
On the resolution of misspecified convex optimization and

monotone variational inequality problems

Hesam Ahmadi and Uday V. Shanbhag∗

October 10, 2018

Abstract

We consider a misspecified optimization problem that requires minimizing a function f(x; θ∗)
over a closed and convex set X where θ∗ is an unknown vector of parameters that may be learnt
by a parallel learning process. In this context, we examine the development of coupled schemes
that generate iterates (xk, θk) as k → ∞, then xk → x∗, a minimizer of f(x; θ∗) over X and
θk → θ∗. In the first part of the paper, we consider the solution of problems where f is either
smooth or nonsmooth. In smooth strongly convex regimes, we demonstrate that such schemes
lead to a quantifiable degradation of the standard linear convergence rate. When strong con-
vexity assumptions are weakened, it can be shown that the convergence in function values sees
a modification in the convergence rate of O(1/K) by an additive factor ‖θ0 − θ∗‖O(qKg + 1/K)
where ‖θ0−θ∗‖ represents the initial misspecification in θ∗ and qg denotes the contractive factor
associated with the learning process. In both convex and strongly convex regimes, diminishing
steplength schemes are also provided and are less reliant on the knowledge of problem param-
eters. Finally, we present an averaging-based subgradient scheme and show that the optimal
constant steplength leads to a modification in the rate by ‖θ0 − θ∗‖O(qKg + 1/K), implying

no effect on the standard rate of O(1/
√
K). In the second part of the paper, we consider the

solution of misspecified monotone variational inequality problems, motivated by the need to
contend with more general equilibrium problems as well as the possibility of misspecification in
the constraints. In this context, we first present a constant steplength misspecified extragradient
scheme and prove its asymptotic convergence. This scheme is reliant on problem parameters
(such as Lipschitz constants) and leads us to present a misspecified variant of iterative Tikhonov
regularization. Numerics support the asymptotic and rate statements with one important ob-
servation: it appears that the rate bound derived for strongly convex problems appears to be
slack in that the standard linear rate is again observed, despite the theoretical prediction that
learning leads to degradation.

1 Introduction

Traditionally, the field of deterministic optimization has focused on the problem of minimizing a
function f(x) over a prescribed set X and it is generally assumed that the decision maker has com-
plete knowledge of both the function f and the set X (cf. [1, 2]). In many settings, problem data
may be uncertain, severely limiting the applicability of deterministic methods. Initiated through the
research by Dantzig [3] and Beale [4], stochastic programming has represented a popular avenue for
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addressing risk-neutral as well as risk-averse static and adaptive (recourse-based) decision-making
problems [5, 6] in developing both static as well as adaptive (recourse-based) models. An alternative
approach has found merit by obviating the need for distributional information and instead focuses
on obtaining solutions that are robust to parametric uncertainty over a prescribed (uncertainty)
set [7, 8]. In either instance, a subset of parameters is natively uncertain. Our focus is on a class
of problems in which the vector parameters is θ∗, a fixed but unknown vector, that may be learnt
through a related but distinct learning process. We provide a clearer understanding of our problem
of interest by considering a motivating problem.

Data-driven stochastic optimization: Standard models for stochastic optimization have re-
quired the solution of the following problem [5, 6]:

min
x∈X

Eθ∗ [f(x; ξ(ω))], (StochOpt(θ∗))

where X ⊆ Rn, f : X × Rd → R, ξ : Ω→ Rd is a d−dimensional random variable, and (Ω,F ,Pθ∗)
denotes the probability space. Note that θ∗ represents the parameters of the distribution P. Un-
fortunately, a key shortcoming in the use of standard models necessitates knowledge of θ∗, often a
stringent requirement. Instead, suppose θ∗ may be learnt by a suitably defined maximum likelihood
estimation (MLE) problem [9], captured by a metric g(θ), and formally defined as follows:

min
θ∈Θ

g(θ). (MLE)

Generally, in most practically occurring problems, the MLE problem is often massive and one avenue
lies in generating sequences {(xk, θk)} such that xk is an approximate solution of (StochOpt(θk)).

A range of other problems can be cast in a similar regime. For instance, in traffic equilibrium
problems [10], a common assumption is that the demand pattern and the travel times are known
vectors, assumptions that are often hard to justify in practice. Similarly, in a range of production
planning problems, it is routinely assumed that cost and demand information is accurately available
when in fact, it needs to be empirically estimated. Consequently, one approach lies in conducting
such an estimation through a parallel learning process. Yet another problem that can be cast under
this umbrella is the well studied multi-armed bandit problem [11]. In such a problem, a gambler
is faced with a choosing from a collection of slot machines at every step without a prior knowledge
of the average reward distribution. If one could view the learning problem associated with the
reward distributions as a parallel estimation problem, this may be one avenue towards developing
algorithmic techniques. Motivated by this new set of decision-making problems, we consider the
static misspecified convex optimization problem (C(θ∗)), defined as follows:

min
x∈X

f(x, θ∗), (C(θ∗))

where x ∈ Rn, f : X ×Θ→ R is a convex function in x for every θ ∈ Θ ⊆ Rm. Suppose θ∗ denotes
the solution to a convex learning problem denoted by (L):

min
θ∈Θ

g(θ), (L)

where g : Rm → R is a convex function in θ and is defined on a closed and convex set Θ. Conse-
quently, we consider gradient methods in which sequences {xk} and {θk} may be generated with
the goal that

lim
k→∞

xk = x∗ ∈ X∗ and lim
k→∞

θk = θ∗, where X∗ , argmin
x∈X

f(x; θ∗).



It should be noted that the second author has examined the counterpart of such problems in
stochastic regimes where stochastic approximation schemes are employed [12].

1.1 Alternate and related avenues

Given that the focus lies on solving (C(θ∗)) and (L) simultaneously, at least three approaches
assume relevance and are described next.

A sequential approach: A natural question is whether this problem could indeed be solved in
a sequential fashion. For instance, one approach could be to compute θ∗ in the first stage and
subsequently solve (C(θ∗)). Yet such an avenue is complicated by several challenges: (i) First, the
problem (L) is often of a large or massive scale and accurate/exact solutions of this problem are
needed in finite time to utilize this approach. However, the claim that finite termination schemes
are available is a strong one. In fact, even in the rare instance when this requirement is met,
the number of steps might be far too large in practice. Consequently, such an approach leads to
obtaining an approximation of θ∗, given by a vector θ̂ and cannot provide asymptotically accurate
solutions. (ii) Second, if the process is terminated prior to the commencing with the computation of
x∗, then the resulting computational effort would be wasted in that we have no guarantees regarding
the solution. We consider precisely such an approach in the context of economic dispatch problems,
discussed in Section 4. Table 1 shows the importance of terminating the learning problem after a
sufficiently large number of iterations via a sequential approach. In particular, for smaller problems
with 5 generators, 15, 000 learning steps suffice in getting reasonably accurate estimates of x∗ while
the same number of iterations prove insufficient for getting accurate solutions for networks with 20
generators. In contrast, our focus lies in developing techniques that can provide asymptotically
accurate solutions equipped with global non-asymptotic error bounds.

Learning steps Computational steps
number of generators = 5 number of generator= 40

‖θk − θ∗‖ ‖f(xk,θ∗)−f∗‖
1+f∗ ‖θk − θ∗‖ ‖f(xk,θ∗)−f∗‖

1+f∗

1000 15000 6.43e0 6.49e-2 2.10e1 2.33e-1
5000 15000 3.34e0 4.25e-2 1.95e1 9.05e-2
10000 15000 1.48e-1 8.80e-3 1.77e1 8.08e-2
15000 15000 1.63e-2 4.00e-4 1.06e1 6.60e-2

Table 1: Sequential approach: Effect of problem size on accuracy

A variational approach: Given that a sequential approach may not always be satisfactory,
a partial resolution lies in considering a variational approach where the overall problem is cast
as a static variational inequality problem [10]. If X ⊆ Rn and F : Rn → Rn, then it may
be recalled that VI(X,F ) requires an x ∈ X such that (y − x)TF (x) ≥ 0 for all y ∈ X.
Under convexity assumptions, it can be shown with relative ease that (x∗, θ∗) , z∗ is a solution
of VI(Z,H) if Z , X × Θ and H(z) = (∇xf(x, θ);∇θg(θ)). But the solution of VI(Z,H) via
projection-based techniques [13] remains a challenge since H(z) is generally not a monotone map
over the set Z even if f and g are convex C1 functions in x and θ, respectively; it may be recalled
that a map H is monotone over Z if for every z1, z2 ∈ Z, (H(z1) − H(z2))T (z1 − z2) ≥ 0. But
there are no available first-order schemes for computing solutions to non-monotone variational
inequality problems, severely limiting the utility of such an approach. Yet, despite the inherently
challenging nature of the joint variational problem, our goal remains in deriving non-asymptotic
rates of convergence for gradient methods for such problems by leveraging the structure of the
problem and ascertaining the impact that learning has on the rates.



A robust optimization approach: Robust optimization, a subfield of optimization, considers
obtaining solutions that are robust to parametric uncertainty [8, 14, 7]. In such problems, rather
than a vector θ∗, a part of the problem input is the uncertainty set, say Uθ. In such a case, the
relevant robust optimizaton problem attempts to obtain an x that minimizes the worst-case value
that f(x, θ) takes over Uθ:

min
x∈X

max
θ∈Uθ

f(x, θ).

In contrast, our framework is fundamentally different in that the vector θ∗ is a deterministic and
unknown vector that can be learnt. To provide a clearer comparison, the learning scheme solves
the following problem

min
x∈X

f(x; θ∗) where θ∗ = argmin
θ∈Θ

g(θ).

Learning while doing schemes: Finally, we note the surge of interest in algorithms which
incorporate learning directly into the optimization phase. Early instances of such problems were
seen in the form of the multi-armed bandit problem [15, 11] in which a decision-maker simultanelusly
acquires new knowledge and leverages existing knowledge in optimizing decisions. In contrast with
the current context, the learning problem is no longer static and available a priori; instead, it
evolves in time as a consequence of aggregating observations. In response to such challenges,
Agarwal et al. have developed techniques in the context on online linear programming [16] as
well as stylized counterparts in the context of revenue management [17, 18]. A rather different
tack is taken in the work by Jiang et al. [19], where the problem L is replaced by a sequence
of learning problems L1, . . . ,Lk, such that the index of k represents the number of data points
used within the construction of the associated estimation (regression) problem. The solution of
the kth learning problem is denoted by θk and under suitable assumptions, {θk} → θ∗, where
θ∗ is a solution to the limiting problem. If θk is used within the scheme for computing x, then
probabilistic convergence statements are provided for {xk} in the context of distributed projection-
based schemes for stochastic Nash games, leading to monotone variational inequality problems.
We note that offline schemes provide a benchmark in terms of ascertaining the cost of obtaining
observations over time, rather than a priori, allowing us to derive metrics to relate online schemes
with their offline counterparts (such as through competitive ratios for instance).

1.2 Contributions and outline

In this paper, we investigate the global convergence and rate analysis of joint first-order gradient
methods under a variety of convexity, Lipschitzian, and boundedness requirements. Suppose γf,k
and γg,k denote steplength for optimization and learning at iteration k. If ΠY (y) denotes the
Euclidean projection of a vector y on the set Y , then consider the following prototypical update:

Algorithm 1 (Joint gradient scheme). Given x0 ∈ X and θ0 ∈ Θ and sequences γf,k, γg,k,

xk+1 := ΠX (xk − γf,k∇xf(xk, θk)) , ∀k ≥ 0, (Opt(θk))

θk+1 := ΠΘ (θk − γg,k∇θg(θk)) , ∀k ≥ 0. (Learn)

In our proposed scheme, we take a gradient step in the x-space using an estimate θk of θ∗ and a
simultaneous step in the θ−space. Note that instead of using the exact gradient ∇xf(xk, θ

∗) at the
kth iterate, we employ ∇xf(xk, θk) as the gradient estimate and rk = ∇xf(xk, θk) − ∇xf(xk, θ

∗)
represents the error in the gradient at iteration k. Recent literature on inexact gradient schemes has



investigated convergence properties and rate analysis for various schemes using inexact gradients
with bounded error [20, 21, 22, 23, 24]. Our framework is distinct in that we develop a broader
framework of gradient, extragradient, and regularized schemes for solving both optimization and
variational inequality problems through the provision of modified algorithmic requirements (such
as those on steplengths), asymptotics, and enhanced rate statements. The framework is developed
under the caveat that the inexactness (in gradient estimates) decays to zero at a prescribed rate, a
consequence of obtaining increasing accurate estimates of θk when taking the gradient step in the
x−space. The main contributions of this work can be captured as follows:

(i) Convex optimization: In the first part of this paper, we develop asymptotics and rate state-
ments for misspecified convex optimization problems in smooth and nonsmooth settings and assume
that the learning problem is strongly convex, unless mentioned otherwise: (a) Smooth optimiza-
tion problems: Our first set of results in the smooth regime demonstrate that constant steplength
schemes are convergent but lead to a quantifiable decay in the linear convergence rate characteris-
tic of constant steplength gradient methods. Unfortunately, such techniques are heavily reliant on
the knowledge of certain problem parameters, in the absence of which we show that diminishing
steplength sequences are also convergent. When the strong convexity assumptions are weakened,
we note that the presence of learning leads to modification of the convergence rate in function
values by an additive factor given by ‖θ0 − θ∗‖O

(
qKg + 1/K

)
where θ0 represents our initial esti-

mate of θ∗, qg denotes the contractive constant in the learning problem. Finally, we demonstrate
that when the learning problem loses strong convexity, under a suitably defined weak-sharpness
requirement, global convergence can still be retained; (b) Nonsmooth optimization problems: When
the optimization problem is nonsmooth, it can be shown that while the overall convergence rate of
the proposed misspecified subgradient methods is still O(1/

√
K), a similar additive factor emerges

of the form ‖θ0 − θ∗‖O
(
qKg + 1/K

)
. A summary of the rate statements is provided in Table 2.

