
ar
X

iv
:1

70
3.

07
76

1v
3

 [
m

at
h.

O
C

]
 1

8
M

ay
 2

02
0

An Active-Set Algorithmic Framework for
Non-Convex Optimization Problems over the

Simplex

Andrea Cristofari∗, Marianna De Santis†, Stefano Lucidi†, Francesco Rinaldi∗

∗Dipartimento di Matematica “Tullio Levi-Civita”
Università di Padova

Via Trieste, 63, 35121 Padua, Italy
E-mail: andrea.cristofari@unipd.it, rinaldi@math.unipd.it

†Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma

Via Ariosto, 25, 00185 Rome, Italy
E-mail: mdesantis@diag.uniroma1.it, lucidi@diag.uniroma1.it

Abstract. In this paper, we describe a new active-set algorithmic framework for minimiz-
ing a non-convex function over the unit simplex. At each iteration, the method makes use
of a rule for identifying active variables (i.e., variables that are zero at a stationary point)
and specific directions (that we name active-set gradient related directions) satisfying a new
“nonorthogonality” type of condition. We prove global convergence to stationary points when
using an Armijo line search in the given framework. We further describe three different ex-
amples of active-set gradient related directions that guarantee linear convergence rate (under
suitable assumptions). Finally, we report numerical experiments showing the effectiveness of
the approach.

Keywords. Active-set methods. Unit simplex. Non-convex optimization. Large-scale
optimization.

MSC2000 subject classifications. 65K05. 90C06. 90C30.

1 Introduction

Many real-world applications can be modeled as optimization problems over structured feasi-
ble sets. In particular, the problem of minimizing a function over a simple polytope (such as
the unit simplex) arises in different fields like, e.g., machine learning, statistics and economics.
Examples of relevant applications include training of support vector machines, boosting (Ad-
aboost), convex approximation in ℓp, mixture density estimation, finding maximum stable
sets (maximum cliques) in graphs, portfolio optimization and population dynamics problems
(see, e.g., [4, 5, 8, 10] and references therein).

The problem we address here can be stated as follows:

min
x∈∆

f(x) (1)

1

http://arxiv.org/abs/1703.07761v3

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

where ∆ = {x ∈ R
n : eTx = 1, x ≥ 0} is the unit simplex, e ∈ R

n is the vector of all ones,
f : Rn → R is continuously differentiable and its gradient ∇f(x) is Lipschitz continuous over
the feasible set, with constant L > 0.

Note that minimizing an objective function h(x) over a polytope P can be recast as
problem (1). Indeed, since any point x ∈ P can be expressed as a convex combination
of the columns of V =

[

v1 . . . vm
]

∈ R
n×m, with v1, . . . , vm vertices of P , the problem

min{h(x) : x ∈ P} can be rewritten as min{h(V y) : eT y = 1, y ≥ 0}. Thus, each variable yi
represents the weight of the ith vertex in the convex combination.

In many different contexts, problems can have very sparse solutions (i.e., solutions with
many zero components). Hence, developing methods that allow to quickly identify the set of
zero components in the optimal solution is getting crucial to guarantee relevant savings in
terms of CPU time. In our problem, estimating the set of zero components in the optimal
solution, or in a stationary point when the objective function is non-convex, coincides with
estimating the set of active (or binding) inequality constraints. This set of active constraints
is often referred to as active set and the so called active-set methods are characterized by
computing, at each iteration, an estimate of the binding constraints which is iteratively
updated. Usually, only a single active constraint is added to or deleted from the estimated
active set at each iteration (see, e.g., [29] and references therein). However, when dealing
with simple constraints, more sophisticated active-set methods can be used, which can add
to or delete from the current estimated active set more than one constraint at each iteration,
and eventually find the active set in a finite number of steps if certain conditions hold. In
particular, several active-set algorithms are based on the idea of combining an “identification”
step (to identify the active constraints) with a minimization step in a reduced space (see,
e.g., [1, 3, 6, 9, 14, 16, 17, 20, 21, 22, 27] and references therein).

Here, we propose an active-set algorithmic framework for solving problem (1), where
f(x) is a possibly non-convex objective function. Hereinafter, we call active variables those
variables that are equal to zero at a stationary point. Indeed, those variables correspond to
the active constraints when the feasible set is the unit simplex.

In the fist part of the paper, we describe an active-set estimate to identify the active
variables by extending some specific strategies proposed in the contexts of box-constrained
problems (see [7, 9, 11, 12]) to the case of unit simplex. The main features of our active-set
strategy are essentially two:

1. it does not only focus on the zero variables and keep them fixed, but rather tries to
quickly identify as many active variables as possible (including nonzero variables) at a
given point;

2. it gives a significant reduction in the objective function, while guaranteeing feasibility,
when setting to zero those variables estimated active (and moving a suitably chosen
variable estimated nonactive).

These features enable us to easily use this active-set strategy into any globally convergent
algorithm, potentially improving its efficiency without compromising its theoretical proper-
ties.

In the second part of the paper, inspired by the “nonorthogonality” type of condition
described in [2], we define a new class of directions, named active-set gradient related, that

2

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

we combine with the active-set strategy described above to devise a two-step algorithmic
framework. In the first step, our method sets to zero the estimated active variables and
suitably moves an estimated nonactive variable, producing a new feasible point with a smaller
objective value. In the second step, an active-set gradient related direction, combined with a
suitable line search, is used in the subspace of the estimated nonactive variables to generate
the next iterate. We prove convergence of our framework to stationary points of problem (1)
using Armijo line search. We would like to highlight that, since at each iteration we move
to zero some of the variables and then approximately optimize in a subspace, guaranteeing
convergence is not a straightforward task and requires a thorough theoretical analysis.

We further give three specific examples of active-set gradient related directions that can be
used to implement our algorithm in practice. More specifically, we consider Frank-Wolfe [18],
away-step Frank-Wolfe [31] and projected gradient directions (see, e.g., [2] and references
therein). We then prove linear convergence rate of the framework (under suitable assump-
tions) when using these directions.

In the final part of the paper, we report numerical results on both convex and non-convex
instances. The results seem to indicate that our active-set algorithm is very efficient when
dealing with sparse optimization problems.

The paper is organized as follows. In Section 2, we report the notation and useful pre-
liminary results. In Section 3, we describe in depth our active-set estimate and the related
theoretical properties. In Section 4, we present our algorithmic framework and carry out
the convergence analysis. We also give three specific examples of active-set gradient related
directions that can be used in the framework. In Section 5, we analyze the convergence rate
of the method when using those active-set gradient related directions. In Section 6, we report
our numerical experience. Finally, in Section 7, we draw some conclusions.

2 Notation and Preliminaries

Throughout the paper, we indicate with ‖ · ‖ the Euclidean norm. Given a vector v ∈ R
n

and an index set I ⊆ {1, . . . , n}, we denote with vI the subvector with components vi, i ∈ I.
We indicate with ei the ith unit vector. Given x ∈ R

n and a non-empty closed convex set
S ⊆ R

n, we denote by P (x)S the projection of x on S. Finally, given a subset I ⊆ {1, . . . , n},
we denote ∆I the subset of points of ∆ with xi = 0 for all i /∈ I, i.e.,

∆I := {x ∈ ∆: xi = 0, ∀i /∈ I}.

Definition 1. A stationary point x∗ of problem (1) is a feasible point that satisfies the
following first-order necessary optimality conditions:

∇f(x∗)− λ∗e− µ∗ = 0, (2)

(µ∗)Tx∗ = 0, (3)

µ∗ ≥ 0. (4)

where λ∗ ∈ R and µ∗ ∈ R
n are the KKT multipliers.

3

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

It is easy to verify that conditions (2)–(4) are equivalent to the following:

∇if(x
∗)

{

≥ λ∗, x∗i = 0,

= λ∗, x∗i > 0,
i = 1, . . . , n.

Remark 1. Note that a feasible point x∗ of problem (1) is stationary if and only if ∇f(x∗)T (ei−
x∗) ≥ 0 for all i = 1, . . . , n, or equivalently,

max{0,−∇f(x∗)T (ei − x∗)} = 0, i = 1, . . . , n.

3 Active-Set Estimate

Given a stationary point x∗ of problem (1), the active set can be defined as the set of inequality
constraints binding at x∗. As mentioned above, since there is a one-to-one correspondence
between inequality constraints and variables, we equivalently define as active set the set of
zero components at x∗.

Definition 2. Let x∗ ∈ R
n be a stationary point of problem (1). We define as active set the

following set:

Ā(x∗) =
{

i ∈ {1, . . . , n} : x∗i = 0
}

. (5)

We further define the nonactive set N̄(x∗) as the complement of Ā(x∗):

N̄(x∗) = {1, . . . , n} \ Ā(x∗) =
{

i ∈ {1, . . . , n} : x∗i > 0
}

. (6)

Now, we describe how, at any feasible point x, we estimate the active set. Following the
approach proposed in [13, 15], we use a strategy that requires proper approximation of the
KKT multipliers by means of the so called multiplier functions. To compute these multiplier
functions, let (λ∗, µ∗) be the KKT multipliers associated to a given stationary point x∗.
By (2), we have

µ∗ = ∇f(x∗)− λ∗e,

then, multiplying by x∗ and taking into account complementarity condition (3), we get

0 = (µ∗)Tx∗ = (∇f(x∗)− λ∗e)Tx∗.

From the feasibility of x∗, we obtain the following expressions for the multipliers:

λ∗ = ∇f(x∗)Tx∗, µ∗ = ∇f(x∗)− λ∗e,

so that we can introduce the following multiplier functions:

λ(x) = ∇f(x)Tx, (7)

µi(x) = ∇if(x)− λ(x), i = 1, . . . , n. (8)

Now, we can define our estimate of the active set.

