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Abstract
Convex and nonconvex finite-sum minimization arises in many sci-

entific computing and machine learning applications. Recently, first-
order and second-order methods where objective functions, gradients
and Hessians are approximated by randomly sampling components of
the sum have received great attention.

We propose a new trust-region method which employs suitable ap-
proximations of the objective function, gradient and Hessian built via
random subsampling techniques. The choice of the sample size is de-
terministic and ruled by the inexact restoration approach. We discuss
local and global properties for finding approximate first- and second-
order optimal points and function evaluation complexity results. Nu-
merical experience shows that the new procedure is more efficient, in
terms of overall computational cost, than the standard trust-region
scheme with subsampled Hessians.

Keywords: inexact restoration, trust-region methods, subsampling, local and

global convergence, worst-case evaluation complexity.

1 Introduction

The problem we consider in this paper is the following

min
x∈IRn

fN (x) =
1

N

N∑
i=1

φi(x), (1)
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where N is very large and finite and φi : IRn → IR. A number of important
problems can be stated in this form, to start with problems in machine
learning like classification problems, data fitting problems, sample average
approximation of the objective function given in the form of mathematical
expectation and so on.

The practical relevance of (1) resulted in a number of methods that are
adjusted to this particular form of the objective function. In fact, for very
large N the cost of evaluating fN might be really high and the same is true
for the gradient and even more for the Hessian evaluation. Therefore a num-
ber of methods that use approximate objective functions and/or first and
second order derivatives, formed by partial sums, is proposed and analysed
in literature, see e.g., [3–6,8–13,19,20,25,36–38].

Concerning the approximation of the objective function, one of the pos-
sible approaches is to use relatively rough approximations at early stages
of the optimization procedure and gradually increase the accuracy to arrive
at full precision at the late stage of the iterative procedure; the gradient is
approximated accordingly. This way one hopes to save computational ef-
fort and yet to solve the original problem eventually. Very often the term
scheduling is used to describe the approximation of the objective function
by means of a partial sum. There is a number of algorithms proposed for the
scheduling problem, ranging from simple heuristics that increase the number
of terms in the partial sum that approximates the objective function by a
certain percentage in each iteration, [5,10,20,36] to more elaborate schemes
that connect the progress achieved during the optimization procedure to the
number of terms in the partial sum [1–5,7–9,13,17,27–29,33,35].

Besides the problem of scheduling, one has to decide between first- and
second-order optimization method to be employed. A detailed survey is
presented in [11]. A number of first-order methods has been proposed and
analysed in the literature. Given that the main cost comes from large N
one might be tempted to conclude that computing Hessians, or some other
second order information might be prohibitively costly and thus opt for a
first order method, especially if the problem (1) should be solved with limited
precision. However, recently there has been reported in several papers that
careful adjustment and implementation of second order methods might be
worth considering if the true Hessian is approximated by a partial sum
of Hessians ∇2φi(x) consisting of a significantly smaller number of terms
than N . This way one can generate useful information with significantly
smaller cost than the true Hessian and get enough advantage over first-order
methods in terms of resilience to problem ill-conditioning and low sensitivity
to parameter tuning, [5, 6, 10,12,13,19,34,36–38].
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The method we present here combines the Inexact Restoration (IR)
framework with the trust-region optimization method [16] to simultaneously
design the scheduling and the optimization procedure for solving (1) and
represents a new approach for the problem under consideration.

The Inexact Restoration method, introduced in [31], is a constrained op-
timization tool particularly suitable for problems where one does not want
to enforce feasibility in all iterations. The key idea of the IR approach is
to treat feasibility and optimality in a modular way and to improve each
one in separate procedures; the combination of feasibility and optimality is
then monitored through a suitable merit function. Each iteration ensures
the sufficient decrease of a suitable merit function and therefore, under cer-
tain assumption, convergence to a feasible optimal point. In [30, 31] the
combination of the IR strategy with trust-region methods is proposed and
analysed for general constrained problems.

The application of IR strategy to the unconstrained optimization prob-
lem (1) requires its reformulation as a constrained problem. Letting IM be
an arbitrary nonempty subset of {1, . . . , N} of cardinality |IM | equal to M ,
we reformulate problem (1) as

min
x∈IRn

fM (x) =
1

M

∑
i∈IM

φi(x).

s.t. M = N,

(2)

Evaluating infeasibility in (2) is cheap while computing the objective func-
tion is expensive wheneverM is large. Thus, using the reasoning from [30,31]
we define a new algorithm that exploits the structure of the problem con-
sidered and takes advantage of the modular structure of IR and the trust-
region optimization method at the same time. Specifically, the trust-region
mechanism is applied to model fM at each iteration and the IR framework
is applied to test for the acceptance of the iterates and to determine the
scheduling sequence, i.e. the value of M through the iterations. The test
acceptance of the new iterate allows us to deal with inaccuracy in function
and derivatives. In particular, the number of terms in the partial sum is
fixed at the beginning of each iteration in the restoration phase and possi-
bly changed in the optimality phase where the trial iterate is computed.