Computation Computation & Learning

Strongly convex/diff. Linear Sublinear

convex/diff. O(1/K) O(1/K) + ‖θ0 − θ∗‖O(1/K + qKg )

convex/nonsmooth. O(1/
√
K) O(1/

√
K) + ‖θ0 − θ∗‖O(1/K + qKg )

Table 2: Summary of rate statements

(ii) Monotone variational inequality problems: Variational inequality problems represent a
broad framework for capturing optimization and equilibrium problems and assume particular rele-
vance, given that misspecification may arise in the constraints. In the second part of this paper, we
consider two sets of schemes for resolving misspecified variational inequality problems. Of these,
the first avenue is a constant steplenth misspecified extragradient scheme for monotone variational
inequality problems. However, this approach requires an accurate estimate of suitable Lipschitz
parameters. Consequently, we present a misspecified variant of the iterative Tikhonov regulariza-
tion framework to misspecified monotone regimes.

(iii) Numerics: We develop a set of test problems based on economic dispatch problems [25] with
misspecified cost and demand. The numerics support the asymptotic statements and the validity
of the bounds.



2 Misspecified Convex Optimization

In this section, we will consider two settings differentiated by the assumptions on the function f(x, θ)
in (C(θ∗)) and the function g(θ) in (L). In Section 2.1, we examine gradient-based methods where
f(x, θ) is differentiable in x for every θ while in Section 2.2, we weaken the smoothness requirement
on f(x, θ). In each setting, we provide both constant steplength schemes with associated complexity
statements as well as diminishing steplength schemes that are less reliant on problem parameters.

2.1 Smooth convex optimization

In this section, we consider regimes where both the optimization and learning problems are differ-
entiable and distinguish the cases based on the convexity assumptions on the problem. Specifically,
in subsection 2.1.1, we provide convergence statements and rate analysis when both problems are
strongly convex. Next, in subsection 2.1.2, we weaken the strong convexity assumption on the
computational problem to mere convexity and provide rate statements in such settings. Finally, in
subsection 2.1.3, we relax the strongly convex assumption of the learning function and analyse the
case when the solution set of the learning problem satisfies a weak sharpness assumption. We now
list several key assumptions used during our analysis. We begin with a differentiability assumption
on f and g.

Assumption 1. The function f(x, θ) is continuously differentiable in x for all θ ∈ Θ and function
g is continuously differentiable in θ.

Next, we impose a Lipschitzian assumption on f in x, uniformly in θ.

Assumption 2. The gradient map ∇xf(x; θ) is Lipschitz continuous in x with constant Gf,x
uniformly over θ ∈ Θ or

‖∇xf(x1, θ)−∇xf(x2, θ)‖ ≤ Gf,x‖x1 − x2‖, ∀x1, x2 ∈ X, ∀θ ∈ Θ.

Additionally, the gradient map ∇θg is Lipschitz continuous in θ with constant Gg.

Finally, we impose a requirement on steplength sequences for the computational and learning
problems required in the diminishing steplength regime.

Assumption 3. Let {γf,k} and {γg,k} be diminishing nonnegative sequences chosen such that∑∞
k=1 γf,k =∞,

∑∞
k=1 γ

2
f,k <∞,

∑∞
k=1 γg,k =∞, and

∞∑
k=1

γ2
g,k <∞.

2.1.1 Strongly convex optimization and learning

In this subsection, convergence statements for the iterates produced by Algorithm 1 are provided
under the following strong convexity assumption.

Assumption 4. The function f is strongly convex in x with constant ηf for all θ ∈ Θ and the
function g is strongly convex with constant ηg.

We impose an additional Lipschitzian assumption on ∇xf(x∗; θ) in θ.

Assumption 5. The gradient ∇xf(x∗, θ) is Lipschitz continuous in θ with constant Lθ.

Before providing the main results, we introduce the following Lemma from [26]:



Lemma 1. Let the following hold:

uk+1 ≤ qkuk + αk, 0 ≤ qk < 1, αk ≥ 0,
∞∑
k=1

(1− qk) =∞, lim
k→∞

αk
(1− qk)

= 0.

Then, limk→∞ uk ≤ 0. In particular, if uk ≥ 0, then uk → 0.

Our first result provides a convergence statement under a constant steplength assumption.

Proposition 2 (Constant step length scheme). Let Assumptions 1 2, 4 and 5 hold and γf,k
and γg,k are fixed at γf and γg, respectively so that 0 < γf < 2/Gf,x and 0 < γg < 2/Gg. Then, the
sequence {xk, θk} generated by Algorithm 1 converges to x∗ ∈ X and θ∗ ∈ Θ, respectively.

Proof. By nonexpansivity of the Euclidean projector and triangle inequality, ‖xk+1 − x∗‖ can be
bounded as follows:

‖xk+1 − x∗‖
= ‖ΠX(xk − γf∇xf(xk, θk))−ΠX(x∗ − γf∇xf(x∗, θ∗))‖
≤ ‖(xk − x∗)− γf (∇xf(xk, θk)−∇xf(x∗, θ∗))‖
≤ ‖(xk − x∗)− γf (∇xf(xk, θk)−∇xf(x∗, θk)‖+ γf‖∇xf(x∗, θk)−∇xf(x∗, θ∗))‖. (1)

The first term in (1) can be further bounded by first writing the following expansion:

‖(xk − x∗)− γf (∇xf(xk, θk)−∇xf(x∗, θk))‖2 = ‖xk − x∗‖2 + γ2
f‖∇xf(xk, θk)−∇xf(x∗, θk)‖2

− 2γf (xk − x∗)T (∇xf(xk, θk)−∇xf(x∗, θk)). (2)

Under the assumption of Lipschitz continuity of ∇xf(x, θ) in x, it follows that

‖∇xf(xk, θk)−∇xf(x∗, θk)‖2 ≤ Gf,x(xk − x∗)T (∇xf(xk, θk)−∇xf(x∗, θk)).

By combining the above inequality with (2), we obtain

‖(xk − x∗)− γf (∇xf(xk, θk)−∇xf(x∗, θk))‖2

≤ ‖xk − x∗‖2 − γf (2− γfGf,x)(xk − x∗)T (∇xf(xk, θk)−∇xf(x∗, θk)). (3)

In addition, under strong convexity of f(x; θ) in x, it follows that

(xk − x∗)T (∇xf(xk, θk)−∇xf(x∗, θk)) ≥ ηf‖xk − x∗‖2.

Thus, inequality (3) becomes

‖(xk − x∗)− γf (∇xf(xk, θk)−∇xf(x∗, θk))‖2 ≤ ‖xk − x∗‖2 − γfηf (2− γfGf,x)‖xk − x∗‖2

=
(
1− γfηf (2− γfGf,x)

)
‖xk − x∗‖2. (4)

Note that since γf < (2/Gf,x), then it follows that
(
1− γfηf (2− γfGf,x)

)
< 1. The second term in

(1) is bounded by leveraging the Lipschitz continuity of ∇xf(x∗, θ) in θ:

‖γf (∇xf(x∗, θk)−∇xf(x∗, θ∗))‖ ≤ γfLθ‖θk − θ∗‖. (5)

Now by combining (1), (4), and (5), we obtain the following bound:

‖xk+1 − x∗‖ ≤ qx‖xk − x∗‖+ qθ‖θk − θ∗‖, (6)



where qx ,
√(

1− γfηf (2− γfGf,x)
)

and qθ , γfLθ. To show that ‖xk − x∗‖ → 0 as k → ∞, we

may employ Lemma 1. This requires showing the following:

(i)
∞∑
k=1

(1− qx) =∞; (ii) lim
k→∞

qf,θ‖θk − θ∗‖
1− qx

= 0.

Since qx < 1, (i) is satisfied. In addition, by the Lipschitz continuity of ∇θg and choosing γg
such that 0 < γg < 2/Gg, ‖θk − θ∗‖ → 0 as k → ∞. Consequently, condition (ii) is met as well,
completing the proof.

In many instances, while we may be able to claim strong convexity or Lipschitz continuity, the
precise bounds may be unavailable. However, an incorrect choice of a steplength may lead to di-
vergence, motivating the need for an alternate approach. To this end, we employ a diminishing
steplength sequence that does not necessitate the knowledge of either the convexity constant or the
Lipschitz constant. We outline the proof of convergence in the next Proposition.

Proposition 3 (Diminishing steplength schemes). Let Assumptions 1, 2, 4, and 5 hold.
Additionally, let γf,k be defined based on Assumption 3 and γg,k be fixed at γg so that 0 < γg <
2/Gg.Then, the sequence {xk, θk} generated by Algorithm 1 converges to x∗ ∈ X and θ∗ ∈ Θ,
respectively.

Proof. We use a similar line of argument as in Proposition 2 to obtain the following bound:

‖xk+1 − x∗‖ ≤ qx,k‖xk − x∗‖+ qθ,k‖θk − θ∗‖, (7)

where for sufficiently large k, we have that qx,k , (1− γf,kηf (2− γf,kGf,x))1/2 < 1 and qθ,k ,
γf,kLθ. By Assumption 3, we have that

∑∞
k=1(1− qx,k) =∞. Furthermore, we have the following

simplification of condition (ii) of Lemma 1:

lim
k→∞

γf,kLθ‖θk − θ∗‖
(1− qx,k)

= lim
k→∞

(1 + qx,k)Lθ‖θk − θ∗‖
ηf (2− γf,kGf,x)

= 0

since qx,k → 0 and γf,k → 0 and ‖θk − θ∗‖ → 0 as k → ∞. Therefore, the conditions of Lemma 1
are satisfied and ‖xk − x∗‖ → 0 as k →∞.

It is well known that under strong convexity assumption, the iterates generated from the pro-
jected gradient method converge at a geometric rate [27]. However, when learning is incorporated,
it is expected that this rate drops. Next, we analyze the impact introduced by learning.

Proposition 4 (Rate analysis in strongly convex regimes). Let Assumptions 1, 2, 4 and 5
hold. In addition, assume that γf and γg are chosen such that 0 < γf < 2/Gf,x and 0 < γg<2/Gg.
Let {xk, θk} be the sequence generated by Algorithm 1. Then for every k ≥ 0, we have the following:

‖xk+1 − x∗‖ ≤ qk+1
x ‖x0 − x∗‖+ (k + 1)qθq

k‖θ0 − θ∗‖,

where qx , (1−γfηf (2−γfGf,x))1/2, qθ , γfLθ, qg , (1−γgηg(2−γgGg))1/2, and q , max(qx, gg).

Proof. Under the assumption of strong convexity of g, the learning algorithm has a globally geo-
metric rate of convergence when employing constant stepsize γg where 0 < γg < 2/Gg; specifically,

‖θk+1 − θ∗‖ ≤ qk+1
g ‖θ0 − θ∗‖, ∀k ≥ 0. (8)



where qg , (1 − γgηg(2 − γgGg))1/2 < 1 since γg < 2/Gg . To obtain the convergence rate for the
joint scheme, we expand (6) to obtain the following bound:

‖xk+1 − x∗‖ ≤ qk+1
x ‖x0 − x∗‖+ qθ

k∑
i=0

qix‖θk−i − θ∗‖ ∀ k ≥ 0. (9)

We may further expand (9) using (8) to simplify the bound as below:

‖xk+1 − x∗‖ ≤ qk+1
x ‖x0 − x∗‖+ qθ

k∑
i=0

qixq
k−i
g ‖θ0 − θ∗‖ ≤ qk+1

x ‖x0 − x∗‖+ (k + 1)qθq
k‖θ0 − θ∗‖,︸ ︷︷ ︸

Degradation from learning

where q , max(qx, qg). Note that condition γf < 2/Gf,x guarantees that qx < 1, implying that
q = max(qx, qg) is less than 1.

Remark: Notably, the presence of learning leads to a degradation in the convergence rate from
the standard linear rate to a sub-linear rate. Furthermore, it is easily seen that when we have
access to the true θ∗, the original rate may be recovered.