4

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

Definition 3. Let x ∈ R
n be a feasible point of problem (1). We define the active-set estimate

A(x) and the nonactive-set estimate N(x) as

A(x) = {i : xi ≤ ǫµi(x)
}

= {i : xi ≤ ǫ∇f(x)T (ei − x)}, (9)

N(x) = {i : xi > ǫµi(x)} = {i : xi > ǫ∇f(x)T (ei − x)}, (10)

where ǫ is a positive scalar.

By adapting Theorem 2.1 in [15], we can ensures that, in a neighborhood of a stationary
point x∗, all the estimated active variables are active at x∗ and include all active variables
at x∗ satisfying strict complementarity. We state this result in the following theorem.

Theorem 1. If (x∗, λ∗, µ∗) satisfies KKT conditions for problem (1), then there exists an
open ball B(x∗, ρ) with center x∗ and radius ρ > 0 such that, for each x ∈ B(x∗, ρ) we have

{i : x∗i = 0, µi(x
∗) > 0} ⊆ A(x) ⊆ Ā(x∗).

Furthermore, if strict complementarity holds, then

{i : x∗i = 0, µi(x
∗) > 0} = A(x) = Ā(x∗),

for each x ∈ B(x∗, ρ).

3.1 A Global Property of the Active-Set Estimate

Here, we analyze a global property of our active-set estimate. In particular, we show how,
given a point x ∈ R

n feasible for problem (1), we can obtain a sufficient decrease in the
objective function by setting the estimated active variables to zero. In the context of box
constrained problems, this property has been already proved in [7, 9, 11, 12]. When dealing
with problems over the standard simplex, we have to handle the presence of an equality
constraint: in order to maintain feasibility, we need to update at least one estimated nonactive
variable, so that all variables sum up to 1. The next proposition gives us a hint on how to
choose the estimated nonactive variable that will be updated when setting to zero the active
variables.

Proposition 1. Let x ∈ R
n be a feasible non-stationary point of problem (1) and define

J(x) =
{

j : j ∈ Argmin
i=1,...,n

{

∇if(x)
}

}

. (11)

Then, J(x) ⊆ N(x).

Proof. Since x is non-stationary, we have |J(x)| < n. Moreover, an index i must exist such
that xi > 0 and ∇if(x) > ∇jf(x), j ∈ J(x). It follows that

∇f(x)Tx > ∇jf(x)e
Tx = ∇jf(x).

Now, we can choose any index j ∈ J(x) and set ν = j. Recalling the definition of multipli-
ers (7)–(8), we obtain

µν(x) = ∇νf(x)− λ(x) = ∇νf(x)−∇f(x)Tx < ∇νf(x)−∇νf(x) = 0 ≤ xν .

Since xν ≥ 0 and µν(x) < 0, we have that xν > ǫµν(x), and then ν ∈ N(x).

5

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Remark 2. Proposition 1 implies that for every feasible non-stationary point x, the estimated
nonactive set N(x) is non-empty.

The main result of this section, reported in Proposition 2, shows that it is possible to
get a significant decrease in the objective function by setting to zero the estimated active
variables and suitably updating a variable chosen in the set defined in Proposition 1. To
obtain this result, we first need an assumption on the parameter ǫ appearing in Definition 3.

Assumption 1. Assume that the parameter ǫ appearing in the estimates (9)–(10) satisfies
the following conditions:

0 < ǫ ≤
2

nL(2C + 1)
,

where C > 0 is a given constant.

Proposition 2. Let Assumption 1 hold. Given a feasible non-stationary point x of prob-
lem (1), let j ∈ J(x) and I = {1, . . . , n} \ {j}. Let Â(x) be a set of indices such that
Â(x) ⊆ A(x). Let x̃ be the feasible point defined as follows:

x̃
Â(x) = 0; x̃

I\Â(x) = x
I\Â(x); x̃j = xj +

∑

i∈Â(x)

xi.

Then,
f(x̃)− f(x) ≤ −CL‖x̃− x‖2,

where C > 0 is the constant appearing in Assumption 1.

Proof. Define
Â+ = Â(x) ∩ {i : xi > 0}. (12)

Using known results on functions with Lipschitz continuous gradient [28], we can write

f(x̃) ≤ f(x) +∇f(x)T (x̃− x) +
L

2
‖x̃− x‖2.

Adding and subtracting CL‖x̃− x‖2 in the right-hand side of the above inequality, we get

f(x̃) ≤ f(x) +∇f(x)T (x̃− x) +
L(2C + 1)

2
‖x̃− x‖2 − CL‖x̃− x‖2. (13)

In order to prove the proposition, we need to show that

∇f(x)T (x̃− x) +
L(2C + 1)

2
‖x̃− x‖2 ≤ 0. (14)

From the definition of x̃, we get

‖x̃− x‖2 =
∑

i∈Â+

(xi)
2 +

(

∑

i∈Â+

xi

)2

≤
∑

i∈Â+

(xi)
2 + |Â+|

∑

i∈Â+

(xi)
2

= (|Â+|+ 1)xT
Â+

x
Â+

(15)

6

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

and

∇f(x)T (x̃− x) = −∇
Â+f(x)

Tx
Â+ +∇jf(x)

∑

i∈Â+

xi

= xT
Â+

(

∇jf(x)eÂ+ −∇
Â+f(x)

)

.

(16)

From the definition of the index j, we have that ∇if(x) ≥ ∇jf(x) for all i ∈ {1, . . . , n}.
Therefore, we can write

n
∑

i=1

∇if(x)xi ≥
n
∑

i=1

∇jf(x)xi = ∇jf(x)
n
∑

i=1

xi = ∇jf(x). (17)

Recalling the active-set estimate and using (17), we have that

xi ≤ ǫ
(

∇if(x)−
n
∑

i=1

∇if(x)xi

)

≤ ǫ
(

∇if(x)−∇jf(x)
)

, ∀i ∈ Â+,

so that, by (15), we can write

‖x̃− x‖2 ≤ ǫ(|Â+|+ 1)xT
Â+

(

∇
Â+f(x)−∇jf(x)eÂ+

)

. (18)

From (16) and (18), we get

∇f(x)T (x̃− x)+
L(2C + 1)

2
‖x̃− x‖2 ≤ xT

Â+

[

∇jf(x)eÂ+ −∇
Â+f(x)

]

+

+
L(2C + 1)

2
(|Â+|+ 1)ǫ xT

Â+

(

∇
Â+f(x)−∇jf(x)eÂ+

)

=

(

L(2C + 1)

2
(|Â+|+ 1)ǫ− 1

)

xT
Â+

(

∇
Â+f(x)−∇jf(x)eÂ+

)

≤

(

L(2C + 1)

2
nǫ− 1

)

xT
Â+

(

∇
Â+f(x)−∇jf(x)eÂ+

)

,

where the last inequality follows from the non-negativity of

xT
Â+

(

∇
Â+f(x)−∇jf(x)eÂ+

)

(implied by (18)) and from the fact that |Â+| + 1 ≤ n (implied by Proposition 1, see Re-
mark 2). Then, (14) follows from the assumption we made on ǫ.

Remark 3. In Assumption 1, the upper bound of ǫ depends on n. Actually, Proposition 2
still holds by replacing the constant n by |Â+| + 1 in the upper bound of ǫ, where Â+ is
defined as in (12). This follows from the fact that n is only used to upper bound |Â+| + 1
in the proof of Proposition 2. Note that, in general, Â+ might be considerably smaller than
n, but it depends on both the specific point x and ǫ itself. So, for the sake of simplicity, in
Assumption 1 we use the constant n, even if all the theoretical results of the paper would hold
by using |Â+|+ 1 instead.

7

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Remark 4. From Assumption 1 and Proposition 2, we see that there is a trade-off, depending
on the constant C, between the magnitude of the upper bound of ǫ and the decrease in the
objective function guaranteed by Proposition 2. Namely, for small values of C, large values
of ǫ can be used, and then, from (5), a major number of variables might be estimated active.
But the corresponding decrease in the objective function might be small. Vice versa, for large
values of C, we have the opposite situation.

The property described in the above proposition is crucial for the analysis of the algorithm
framework that we carry out in the next section. We remark that there is no way to get
the same result from [13, 15], where a similar approach is used to estimate the active set.
Indeed, in those papers the authors deal with non-linear inequality constraints and there is
no such a result like Proposition 2. As a consequence, they cannot get the same algorithmic
framework we describe in the present paper.

4 An Active-Set Algorithmic Framework for Minimization

over the Simplex

In this section, we describe in depth an algorithmic framework that embeds the active-set
estimate explained in the previous section. The framework performs two different steps at
each iteration: the first one to update the estimated active variables, and the second one
to update the estimated nonactive variables. The aim is to exploit as much as possible the
properties of our estimate: first, the ability to identify those active variables satisfying strict
complementarity after a sufficiently large number of iterations, according to the results in
Theorem 1; second, the ability to get a decrease in the objective function when moving the
variables according to Proposition 2.

In particular, let xk be the point given at the beginning of a generic iteration k. In the
first step, we compute the active and nonactive-set estimates A(xk), N(xk), and we generate
the new feasible point x̃k as indicated in Proposition 2: we set x̃A(xk) to zero and we update

x̃kj , with j ∈ J(xk) (all the other variables are not moved). Then, in the second step, we

compute a search direction dk
N(xk)

in the subspace of the estimated nonactive variables, and

we eventually perform a line search to get a new iterate xk+1 (the computation of the search
direction and the line search are described below).

