and FRONT-
SD only for problems with 3 objective functions

Author's personal copy

25

1 3

On the convergence of steepest descent methods for…

As for MULTISTART-SD algorithm, since also NSGA-II is non determinstic,
we define NSGA-II-BEST and NSGA-II-WORST in the same way.

Since the performance profiles plots do not change significantly between the two
cases of NSGA-II, only a comparison with NSGA-II-BEST has been reported.
Figure 6, shows the performance profiles comparing the two solvers. Particularly,
with respect to the Purity and Spread Γ metric, FRONT-INCREMENTAL-SD out-
performs NSGA-II. In fact, since NSGA-II can generate at most 100 non-domi-
nated solutions with this setup, the incremental algorithm extrapolates more direc-
tions with a better spanning of the space, resulting in better Purity and Spread Γ
scores.

Fig. 4   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and MULTI-
START-SD-BEST 

Fig. 5   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and MULTI-
START-SD-WORST 

Author's personal copy

26	 G. Cocchi et al.

1 3

On the contrary, NSGA-II outpeforms FRONT-INCREMENTAL-SD with
respect to the Spread Δ metric.

7 � Concluding remarks

We present a steepest descent-based framework for smooth, unconstrained multiob-
jective optimization. The proposed framework is designed to generate an approxi-
mation of the Pareto front. To this aim, the algorithm generates sequences of sets
of non-dominated points (instead of sequences of points) using steepest descent
directions (not necessarily with respect to all the objective functions) and suitable
extensions of Armijo-type linesearches. Global convergence results are stated and
are based on a novel theoretical analysis that permits to characterize the properties
of sequences of sets of points. The preliminary numerical results clearly show the
validity and the effectiveness of the proposed approach compared with standard
steepest descent methods.

References

	 1.	 Abadi, M., Agarwal, A, Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,
J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv​:1603.04467​ (2016)

	 2.	 Biscani, F., Izzo, D., Hong, Y.C.: A global optimisation toolbox for massively parallel engineering
optimisation. arXiv preprint arXiv​:1004.3824 (2010)

	 3.	 Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free
multiobjective optimization with box constraints. Comput. Optim. Appl. 69(2), 267–296 (2018)

	 4.	 Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective
optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

Fig. 6   Performance profiles of Purity and Spread metrics for FRONT-INCREMENTAL-SD and NSGA-
II 

Author's personal copy

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1004.3824

27

1 3

On the convergence of steepest descent methods for…

	 5.	 Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal
Solutions. Springer, Berlin (2003)

	 6.	 Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

	 7.	 Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

	 8.	 Drummond, L.M.G., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting
method in vector optimization. Math. Program. 111(1), 201–216 (2008)

	 9.	 Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput.
Appl. Math. 175(2), 395–414 (2005)

	10.	 Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim.
19(4), 1694–1718 (2009)

	11.	 Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization.
SIAM J. Optim. 20(2), 602–626 (2009)

	12.	 Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods
Oper. Res. 51(3), 479–494 (2000)

	13.	 Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP tech-
niques. SIAM J. Optim. 26(4), 2091–2119 (2016)

	14.	 Gen, M., Cheng, R., Lin, L.: Multiobjective Genetic Algorithms, pp. 1–47. Springer, Berlin (2008)
	15.	 Jahn, J.: Scalarization in vector optimization. Math. Program. 29(2), 203–218 (1984)
	16.	 LLC Gurobi Optimization. Gurobi Optimizer Reference Manual (2018)
	17.	 Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nons-

mooth optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)
	18.	 Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research

& Management Science. Springer, Berlin (1998)
	19.	 Povalej, I.: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255,

765–777 (2014)
	20.	 Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S: Multiobjective Optimization

Test Instances for the CEC 2009 Special Session and Competition. (2008). https​://esa.githu​b.io/
pagmo​2/docs/cpp/probl​ems/cec20​09.html

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author's personal copy

https://esa.github.io/pagmo2/docs/cpp/problems/cec2009.html
https://esa.github.io/pagmo2/docs/cpp/problems/cec2009.html

	On the convergence of steepest descent methods for multiobjective optimization
	Abstract
	1 Introduction
	2 Preliminaries on multiobjective optimization
	3 An algorithm for the computation of a set of non-dominated points
	4 Convergence analysis
	5 The Armijo-type extrapolation technique
	6 Preliminary numerical results
	7 Concluding remarks
	References