2.1.2 Convex optimization with strongly convex learning

In this subsection, we weaken the rather stringent assumptions of strong convexity of f(x, θ) in x
for every θ ∈ Θ.

Assumption 4b. The function f is convex in x for all θ ∈ Θ and the function g is strongly
convex with constant ηg.

In addition, we make the following assumptions:

Assumption 6. (a) The sets X and Θ are compact and supx∈X ‖x‖ ≤ C, where C is a constant.

(b) The gradient map ∇xf(x; θ) is uniformly Lipschitz continuous in θ with constant Gf,θ:

‖∇xf(x, θ1)−∇xf(x, θ2)‖ ≤ Gf,θ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ, x ∈ X.

Assumption 7. There exists a constant Lf,θ such that |f(x, θ1)−f(x, θ2)| ≤ Lf,θ‖θ1−θ2‖, ∀θ1, θ2 ∈
Θ, x ∈ X.

Before presenting the main result, we introduce the following Lemma from [28].

Lemma 5. Let βk, υk, αk ≥ 0 for all k. Furthermore, suppose the following holds for all k:

uk+1 ≤ (1 + βk)uk − υk + αk.

Suppose
∑

k αk <∞ and
∑

k βk <∞. Then limk→∞ uk = ū ≥ 0 and
∑

k υk <∞.

In the following proposition, we prove the convergence of the iterates generated by Algorithm
1 under the convexity requirements on f(x; θ). We also provide the rate statement.

Proposition 6 (Constant steplength scheme with averaging). Let Assumptions 1, 2, 4b, 6
and 7 hold and stepsizes γf,k and γg,k be fixed at constants γf and γg so that 0 < γg < 2/Gg and
0 < γf ≤ 1/Gf,x. Let the sequence {xk, θk} be generated by Algorithm 1 and suppose x̄k is defined
as

x̄k ,

k−1∑
i=0

xi+1

k
.

Then the following hold:



(i) In addition, if ax = ‖x0−x∗‖2
2γf

and bθ ,
CGf,θ
1−qg , then the following holds:

|f (x̄K , θK)− f(x∗, θ∗)| ≤ ax
K

+ ‖θ0 − θ∗‖
(
bθ
K

+ Lf,θq
K
g

)
.

(ii) lim
k→∞

f (x̄k, θk) = f(x∗, θ∗).

Proof. (i) Recall the following by the mean-value theorem, the Cauchy-Schwartz inequality, and
Lipschitz continuity of the gradient map ∇xf(x, θ∗) in x:

f(y, θ∗) = f(x, θ∗) +∇xf(x, θ∗)T (y − x) +

∫ 1

0
(∇xf(x+ t(y − x), θ∗)−∇xf(x, θ∗))(y − x)dt

≤ f(x, θ∗) +∇xf(x, θ∗)T (y − x) +

∫ 1

0
‖(∇xf(x+ t(y − x), θ∗)−∇xf(x, θ∗))‖‖(y − x)‖dt

≤ f(x, θ∗) +∇xf(x, θ∗)T (y − x) +

∫ 1

0
Gf,xt‖y − x‖‖(y − x)‖dt

= f(x, θ∗) +∇xf(x, θ∗)T (y − x) +
1

2
Gf,x‖y − x‖2.

If we set y = xi+1 and x = xi and since Gf,x ≤ 1
γf

, we have the following:

f(xi+1, θ
∗) ≤ f(xi, θ

∗) + (∇xf(xi, θi)− ri)T (xi+1 − xi) +
Gf,x

2
‖xi+1 − xi‖2

= f(xi, θ
∗) +∇xf(xi, θi)

T (xi+1 − xi) +
1

2γf
‖xi+1 − xi‖2 − rTi (xi+1 − xi), (10)

where ri , ∇xf(xi, θi)−∇xf(xi, θ
∗). Under the convexity of f(x; θ∗) in x,

f(xi, θ
∗) ≤ f(x∗, θ∗) +∇xf(xi, θ

∗)T (xi − x∗)
= f(x∗, θ∗) +∇xf(xi, θi)

T (xi − x∗)− rTi (xi − x∗). (11)

By summing up (10) and (11), we obtain

f(xi+1, θ
∗) ≤ f(x∗, θ∗) +∇xf(xi, θi)

T (xi+1 − x∗) +
1

2γf
‖xi+1 − xi‖2 − rTi (xi+1 − x∗). (12)

Next, we bound the term ∇xf(xi, θi)
T (xi+1−x∗). From the property of the projection on a convex

set, denoted by ΠX(x), we have that

(x−ΠX(x))T (y −ΠX(x)) ≤ 0, ∀x ∈ Rn, y ∈ X.

If we set x = xi−γf∇f(xi, θi) and y = x∗ in the above inequality and by noting that xi+1 = ΠX(x),
we obtain that (xi − γf∇xf(xi, θi)− xi+1)T (x∗ − xi+1) ≤ 0. After rearrangement of the terms, the
above inequality is equivalent to

∇xf(xi, θi)
T (xi+1 − x∗) ≤

1

γf
(xi+1 − xi)T (x∗ − xi+1).

By using this bound in (12), we get that

f(xi+1, θ
∗) ≤ f(x∗, θ∗) +

1

γf
(xi+1 − xi)T (x∗ − xi+1) +

1

2γf
‖xi+1 − xi‖2 − rTi (xi+1 − x∗).



Since ‖xi+1−xi‖2 + 2(xi+1−xi)T (x∗−xi+1) = ‖xi−x∗‖2−‖xi+1−x∗‖2, the above inequality can
be written as

f(xi+1, θ
∗) ≤ f(x∗, θ∗) +

1

2γf
‖xi − x∗‖2 −

1

2γf
‖xi+1 − x∗‖2 − rTi (xi+1 − x∗).

Moving f(x∗, θ∗) to the other side and summing from i = 0 to K − 1, we get the following:

K−1∑
i=0

(f(xi+1, x
∗)− f(x∗, θ∗)) ≤ − 1

2γf
‖xK − x∗‖2 +

1

2γf
‖x0 − x∗‖2 +

K−1∑
i=0

‖ri‖‖xi+1 − x∗‖

≤ 1

2γf
‖x0 − x∗‖2 +

K−1∑
i=0

‖ri‖‖xi+1 − x∗‖,

where the second inequality follows from the nonnegativity of 1
2γf
‖xK − x∗‖2. Dividing both sides

by K,

1

K

K−1∑
i=0

(f(xi+1, x
∗)− f(x∗, θ∗)) ≤ 1

2γfK
‖x0 − x∗‖2 +

1

K

K−1∑
i=0

‖ri‖‖xi+1 − x∗‖. (13)

By Assumption 6(a), ‖xi+1 − x∗‖ ≤ C for all i ≥ 0. In addition, by Assumption 6(b), we have
that ‖ri‖ = ‖∇xf(x, θi)−∇xf(x, θ∗)‖ ≤ Gf,θ‖θi− θ∗‖. Since the function g is strongly convex and
γg ≤ 2

Gg
, there exists a qg ∈ (0, 1) such that ‖θi − θ∗‖ ≤ qig‖θ0 − θ∗‖. Therefore, from (13), we

obtain the following:

1

K

K−1∑
i=0

(f(xi+1, θ
∗)− f(x∗, θ∗)) ≤ 1

2γfK
‖x0 − x∗‖2 + CGf,θ‖θ0 − θ∗‖

(1− qKg )

K(1− qg)
.

By leveraging the convexity of f(•; θ∗) in (•), we have that

f (x̄K , θ
∗)− f(x∗, θ∗) ≤ 1

2γfK
‖x0 − x∗‖2 + CGf,θ‖θ0 − θ∗‖

(1− qKg )

K(1− qg)
. (14)

But, we may derive a bound on |f (x̄k, θK)− f(x∗, θ∗)| as follows:

|f (x̄K , θK)− f(x∗, θ∗)| ≤ |f (x̄K , θK)− f (x̄K , θ
∗)|+ |f (x̄K , θ

∗)− f(x∗, θ∗)| . (15)

We leverage the Lipschitz continuity of f(x, θ) in θ uniformly in x with constant Lf,θ together with
(14) and (15) to complete the proof of (i):

|f (x̄K , θK)− f(x∗, θ∗)| ≤ ax
K

+ ‖θ0 − θ∗‖
(
Lf,θq

K
g +

bθ
K

)
︸ ︷︷ ︸

Impact of learning

(16)

where ax = ‖x0−x∗‖2
2γf

and bθ ,
CGf,θ
1−qg , .

(ii) Global convergence follows by taking limits (16) and by recalling that qg < 1 to claim that

lim
k→∞

|f (x̄k, θk)− f(x∗, θ∗)| = 0.



Remark: Unlike in the case of strongly convex optimization, there is no degradation in the stan-
dard rate of convergence in function values which is O(1/K). In particular, the contribution from
learning adds a factor to this rate that is scaled by ‖θ0 − θ∗‖, the distance of θ0 from θ∗. Notably,
this factor has two parts, the first of which is a faster geometric rate given by Lf,θq

K
g and the a

second part given by bθ/K. In short, the overall rate changes by a constant factor. Furthermore, if
θ0 = θ∗, we recover the standard rate for convex optimization. However, this scheme does require
knowledge of relevant Lipschitz constants and we now present diminishing steplength schemes that
do require Lipschitzian properties but do not require knowing the precise constants.

Proposition 7 (Diminishing steplength scheme). Let Assumptions 1, 2, 4b, and 6 hold.
Additionally, let γf,k be defined based on Assumption 3 and γg < 2/Gg. Let the sequence {xk, θk}
be generated by Algorithm 1. Then, {xk} converges to a point in X∗ and {θk} converges to θ∗ ∈ Θ.

Proof. By the nonexpansivity property of the Euclidean projection operator, for all k > 0, ‖xk+1−
x∗‖2 can be bounded as follows:

‖xk+1 − x∗‖2 = ‖ΠX(xk − γf,k∇xf(xk, θk))−ΠX(x∗)‖2

≤ ‖(xk − x∗)− γf,k∇xf(xk, θk)‖2

= ‖xk − x∗‖2 − 2γf,k∇xf(xk, θk)
T (xk − x∗) + γ2

f,k‖∇xf(xk, θk)‖2

= ‖xk − x∗‖2 − 2γf,k∇xf(xk, θ
∗)T (xk − x∗)− 2γf,kr

T
k (xk − x∗)

+ γ2
f,k‖∇xf(xk, θk)‖2, (17)

where rk , ∇xf(xk, θk) − ∇xf(xk, θ
∗). By leveraging convexity and the gradient inequality, we

have that f(x∗, θ∗) ≥ f(xk, θ
∗) +∇xf(xk, θ

∗)T (x∗ − xk), implying that

−∇xf(xk, θ
∗)T (xk − x∗) ≤ −(f(xk, θ

∗)− f(x∗, θ∗)). (18)

By substituting (18) in (17) and by noting that 2γf,kr
T
k (xk−x∗) ≤ ‖rk‖2 +γ2

f,k‖xk−x∗‖2, we have
the following bound:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗))− 2γf,kr

T
k (xk − x∗) + γ2

f,k‖∇xf(xk, θk)‖2

≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗)) + ‖rk‖2

+ γ2
f,k‖xk − x∗‖2 + γ2

f,k‖∇xf(xk, θk)‖2. (19)

By Assumption 6, we have that ‖rk‖2 ≤ ‖∇xf(xk, θk)−∇xf(xk, θ
∗)‖2 ≤ G2

f,θ‖θk−θ∗‖2. In addition,

under strong convexity of g and choosing γg < 2/Gg, we have that ‖θk − θ∗‖2 ≤ q2k
g ‖θ0 − θ∗‖2,

where qg ∈ (0, 1). Consequently θk → θ∗ as k →∞. Furthermore, (19) can be further simplified as
below:

‖xk+1 − x∗‖2 ≤ (1 + γ2
f,k)‖xk − x∗‖2 − 2γf,k(f(xk, θ

∗)− f(x∗, θ∗))

+G2
f,θq

2k
g ‖θ0 − θ∗‖2 + γ2

f,k‖∇xf(xk, θk)‖2︸ ︷︷ ︸
,αk

. (20)

The requirements of Lemma 5 hold since (f(xk, θ
∗)− f(x∗, θ∗)) ≥ 0 since x∗ ∈ argminx∈X f(x; θ∗).

Consequently, by leveraging Lemma 5, we observe that
∑∞

k=1 αk <∞ since

∑
k

G2
f,θq

2k
g ‖θ0 − θ∗‖2 ≤

G2
f,θ‖θ0 − θ∗‖2

1− q2
g



and
∑

k γ
2
f,k‖∇xf(xk, θk)‖2 <∞, since

∑
k γ

2
f,k <∞ and ‖∇xf(xk, θk)‖ is bounded, a consequence

of the compactness of X and Θ and the continuity of the gradient map. We may therefore con-
clude that ‖xk−x∗‖2 → v̄ ≥ 0 and

∑
k γf,k(f(xk, θ

∗)−f(x∗, θ∗)) <∞. It suffices to show that v̄ ≡ 0.