The detailed scheme of our algorithmic framework, that we name AS-SIMPLEX, is reported
in Algorithm 1.

4.1 Global Convergence Analysis

In this section, we show the global convergence of AS-SIMPLEX to stationary points. First,
we need to describe how we compute the search direction dk and the stepsize αk (lines 7 and
9 in Algorithm 1, respectively).

From now on, given any feasible point xk generated by the algorithm and a feasible
direction dk, we call αk

max the maximum feasible stepsize that can be used along this direction.
Taking inspiration from [2], in our framework we require the search direction to be active-set
gradient related, according to the following definition:

8

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

Algorithm 1 Active-Set algorithmic framework for minimization over the

simplex (AS-SIMPLEX)

1 Choose a feasible point x0

2 For k = 0, 1, . . .
3 If xk is a stationary point, then STOP
4 Compute Ak = A(xk) and Nk = N(xk)
5 Compute Jk = J(xk), choose j ∈ Jk and define Ñk = Nk \ {j}

6 Set x̃k
Ak = 0 , x̃k

Ñk
= xk

Ñk
and x̃k

j = xk
j +

∑

h∈Ak

xk
h

7 Compute a feasible direction dk such that dk
Ak = 0

8 If ∇f(x̃k)T dk < 0 then
9 Compute a stepsize αk ∈ (0, αk

max] by means of a line search
10 Else
11 Set αk = 0
12 End if
13 Set xk+1 = x̃k + αkdk

14 End for

Definition 4. Given an infinite sequence of points {xk} produced by AS-SIMPLEX, we say that
the sequence of directions {dk} is active-set gradient related if, for any subsequence {xk}K
such that N(xk) = N̂ for all k ∈ K and lim

k→∞, k∈K
xk = x∗, where x∗ is non-stationary in

∆
N̂
, we have that

{dk
N̂
}K is bounded, (19)

lim sup
k→∞, k∈K

∇
N̂
f(x̃k)Tdk

N̂
< 0, (20)

lim inf
k→∞, k∈K

αk
max > 0. (21)

By a slight abuse of terminology, in the following we say that a given direction dk is active-
set gradient related if it is an element of a sequence {dk} satisfying Definition 4. Moreover,
in Subsection 4.2, we will provide some examples of active-set gradient related directions.

For what concerns the computation of the stepsize, a possibility is that of considering the
classical Armijo line search (see, e.g., [2] and references therein). This method, which basically
performs a successive stepsize reduction, allows to avoid the often considerable computation
associated with an exact line search. Indeed, when dealing with some non-convex problems,
even finding an approximate local minimizer along the search direction generally requires too
many evaluations of the objective function and possibly the gradient.

The detailed scheme of the Armijo line search is reported in Algorithm 2.
Now, we are ready to show that AS-SIMPLEX globally converges to stationary points when

the sequence of directions is active-set gradient related and the Armijo line search is used to
compute the stepsize.

Theorem 2. Let Assumption 1 hold. Let {xk} be the sequence of points produced by AS-SIM-
PLEX, where the sequence of directions {dk} is active-set gradient related and the stepsize αk

9

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Algorithm 2 Armijo line search

0 Choose δ ∈ (0, 1), γ ∈ (0, 1)
1 Set initial stepsize α = αk

max

2 While f(x̃k + αdk) > f(x̃k) + γ α∇f(x̃k)T dk

3 Set α = δα
4 End while

is computed using the Armijo line search. Then, either an integer k̄ ≥ 0 exists such that xk̄

is a stationary point for problem (1), or the sequence {xk} is infinite and every limit point
x∗ of the sequence is a stationary point for problem (1).

Proof. Let {xk} be the sequence produced by AS-SIMPLEX and let us assume that a stationary
point is not produced in a finite number of iterations. First note that, from the instructions
of the algorithm and Proposition 2, we can write

f(xk+1) ≤ f(x̃k) ≤ f(xk)− CL‖x̃k − xk‖2.

Therefore, from the continuity of the objective function and the compactness of the feasible
set, it follows that

lim
k→∞

[f(xk+1)− f(xk)] = 0, (22)

lim
k→∞

‖x̃k − xk‖ = 0. (23)

Since the feasible set is compact, then the sequence {xk} attains a limit point x∗ and,
recalling (23), there exists K ⊆ N such that

lim
k→∞, k∈K

xk = lim
k→∞, k∈K

x̃k = x∗. (24)

Taking into account the structure of the feasible set, we can characterize a stationary point
x using the following condition (see Remark 1):

∇f(x)T (ei − x) ≥ 0, ∀ i ∈ {1, . . . , n}.

Let Φi(x) be the continuous function defined as

Φi(x) = max{0,−∇f(x)T (ei − x)}, i = 1, . . . , n,

that measures the violation of the stationarity conditions for a variable xi, i = 1, . . . , n.
By contradiction, we assume that x∗ is non-stationary, so that an index ν ∈ {1, . . . , n}

exists such that
Φν(x

∗) > 0. (25)

Taking into account that the number of possible different choices of Ak and Nk is finite, we
can find a subset of iteration indices K̄ ⊆ K such that Ak = Â and Nk = N̂ for all k ∈ K̄.

First, suppose that ν ∈ Â. Then, by Definition 3, we can write

0 ≤ xkν ≤ ǫ∇f(xk)T (eν − xk),

10

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

so that Φν(x
k) = max{0,−∇f(xk)T (eν − xk)} = 0, for all k ∈ K̄. Therefore, from (24) and

the continuity of the function Φi(·), we get a contradiction with (25).
Then, ν necessarily belongs to N̂ , that is, x∗

N̂
is non-stationary in ∆

N̂
, where ∆

N̂
is given

as in Definition 4. From that definition and the fact that dk
Â
= 0, we also have that {dk}K is

bounded. Then, there exists an infinite subset of K (that we still denote by K without loss
of generality) such that

lim
k→∞k∈K

dk = d̄. (26)

Moreover, exploiting again Definition 4, we have that η > 0 and M > 0 exist such that

lim sup
k→∞, k∈K

∇f(x̃k)Tdk = −η, (27)

αk
max ≥ M > 0, ∀k sufficiently large, k ∈ K. (28)

From (27), it follows that k̂ ∈ K exists such that ∇f(x̃k)T dk < 0, for k ≥ k̂, k ∈ K. Then,
according to line 9 of Algorithm 1, the Armijo line search computes a value αk ∈ (0, αk

max]
for all k ≥ k̂, such that

f(xk+1) ≤ f(x̃k) + γ αk ∇f(x̃k)T dk, ∀k ≥ k̂, k ∈ K, (29)

or equivalently,

f(x̃k)− f(xk+1) ≥ γ αk |∇f(x̃k)T dk|, ∀k ≥ k̂, k ∈ K.

From (22) and (23), we get that the left-hand side of the above inequality converges to zero
for k → ∞, hence

lim
k→∞, k∈K

αk |∇f(x̃k)Tdk| = 0. (30)

Using (27), we obtain that lim
k→∞, k∈K

αk = 0. Taking into account (28), it follows that there

exists k̄ ∈ K, k̄ ≥ k̂, such that

αk < αk
max, ∀k ≥ k̄, k ∈ K.

In other words, for k ≥ k̄, k ∈ K, the stepsize αk cannot be set equal to the maximum
feasible stepsize and, taking into account the line search procedure, we can write

f
(

x̃k +
αk

δ
dk
)

> f(x̃k) + γ
αk

δ
∇f(x̃k)T dk, ∀k ≥ k̄, k ∈ K. (31)

We can apply the mean value theorem and we have that ξk ∈ (0, 1) exists such that

f
(

x̃k +
αk

δ
dk
)

= f(x̃k) +
αk

δ
∇f
(

x̃k + ξk
αk

δ
dk
)T

dk, ∀k ≥ k̄, k ∈ K. (32)

By substituting (32) within (31), we have

∇f
(

x̃k + ξk
αk

δ
dk
)T

dk > γ∇f(x̃k)T dk, ∀k ≥ k̄, k ∈ K. (33)

11

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

From (24), and exploiting the fact that {ξk}, {α
k} and {dk} are bounded, we get

lim
k→∞, k∈K

x̃k + ξk
αk

δ
dk = lim

k→∞, k∈K
x̃k = x∗.

Therefore, taking the limits in (31) and (32), and taking into account (26), we obtain that
∇f(x∗)T d̄ ≥ γ∇f(x∗)T d̄, or equivalently,

(1− γ)∇f(x∗)T d̄ ≥ 0.

Since γ ∈ (0, 1), it follows that ∇f(x∗)T d̄ ≥ 0, contradicting (27). Hence, we get Φi(x
∗) = 0,

for all i = 1, . . . , n and x∗ is a stationary point for problem (1).

Remark 5. Theorem 2 holds when using as stepsize in AS-SIMPLEX any value αk ∈ (0, αk
max]

such that
f(x̃k + αkdk) ≤ f(x̃k + αk

Ad
k),

where αk
A is the value computed by the Armijo line search. It follows from the fact that, if the

above relation is satisfied, then (29) holds, as well as all the subsequent steps in the proof.
In particular, this implies that Theorem 2 holds under the assumption that the stepsize is

computed in AS-SIMPLEX by means of an exact line search, that is, αk is computed as

αk ∈ Argmin
α∈(0,αk

max
]

f(x̃k + αdk).