Clearly, the higher feasibility is the more accurate fM is with respect to
fN . The new procedure has two important properties: partial sums, pos-
sibly consisting of small sets of φi’s, can be used in the early stage of the
iterative procedure to decrease the computational cost; the original objec-
tive function in (1) is recovered for all iteration indices large enough, thus
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allowing for the solution of the given problem. Clearly, when full precision
of the objective function and the gradient is reached, one can rely on the
theory and machinery of standard trust-region methods [16].

The scheme presented here applies to both first- and second-order trust-
region models. If a linear model is used, the resulting procedure is a subsam-
pled gradient method with variable stepsize. When second-order models are
used, the Hessian can be approximated using a subset of the sample used to
approximate function and gradient. The error in such Hessian approxima-
tion plays an important role in the asymptotic convergence rate. In the case
of strongly convex problems, the analysis for local linear convergence rate is
presented, both in deterministic and probabilistic settings, and an adaptive
choice of the sample for Hessian approximation is proposed.

We also provide a function evaluation complexity result which resem-
bles the classical result for the trust-region methods for (1) and the results
obtained in [8]. It is shown that at most O(ε−2) evaluations of the pos-
sibly subsampled function fM , M ≤ N , and its derivatives are needed to
compute a first-order approximate critical point. Then the worst-case com-
plexity of the standard trust-region is recovered with expected significant
computational savings due to scheduling.

Our approach considerably differs from the IR procedure and trust-
region method in [30, 31] since the objective function in our formulation
changes with M through the iterations. It also differs from IR approaches
in [7, 8, 29] that employ approximate objective function and its derivatives
and have been successfully applied to constrained and unconstrained prob-
lems, including problem (1); in papers [7, 29] the IR is combined with a
line search strategy, while in [8] the considered problem is constrained and
regularization techniques are used in the optimization phase. The approach
presented here relays on [8] in terms of general idea but the problem is more
specific being a finite-sum rather than a general objective function computed
approximately and being unconstrained. These specifications allow us to de-
sign an efficient sample update rule which is connected with the trust-region
size.

The value of M is fixed via a deterministic rule while the trust-region
schemes in [9,25,38], approximating either functions, gradients and Hessians
[9,25] or Hessians only [38], are designed using sample sets whose cardinality
is determined by high probability and nonasymptotic convergence analysis.

The nature of IR allows changes in the feasibility through iterations and
the change is not necessarily monotone, i.e., the cardinality of the subset that
defines the approximate objective can both increase and decrease, depending
on the feedback from the trust-region progress made in each iteration. The
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case where M is increased by a prefixed percentage at each iteration is a
particular case of our strategy. In this latter case our method differs from a
straightforward subsampled trust-region procedure with increasing sample
size in both the merit function and the acceptance criterion. Remarkably,
their employment allow to prove optimal complexity results that otherwise
require adaptive accuracy requirements [9].

This paper is organized as follows. In Section 2 we present our method
and prove that it is well defined. Furthermore, we prove that full accu-
racy is eventually reached and that the set of standard assumptions yield
first-order stationary points. Some issues concerning the realization of the
procedure are considered in Section 3; the scheduling rule is modified to
avoid unproductive decrease in precision and a discussion on first and sec-
ond order trust-region models is provided. Section 4 deals with strongly
convex problems; we prove q-linear convergence as well as q-linear conver-
gence in expectation under probabilistic bounds for Hessian subsampling.
Section 5 provides worst-case function evaluation complexity. The numeri-
cal performance of the proposed method is tested on a set of classification
problems and the results are reported in Section 6.

2 The Algorithm

Let IM be an arbitrary nonempty subset of {1, . . . , N} of cardinality |IM |
equal to M,

IM ⊆ {1, . . . , N}, |IM | = M, M ≥ 1,

and reformulate (1) as the constrained problem (2). We measure the level
of infeasibility with respect to the constraint M = N by the function h with
the following properties.