Since
∑

k γf,k(f(xk, θ
∗)−f(x∗, θ∗)) <∞ and

∑
k γf,k =∞, it follows that lim infk→∞ f(xk, θ

∗) =
f(x∗, θ∗). Since the set X is closed, all accumulation points of {xk} lie in X. Furthermore, since
f(xk, θ

∗) → f(x∗, θ∗) along a subsequence, it follows that {xk} has a subsequence converging to
some point in X∗. Moreover, since ‖xk−x∗‖ is convergent, then the entire sequence {xk} converges
to a point in X∗.

2.1.3 Convex optimization with convex learning

A key restriction in the prior subsection is the need for imposing a strong convexity assumption on
the learning problem. The need for this assumption arises from noting that we require utilizing a
rate estimate in solution iterates in the learning space, rather than merely function iterates. In this
subsection, we consider a convex learning problem but impose a weak sharpness requirement [26]
which is defined next. Note that an alternative approach is pursued in the next section in a more
general variational regime.

Definition 2.1 (Weak sharpness). The solution set Θ∗ is said to be weak sharp if there ex-
ists a positive number α such that g(θ) − g(θ∗) ≥ αdist(θ,Θ∗), ∀θ∗ ∈ Θ∗, where dist(θ,Θ∗) :=
minθ∗∈Θ∗ ‖θ − θ∗‖ and α is called modulus of sharpness.

Under a weak sharpness requirement on the solution set, the solution to the learning problem
can be obtained in a finite number of iterations. The proof of this Lemma may be found in [26].

Lemma 8 (Finite convergence under constant steplength). Consider a convex differentiable learn-
ing problem L in which the solution set Θ∗ is nonempty and satisfies a weak sharpness property.
Furthermore, ∇θg is assumed to be Lipschitz continuous with a constant Gg. Then, the sequence
{θk} generated by a projected gradient scheme with stepsize γg <

2
Gg

converges to θ∗ in a finite

number of iterations, where θ∗ ∈ Θ∗.

We now consider a constant steplength scheme where γf,k and γg,k are sufficiently small con-
stants.

Proposition 9 (Constant steplength scheme). Let Assumptions 1, 2, and 6 hold. In addition,
suppose that Θ∗ satisfies a weak sharpness requirement and the stepsize sequences {γf,k} and {γg,k}
are fixed at some positive constants γf and γg, respectively, where 0 < γf < 2/Gf,x and 0 < γg <
2/Gg. Let {xk, θk} be the sequence generated by Algorithm 1. Then, {xk} converges to a point in
X∗ and {θk} converges to a point in Θ∗ as k →∞.

Proof. Based on Lemma 8, there exist a finite K > 0 such that for all k > K, we have that
θk = θ∗ ∈ Θ∗. Hence, for all k > K, Algorithm 1, becomes standard projected gradient scheme
without learning and thus under Lipschitzian property of gradient of function f and by choosing
0 < γf < 2/Gf,x, the sequence {xk} converges to x∗ ∈ X∗. For the proof of convergence of gradient
projected scheme, the reader can refer to [26] .

Next, we consider a diminishing steplength sequence for the optimization and learning problems
and provide an intermediate result on the summability of the sequence {γg,kdist(θk,Θ

∗)}.



Lemma 10. Consider a convex differentiable learning problem L in which the solution set Θ∗ is
nonempty and satisfies a weak sharpness property. In addition, suppose that Θ is bounded and
the sequence γg,k be defined based on Assumption 3. Then, for the sequence {θk} generated by
Algorithm 1, we have that

∑∞
k=1 γg,kdist(θk,Θ

∗) <∞.

Proof. Under boundedness of gradient of function g and by using diminishing step length

‖θk+1 − θ∗‖2 ≤ ‖θk − θ∗‖2 − 2γg,k(g(θk)− g(θ∗)) + γ2
g,k‖∇θg(θ)‖2.

Under the weak sharp property of Θ∗, we have that g(θk)− g(θ∗) ≥ αdist(θk,Θ
∗). By substituting

this expression into the above inequality, we obtain

‖θk+1 − θ∗‖2 ≤ ‖θk − θ∗‖2 − 2αγg,kdist(θk,Θ
∗) + γ2

g,kC
2,

where C := supθ∈Θ ‖∇g(θ)‖. Since
∑∞

k=1 γ
2
g,kC

2 <∞, then by using Lemma 5, we conclude that∑∞
k=1 γg,kdist(θk,Θ

∗) <∞.

We now impose a Lipschitzian requirement on the gradient map ∇xf(x; θ) in θ uniformly in x.

Assumption 8. There is a constant Mf,θ such that for ‖∇xf(x, θ)−∇xf(x, θ∗)‖ ≤Mf,θdist(θ,Θ∗)
for all θ ∈ Θ, θ∗ ∈ Θ∗ and x ∈ X.

Theorem 11 (Diminishing steplength scheme). Let Assumptions 1, 2, 6, and 8 hold and
Θ∗ is weak sharp. Let {xk, θk} be the sequence generated by Algorithm 1. Additionally, let γg,k be
defined based on Assumption 3 and γf,k = γg,k for all k > 0. Then, {xk} converges to a point in
X∗ and {θk} converges to a point in Θ∗ as k →∞.

Proof. By the nonexpansivity property of the Euclidean projection operator, for all k > 0 and any
x∗ ∈ X∗, ‖xk+1 − x∗‖2 can be bounded as follows:

‖xk+1 − x∗‖2 = ‖ΠX(xk − γf,k∇xf(xk, θk))−ΠX(x∗)‖2

≤ ‖(xk − x∗)− γf,k∇xf(xk, θk)‖2

= ‖xk − x∗‖2 − 2γf,k∇xf(xk, θk)
T (xk − x∗) + γ2

f,k‖∇xf(xk, θk)‖2

≤ ‖xk − x∗‖2 − 2γf,k∇xf(xk, θ
∗)T (xk − x∗)− 2γf,kr

T
k (xk − x∗) + γ2

f,k‖∇xf(xk, θk)‖2,

where rk , ∇xf(xk, θk) − ∇xf(xk, θ
∗). By leveraging convexity and the gradient inequality, we

have that

f(x∗, θ∗) ≥ f(xk, θ
∗) +∇(f(xk, θ

∗)T (x∗ − xk),

implying that −∇xf(xk, θ
∗)T (xk−x∗) ≤ −(f(xk, θ

∗)− f(x∗, θ∗)). By the previous observation and
the Cauchy-Schwartz inequality, we have the following:

‖xk+1 − x∗‖2

≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗))− 2γf,kr

T
k (xk − x∗) + γ2

f,k‖∇xf(xk, θk)‖2

≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗))+2γf,k‖rk‖‖xk − x∗‖+ γ2

f,k‖∇xf(xk, θk)‖2

≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗)) + 4CMf,θγf,kdist(θk,Θ

∗) + γ2
f,k‖∇xf(xk, θk)‖2, (21)

where C is the constant in Assumption 6(a). By Lemma 10,

∞∑
k=1

γf,kdist(θk,Θ
∗) =

∞∑
k=1

γg,kdist(θk,Θ
∗) <∞.



In addition,
∞∑
k=1

γ2
f,k‖∇xf(xk, θk)‖2 ≤ C2

2

∞∑
k=1

γ2
f,k <∞,

where C2 := supx∈X,θ∈Θ ‖∇xf(x, θ)‖. Hence, the conditions of Lemma 5 are satisfied and the
sequence ‖xk+1−x∗‖ is convergent for any x∗ ∈ X∗ and

∑∞
k=1 γf,k(f(xk, θ

∗)− f(x∗, θ∗)) <∞. The
the latter implies lim infk→∞(f(xk, θ

∗)− f(x∗, θ∗)) = 0 in view of
∑∞

k=1 γf,k =∞. Since the set X
is closed, all accumulation points of {xk} lie in X. Furthermore, since f(xk, θ

∗)→ f(x∗, θ∗) along a
subsequence, by continuity of f it follows that {xk} has a subsequence converging to some point in
X∗. Moreover, since ‖xk−x∗‖ is a convergent sequence, the entire sequence {xk} converges to some
point in X∗. Finally, the sequence {θk} converges to a θ∗ ∈ Θ∗, a consequence of Lemma 10.

2.2 Nonsmooth convex optimization

In this section, we derive the global convergence and rate statements for the regime when function
f(x; θ) is not necessarily differentiable. Note that Assumptions 1, 2 and 4 still hold for function g
and for clarity, we restate them in the following assumption and proceed to present a subgradient-
based analog of Algorithm 1.

Assumption 9. The function g is continuously differentiable in θ, strongly convex, and the gradient
map ∇θg(θ) is Lipschitz continuous in θ with constant Gg.

Algorithm 2 (Joint subgradient scheme). Given an x0 ∈ X and a θ0 ∈ Θ and sequences
{γf,k, γg,k}, then

xk+1 := ΠX (xk − γf,kdk) , ∀k ≥ 0, (nsOpt(θk))

θk+1 := ΠΘ (θk − γg,k∇θg(θk)) , ∀k ≥ 0, (Learn)

where dk ∈ ∂f(xk, θk).

We now state two assumptions employed in this subsection, the first of which pertains to subgradient
boundedness while the second imposes Lipschitz continuity of f(x, θ) in θ uniformly in x.

Assumption 10 (Subgradient boundedness). There exists an M > 0 such that ‖dk‖ ≤M for
all dk ∈ ∂f(xk, θk) and for all θk ∈ Θ.

Assumption 11. There exists a constant Lf,θ such that |f(x, θ1)−f(x, θ2)| ≤ Lf,θ‖θ1−θ2‖ ∀θ1, θ2 ∈
Θ, x ∈ X.

The following Lemma will be used subsequently in our convergence analysis.

Lemma 12. Let Assumptions 10 and 11 hold. Let {xk} and {θk} be the sequences generated by
Algorithm 2. Then, for all y ∈ X and k > 0, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2γf,k(f(xk, θ
∗)− f(y, θ∗)) + 4Lf,θγf,k‖θk − θ∗‖+ γ2

f,kM
2,

where M is defined in Assumption 10 and Lf,θ is the Lipschitz constant in Assumption 11.

Proof. By nonexpansivity of the Euclidean projector and triangle inequality, we may bound ‖xk+1−
y‖ as follows:

‖xk+1 − y‖2 ≤ ‖ΠX(xk − γf,kdk)−ΠX(y)‖2 ≤ ‖xk − γf,kdk − y‖2

= ‖xk − y‖2 − 2γf,k(xk − y)Tdk + γ2
f,k‖dk‖2

≤ ‖xk − y‖2 − 2γf,k(xk − y)Tdk + γ2
f,kM

2.



Now, by leveraging convexity of function f(x, θ) in x for all θ, we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2γf,k(f(xk, θk)− f(y, θk)) + γ2
f,kM

2. (22)

By Assumption 11, the function f(x, θ) is Lipschitz continuous in θ for every x. Consequently,
|f(xk, θk)− f(xk, θ

∗)| ≤ Lf,θ‖θk − θ∗‖ and |f(y, θk)− f(y, θ∗)| ≤ Lf,θ‖θk − θ∗‖. It follows that

f(xk, θ
∗)− f(xk, θk) ≤ Lf,θ‖θ∗ − θk‖ and f(y, θk)− f(y, θ∗) ≤ Lf,θ‖θk − θ∗‖.

By combining these two inequalities, we get the following lower bound:

f(xk, θk)− f(y, θk) ≥ f(xk, θ
∗)− f(y, θ∗)− 2Lf,θ‖θk − θ∗‖.

Now by combining above inequality with (22), we have that

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2γf,k(f(xk, θ
∗)− f(y, θ∗)) + 4Lf,θγf,k‖θk − θ∗‖+ γ2

f,kM
2. (23)

By leveraging Lemma 12, we now provide the main convergence result for subgradient-based
schemes for resolving misspecified convex optimization problems.

Proposition 13 (Global convergence for diminishing steplength schemes). Let Assump-
tions 9, 10, and 11 hold. Additionally, let γf,k be defined based on Assumption 3 and γg,k be
fixed at γg so that 0 < γg < 2/Gg. Let {xk, θk} be the sequences generated by Algorithm 2. Then,
{xk} converges to a point in X∗ and {θk} converges to θ∗ ∈ Θ.

Proof. Using (23) for y = x∗, where x∗ is any point in X∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γf,k(f(xk, θ
∗)− f(x∗, θ∗)) + 4Lf,θγf,k‖θk − θ∗‖+ γ2

f,kM
2.

To prove the convergence, we employ Lemma 5. Since ‖θk − θ∗‖ ≤ qkg‖θ0 − θ∗‖, we have that

∞∑
k=0

4Lf,θγf,k‖θk − θ∗‖ ≤
4Lf,θ‖θ0 − θ∗‖

1− qg
<∞ and

∞∑
k=0

γ2
f,kM

2 <∞.