4.2 Active-Set Gradient Related Directions in AS-SIMPLEX

As shown in Theorem 2, to ensure global convergence of AS-SIMPLEX to stationary points we
need a sequence of directions that satisfies Definition 4. Moreover, from the instructions of the
algorithm, dk

Ak must be zero at each iteration, so we only need to focus on the computation

of dk
Nk .

As examples of dk
Nk that can be used in practice, we consider Frank-Wolfe-type and

projected gradient directions:

(FW) Frank-Wolfe direction:

dFWNk = (eı̂ − x̃k)Nk , ı̂ ∈ Argmin
i∈Nk

{

∇if(x̃
k)
}

; (34)

(AFW) away-step Frank-Wolfe direction:

dAFW
Nk =

{

dFW
Nk , if ∇Nkf(x̃k)TdFW

Nk ≤ ∇Nkf(x̃k)TdA
Nk ,

dA
Nk , otherwise,

where
dANk = (x̃k − ê)Nk , ̂ ∈ Argmax

j∈Nk
0

{

∇jf(x̃
k)
}

(35)

and Nk
0 = {j ∈ Nk : x̃kj > 0};

12

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

(PG) projected gradient direction:

dPGNk =
(

P
(

x̃k − s∇f(x̃k)
)

∆
Nk

− x̃k
)

Nk
,

where s > 0 is a fixed scalar.

In the following, we will refer to dFW, dAFW and dPG when the subdirection dk
Nk is chosen

according to the Frank-Wolfe (FW), the away-step Frank-Wolfe (AFW) or the projected
gradient (PG) rule, respectively. We now show that the three considered directions satisfy
Definition 4.

Proposition 3. Given one rule among (FW), (AFW) and (PG) for the computation of
dk
Nk , the resulting sequence of directions {dk} generated by AS-SIMPLEX is active-set gradient

related.

Proof. Since ∆ is compact, it is easy to see that all the considered directions are bounded.
Considering some of the ideas reported in [2] (see chapter 2) and the properties related to
the active-set estimate, we now prove that those directions also satisfy (20) and (21). Let
{xk}K be a subsequence such that Nk = N̂ for all k ∈ K and lim

k→∞, k∈K
xk
N̂

= x∗
N̂
, where x∗

is non-stationary in ∆
N̂
. We consider the different cases:

(FW) By definition of the index ı̂ given in (34), it is easy to see that, for all k ≥ 0, we have
∇ı̂f(x̃

k) ≤ ∇Nkf(x̃k)TxNk , ∀x ∈ ∆Nk . Thus,

∇
N̂
f(x̃k)Tdk

N̂
= ∇

N̂
f(x̃k)T (eı̂ − x̃k)

N̂

≤ ∇
N̂
f(x̃k)T (x− x̃k)

N̂
= ∇f(x̃k)T (x− x̃k), ∀x ∈ ∆

N̂
,

where the last equality follows from the fact that xAk = 0 for all x ∈ ∆Nk and x̃k
Ak = 0.

Passing to the limit, we obtain

lim sup
k→∞, k∈K

∇
N̂
f(x̃k)T dk

N̂
≤ ∇f(x∗)T (x− x∗), ∀x ∈ ∆

N̂
.

Since x∗ is non-stationary in ∆
N̂
, we have that

min
x∈∆

N̂

∇f(x∗)T (x− x∗) < 0.

Therefore, combining the above two inequalities, (20) holds. Since αk
max = 1 at every

iteration, also (21) is trivially satisfied.

(AFW) Since, by definition, ∇f(x̃k)T dAFW ≤ ∇f(x̃k)T dFW, we can repeat the same rea-
soning given above for the (FW) case and (20) holds. To prove (21), by contradiction
let us assume that an infinite subset of K (that we still denote by K for the sake of
simplicity) exists such that

lim
k→∞, k∈K

αk
max = 0. (36)

13

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Recalling the definition of dAFW, the case we need to analyze is the one where we get
an infinite subsequence of away-step directions in N̂ (as αk

max = 1 for Frank-Wolfe
directions). So, we assume that an infinite subset K̃ ⊆ K exists such that

dk
N̂

= dA
N̂
, ∀k ∈ K̃.

We have that αk
max =

x̃k̂

1− x̃k̂
, for all k ∈ K̃, where ̂ is the index computed according

to (35). Since the number of indices in N̂ is finite, we can consider an infinite subset
of K̃ (that we still denote by K̃ for the sake of simplicity) where the index ̂ is fixed.
Taking into account (36), it is easy to see that {x̃k̂ }K̃ → 0. Using (23), we get

lim
k→∞, k∈K̃

xk̂ = 0. (37)

Moreover, from (20), (23) and the continuity of ∇f(x), we can write

lim sup
k→∞, k∈K

∇
N̂
f(xk)Tdk

N̂
= −η.

Exploiting the fact that ∇f(xk)Tdk = ∇
N̂
f(xk)Tdk

N̂
by definition of dk, we obtain

−η = lim sup
k→∞, k∈K

∇f(xk)Tdk

= lim sup
k→∞, k∈K

[∇f(xk)T (x̃k − xk) +∇f(xk)T (xk − ê)]

= lim sup
k→∞, k∈K

∇f(xk)T (xk − ê),

(38)

where the last equality follows again from (23). From (37) and (38), an index k̃ ∈ K̃
exists such that, for all k ≥ k̃, k ∈ K̃, we have

∇f(xk)T (xk − ê) ≤ −
η

2
,

xk̂ ≤ ǫ
η

2
.

Therefore,

xk̂ ≤ ǫ∇f(xk)T (ê − xk), ∀k ≥ k̃, k ∈ K̃.

Recalling (9), this implies that ̂ /∈ N̂ and, considering the definition of ̂ in (35), we
get a contradiction.

(PG) Let us define x̂k = P
(

x̃k − s∇f(x̃k)
)

∆
Nk

, so that dk = x̂k − x̃k. By continuity of the

projection operator, we get

lim
k→∞, k∈K

x̂k = P
(

x∗ − s∇f(x∗)
)

∆
N̂

.

14

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

From the properties of the projection, we have

(x̃k − s∇f(x̃k)− x̂k)T (x− x̂k) ≤ 0, ∀x ∈ ∆Nk .

If we choose x = x̃k in the above inequality, we can write

∇f(x̃k)Tdk = ∇f(x̃k)T (x̂− x̃k) ≤ −
1

s
‖x̂k − x̃k‖2 = −

1

s
‖dk‖2, ∀k ≥ 0. (39)

Since dk
Ak = 0 for all k ≥ 0, taking the limit we have

lim sup
k→∞, k∈K

∇
N̂
f(x̃k)Tdk

N̂
= lim sup

k→∞, k∈K
∇f(x̃k)Tdk

≤ −
1

s

∥

∥P
(

x∗ − s∇f(x∗)
)

∆
N̂

− x∗
∥

∥

2
.

From the fact that x∗ is non-stationary in ∆
N̂
, it follows that

∥

∥P
(

x∗ − s∇f(x∗)
)

∆
N̂

− x∗
∥

∥ > 0.

Therefore,

lim sup
k→∞, k∈K

∇
N̂
f(x̃k)Tdk

N̂
< 0,

implying that (20) holds. Finally, since αk
max = 1 at every iteration, also (21) is trivially

satisfied.

Remark 6. Since we set x̃k
Ak = 0 at any iteration k, it is straightforward to verify that,

when dk is computed according to (FW), (AFW) or (PG) rule, ∇f(x̃k)Tdk < 0 if and only
if x̃k is non-stationary on ∆Nk . Equivalently, ∇Nkf(x̃k)T dk

Nk < 0 if and only if x̃k
Nk is

non-stationary on the subspace variable Nk.

5 Convergence Rate Analysis

In this section, we analyze the convergence rate of AS-SIMPLEX when one rule among (FW),
(AFW) and (PG) is used for the computation of dk. More specifically, we focus on particular
classes of non-convex problems (i.e., problems satisfying some specific assumptions we will
make later on), and report linear convergence results for our framework when using those
three directions. The results are asymptotic since they exploit the properties of the active-set
estimate given in Theorem 1, and these properties hold only in a neighborhood of stationary
points. Summarizing, on the one hand, we get asymptotic linear rate, but, on the other hand,
our results hold for non-convex objective functions.

We make an assumption that is pretty common when analyzing the convergence rate of
algorithms (see, e.g., [30]), and quite reasonable, taking into account the results reported in
the previous section.

15

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Assumption 2. Let {xk} be the infinite sequence generated by AS-SIMPLEX. We have that

lim
k→∞

xk = x∗,

where x∗ is a stationary point of problem (1).

From now on, we denote with Ī the set {1, . . . , n}. We also denote with Ā and N̄ the
index sets defined in (5) and (6), respectively, and with

N+ := N̄ ∪ {i ∈ Ī : x∗i = 0, µ∗
i = 0} and A+ := Ī \N+ = {i ∈ Ī : x∗i = 0, µ∗

i > 0}.

5.1 Linear Convergence of Active-Set Frank-Wolfe

Here we show that, when the Frank-Wolfe direction (FW) is embedded in our active-set
framework, one can get asymptotic linear convergence without making the classic assumptions
(see, e.g., [19]) needed for proving linear convergence rate of the classical Frank-Wolfe method,
that is:

• optimal solution in the interior of the feasible set,

• strongly convex objective function.

As we will see, those assumptions are replaced by strict complementarity in the optimal
solution and strong convexity on ∆N̄ , respectively. Again, we remark that the results are
asymptotic, but they do not require convexity assumptions of the objective function on the
whole ∆. Moreover, we obtain pretty tight convergence rate constants, that get much tighter
than those obtained with the classical Frank-Wolfe method as the final solution is sparse.
So, we can consider the result as a good trade-off in the end.