Assumption 2.1 Let h : IN → IR be a monotone, strictly decreasing func-
tion such that h(1) > 0, h(N) = 0.

This assumption implies

h ≤ h(M) if 0 < M < N, and h(M) ≤ h̄ if 0 < M ≤ N, (3)

for M ∈ IN and h = h(N − 1) and h̄ = h(1). One possible choice for h is
h(M) = (N −M)/N, 0 < M ≤ N .

Suppose φi, 1 ≤ i ≤ N , be continuously differentiable and let ‖ ·‖ denote
the 2-norm.
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The method introduced in this section combines the Inexact Restoration,
an approach for optimization of functions evaluated inexactly, with the trust-
region methods. We will refer to it as iretr. It employs the merit function

Ψ(x,M, θ) = θfM (x) + (1− θ)h(M), (4)

with θ ∈ (0, 1) and aims to minimize both fM and the infeasibility h. Since
the reductions in the values of fM and h may not be achieved simultaneously,
a weight θ is used and a trust-region method is employed to generate a
sequence {(xk, Nk, θk)} such that Ψ(xk, Nk, θk) < Ψ(xk−1, Nk−1, θk). The
main theoretical properties of the new method, shown in the next section,
are: the sequence {θk} is nonicreasing and uniformly bounded away from
zero, Nk = N for all k sufficiently large and ‖∇fN (xk)‖ → 0 as k →∞.

Concerning the trust-region problem, suppose that xk is given. Then,
a trial sample size Nk+1 is selected, INk+1

⊆ {1, . . . , N} is chosen and the
model mk(p) for fNk+1

around xk of the form

mk(p) = fNk+1
(xk) +∇fNk+1

(xk)
T p+

1

2
pTBk+1p, (5)

is built. Here ∇fNk+1
denotes the gradient of fNk+1

and Bk+1 ∈ IRn×n is a
symmetric approximation to the Hessian ∇2fNk+1

(xk) in case φi, 1 ≤ i ≤ N ,
are twice continuously differentiable. Trivially mk(0) = fNk+1

(xk) and the
smaller h(Nk+1), the larger becomes the accuracy in the approximation to
fN and ∇fN . Then, letting ∆k > 0 denote the trust-region radius and
Bk = {xk + p ∈ IRn : ‖p‖ ≤ ∆k} be the trust-region, the trust-region
problem is

min
‖p‖≤∆k

mk(p). (6)

As in the standard trust-region schemes, problem (6) is solved approximately
and the computed step pk is required to provide a sufficient reduction in the
model in terms of the Cauchy step pCk , i.e., the minimizer of the model mk

along the steepest descent −∇fNk+1
(xk) within Bk

pCk = argmin
p = −t∇fNk+1

(xk), t > 0
‖p‖ ≤ ∆k

mk(p). (7)

Then, if a sufficient reduction in the function Ψ is achieved, the step pk is
accepted and the new iterate xk+1 is set equal to xk + pk. Otherwise, the
step is rejected and the trust-region radius is reduced. The specific form of
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the predicted and actual reduction used in the acceptance criterion will be
given below, after detailing the Algorithm’s steps.

Now we present the new Algorithm iretr which aims at finding an εg–
accurate first-order optimality point defined as follows

‖∇fNk+1
(xk)‖ ≤ εg and Nk = N, (8)

and comment on it, see Algorithm 1.

Given xk, Nk and θk we describe the kth iteration. In Step 1 the fea-
sibility is improved. If Nk < N , we predict the cardinality Ñk+1 such that
the value h(Ñk+1) is smaller than h(Nk) and at most equal to a prefixed
fraction of h(Nk). In case h(M) = (N −M)/N, 0 < M ≤ N , taking into
account that Nk and Ñk+1 are integers it can be shown that condition (9)
holds if and only if 0 < Nk < Ñk+1 provided that h(2)/h(1) < r < 1.

In Step 2, an attempt is made to reduce the computational effort i.e.
to enlarge infesibility; Nk+1 is chosen such that Nk+1 ≤ Ñk+1 and the
bounded deterioration (10) on the value of h(Nk+1) with respect to h(Ñk+1)
is imposed. In principal such control allows us to reduce Nk+1 below both
Nk and Ñk+1. On the other hand, the upper bound in (10) depends on
the trust-region radius and Nk+1 will be equal to Ñk+1 whenever ∆k is
small enough. If Nk = N , the stopping criterion ‖∇fNk+1

(xk)‖ ≤ εg is
checked. This is supported by the fact that, when Nk = N , we may expect
Nk+1 be close to N and ∇fNk+1

(xk) be close to ∇fN (xk) in a probabilistic
sense; we will further discuss this issue in Section 3. If (8) is not met,
using INk+1

⊆ {1, . . . , N}, the trust-region model mk(p) is built and (6)
is approximately solved. The computed step pk is required to provide the
sufficient reduction (11) in the model in terms of the Cauchy step pCk .