Hence, conditions of Lemma 5 are satisfied and xk → x̄ ∈ X as k →∞ and
∑∞

k=0 γf,k(f(xk, θ
∗)−

f(x∗, θ∗)) < ∞. Because
∑∞

k=0 γf,k = ∞, we can conclude that lim infk→∞ f(xk, θ
∗) = f(x∗, θ∗).

This implies that a subsequence of {xk} converges to a point in X∗. But the entire sequence is
convergent, implying that the entire sequence converges to a point in X∗. Furthermore, θk → θ∗

as k →∞.

In keeping with the focus of this paper, we now provide derive rate statements for the function
iterates where we quantify the impact of learning.

Proposition 14 (Rate analysis with averaging). Let Assumptions 9 , 10, and 11 hold. Let
γg,k be fixed at γg such that 0 < γg < 2/Gg. Consider the sequence {xk, θk} generated by Algorithm

2 and x̄k ,
∑k
i=0 γf,ixi∑k
i=0 γf,i

. Then the following hold:

(i) If γf,k is defined based on Assumption 3, then

lim
k→∞

|f(x̄k, θk)− f(x∗, θ∗)| = 0.



(ii) Suppose Algorithm 2 is to be terminated after K iterations and γf (the optimal constant
steplength) is defined as

γf,K=
‖x0 − x∗‖
M
√
K + 1

, (24)

then

|f(x̄K , θK)− f(x∗, θ∗)| ≤ dx√
K + 1

+ ‖θ0 − θ∗‖
(
Lf,θq

K
g +

cθ
(K + 1)

)
,

where dx = M‖x0 − x∗‖ and cθ = 2Lf,θ/(1− qg).

Proof. (i) By letting y = x∗ in (23) and by summing (23) over k, we have that the following holds:

‖xk+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − 2
k∑
i=0

γf,i(f(xi, θ
∗)− f(x∗, θ∗)) + 4Lf,θ

k∑
i=0

γf,i‖θi − θ∗‖+M2
k∑
i=0

γ2
f,i.

By the nonnegativity of ‖xk+1 − x∗‖2, it follows that

2
k∑
i=0

γf,i(f(xi, θ
∗)− f(x∗, θ∗)) ≤ ‖x0 − x∗‖2 + 4Lf,θ

k∑
i=0

γf,i‖θi − θ∗‖+M2
k∑
i=0

γ2
f,i. (25)

From the convexity of f(x, θ∗) in x, we have the following:

2∑k
i=0 γf,i

k∑
i=0

γf,i(f(xi, θ
∗)− f(x∗, θ∗)) ≥ 2 (f(x̄k, θ

∗)− f(x∗, θ∗)) . (26)

By combining (25) and (26), we obtain the inequality

f (x̄k, θ
∗)− f(x∗, θ∗) ≤

‖x0 − x∗‖2 +M2
∑k

i=0 γ
2
f,i

2
∑k

i=0 γf,i
+

2Lf,θ
∑k

i=0 γf,i‖θi − θ∗‖∑k
i=0 γf,i

.

Notably, the second term arises from learning and can be further bounded as follows:

2Lf,θ

k∑
i=0

γf,i‖θi − θ∗‖ ≤ 2Lf,θγf,0‖θ0 − θ∗‖
k∑
i=0

qig ≤
2Lf,θγf,0‖θ0 − θ∗‖(1− qk+1

g )

1− qg
.

Consequently, we may bound f(x̄k, θ
∗)− f(x∗, θ∗) as follows:

f (x̄k, θ
∗)− f(x∗, θ∗) ≤

‖x0 − x∗‖2 +M2
∑k

i=0 γ
2
f,i

2
∑k

i=0 γf,i
+

2Lf,θγf,0‖θ0 − θ∗‖(1− qk+1
g )

(1− qg)
∑k

i=0 γf,i
.

It follows that |f(x̄k, θk)− f(x∗, θ∗)| may be bounded as follows:

|f(x̄k, θk)− f(x∗, θ∗)| ≤ |f(x̄k, θk)− f(x̄k, θ
∗)|+ |f(x̄k, θ

∗)− f(x̄k, θ
∗)|

≤ Lf,θqkg‖θ0 − θ∗‖+
‖x0 − x∗‖2 +M2

∑k
i=0 γ

2
f,i

2
∑k

i=0 γf,i
+

2Lf,θγf,0‖θ0 − θ∗‖(1− qk+1
g )

(1− qg)
∑k

i=0 γf,i
.



Since qg < 1,
∑∞

i=0 γf,i =∞, and
∑∞

i=0 γ
2
f,i <∞, it follows that limk→∞ |f(x̄k, θk)− f(x∗, θ∗)| = 0.

(ii) Next, if we assume that the steplength is fixed at γf , after k = K iterations, the bound on the
error is given by the following:

|f(x̄K , θK)− f(x∗, θ∗)| ≤ Lf,θqKg ‖θ0 − θ∗‖+
‖x0 − x∗‖2 +M2(K + 1)γ2

f

2(K + 1)γf
+

2Lf,θ‖θ0 − θ∗‖(1− qK+1
g )

(1− qg)(K + 1)
.

If we minimize the right hand side with respect to γf , we arrive at the best optimal constant stepsize

γf,K=
‖x0 − x∗‖
M
√
K + 1

.

Using this step length, we have the optimal convergence rate of

|f(x̄K , θK)− f(x∗, θ∗)| ≤ Lf,θqKg ‖θ0 − θ∗‖+
2Lf,θ‖θ0 − θ∗‖(1− qK+1

g )

(1− qg)(K + 1)
+
M‖x0 − x∗‖√

K + 1

≤ dx√
K + 1

+ ‖θ0 − θ∗‖
(
Lf,θq

K
g +

2Lf,θ
(1− qg)(K + 1)

)
=

dx√
K + 1

+ ‖θ0 − θ∗‖
(
Lf,θq

K
g +

cθ
(K + 1)

)
︸ ︷︷ ︸

Impact from learning

,

where dx = M‖x0 − x∗‖ and cθ = 2Lf,θ/(1− qg).

Remark: Standard subgradient methods for convex optimization display a convergence rate of
O(1/

√
K) in function value [29]. Notably, the joint scheme shows no degradation in the rate,

not even in a constant factor sense. More specifically, the modification in the rate is given by
‖θ0 − θ∗‖O

(
1
K + qK

)
, with both terms arising from learning diminishing to zero at a faster rate.

This factor is scaled by the distance of θ0 from its true value θ∗ and we recover the original rate if
θ0 = θ∗.

3 Misspecified monotone variational inequality problems

In the problem formulation investigated thus far, the misspecified parameter θ∗ lay in the objective
function f . Yet in many instances, the misspecification may also arise in the constraint set. In
particular, consider the following misspecified problem (C′(θ∗)), defined as

min
x∈X(θ∗)

f(x, θ∗), (C′(θ∗))

where x ∈ Rn, f : X ×Θ→ R is a convex function in x for every θ ∈ Θ ⊆ Rm. One approach is to
relax the constraints that are misspecified and consider a Lagrangian (or an augmented Lagrangian)
approach. Another approach lies in leveraging the convexity of the problem and considering the
complementarity problem arising from the first-order (sufficient) optimality conditions. It is well
known that if the constraints set X(θ∗) has an algebraic structure given by

X(θ∗) , {x : h(x; θ∗) ≥ 0 , x ≥ 0} ,

where h(x, θ) is a convex function in x for every θ, then the first-order conditions are given by

0 ≤ x ⊥ ∇xf(x, θ)−∇xh(x, θ)Tλ ≥ 0,

0 ≤ λ ⊥ h(x, θ) ≥ 0,
(CP(θ))



where u ⊥ v ≡ [u]i[v]i = 0 for every i. It is well known [10] that this complementarity problem
(CP(θ)) is equivalent to VI(Z,F (.; θ)), where Z , Rm+n

+ and F (z), defined as

F (z) ,

(
∇xf(x, θ)−∇xh(x, θ)Tλ

h(x, θ)

)
,

is a monotone map. More generally, variational inequality problems represent a broadly encom-
passing tool for capturing a range of equilibrium problems arising in economics, engineering, and
applied sciences (cf. [13]). This motivates us to extend the realm of computational problems to
accommodate the class of misspecified monotone variational inequality problems, which is formally
defined later in this section. By doing so, we may not only accommodate the problem (C′(θ∗)), but
also we can consider a far broader class of misspecified problems.

Given a set X ⊆ Rn and F : X → Rn, a single-valued mapping, then a variational inequality
problem VI(X,F ) requires an x ∈ X such that (y − x)TF (x) ≥ 0 for all y ∈ X. More specifically,
we consider the misspecifed variational inequality problem VI(X,F (•; θ∗)) where F : X ×Θ→ Rn:

(y − x)TF (x; θ∗) ≥ 0, ∀y ∈ X. (V(θ∗))

In Subsections 3.1 and 3.2, we present extragradient and regularized first-order schemes, respec-
tively, for misspsecified monotone variational inequality problems with strongly convex learning
problems. Throughout this section, we make the following assumption on the learning function g
and map F .

Assumption 12. (a) The function g is differentiable, strongly convex with constant ηg, and
Lipschitz continuous in gradient with constant Gg.

(b) The map F is monotone in x and uniformly Lipschitz continuous in x and θ with constants
LF,x and LF,θ, respectively:

‖F (x1; θ)− F (x2; θ)‖ ≤ LF,x‖x1 − x2‖ ∀x1, x2 ∈ X, ∀θ ∈ Θ,

‖F (x, θ1)− F (x, θ2)‖ ≤ LF,θ‖θ1 − θ2‖ ∀θ1, θ2 ∈ Θ, ∀x ∈ X.

3.1 Extragradient schemes

The extragradient scheme was first proposed by Korpolevich [30] and such approaches have been
enormously useful in the solution of both convex optimization problems and monotone variational
inequality problems [13] via constant steplength schemes. Subsequently, Nemirovski [31] proposed
a prox-type method with a general distance function with convergence rate of O(1/K), which
is equivalent to extragradient scheme under a Euclidian distance function. In this subsection, we
consider whether the extragradient framework can be extended to the regime of interest and propose
a misspecified variant of the extragradient scheme:

Algorithm 3 (A joint extragradient scheme). Given x0 ∈ X, θ0 ∈ Θ and a steplength τ ,

zk+1 := ΠX(xk − τF (xk; θk)) ∀k > 0, (Extrax(θk))

xk+1 := ΠX(xk − τF (zk+1; θk)) ∀k > 0, (Extraz(θk))

θk+1 := ΠΘ(θk − γg∇θg(θk)) ∀k > 0. (Learn)

Unlike the standard projected gradient framework, the extragradient scheme requires two con-
secutive gradient steps with the same belief θk. Note that the proof of convergence follows along
the lines of that provided by Facchinei and Pang [32], but with some care required to handle the
extra terms arising from learning. We begin by presenting a supporting Lemma.



Lemma 15. Let Assumption 12 holds and {xk, θk} be the sequence generated by Algorithm 3. If
x∗ is a point in X∗, then for all k,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− τ2L2
F,x)‖zk+1 − xk‖2 + 2τLF,θ‖θk+1 − θ∗‖‖x∗ − zk+1‖.

Proof. By the projection property, we have that for any x ∈ Rn,

‖ΠX(x)− z‖2 ≤ ‖x− z‖2 − ‖ΠX(x)− x‖2 for all z ∈ X.

Using above relation with x = xk − τF (zk+1; θk) and z = x∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − τF (zk+1; θk)− x∗‖2 − ‖xk+1 − (xk − τF (zk+1; θk))‖2.

By expanding the terms on the right hand side, we have

‖xk+1 − x∗‖2 (27)

≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2τF (zk+1; θk)
T (x∗ − xk+1)

≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2τF (zk+1; θ∗)T (x∗ − xk+1)

+ 2τ(F (zk+1; θk)− F (zk+1, θ
∗))T (x∗ − xk+1)

≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2τF (zk+1; θ∗)T (x∗ − xk+1) + 2τrTk+1(x∗ − xk+1), (28)

where the second inequality is a consequence of adding and subtracting F (zk+1, θ
∗)T (x∗ − xk+1)

and rk+1 is defined as rk+1 , F (zk+1, θk)− F (zk+1, θ
∗). By the monotonicity of F (•; θ∗) over X,

it follows that

(F (zk+1, θ
∗)− F (x∗, θ∗))T (zk+1 − x∗) ≥ 0,

and since x∗ ∈ X∗, the above inequality can be simplified to F (zk+1, θ
∗)T (zk+1 − x∗) ≥ 0. Hence,

by adding and subtracting xk+1 in the above inequality, we obtain that

F (zk+1; θ∗)T (zk+1 − xk+1) + F (zk+1; θ∗)T (xk+1 − x∗) ≥ 0,

which implies
F (zk+1; θ∗)T (zk+1 − xk+1) ≥ F (zk+1; θ∗)T (x∗ − xk+1).