Before reporting the theoretical results related to the active-set Frank-Wolfe (i.e., AS-SIM-
PLEX with dk computed according to (FW) rule), we need to introduce some constants, which
follow from those used in [24], adapted to our purposes. Given an index subset I ⊆ Ī, we
define:

Cf (I) := sup
x,s∈∆I ,
α∈(0,1],

y=x+α(s−x)

2

α2

[

f(y)− f(x)−∇f(x)T (y − x)
]

,

µf (I) := inf
x∈∆I\{x

∗},
α∈(0,1],

s̄=s̄(x,x∗,∆),
y=x+α(s̄−x)

2

α2

[

f(y)− f(x)−∇f(x)T (y − x)
]

,

where s̄(x, x∗,∆) := ray(x, x∗) ∩ ∂(∆) and ray(x, x∗) is the ray from x to x∗. The curvature
constant Cf (I), which measures the non-linearity of the objective function in the subspace
∆I , is needed to give a quadratic upper bound on the objective function. The strong convexity
constant µf (I), which measures the strong convexity of the objective function on ∆I (and
can be interpreted as the lower curvature of the function), is used to give a quadratic lower
bound instead (see [24] for further details).

16

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

Remark 7. The main difference between the constants given above and those introduced
in [24] is that ours are restricted to a particular subspace. Moreover, for any index subset
I ⊆ Ī, it is easy to see that

µf (Ī) ≤ µf (I) ≤ Cf (I) ≤ Cf (Ī). (40)

Now, we are ready to state linear convergence rate of AS-SIMPLEX when (FW) rule is
used to compute the search direction.

Theorem 3. Let Assumption 1 and 2 hold, let f(x) be strongly convex on ∆N̄ , and let us
assume that strict complementarity holds at x∗. Let us further assume that dk is computed
by (FW) rule and that the exact line search is used.

Then, there exists k̄ such that

f(xk+1)− f(x∗) ≤
(

1− ρAS−FW
)[

f(xk)− f(x∗)
]

, ∀k ≥ k̄,

where

ρAS-FW = min

{

1

2
,
µf (N̄)

Cf (N̄)

}

.

Proof. From Theorem 1, exploiting the fact that strict complementarity holds at x∗, for
sufficiently large k we have that

N(xk) = N(x̃k) = N̄ and A(xk) = A(x̃k) = Ā.

From the instructions of AS-SIMPLEX, for sufficiently large k we have x̃k
Ā
= xk

Ā
= 0, implying

that x̃k = xk. Then, for sufficiently large k the minimization is restricted to the variable
subspace Nk = N̄ . Since the search direction dk is computed according to (FW) rule, the
rest of the proof follows by repeating the same arguments of the proof given for Theorem 3
in [24], observing that µf (N̄) > 0 and Cf (N̄) < ∞ under the hypothesis we made.

Remark 8. From (40), it follows that the smaller N̄ (i.e., the sparser x∗), the better the
convergence rate of AS-SIMPLEX. Moreover,

ρAS-FW ≥ min

{

1

2
,
µf (Ī)

Cf (Ī)

}

= ρFW,

where ρFW is the constant given in [24] for the convergence rate of the standard Frank-Wolfe
method.

5.2 Linear Convergence of Active-Set Away-Step Frank-Wolfe

In this subsection, we prove that active-set away-step Frank-Wolfe (i.e., AS-SIMPLEX with dk

computed according to (AFW) rule) asymptotically converges at linear rate. We can prove
the result without making the strong convexity assumption (see, e.g., [19]) needed for proving
linear convergence rate of the classical away-step Frank-Wolfe method. As we will see, that
assumption is replaced by strong convexity of the objective function on ∆N+. Similarly
to the (FW) direction, here we get asymptotic results, but we do not need strong convexity

17

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

assumptions of the objective function on the whole ∆ and we obtain pretty tight convergence
rate constants that depend on the sparsity of the final solution. Again, we can consider the
result as a good trade-off in the end.

Given an index subset I ⊆ Ī, we define the following two constants, which follow from
those used in [25], adapted to our purposes:

C∆
f (I) := sup

x,s,v∈∆I

α∈(0,1],
y=x+α(s−v)

2

α2

[

f(y)− f(x)− α∇f(x)T (s− v)
]

,

µ∆
f (I) := inf

x∈∆I

inf
x̂∈∆I

∇f(x)T (x̂−x)<0

2

α∆
I (x, x̂)

2

[

f(x̂)− f(x)−∇f(x)T (x̂− x)
]

,

where

α∆
I (x, x̂) :=

∇f(x)T (x̂− x)

∇f(x)T (sI(x)− vI(x))
,

sI(x) := eı̂, ı̂ ∈ Argmin
i∈I

{∇if(x)},

vI(x) := ê, ̂ ∈ Argmax
j∈I : xj>0

{∇jf(x)}.

These two new constants are motivated in the analysis by the fact that both Frank-Wolfe
and away-step directions are used (see [25] for further details).

Remark 9. Also in this case, the main difference between the constants given above and
those introduced in [25] is that ours are restricted to a particular subspace. Moreover, for
any index subset I ⊆ Ī, it is easy to see that the following inequalities hold:

µ∆
f (Ī) ≤ µ∆

f (I) ≤ C∆
f (I) ≤ C∆

f (Ī). (41)

Theorem 8 in [25] shows, for the standard away-step Frank-Wolfe method, that the quan-
tity [f(xk) − f(x∗)] decreases linearly at each iteration k that is not a so-called drop step.
Iteration k is a drop step when the stepsize αk = αk

max < 1 and the number of zero com-
ponents in xk+1 increases by one. In the convergence rate analysis, these iterations are
troublesome since a geometric decrease of [f(xk)− f(x∗)] cannot be guaranteed.

In our context, these definitions apply when considering the computation of xk+1 from x̃k

and, as to be shown in the next theorem, we can still guarantee that the quantity [f(xk) −
f(x∗)] decreases linearly at each iteration k that is a good step (i.e., not a drop step) with
tighter constants (that depend on the sparsity of the optimal solution).

Theorem 4. Let Assumption 1 and 2 hold, let f(x) be strongly convex on ∆N+ , with ∇f(x)
Lipschitz continuous on ∆N+ + (∆N+ − ∆N+) (in the Minkowski sense). Let us further
assume that dk is computed by (AFW) rule and that the exact line search is used.

Then, there exists k̄ such that, for every iteration k ≥ k̄ that is a good step (i.e., it is not
a drop step), we have

f(xk+1)− f(x∗) ≤ (1− ρAFW)
[

f(xk)− f(x∗)
]

,

18

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

where

ρAFW =
µ∆
f (N

+)

4C∆
f (N+)

, (42)

Moreover, for k ≥ k̄, we have that at most |N+| − 1 drop steps can be performed in between
two good steps.

Proof. First, we observe that Theorem 1 implies that an iteration k̃ exists such that Ak ⊇ A+

and Nk ⊆ N+ for k ≥ k̃. Now, we show that there exists k̄ ≥ k̃ such that

(i) xk
A+ = x̃k

A+ = 0, for all k ≥ k̄;

(ii) ∇f(x̃k)T dk < 0, for all k ≥ k̄;

(iii) x∗ ∈ Argmin
x∈∆

Nk

f(x), for all k ≥ k̄.

Point (i) follows from the instructions of the algorithm and the fact that Ak ⊇ A+, for k ≥ k̃.
To prove point (ii), we proceed by contradiction. We assume that an infinite subsequence
{x̃k}K exists such that ∇f(x̃k)T dk = 0 for all k ∈ K. Recalling Remark 6, this means that x̃k

is stationary over ∆Nk (but x̃k is not stationary over ∆), for all k ∈ K. Since Nk ⊆ N+ for
k ≥ k̃ and f(x) is strongly convex on ∆N+ , there exists a unique point satisfying stationarity
conditions over ∆Nk for k ≥ k̃. Taking into account that Ak and Nk are subsets of a finite set
of indices and x̃k

Ak = 0, we have that, after a finite number of iterations, the algorithm should
cycle. This cannot be possible as we guarantee a strict decrease in the objective function at
each iteration. Point (iii) follows from the fact that Ak ⊆ Ā for all k ≥ k̃ and f(x) is strongly
convex on ∆N+.

Consequently, recalling that dk
Ak = 0, for k ≥ k̄ the minimization is restricted to the

variable subspace Nk ⊆ N+. We can thus repeat the same arguments of the proof given for
Theorem 8 in [25] to provide the following bound for all k ≥ k̄:

f(xk+1)− f(x∗) ≤ (1− ρAFW)
[

f(x̃k)− f(x∗)
]

≤ (1− ρAFW)
[

f(xk)− f(x∗)
]

,

where the last inequality follows from the fact that f(x̃k) ≤ f(xk). Moreover, we have that
µ∆
f (N

+) > 0 and C∆
f (N+) < ∞ under the hypothesis we made.

Finally, to bound the number of iterations for which k is not a good step, we need to
consider those iterations such that αk = αk

max < 1, for k ≥ k̄. The fact that αk
max < 1 implies

that dk = dA. Consequently, when αk = αk
max, we have that xk+1

̂ = 0, where ̂ is the index

computed according to (35). In other words, the number of zero components in xk+1 increases
by 1 (since dki = 0 for all i such that x̃ki = 0, i.e., the away-step direction does not change
zero components). From the instructions of the algorithm, we also have that the number of
zero components in x̃k+1 cannot decrease from xk+1. Combining these observations with the
fact that x̃k

A+ = 0 for all k ≥ k̄, we conclude that after at most |N+| − 1 iterations with
αk = αk

max < 1, a point x̃k with n − 1 zero components is produced. Of course, we cannot
further increase the number of zero components.

19

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Remark 10. From (41), it follows that the smaller N+, the better the convergence rate of
AS-SIMPLEX. Moreover,

ρAS-AFW ≥
µ∆
f (Ī)

4C∆
f (Ī)

= ρAFW,

where ρAFW is the constant given in [25] for the convergence rate of the standard away-step
Frank-Wolfe. Furthermore, also the upper bound on the number of bad steps between two
good steps depends on the cardinality of N+ (for sufficiently large k). We would like to recall
that, in the standard away-step Frank-Wolfe, this value is equal to n− 1.

5.3 Linear Convergence of Active-Set Projected Gradient

In this subsection, we prove that the active-set Projected Gradient (i.e., AS-SIMPLEX with
dk computed according to (PG) rule) asymptotically converges at a linear rate, under the
assumption that the objective function is strictly convex on ∆N+ . We follow the same
arguments of the proof of Theorem 3.1 in [26]. First, we need to give two additional results,
stated in Lemma 1 and Lemma 2.

Lemma 1. Let {xk} be the sequence produced by Algorithm 1. Then, there exists k̄ such that

f(x̃k)− f(x∗) ≤
L

2
‖x̃k − x∗‖2, ∀k ≥ k̄.

Proof. From the Lipschitz continuity of the gradient, for all k ≥ 0 we can write

f(x̃k)− f(x∗) ≤ ∇f(x∗)T (x̃k − x∗) +
L

2
‖x̃k − x∗‖2.

From Theorem 1, an iteration k̄ exists such that Ak ⊇ A+ and N̄ ⊆ Nk for all k ≥ k̄. Hence,
from the first-order necessary optimality conditions, ∇if(x

∗) = λ∗ for all i ∈ Nk and for all
k ≥ k̄. Since x̃ki = x∗i = 0 for all i ∈ Ak and for all k ≥ k̄, we get

∇f(x∗)T (x̃k − x∗) =
∑

i∈Nk

λ∗(x̃k − x∗)i = 0, ∀k ≥ k̄,

where the last equality follows from the feasibility of x̃k and x∗. Therefore, for all k ≥ k̄ we
obtain f(x̃k)− f(x∗) ≤ L/2‖x̃k − x∗‖2.

Lemma 2. Let {xk} be the sequence produced by Algorithm 1, where dk is computed by (PG)
rule and the Armijo line search is used. Then, at any iteration k such that ∇f(x̃k)T dk < 0
we have

αk ≥ R, (43)

f(x̃k)− f(xk+1) ≥
γRmin{1, s}2

s

∥

∥P
(

x̃k −∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥

2
, (44)

where R = min
{

1,
2δ(1 − γ)

sL

}

and δ, γ are the parameters used in the Armijo line search.

20

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

Proof. Let k be an iteration such that ∇f(x̃k)T dk < 0. Repeating the same reasonings done
in Proposition 3, we obtain (39), i.e.,

∇f(x̃k)T dk ≤ −
1

s
‖dk‖2. (45)

First, we prove (43). From the Lipschitz continuity of ∇f(x), we can write

f(xk+1)− f(x̃k) ≤ ∇f(x̃k)T (xk+1 − x̃k) +
L

2
‖xk+1 − x̃k‖2

= αk∇f(x̃k)T dk +
L

2
(αk)2‖dk‖2,

Combining the above inequality with (45), we obtain

f(xk+1)− f(x̃k) ≤ αk∇f(x̃k)Tdk −
sL

2
(αk)2∇f(x̃k)Tdk

= αk
(

1−
sLαk

2

)

∇f(x̃k)T dk.

Therefore, recalling that α is multiplied by δ when is decreased in the line search procedure
(see step 3 of Algorithm 2), to satisfy the criterion within the Armijo line search and the
feasibility we need to have αk ≥ R, and then (43) holds.

Now, we prove (44). From the Armijo line search, we have f(x̃k)−f(xk+1) ≥ −γαk∇f(x̃k)T dk.
Recalling (45), we obtain

f(x̃k)− f(xk+1) ≥
γαk

s
‖dk‖2.

Using the fact that

‖dk‖ =
∥

∥P
(

x̃k − s∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥ ≥ min{1, s}
∥

∥P
(

x̃k −∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥

(see proof of Theorem 4.1 in [26] for the above inequality), we get

f(x̃k)− f(xk+1) ≥
γαk min{1, s}2

s

∥

∥P
(

x̃k −∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥

2
.

Combining this inequality with (43), we obtain that (44) holds.

Theorem 5. Let {xk} be the sequence produced by Algorithm 1, where dk is computed by
(PG) rule and the Armijo line search is used. Let Assumption 1 and 2 hold, and let f(x) be
strictly convex on ∆N+ .

Then, there exists k̄ such that

f(xk+1)− f(x∗) ≤ (1− ρAS-PG)
[

f(xk)− f(x∗)
]

, ∀k ≥ k̄,

with ρAS-PG > 0.

Proof. From Theorem 1, we have that Ak ⊇ A+ and Nk ⊆ N+ for sufficiently large k.
Reasoning as in the first part of the proof of Theorem 4, we claim that there exists an
iteration k̄ such that

21

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

(i) xk
A+ = x̃k

A+ = 0, for all k ≥ k̄;

(ii) ∇f(x̃k)T dk < 0, for all k ≥ k̄;

(iii) x∗ ∈ Argmin
x∈∆

Nk

f(x), for all k ≥ k̄.

Hence, by Theorem 2.1 in [26], for sufficiently large k we have

‖x̃k − x∗‖ ≤ τ
∥

∥P
(

x̃k −∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥, (46)

for some τ > 0. Without loss of generality, we can assume that k̄ is sufficiently large to
satisfy both the above inequality and the one of Lemma 1. Therefore, combining Lemma 1,
(44) and (46), for k ≥ k̂ we can write

f(x̃k)− f(x∗) ≤
L

2
‖x̃k − x∗‖2

≤
L

2
τ2
∥

∥P
(

x̃k −∇f(x̃k)
)

∆
Nk

− x̃k
∥

∥

2

≤
sLτ2

2γRmin{1, s}2
[

f(x̃k)− f(xk+1)
]

.

Rearranging the terms and taking into account that f(x̃k) ≤ f(xk), we get for all k ≥ k̄

f(xk+1)− f(x∗) ≤ (1− ρAS-PG)
[

f(x̃k)− f(x∗)
]

≤ (1− ρAS-PG)
[

f(xk)− f(x∗)
]

,

where ρAS-PG =
2γRmin{1, s}2

sLτ2
.

6 Numerical Results

In this section, we report the numerical experience related to our active-set algorithmic
framework. In the following, we denote by FW, AFW and PG the standard Frank-Wolfe, the
standard away-step Frank-Wolfe and the standard Projected Gradient method, respectively.
For any feasible point x, the search directions for these three algorithms are computed as
follows:

• standard Frank-Wolfe direction:

dFW = eı̂ − x, ı̂ ∈ Argmin
i=1,...,n

{∇if(x)};

• standard away-step Frank-Wolfe direction:

dAFW =

{

dFW, if ∇f(x)TdFW ≤ ∇f(x)TdA,

dA, otherwise,

where
dA = x− ê, ̂ ∈ Argmax

j : xj>0
{∇jf(x)};

22

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

• standard projected gradient direction:

dPG = P
(

x− s∇f(x)
)

∆
− x,

where s > 0 is a fixed scalar.

In the first set of experiments we considered a convex quadratic objective function and the
comparisons also included the the P2GP algorithm [14], a gradient-based method specifically
devised for solving quadratic problems with a single linear constraint and bounds on the
variables.

In order to have a fair comparison between standard and active-set versions, the line
search used for standard methods is the one described in Algorithm 2.

We further denote by AS-FW, AS-AFW and AS-PG the methods deriving from our algorith-
mic framework, where the search direction dk is computed according to (FW), (AFW) and
(PG) rule, respectively. The main aim of our numerical experience is showing how the use of
our active-set strategy can improve the performance of existing global convergent algorithms.

In our experiments, we set δ = 0.5 and γ = 10−4 for the Armijo line search, and s = 1 for
the computation of dk when using (PG) rule and the standard projected gradient direction.

In order to calculate the active-set estimate at each iteration of the active-set methods, we
need to set the ǫ parameter to a proper value, so that Assumption 1 is satisfied. In general,
the value of this parameter cannot be a priori computed. Following [9, 12], we employ this
simple updating rule: at every iteration k, we compute x̃k and, if a sufficient decrease in the
objective function is obtained (according to Theorem 1), we accept x̃k and we do not change
the value of ǫ. Otherwise, we do not accept x̃k, we reduce ǫ and we estimate the active set
again, continuing until we get a sufficient decrease in the objective function. The starting
value for the ǫ parameter is 10−1 and we set C = 10−6.

All the codes used in the tests were implemented in Matlab R2014b and the experiments
were ran on an Intel Xeon(R), CPU E5-1650 v2 3.50 GHz.

6.1 Comparison on Instances from the Chebyshev Center Problem

The Chebyshev center problem consists in finding the circle of minimum radius that encloses
all the points in a given finite set C = {c1, . . . , cn} ⊂ R

m (see, e.g., [32] and the refer-
ences therein). The problem can be formulated as problem (1), where f(x) = xTATAx −
∑n

i=1 ‖ci‖
2xi, with A =

(

c1 . . . cn
)

∈ R
m×n. We generated instances with

• n (i.e., cardinality of C) = 215;

• m (i.e., samples’ dimension) = 10, 100, 1000.