Using this relation in (28), we see that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2τF (zk+1, θ
∗)T (zk+1 − xk+1) + 2τrTk+1(x∗ − xk+1)

≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2τF (zk+1, θ
∗)T (xk+1 − zk+1) + 2τrTk+1(x∗ − xk+1).

By writing xk+1 − xk = (xk+1 − zk+1) + (zk+1 − xk), we can expand ‖xk+1 − xk‖2 as follow:

‖xk+1 − xk‖2 = ‖(xk+1 − zk+1) + (zk+1 − xk)‖2

= ‖xk+1 − zk+1‖2 + ‖zk+1 − xk‖2 − 2(xk − zk+1)T (xk+1 − zk+1).

By combining the terms in the inner product with xk+1 − zk+1, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − zk+1‖2 − ‖zk+1 − xk‖2

+ 2(xk+1 − zk+1)T (xk − τF (zk+1, θ
∗)− zk+1) + 2τrTk+1(x∗ − xk+1). (29)



Through the addition and subtraction of terms, (xk+1−zk+1)T (xk−τF (zk+1, θ
∗)−zk+1) as follows:

(xk+1 − zk+1)T (xk − τF (zk+1, θ
∗)− zk+1) = (xk+1 − zk+1)T (xk − τF (xk, θk)− zk+1)

+ τ(xk+1 − zk+1)T (F (xk, θk)− F (zk+1, θk))

+ τ(xk+1 − zk+1)T (F (zk+1, θk)− F (zk+1, θ
∗)).

Since xk+1 ∈ X and zk+1 = ΠX(xk−τF (xk, θk)), the first term on the right hand side is nonpositive
by the projection property. By leveraging this property and the Lipschitz continuity of F (•, θ∗) in
x, we have

(xk+1 − zk+1)T (xk − τF (zk+1, θ
∗)− zk+1)

≤ τ(xk+1 − zk+1)T (F (xk, θk)− F (zk+1, θk)) + τ(xk+1 − zk+1)T (F (zk+1, θk)− F (zk+1, θ
∗))

≤ τLF,x‖xk+1 − zk+1‖‖xk − zk+1‖+ τrTk+1(xk+1 − zk+1)

≤ 1

2
(‖xk+1 − zk+1‖2 + τ2L2

F,x‖xk − zk+1‖2) + τrTk+1(xk+1 − zk+1). (30)

From the Lipschitz continuity of F (x, θ) in θ, it follows that ‖rk+1‖ = ‖F (zk+1, θk)−F (zk+1, θ
∗)‖ ≤

LF,θ‖θk − θ∗‖. By employing this bound and by substituting (30) in (29), the result follows.

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − zk+1‖2 − ‖zk+1 − xk‖2 + ‖xk+1 − zk+1‖2 + τ2LF,x
2‖xk − zk+1‖2

+ 2τ‖rk+1‖‖x∗ − zk+1‖
= ‖xk − x∗‖2 − (1− τ2LF,x

2)‖zk+1 − xk‖2 + 2τ‖rk+1‖‖x∗ − zk+1‖
= ‖xk − x∗‖2 − (1− τ2L2

F,x)‖zk+1 − xk‖2 + 2τLF,θ‖θk − θ∗‖‖x∗ − zk+1‖.

We now leverage this result in proving the convergence of the iterates produced by Algorithm 3.

Theorem 16 (Convergence of extragradient scheme). Let Assumption 12 holds and Θ is
bounded. In addition, assume that stepsize γg,k is fixed at γg, where γg <

2
Gg

. Let {xk, θk} be the
sequence generated by Algorithm 3 with

τ2 <
1

L2
F,x + 2LF,θ‖θ0 − θ∗‖

.

Then {xk} converges to a point in X∗ and {θk} converges to θ∗ ∈ Θ as k →∞.

Proof. From Lemma 15, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− τ2L2
F,x)‖zk+1 − xk‖2 + 2τLF,θ‖θk − θ∗‖‖x∗ − zk+1‖,

where x∗ is any point in X∗. By writing x∗− zk+1 = (xk − zk+1) + (x∗−xk) and using the triangle
inequality, we obtain that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− τ2L2
F,x)‖zk+1 − xk‖2 + 2τLF,θ‖θk − θ∗‖(‖xk − zk+1‖+ ‖x∗ − xk‖)

≤ ‖xk − x∗‖2 − (1− τ2L2
F,x)‖zk+1 − xk‖2

+ LF,θ‖θk − θ∗‖(τ2‖xk − zk+1‖2 + τ2‖x∗ − xk‖2 + 2),



from 2a ≤ a2 + 1. By strong convexity of function g, there exist a constant qg ∈ (0, 1) such that
‖θk − θ0‖ ≤ qk−1

g ‖θ0 − θ∗‖. By replacing this bound into the above inequality and then combining
the similar terms, we get

‖xk+1 − x∗‖2

≤ ‖xk − x∗‖2 − (1− τ2L2
F,x)‖zk+1 − xk‖2 + LF,θq

k−1
g ‖θ0 − θ∗‖

(
τ2‖xk − zk+1‖2 + τ2‖x∗ − xk‖2 + 2

)
≤ (1 + τ2LF,θ‖θ0 − θ∗‖qk−1

g )‖xk − x∗‖2 − (1− τ2(L2
F,x + LF,θ‖θ0 − θ∗‖qk−1

g ))‖zk+1 − xk‖2

+ 2LF,θq
k−1
g ‖θ0 − θ∗‖. (31)

To prove that the sequence {xk} converges to a point in X∗, we make use of Lemma 5. To check
that conditions of Lemma are satisfied, we first see that

∞∑
k=1

τ2LF,θ‖θ0−θ∗‖qk−1
g ≤

τ2LF,θ‖θ0 − θ∗‖
1− qg

<∞ and
∞∑
k=1

2LF,θq
k−1
g ‖θ0 − θ∗‖ ≤

2LF,θ‖θ0 − θ∗‖
1− qg

<∞.

In addition, τ satisfies the following for every k:

τ2 <
1

L2
F,x + LF,θ‖θ0 − θ∗‖

≤ 1

L2
F,x + LF,θ‖θ0 − θ∗‖qk−1

g

.

Consequently, (1−τ2(L2
F,x+LF,θ‖θ0−θ∗‖qk−1

g )) > 0 for all k > 0. Then, by Lemma 5, we have that

(i) {‖xk−x∗‖} is a convergent sequence and (ii)
∑∞

k=1(1−τ2(L2
f,x+Lf,θ‖θ0−θ∗‖qk−1

g ))‖zk+1−xk‖2 <
∞. By (i), {xk} → x̄ as k → ∞ where x̄ is not necessarily a point in X∗. Since (ii) holds and by
observing that

∑∞
k=1(1−τ2(L2

f,x+Lf,θ‖θ0−θ∗‖qk−1
g )) =∞, it follows that lim infk→∞ ‖zk+1−xk‖ =

0. Consequently, we have that for some subsequence K,

x̄ = lim
K3k→∞

xk = lim
K3k→∞

zk+1 = lim
K3k→∞

ΠX(xk − τF (xk; θk)) = ΠX(x̄− τF (x̄, θ∗)).

This implies that x̄ is a point in X∗. But since {xk} is a convergent sequence, the entire sequence
converges to x̄ and the result follows.

Remark: It can be observed that if θ0 = θ∗, then we recover the standard bound on the
steplength for extragradient schemes. While we do not analyze the rate of extragradient schemes, we
believe that analogous rate statements may be possible, akin to those provided by Nemirovski [31].

3.2 Regularized schemes for monotone VIs

Consider a perfectly specified problem VI(X,F ), where F is a monotone map over a set X ⊆ Rn
and assume that x∗ denotes its least square norm solution. Consider the ε-regularized problem,
denoted by VI(X,F + εI), where ε is a positive constant and I is an identity map. Since the map
F + εI is strongly monotone as a consequence of the regularization, VI(X,F + εI) admits a unique
solution. This motivates the exact Tikhonov regularization method that generates a sequence {zk}
where zk solves VI(K,F + εkI), εk denotes the regularization at the kth iteration, and εk → 0 as
k → ∞. Under suitable conditions (see [33, 34, 10, Ch.12]) the sequence {zk} converges to z∗

as εk → 0. The standard structure of the Tikhonov regularization scheme requires obtaining exact
or increasingly exact solutions of the subproblems VI(X,F + εkI), a relatively costly process. An
alternative lies in taking a simple projected gradient step on the regularized map [26] and updating
the regularization and steplength sequence at appropriate rates. This framework appears to have



been first mentioned in [35] and further analyzed in [36] and is often referred to as iterative
Tikhonov regularization and defined as follows:

xk+1 := ΠX (xk − γk(F (xk) + εkxk)) ∀k > 0,

where γk and εk are two vanishing sequences satisfying certain requirements. The reader can refer
to [36] for more details. Inspired by this framework, we introduce a class of (Tikhonov) regularized
schemes for the solution of misspecified monotone variational inequality problems:

Algorithm 4 (A regularized projection scheme). Given an x0 ∈ X and θ0 ∈ Θ and sequences
{γf,k, γg,k} and {εk},

xk+1 := ΠX (xk − γf,k(F (xk, θk) + εkxk)) ∀k > 0, (Var(θk, εk))

θk+1 := ΠΘ (θk − γg,k∇θg(θk)) ∀k > 0. (Learn)

In our analysis, we consider two auxiliary sequences {xtk} and {ztk}, defined as follows:

xtk := ΠX(xtk − γf,k(F (xtk, θk) + εkx
t
k)) ∀k > 0, (Tik(θk))

ztk := ΠX(ztk − γf,k(F (ztk, θ
∗) + εkz

t
k)) ∀k > 0. (Tik(θ∗))

Note that {xtk} denotes the Tikhonov sequence associated with an estimate of θ∗, given by θk, and
each iterate represents the solution of the regularized problem VI(X,F (•; θk) + εkI). The iterate
xtk can be viewed as a solution to a fixed-point problem, an alternative avenue for stating that xtk is
a solution of VI(X,F (•; θk) + εkI). Analogously {ztk} represents a sequence in which each iterate is
a solution to the regularized problem VI(X,F (•; θ∗) + εkI). In what follows, we present a series of
Lemmas that will be used to prove the convergence of the sequence {xk} to the least-norm solution
of problem V(θ∗). The proof sketch is as follows: In Lemma 17, we relate {xtk} with {ztk} and show
that as θk converges to θ∗, {xtk} converges to {ztk}. Lemmas 18, 19 and 20, when combined,
show that as k →∞, the iterative Tikhonov sequence {xk} converges to the sequence {xtk}, by first
deriving the bound on ‖xk − xtk‖ and then showing that this bound goes to zero. Consequently,
convergence of {xk} to the least norm solution will be immediate since we know that ‖xtk−ztk‖ → 0
as k →∞ and {ztk} converges to the least norm solution of problem V(θ∗). We make the following
assumptions on the set X and also on the stepsize and regularization sequences:

Assumption 13. The set X is compact and supx∈X ‖x‖ ≤M , where M is a constant.

Assumption 14. The following hold:

(a) 0 < γf,k ≤ εk
(LF,x+εk)2

≤ ε0
L2
F,x

for all k;

(b) γf,kεk < 1 and
∑∞

k=1 γf,kεk =∞;

(c) limk→∞
|εk−1−εk|
γf,kε

2
k

= 0;

(d) γg,k , γg such that γg < 2/Gg, limk→∞
qkg
εk

= 0 and limk→∞
qk−1
g

γf,kε
2
k

= 0, where qg ,√
1− γgηg(2− γgGg).

Lemma 17. Let Assumptions 12 and 14 hold. Consider the sequences {xtk} and {ztk} generated
by (Tik(θ∗)) and (Tik(θk)). Then, ‖xtk − ztk‖ → 0 as k →∞.



Proof. By the definition of xtk, we have the following: (ztk − xtk)T (F (xtk; θk) + εkx
t
k) ≥ 0. Similarly,

we have the following: (xtk − ztk)T (F (ztk; θ
∗) + εkz

t
k) ≥ 0. By adding the two inequalities, we obtain

the following:
(ztk − xtk)T (F (xtk; θk)− F (ztk; θ

∗)) ≥ εk‖xtk − ztk‖2.
By using monotonicity of F (•; θ∗) and Lipschitz continuity of F , this inequality can be recast as
follows:

εk‖xtk − ztk‖2 ≤ (ztk − xtk)T (F (xtk; θk)− F (ztk; θ
∗))

= (ztk − xtk)T (F (xtk; θk)− F (xtk; θ
∗) + F (xtk; θ

∗)− F (ztk; θ
∗))

= (ztk − xtk)T (F (xtk; θk)− F (xtk; θ
∗)) + (ztk − xtk)T (F (xtk; θ

∗)− F (ztk; θ
∗))︸ ︷︷ ︸

≤0

≤ (ztk − xtk)T (F (xtk; θk)− F (xtk; θ
∗)) ≤ ‖ztk − xtk‖LF,θ‖θk − θ∗‖.

It can then be concluded that

‖ztk − xtk‖ ≤
LF,θ
εk
‖θk − θ∗‖ ≤

LF,θ
εk

qkg‖θ0 − θ∗‖,

where the second inequality is a consequence of the strong convexity of g, by which θk converges
to θ∗ at a geometric rate qg ,

√
1− γgGg(2− γgGg). Using Assumption 14(d), it follows that

limk→∞ ‖ztk − xtk‖ = 0.

We now develop a bound on ‖xtk − xtk−1‖ in terms of the regularization parameters εk and εk−1

and the estimates θk and θk−1.

Lemma 18. Let Assumptions 12, 13 and 14(d) hold. Suppose xtk and xtk−1 are defined by Tik(θk)
and Tik(θk−1) respectively. Then, we have that ‖xtk − xtk−1‖ can be bounded as follows:

‖xtk − xtk−1‖ ≤
LF,θq

k−1
g Cg

εk
+
M

εk
|εk−1 − εk|,

where qg ,
√

1− γgGg(2− γgGg), Cg , ‖θ0 − θ∗‖(1 + qg), and M is defined in Assumption 13.

Proof. We begin by recalling that xtk−1 and xtk satisfy the following inequalities:

(xtk−1 − xtk)T (F (xtk, θk) + εkx
t
k) ≥ 0, and (xtk − xtk−1)T (F (xtk−1, θk−1) + εk−1x

t
k−1) ≥ 0.

Adding both inequalities, we obtain that

(xtk−1 − xtk)T (F (xtk, θk)− F (xtk−1, θk−1)) + (xtk−1 − xtk)T (εkx
t
k − εk−1x

t
k−1) ≥ 0.

By adding and subtracting (xtk−1−xtk)TF (xtk−1, θk) and (xtk−1−xtk)T εkxtk−1, we obtain the following
by using the monotonicity of F (x, θ) in x:

(xtk−1 − xtk)T (F (xtk−1, θk)− F (xtk−1, θk−1)) + (xtk−1 − xtk)T (εkx
t
k−1 − εk−1x

t
k−1)

≥ (xtk−1 − xtk)T (F (xtk−1, θk)− F (xtk, θk)) + εk(x
t
k−1 − xtk)T (xtk−1 − xtk) ≥ εk‖xtk−1 − xtk‖2.

Consequently, by leveraging Cauchy-Schwartz inequality and by invoking the bound ‖x‖ ≤M , we
obtain the following bound:

εk‖xtk−1 − xtk‖2 ≤ LF,θ‖xtk−1 − xtk‖‖θk − θk−1‖+ ‖xtk−1‖‖xtk−1 − xtk‖|εk−1 − εk|

=⇒ ‖xtk−1 − xtk‖ ≤
LF,θ
εk
‖θk − θk−1‖+

‖xtk−1‖
εk

|εk−1 − εk| ≤
LF,θ
εk
‖θk − θk−1‖+

M

εk
|εk−1 − εk|.



Furthermore, ‖θk − θk−1‖ can be bounded as follows:

‖θk − θk−1‖ ≤ ‖θk − θ∗‖+ ‖θk−1 − θ∗‖ ≤ qkg‖θ∗ − θ0‖+ qk−1
g ‖θ∗ − θ0‖ = qk−1

g Cg.

The resulting bound on ‖xtk−xtk−1‖ can be further simplified as ‖xtk−xtk−1‖ ≤
LF,θq

k−1
g Cg
εk

+M
εk
|εk−1−

εk|.

Next, we proceed to derive a bound on the difference ‖xk+1 − xtk‖.

Lemma 19. Let Assumptions 12, 13 and 14(d) hold. Suppose {xk} and {xtk} are sequences
generated by Algorithm 4 and (Tik(θk)). Then, ‖xk+1 − xtk‖ can be bounded as follows:

‖xk+1 − xtk‖ ≤ qk‖xk − xtk−1‖+
qkLf,θq

k−1
g Cg

εk
+
Mqk
εk
|εk−1 − εk|,

where qk ,
√

(1 + γ2
f,k(LF,x + εk)2 − 2γf,kεk) and Cg, qg and M are constants defined in Lemma

18.

Proof. We begin by bounding ‖xk+1 − xtk‖ by leveraging the nonexpansivity of the Euclidean
projector.

‖xk+1 − xtk‖2 = ‖ΠX(xk − γf,k(F (xk; θk) + εkxk))−ΠX(xtk − γf,k(F (xtk; θk) + εkx
t
k))‖2

≤ ‖xk − γf,k(F (xk; θk) + εkxk)− (xtk − γf,k(F (xtk; θk) + εkx
t
k)‖2

= ‖xk − xtk‖2 + γ2
f,k‖F (xk, θk) + εkxk − (F (xtk; θk) + εkx

t
k)‖2

− 2γf,k(xk − xtk)T (F (xk; θk) + εkxk − (F (xtk; θk) + εkx
t
k).

The Lipschitzian property of F (x; θ) in x uniformly in θ and the strong monotonicity of (F (x; θ)+εx)
in x uniformly in θ allows for deriving the following bound.

‖xk − xtk‖2 + γ2
f,k‖F (xk, θk) + εkxk − (F (xtk, θk) + εkx

t
k)‖2

− 2γf,k(xk − xtk)T (F (xk, θk) + εkxk − (F (xtk, θk) + εkx
t
k)

≤ ‖xk − xtk‖2 + γ2
f,k(LF,x + εk)

2‖xk − xtk‖2 − 2γf,kεk‖xk − xtk‖2

= (1 + γ2
f,k(LF,x + εk)

2 − 2γf,kεk)‖xk − xtk‖2,

which can be simplified to ‖xk+1−xtk‖ ≤ qk‖xk−xtk‖ where qk , (1+γ2
f,k(LF,x+ εk)

2−2γf,kεk)
1/2.

By using the triangle inequality, the above inequality can be expanded as the following:

‖xk+1 − xtk‖ ≤ qk‖xk − xtk‖ ≤ qk‖xk − xtk−1‖+ qk‖xtk − xtk−1‖ (32)

By combining (32) and Lemma 18, we obtain the following:

‖xk+1 − xtk‖ ≤ qk‖xk − xtk−1‖+
qkLf,θq

k−1
g Cg

εk
+
Mqk
εk
|εk−1 − εk|.

We now leverage this bound to show that ‖x− xtk‖ → 0 as k →∞.

Lemma 20. Let Assumptions 12, 13 and 14 hold. Consider the sequence {xk} and {xtk} generated
by Algorithm 4 and (Tik(θk)), respectively. Then, limk→∞ ‖xk − xtk‖ = 0.



Proof. This requires the use of Lemma 19 and Lemma 1.
(i) Under Assumption 14(a), we have that

qk =
√

(1 + γ2
f,k(LF,x + εk)2 − 2γf,kεk) =

√
(1− γf,k(2εk − γf,k(LF,x + εk)2)) ≤

√
(1− γf,kεk)< 1,

where the last inequality follows from Assumption 14(b). Hence, we obtain the following:

∞∑
k=1

(1− qk) =

∞∑
k=1

(1− q2
k)

1 + qk
≥ 1

2

∞∑
k=1

(1− q2
k) ≥

1

2

∞∑
k=1

γf,kεk =∞,

where the last equality follows from Assumption 14(b).
(ii) Under Assumption 14, we obtain the following:

lim
k→∞

[
qkLf,θq

k−1
g Cg

(1− qk)εk
+

Mqk
(1− qk)εk

|εk−1 − εk|

]

= lim
k→∞

[
(1 + qk)qkLf,θq

k−1
g Cg

(1− q2
k)εk

+
Mqk(1 + qk)

(1− q2
k)εk

|εk−1 − εk|

]

≤ lim
k→∞

[
(1 + qk)qkLf,θq

k−1
g Cg

γf,kε
2
k

+
Mqk(1 + qk)

γf,kε
2
k

|εk−1 − εk|

]

≤ lim
k→∞

[
2Lf,θq

k−1
g Cg

γf,kε
2
k

+
2M

γf,kε
2
k

|εk−1 − εk|

]
= 0,

where the last inequality follows from Assumption 14(b) (since γf,kεk < 1 for all k implying qk < 1)
and the last equality is a consequence of invoking Assumption 14 (d) and (c). Hence, conditions
of Lemma 1 are met. This completes the proof.

We now prove the convergence of the regularized gradient schemes by showing that ‖xtk−ztk‖ → 0
as k →∞.

Theorem 21 (Convergence of regularized scheme). Let Assumptions 12, 13 and 14 hold.
Consider the sequence {xk, θk} generated by Algorithm 4. Then, {xk} converges to x∗ as k →∞,
where x∗ denotes the least-norm solution of X∗ and {θk} converges to θ∗ ∈ Θ.

Proof. From Lemma 20, it can be concluded that xk → xtk as k → ∞. Furthermore, Lemma
17 guarantees that xtk → ztk as k → ∞. Moreover, the sequence of solutions to the (Tikhonov)
regularized problems, denoted by {ztk}, converges to x∗, the least norm solution of VI(X,F (•; θ∗))
(cf. [10, Ch. 12]). It follows that xk → x∗ as k →∞.

A natural question is whether there is indeed a feasible choice of steplength sequences that
satisfies the prescribed assumptions. In the next Lemma, we show that there exists a feasible
choice of stepsizes that can satisfy requirements of Assumption 14.

Lemma 22. Let γf,k = 1
(LF,x+1)2(k+1)α

and εk = 1
(k+1)β

, where 0 < β < α < 1 and 0 < α+ β < 1.

Then, conditions of Assumption 14 are satisfied.

Proof. (a) It can be seen by the choices of γf,k and εk that

γf,k =
1

(LF,x + 1)2(k + 1)α
≤ 1

(LF,x + 1)2(k + 1)β
≤

,εk/(LF,x+ε2k)︷ ︸︸ ︷
1

(LF,x + 1
k+1

2β
)(k + 1)β

≤ 1

L2
F,x(k + 1)β

.



(b)
∑∞

k=1 γf,kεk =
∑∞

k=1
1

(LF,x+1)2(k+1)α+β
≥
∑∞

k=1
1

k+1 =∞.
(c) If t , (k + 1), we may express the required limitas follows:

lim
k→∞

εk−1 − εk
γf,kε

2
k

= lim
k→∞

1
kβ
− 1

(k+1)β

1
(k+1)α+2β

= lim
k→∞

(
k + 1

k

)β
lim
k→∞

(k + 1)β − kβ

(k + 1)−α
= lim

k→∞

1−
(

k
k+1

)β
(k + 1)−α−β

= lim
t→∞

1−
(
1− 1

t

)β
t−α−β

.

Since this limit is of the form of 0/0, we may use L’Hôpital’s rule to express the limit as follows:

lim
t→∞

1−
(
1− 1

t

)β
t−α−β

= lim
t→∞

−β
(
1− 1

t

)β−1 1
t2

(−α− β)t−α−β−1
= lim

t→∞
−β
(

1− 1

t

)β−1

lim
t→∞

1

(−α− β)t1−α−β
= 1× 0 = 0.

(d) We have that limk→∞
qk−1
g

γf,kε
2
k

= limk→∞
qk−1
g
1

(k+1)α+2β

= 0, since the numerator converges to zero

at a faster rate than the denominator. In addition, limk→∞
qkg
εk

= limk→∞
qkg
1

(k+1)β

= 0 for the same

reason.

4 Numerical Results

In this section, we present some numerical results that support the converence and rate analysis
provided earlier. In Section 4.1, we describe the economic dispatch problem which will form the
basis of our computational investigations. On the basis of this problem, we consider the problem
of misspecified costs (Section 4.2) as well as misspecified demand (Section 4.3).

4.1 Economic dispatch problem

A traditional economic dispatch problem [25] requires scheduling of generation to meet demand
requirements in a least-cost fashion. The schedule has to abide by a set of capacity and ramping
constraints and is given by the following optimization problem:

min

T∑
t=1

N∑
i=1

ci(gi,t) (EDisp)

subject to
N∑
i=1

gi,t ≥ dt, ∀t = 1, . . . , T (33)

0 ≤ gi,t ≤ Gi ∀i, t = 1, . . . , T (34)

gi,t − gi,t−1 ≤ rup
i ∀i, t = 2, . . . , T (35)

gi,t−1 − gi,t ≤ rdown
i ∀i, t = 2, . . . , T, (36)

where N and T are number of generators and time periods, respectively. In addition, gi,t represents
output power of generator i at time t, and ci(·) is the generation cost function of generator i, dt
denotes load demand at period t, Gi is the capacity of generator i, and rup

i and rdown
i are the ramp-

up and ramp-down limits of generator i, respectively. Note that (33) is responsible for balancing
generation with demand while (34) ensures that the power output of generators stay within the
defined threshold. Constraints (35) and (36) are ramping rate bounds that simply ensure that
any change in power output is within a defined limit over consecutive periods.