For each combination of n and m, we considered 10 problems p1, . . . , p10 where we randomly
generated the vectors ci ∈ R

m, i = 1, . . . , n, by the Matlab’s built-in function rand. For each
problem ph, h = 1, . . . , 10, we used the Matlab’s command rng(h) to set the seed for the
random number generator. For each problem we fix the starting point to e1 (the same for all
methods).

In this set of experiments we first run AS-AFW, stopping it at the first iteration k satisfying

∇f(xk)T (x− xk) ≥ −10−6, ∀x ∈ ∆,

23

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

Table 1: Comparison on instances from the Chebyshev center problem. A star indicates that
the time limit of 3600 seconds was reached.

m
CPU time Obj

FW AS-FW AFW AS-AFW PG AS-PG P2GP FW AS-FW AFW AS-AFW PG AS-PG P2GP

10

p1 ∗ 36.22 40.75 0.92 269.21 0.48 146.90 −33.49 −33.49 −33.49 −33.49 −33.49 −33.49 −33.49
p2 ∗ 0.34 12.55 0.37 350.77 0.33 ∗ −35.78 −35.79 −35.79 −35.79 −35.79 −35.79 −35.77
p3 ∗ 20.47 12.46 0.42 396.47 0.59 652.64 −36.58 −36.58 −36.58 −36.58 −36.58 −36.58 −36.58
p4 ∗ 58.68 14.62 0.39 261.99 0.47 74.20 −34.92 −34.92 −34.92 −34.92 −34.92 −34.92 −34.92
p5 ∗ 0.25 7.62 0.27 389.11 0.34 961.91 −37.56 −37.56 −37.56 −37.56 −37.56 −37.56 −37.56
p6 ∗ 279.68 51.44 1.01 419.54 0.89 ∗ −35.96 −35.96 −35.96 −35.96 −35.96 −35.96 −35.96
p7 ∗ 0.34 11.48 0.36 216.04 0.41 508.57 −36.01 −36.01 −36.01 −36.01 −36.01 −36.01 −36.01
p8 ∗ 0.54 15.92 0.40 165.88 0.42 3127.75 −35.34 −35.34 −35.34 −35.34 −35.34 −35.34 −35.34
p9 ∗ 16.87 14.63 0.38 336.34 0.35 100.14 −35.60 −35.60 −35.60 −35.60 −35.60 −35.60 −35.60
p10 ∗ 36.90 25.33 0.47 251.71 0.46 ∗ −33.13 −33.13 −33.13 −33.13 −33.13 −33.13 −33.13

100

p1 ∗ 332.95 60.12 1.07 1089.13 1.60 22.51 −156.85 −156.86 −156.86 −156.86 −156.86 −156.86 −156.86
p2 ∗ 326.44 51.96 1.64 878.55 2.04 31.94 −153.68 −153.68 −153.68 −153.68 −153.68 −153.68 −153.68
p3 ∗ 74.47 43.54 0.83 137.13 2.45 18.70 −156.05 −156.05 −156.05 −156.05 −156.05 −156.05 −156.05
p4 ∗ 33.49 50.20 1.16 848.55 0.96 22.97 −153.15 −153.16 −153.16 −153.16 −153.16 −153.16 −153.16
p5 ∗ 6.93 43.55 0.97 920.43 2.76 26.49 −152.91 −152.91 −152.91 −152.91 −152.91 −152.91 −152.91
p6 ∗ 326.46 46.81 1.06 908.36 1.39 17.83 −152.75 −152.75 −152.75 −152.75 −152.75 −152.75 −152.75
p7 ∗ 6.68 45.52 1.07 983.68 0.85 ∗ −151.88 −151.88 −151.88 −151.88 −151.88 −151.88 −151.88
p8 ∗ 317.54 48.29 1.05 1033.65 1.33 217.97 −153.43 −153.43 −153.43 −153.43 −153.43 −153.43 −153.43
p9 ∗ 225.92 51.03 1.06 968.77 1.97 231.58 −152.26 −152.26 −152.26 −152.26 −152.26 −152.26 −152.26
p10 ∗ 52.11 58.23 1.26 967.47 2.25 41.47 −153.34 −153.34 −153.34 −153.34 −153.34 −153.34 −153.34

1000

p1 ∗ 8.45 151.76 7.38 1770.16 3.76 29.18 −1131.67 −1131.67 −1131.67 −1131.67 −1131.67 −1131.67 −1131.67
p2 ∗ 128.50 140.18 6.62 1374.36 5.30 13.65 −1134.48 −1134.49 −1134.49 −1134.49 −1134.49 −1134.49 −1134.49
p3 ∗ 38.59 165.97 6.30 1114.03 3.43 13.14 −1136.53 −1136.54 −1136.54 −1136.54 −1136.54 −1136.54 −1136.54
p4 ∗ 32.73 155.13 6.55 2009.08 2.98 12.77 −1137.88 −1137.88 −1137.88 −1137.88 −1137.88 −1137.88 −1137.88
p5 ∗ 10.74 153.57 6.37 2284.88 4.88 11.11 −1138.01 −1138.01 −1138.01 −1138.01 −1138.01 −1138.01 −1138.01
p6 ∗ 25.39 179.13 8.07 900.20 3.42 11.34 −1131.69 −1131.70 −1131.70 −1131.70 −1131.70 −1131.70 −1131.70
p7 ∗ 13.82 123.64 6.83 1467.58 8.15 12.76 −1136.24 −1136.26 −1136.26 −1136.26 −1136.26 −1136.26 −1136.26
p8 ∗ 65.76 136.15 5.35 2422.12 3.37 13.49 −1138.78 −1138.79 −1138.79 −1138.79 −1138.79 −1138.79 −1138.79
p9 ∗ 542.44 161.34 6.63 969.59 13.65 11.90 −1136.86 −1136.87 −1136.87 −1136.87 −1136.87 −1136.87 −1136.87
p10 ∗ 37.31 162.30 7.43 1644.57 18.22 118.83 −1135.62 −1135.62 −1135.62 −1135.62 −1135.62 −1135.62 −1135.62

and setting fmin = f(xk). Then, we used fmin as target value to stop the other algorithms
using a certain tolerance (keep in mind that the problem is convex). Namely, all the other
algorithms, including P2GP, were stopped at the first iteration k satisfying

f(xk) ≤ fmin + 10−6(1 + |fmin|).

We also used a time limit of 3600 seconds for each method. In P2GP, all parameters were
set to their default values (except those for termination, that were set in order to stop the
algorithm as just described).

In Table 1, for each instance and each algorithm, we report the CPU time needed to
satisfy the stopping criterion and the final objective function value found.

We first see that the active-set versions are up to two orders of magnitude faster than
the standard counterparts. More in detail, in Figure 1 we report the optimization error for
the comparison between AS-FW and FW, between AS-AFW and AFW, and between AS-PG and
PG. For every m, in each plot we report the optimization error Ek = f(xk)− fmin, averaged
over the 10 runs, versus the computational time. We can notice that the active-set methods
clearly outperform the standard algorithms.

For what concerns the comparisons among our active-set methods and P2GP, from Table 1
we see that both AS-AFW and AS-PG are much faster than P2GP for all the considered values
of m, while AS-FW is faster than P2GP for m = 10, slower for m = 1000 and is comparable
with P2GP for m = 100 (in the sense that on average they take an amount of time of the

24

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

same order of magnitude). For these comparisons, the optimization error Ek = f(xk)− fmin,
averaged over the 10 runs, is reported in Figure 2.

100 101 102 103
10-6

10-4

10-2

100

102

100 101
10-6

10-4

10-2

100

102

100 101 102
10-6

10-4

10-2

100

102

100 101 102 103
10-6

10-4

10-2

100

102

100 101
10-6

10-4

10-2

100

102

100 101 102 103
10-6

10-4

10-2

100

102

100 101 102 103
10-6

10-4

10-2

100

102

100 101 102
10-6

10-4

10-2

100

102

100 101 102 103
10-6

10-4

10-2

100

102

Figure 1: Objective function error (y axis) vs CPU time in seconds (x axis). Comparison
between original and active-set algorithms on instances from the Chebyshev center problem.
Both y axis and x axis are in logarithmic scale.

100 101 102
10-6

10-4

10-2

100

102

100 101 102
10-6

10-4

10-2

100

102

100 101 102
10-6

10-4

10-2

100

102

Figure 2: Objective function error (y axis) vs CPU time in seconds (x axis). Comparison
among active-set algorithms and P2GP on instances from the Chebyshev center problem. Both
y axis and x axis are in logarithmic scale.

6.2 Comparison on Instances from the Symmetric Eigenvalue Complemen-

tarity Problem

In our experiments, we further consider a class of non-convex non-quadratic problems, namely
instances from the symmetric Eigenvalue Complementarity Problem (EiCP). Given the sym-
metric matrices A ∈ R

n×n and B ∈ R
n×n, B ≻ 0, the symmetric EiCP consists of finding a

25

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

scalar λ and a vector x ∈ R
n \ {0} such that

w = (λB −A)x,

w ≥ 0, x ≥ 0,

wTx = 0.

It can be proven that the symmetric EiCP reduces to computing a stationary point of prob-
lem (1) where f(x) = − xTAx

xTBx
[23].