4.2 Misspecified cost functions

In what follows, we consider a setting where generation cost functions are misspecified quadratic
functions modeled as ci(g; θi) = θi1g

2 + θi2g, where θi = (θi1, θi2) is unknown. Suppose that for
generator i, we have a prior collection of P samples denoted by (cij , gij), j = 1, . . . , P defined as
cij = θ∗i1g

2
ij + θ∗i2gij + ξj(ω) j = 1, . . . , P, where ξ is a random variable with mean zero. Then, the

misspecified parameter θ∗ = (θ∗i1, θ
∗
i2)i=Ni=1 is learnt by solving the following least squares problem:

min
θ∈R2×RN

h(θ), where h(θ) ,
1

NP

N∑
i=1

P∑
j=1

(cij − (θi1g
2
ij + θi2gij))

2.

In the first set of tests, we examine convergence of the constant and diminishing step length

# Capacity rup rdown

1 40 20 20
2 40 20 20
3 35 18 18
4 50 25 25
5 40 20 20

Table 3: Generator capacities and ramp limits

schemes proposed in Section 2.1.1. We consider a set of 5 generators with misspecified generation
cost function coefficients. The goal is to schedule the power output over 5 time periods. The
generators’ specifications are shown in Table 3. For each generator, a set of 1000 samples is
collected for constructing the learning problem. Figure 1 shows the behavior when using a constant
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Figure 1: Strongly convex Opt. and learning: Const. steplength (l) and Diminish. steplength (r)

steplength scheme, with γf = 0.04 and γg = 0.003. Note that the Lipschitz constants for the
gradient of optimization and learning functions are Gf,x = 20 and Gg = 250, respectively, while the
strong convexity constant of the optimization problem is ηf = 20. Hence, the prescribed stepsizes
satisfy the required conditions. The scheme is also compared to the case when using the optimal
θ∗ in the cost coefficient, requiring no learning. Expectedly, we observe slower convergence when
the cost function coefficients are misspecified. The figure on the right displays the trajectories
when using diminishing step length scheme with γf,k = γg,k = 1

k . Figure 2 plots the convergence



rate when using constant step size schemes and both the optimization and learning problems are
strongly convex.
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Figure 2: Strongly convex optimization: Impact on rate (l) and empirical vs. theor. rate (r)

Figure 2 (l) compares the error in solution iterates of optimization problem for the cases of
missipecified and known θ∗. As would be expected, when no learning is involved, we observe a
linear convergence rate as shown in the dashed line. However, when learning is incorporated, the
rate drops as shown by solid line. Figure 2 (r) compares the actual error in solution iterates of
misspecified optimization problem to the theoretically predicted bound obtained in Proposition 4
and supports the validity of the bound.

No. of generators
Constant step size, k = 5000 Diminishing step size, k = 15000 Averaging scheme, k = 15000

‖θk − θ∗‖ ‖f(gk,θ∗)−f∗‖
1+f∗ ‖θk − θ∗‖ ‖f(gk,θ∗)−f∗‖

1+f∗ ‖θk − θ∗‖ ‖f(gk,θ∗)−f∗‖
1+f∗

5 3.3e-3 9.4e-7 1.3e-3 5.7e-4 6.9e-7 3.4e-4
10 1.2e-2 2.7e-6 2.7e-3 6.0e-4 1.1e-6 5.8e-4
15 1.2e-1 5.4e-5 1.2e-3 5.9e-4 2.1e-6 5.6e-4
20 9.0e-1 3.0e-3 4.3e-2 1.2e-3 5.0e-6 6.6e-4

Table 4: Constant and diminishing stepsize and averaging schemes

In Table 4, we examine the performance of the various schemes as the problem size grows. The
implemented schemes are the constant step size scheme proposed in Proposition 2 , diminishing step
size scheme proposed in Proposition 3 and averaging scheme stated in proposition 6. We compare
the error in both the solution to the learning problem and the error in the function value associated
with the optimization problem after a prescribed set of iterations. While constant steplength
schemes perform well, the performance appears to be more affected by problem size in comparison
with diminishing steplength or averaging schemes. This can be traced to the observation that as
problem size grows, the Lipschitz constant of gradient of learn function increases as well and the
employed step sizes for constant step size scheme are adjusted accordingly.

Figure 3 displays the performance when using the averaging schemes proposed in Proposition
6. With known θ∗, the rate of convergence in function values is of the order of 1/K where K is
number of steps. In Figure 3 (l), the error in function values is shown as a dashed line when θ∗

is known and this rate drops by a constant factor when learning is involved as shown by the solid
line. Figure 3 (r) compares the theoretical bound in Proposition 6 with the empirical error. As
it is confirmed in this figure, the theoretically predicted rate represents an upper bound to the



actual convergence rate of averaging scheme. Table 4 displays the errors obtained from running
the averaging scheme for 15000 iterations with increasing number of generators.

1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

Iteration

E
rr

o
r 

in
 f

u
n

c
ti
o

n
 v

a
lu

e

 

 

Misspecified theta*
With known theta*

0 2000 4000 6000 8000 10000
0

500

1000

1500

Iteration

E
rr

o
r 

in
 f

u
n

c
ti
o

n
 v

a
lu

e

 

 

Theoretical error
Empirical error

Figure 3: Convex optimization: Impact on rate (l) and empirical vs. theor. (r)
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Figure 4: Nonsmooth convex optimization: empirical error vs. theor. bound

To test the joint subgradient scheme(Algorithm 2), we consider a nonsmooth generation cost
function that is the maximum of 3 linear functions and is defined as below:

ci(g; θi) = max
(
θi1g + θi2, θi3g + θi4, θi5g + θi6

)
i = 1, . . . , N

Figure 4 displays the result using the optimal constant step length scheme proposed in part (ii)
of Proposition 14. Given a terminal iteration index K, the optimal step length is first calculated
using (24) and then the scheme is terminated after K number of iterations. Figure 4 compares
the resulted empirical error in function value of averaged point versus the theoretical bound. As
shown in the figure, the empirical error is within the theoretical bound.

4.3 Misspecified demand

Suppose that demand vector d , (dt : t = 1, . . . , T ) is misspecified and may be learnt through a
parallel learning process. We refer to the misspecifed problem as (EDisp(d)) where d denotes the



misspecified demand. Suppose the linear inequality constraints of (EDisp(d)) are given by

h(g) ,



(∑N
i=1 gi,t − d∗t

)T
t=1(

Gi − gi,t
)T
i,t=1(

rup
i − gi,t + gi,t−1

)T
i,t=2(

rdown
i − gi,t−1 + gi,t

)T
i,t=2

 ,

where g , (gi,t : i = 1, . . . , N , t = 1, . . . , T ), and the cost function is given by c(g) ,
∑T

t=1

∑N
i=1 ci(gi,t).

The first order conditions of this problem are necessary and sufficient and are given by

0 ≤ z ⊥ F (z; d∗) ≥ 0, where z ,

(
g
λ

)
, F (z) ,

(
∇gc(g; d∗)−∇gh(g; d∗)Tλ

h(g; d∗)

)
,

and λ is a vector of dual variables corresponds to the constraints set h(g) ≥ 0. The above conditions
can be compactly stated as VI(Z,F (•; d∗)) [13] allowing us to consider the use of the regularized and
extragradient schemes developed in Section 3 for the solution of misspecified variational inequality
problems. We consider a set of 5 generators with known quadratic cost functions while the demand
vector d∗ = (d∗t : t = 1, . . . , T ) is unknown. A set of 1000 samples is randomly generated and the
optimal demand is the solution to the following learning problem:

min
d∈RT+

L(d) where L(d) ,
1000∑
i=1

‖d− yi‖2,

and yi, i = 1, . . . , 1000 denote the set of samples. Since the variational problem is merely monotone,
the solution set is multi-valued. In such settings, we use the gap function [10] as a metric of
progress, which is analogous to the objective function in optimization. Given VI(Z,F ), associated
gap function is defined as follows:

G(y) ,

{
F (y)T y, F (y) ∈ Z◦

+∞, F (y) 6∈ Z◦,

where Z◦ ,
{
z : zT y ≥ 0, y ∈ Z

}
. Recall that x solves VI(Z,F ) if and only if G(x) = 0. To

allow for representing the gap function when F (y) 6∈ Z◦, we use a modified gap function given by
G(y) = F (y)T y, which could be negative. Figure 5 (l) compares the trajectory of gap function
value with learning (solid line) with the trajectory observed when d∗ is available. Note that in this
problem, T = 2 and γf = k−0.65 and εk = k−0.34. In addition, we employ a constant step size of
γg = .003 for the learning problem, given that the Lipschitz constant of ∇dL(d) is estimated to be
520. Expectedly, learning leads to a degradation in the convergence rate as compared with using
the true demand d∗. In Figure 5 (r), we examine the behavior of the misspecified extragradient
scheme where T = 5 and LF,x = 2.8, LF,θ = 1 and Gg = 2, respectively. Hence, the step sizes
are fixed at τ = 0.01 and γg = 0.9. Finally, in Table 5, we examine the error when the number
of generators increases. We terminate the regularized and extragradient scheme after 10000 and
150000 iterations and we present the error in solution iterates of learning function as well as the gap
function associated with the true problem. Since the extragradient scheme is a constant steplength
scheme, its performance appears to be significantly better than the regularized scheme but the
latter does not necessitate knowledge of system parameters.
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Figure 5: Monotone VIs: Regularized schemes (l) and Extragradient schemes (r)

No. of generators
Extragradient scheme, k = 10000 Regularization scheme, k = 150000
‖dk − d∗‖ G(gk; d∗) ‖d− d∗‖ G(gk; d∗)

5 4.5e-6 2.10e-5 2.7e-4 1.2e-3
10 9.8e-6 4.36e-5 3.8e-4 2.3e-3
15 1.3e-5 6.5e-5 4.6e-4 3.4e-3
20 1.8e-5 8.6e-5 5.3e-4 4.5e-3

Table 5: Convergence of extragradient and regularization schemes

5 Concluding remarks

The field of optimization algorithms has predominantly focused on the resolution of optimization
problems when the objective function and the constraint set are known with certainty. However, in
settings complicated by large networked systems with streaming data, the resulting optimization
problems are often corrupted by a misspecification, either in terms of the model or a prescribed
parameter. We focus on the second case and examine how one may resolve this misspecification
through a suitably defined learning process. More precisely, we formalize the setting as one where
we have two coupled computational problems; of these, the first is a misspecified optimization
problem while the second is a learning problem that arises from having access to a learning data
set, collected a priori. One avenue for contending with such a problem is through an inherently
sequential approach that solves the learning problem and utilizes this solution in subsequently solv-
ing the computational problem. Unfortunately, unless accurate solutions of the learning problem
are available in finite time, it appears that sequential approaches may not prove advisable.

In this paper, we consider a simultaneous approach that combines learning and computation
via gradient-based techniques. We make several contributions in this regard, broadly categorized
within the realm of misspecified convex optimization and monotone variational inequality problems:
(i) Convex optimization problems: First, in strongly convex regimes, it can be readily shown that
constant steplength gradient schemes admit global convergence properties. In regimes where the
strong convexity constants are unavailable, we prove that suitably defined diminishing steplength
schemes are also shown to be convergent. Furthermore, we provide rate statements that demon-
strate a degradation the linear convergence rate, a consequence of incorporating learning. Next,
we consider problems where the computational problem is merely convex and observe that both
constant steplength gradient and subgradient methods see no change in the overall convergence
rate but instead display a similar modification in their rates given by ‖θ0− θ∗‖O(qKg + 1/K). This



term is scaled by the initial misspecification in θ and comprises of two terms, the first being a term
that emerges from learning the true θ∗ and decays to zero at a geometric rate while the second is
an interaction term that takes its rate from the averaging structure. When both the computation
and the learning problems are assumed to be merely convex with an additional weak sharpness
assumption on the learning problem, both constant steplength and diminshing steplength state-
ments may be provided; (ii) Variational inequality problems: In the context of monotone variational
inequality problems, we present two sets of techniques. Of these, the first is a constant steplength
extragradient scheme in which the steplength bound is modified to incorporate the initial mis-
specification, given by ‖θ0 − θ∗‖. Our second scheme develops an iterative (Tikhonov) regularized
scheme that does rely on problem parameters and allows for recovery of the least norm solution of
the misspecified variational inequality problem. Finally, preliminary numerical tests support the
theoretical findings and remarkably the empirical convergence rates show a significant superiority
to theoretical bounds, suggesting that improvements may be available.

Yet much remains to be understood about the realm of such techniques, For instance, to what
extent does the introduction of learning affect the convergence rate in gradient methods as arising
from Nesterov-type acceleration techniques? Furthermore, can be develop analogous rate state-
ments for proximal and Lagrangian schemes and quantify the impacts from learning? Finally,
can we extend this framework to other computational problems such as in the solution of Markov
decision-making problems (MDPs)?
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