Taking into account the numerical experience reported in [23], we considered instances
with B equal to the identity matrix and A ∈ R

n×n a negative definite matrix. More in detail,
we considered 10 problems p1, . . . , p10 where −A was generated as proposed in [27], with
n = 215. Starting from a vector y ∈ R

n with components randomly uniformly distributed in
[−1, 1] (obtained by the Matlab’s built-in function rand), we set the matrix Y as

Y = I − 2
yyT

‖y‖2
,

where I is the identity matrix and, for each problem ph, h = 1, . . . , 10, we used the Matlab’s
command rng(h) to set the seed for the random number generator. The matrix A was then

generated as −Y DY , where D is a diagonal matrix with entries Dii = e
i−1

n−1 , i = 1, . . . , n. For
each problem, we randomly generated a feasible starting point (the same for all methods).

All algorithms were stopped at the first iteration k satisfying

∇f(xk)T (x− xk) ≥ −10−4, ∀x ∈ ∆.

We also considered a time limit of 3600 seconds (as for the experiments of the previous
subsection), but it was never reached by any considered method.

In Table 2, for each instance and each algorithm, we report the CPU time needed to
satisfy the stopping criterion and the final objective function value found. In Figure 3, we
report the optimization error for the comparison between AS-FW and FW, between AS-AFW and
AFW, and between AS-PG and PG. In particular, in each plot we report the optimization error
Ek = f(xk)− fmin, averaged over the 10 runs, versus the computational time, where fmin is
the smallest objective value found in any comparison between the two considered algorithms.

Also for these problems, we can notice that the active-set framework clearly outperforms
on average the original algorithms used in the comparison. In particular, the active-set
versions are on average able to find a better solution in a smaller amount of time.

7 Conclusions

In this paper, we focused on minimization problems over the simplex and described an
active-set algorithmic framework. The active-set strategy we adopted here does not only
focus on the zero variables and keep them fixed, but rather tries to quickly identify as many
active variables as possible (including nonzero variables) at a given point. Furthermore,
it suitably reduces the objective function (when setting to zero those variables estimated
active), while guaranteeing feasibility. This last feature, together with the use of active-set

26

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

Table 2: Comparison on instances from the symmetric Eigenvalue Complementarity Problem.

CPU time Obj

FW AS-FW AFW AS-AFW PG AS-PG FW AS-FW AFW AS-AFW PG AS-PG

p1 56.57 1.62 35.73 1.15 3148.11 40.47 1.00 1.00 1.00 1.00 1.00 1.00
p2 31.41 1.15 140.99 2.77 258.68 177.18 1.00 1.00 1.00 1.00 1.00 1.00
p3 265.40 11.85 345.04 15.75 1602.88 1557.03 1.00 1.00 1.00 1.00 1.00 1.00
p4 0.66 1.01 52.39 1.21 2056.99 149.71 1.24 1.00 1.00 1.00 1.00 1.00
p5 0.69 0.82 5.13 0.81 240.35 254.33 1.07 1.07 1.07 1.07 1.00 1.00
p6 0.63 1.13 0.97 1.72 1531.66 654.37 1.11 1.00 1.11 1.00 1.00 1.00
p7 3.08 0.83 6.91 0.80 1224.86 622.67 1.00 1.00 1.00 1.00 1.00 1.00
p8 51.59 1.35 121.98 2.17 835.16 35.57 1.00 1.00 1.00 1.00 1.00 1.00
p9 217.15 4.86 376.64 7.86 3444.62 41.61 1.00 1.00 1.00 1.00 1.00 1.00
p10 0.66 2.72 3.67 6.51 5.07 135.14 1.18 1.00 1.18 1.00 1.01 1.00

100 101
10-6

10-4

10-2

100

100 101 102
10-8

10-6

10-4

10-2

100

100 101 102 103
10-4

10-3

10-2

10-1

100

Figure 3: Objective function error (y axis) vs CPU time in seconds (x axis). Compari-
son between original and active-set algorithms on instances from the symmetric eigenvalue
complementarity problem. Both y axis and x axis are in logarithmic scale.

gradient related directions and an Armijo line search, allowed us to prove global convergence
of the framework. We further described three different types of active-set gradient related
directions and proved linear convergence rate when using those directions in the algorithm.
Our numerical experience on sparse optimization problems highlighted the efficiency of our
new method when dealing with both non-convex and convex instances.

References

[1] D. P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM Journal on Control and Optimization, 20(2):221–246, 1982.

[2] D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1999.
[3] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization

method with spectral projected gradients. Computational Optimization and Applica-
tions, 23(1):101–125, 2002.

[4] I. M. Bomze. Evolution towards the maximum clique. Journal of Global Optimization,
10(2):143–164, 1997.

[5] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem.
In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.

27

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

[6] C. P. Brás, A. Fischer, J. J. Júdice, K. Schönefeld, and S. Seifert. A block active set
algorithm with spectral choice line search for the symmetric eigenvalue complementarity
problem. Applied Mathematics and Computation, 294:36–48, 2017.

[7] C. Buchheim, M. De Santis, S. Lucidi, F. Rinaldi, and L. Trieu. A feasible active set
method with reoptimization for convex quadratic mixed-integer programming. SIAM
Journal on Optimization, 26(3):1695–1714, 2016.

[8] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):63, 2010.

[9] A. Cristofari, M. De Santis, S. Lucidi, and F. Rinaldi. A Two-Stage Active-Set Algorithm
for Bound-Constrained Optimization. Journal of Optimization Theory and Applications,
172(2):369–401, 2017.

[10] E. de Klerk. The complexity of optimizing over a simplex, hypercube or sphere: a short
survey. Central European Journal of Operations Research, 16(2):111–125, 2008.

[11] M. De Santis, G. Di Pillo, and S. Lucidi. An active set feasible method for large-
scale minimization problems with bound constraints. Computational Optimization and
Applications, 53(2):395–423, 2012.

[12] M. De Santis, S. Lucidi, and F. Rinaldi. A Fast Active Set Block Coordinate Descent
Algorithm for ℓ1-Regularized Least Squares. SIAM Journal on Optimization, 26(1):
781–809, 2016.

[13] G. Di Pillo and L. Grippo. A class of continuously differentiable exact penalty function
algorithms for nonlinear programming problems. In System Modelling and Optimization,
pages 246–256. Springer, 1984.

[14] D. di Serafino, G. Toraldo, M. Viola, and J. Barlow. A two-phase gradient method
for quadratic programming problems with a single linear constraint and bounds on the
variables. SIAM Journal on Optimization, 28(4):2809–2838, 2018.

[15] F. Facchinei and S. Lucidi. Quadratically and superlinearly convergent algorithms for
the solution of inequality constrained minimization problems. Journal of Optimization
Theory and Applications, 85(2):265–289, 1995.

[16] F. Facchinei, A. Fischer, and C. Kanzow. On the accurate identification of active con-
straints. SIAM Journal on Optimization, 9(1):14–32, 1998.

[17] F. Facchinei, J. Júdice, and J. Soares. An active set Newton algorithm for large-scale
nonlinear programs with box constraints. SIAM Journal on Optimization, 8(1):158–186,
1998.

[18] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[19] J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical
Programming, 35(1):110–119, 1986.

[20] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM Journal on Optimization, 17(2):526–557, 2006.

[21] W. W. Hager and H. Zhang. An active set algorithm for nonlinear optimization with
polyhedral constraints. Science China Mathematics, 59(8):1525–1542, 2016.

[22] W. W. Hager and H. Zhang. Projection onto a polyhedron that exploits sparsity. SIAM
Journal on Optimization, 26(3):1773–1798, 2016.

[23] A. N. Iusem, J. J. Júdice, V. Sessa, and P. Sarabando. Splitting methods for the

28

A. Cristofari, M. De Santis, S. Lucidi, F. Rinaldi

eigenvalue complementarity problem. Optimization Methods and Software, 34(6):1184–
1212, 2019.

[24] S. Lacoste-Julien and M. Jaggi. An affine invariant linear convergence analysis for
Frank-Wolfe algorithms. arXiv preprint arXiv:1312.7864, 2013.

[25] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe opti-
mization variants. In NIPS 2015 - Advances in Neural Information Processing Systems,
2015.

[26] Z.-Q. Luo and P. Tseng. On the linear convergence of descent methods for convex
essentially smooth minimization. SIAM Journal on Control and Optimization, 30(2):
408–425, 1992.

[27] J. J. Moré and G. Toraldo. Algorithms for bound constrained quadratic programming
problems. Numerische Mathematik, 55(4):377–400, 1989.

[28] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[29] J. Nocedal and S. J. Wright. Numerical optimization, 2006.
[30] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several

variables. SIAM, 2000.
[31] P. Wolfe. Convergence theory in nonlinear programming. Integer and nonlinear pro-

gramming, pages 1–36, 1970.
[32] S. Xu, R. M. Freund, and J. Sun. Solution methodologies for the smallest enclosing

circle problem. Computational Optimization and Applications, 25(1-3):283–292, 2003.

29

	1 Introduction
	2 Notation and Preliminaries
	3 Active-Set Estimate
	3.1 A Global Property of the Active-Set Estimate

	4 An Active-Set Algorithmic Framework for Minimization over the Simplex
	4.1 Global Convergence Analysis
	4.2 Active-Set Gradient Related Directions in AS-SIMPLEX

	5 Convergence Rate Analysis
	5.1 Linear Convergence of Active-Set Frank-Wolfe
	5.2 Linear Convergence of Active-Set Away-Step Frank-Wolfe
	5.3 Linear Convergence of Active-Set Projected Gradient

	6 Numerical Results
	6.1 Comparison on Instances from the Chebyshev Center Problem
	6.2 Comparison on Instances from the Symmetric Eigenvalue Complementarity Problem

	7 Conclusions