The acceptance rule for pk in Step 5 depends on the predicted and actual
reduction defined as follows:

Predk(θ) = θ(fNk
(xk)−mk(pk)) + (1− θ)(h(Nk)− h(Ñk+1)), (15)

Aredk(θ) = Ψ(xk, Nk, θ)−Ψ(xk + pk, Nk+1, θ)

= θ(fNk
(xk)− fNk+1

(xk + pk)) + (1− θ)(h(Nk)− h(Nk+1)),(16)

where the last equality follows from (4). We observe that Predk uses the last
accepted values fNk

(xk) and Nk and is a linear combination of two predicted
values: the predicted model decrease fNk

(xk) − mk(pk) and the predicted

infeasibility decrease h(Nk) − h(Ñk+1). As for Aredk, given θ, it measures
the actual reduction of Ψ.
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Algorithm 1 The algorithm iretr

Given x0 ∈ IRn, N0 integer in (0, N ], θ0 ∈ (0, 1), B0 ∈ IRn×n, ∆0 > 0,
0 < ζ1 < 1 < ζ2, γ ∈ (0, 1], r, η, τ ∈ (0, 1), µ ∈ [0, 1) the accuracy level
εg ≥ 0.

0. Set k = 0, T0 = 0, ∆0 = ∆
(T0)
0 ;

1. If Nk < N , find Ñk+1 such that Nk < Ñk+1 ≤ N , and

h(Ñk+1) ≤ rh(Nk). (9)

If Nk = N , set Ñk+1 = N .

2. Choose Nk+1 such that Nk+1 ≤ Ñk+1, and

h(Nk+1)− h(Ñk+1) ≤ µ
(

∆
(Tk)
k

)1+γ
. (10)

If Nk = N and ‖∇fNk+1
(xk)‖ ≤ εg, stop.

Build the model mk(p) for fNk+1
(xk) in (5).

Find an approximate trust-region solution pk such that

mk(0)−mk(pk) ≥ τ(mk(0)−mk(p
C
k )) (11)

where pCk is given in (7).
3. If Nk = N and Nk+1 < N and

fN (xk)−mk(pk) < τ(mk(0)−mk(p
C
k )) (12)

take ∆
(Tk+1)
k = ζ1∆

(Tk)
k , set Tk = Tk + 1 and repeat Step 2.

4. Compute the penalty parameter θk+1

θk+1 =


θk if Predk(θk) ≥ η(h(Nk)− h(Ñk+1))

(1− η)(h(Nk)− h(Ñk+1))

mk(pk)− fNk
(xk) + h(Nk)− h(Ñk+1)

otherwise.
(13)

5. If
Aredk(θk+1) ≥ ηPredk(θk+1), (14)

Set xk+1 = xk + pk, ∆k = ∆
(Tk)
k . Choose ∆

(0)
k+1 ∈ [∆k, ζ2∆k],

set k = k + 1,Tk = 0, and go to Step 1.

Else take ∆
(Tk+1)
k = ζ1∆

(Tk)
k , set Tk = Tk + 1 and go to Step 2.
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The new penalty parameter θk+1 computed in Step 4 is the largest value
that ensures

Predk(θk+1) ≥ η(h(Nk)− h(Ñk+1)) ≥ 0, (17)

as h(Nk) − h(Ñk+1) ≥ 0 by (9). In case Nk < Ñk+1 such condition implies
Predk(θk+1) strictly positive. In case Nk = Ñk+1 = N , Predk(θ) reduces
to θ(fN (xk) − mk(pk)) and from (11) it follows Predk(θ) ≥ τθ(mk(0) −
mk(p

C
k )) > 0 whenever Nk+1 = N . On the other hand, in case Nk =

Ñk+1 = N and Nk+1 < N , Step 3 is necessary to enforce positivity of
Predk(θk+1) as mk(0) = fNk+1

(xk) 6= fN (xk). In fact, Predk(θ) > 0 follows
from taking a step such that fN (xk) −mk(pk) ≥ τ(mk(0) −mk(p

C
k )). We

further notice that attempting Nk+1 < N when Nk = N is meaningful if the
model is a good approximation of fN around xk and thus one can expect
some progress, or at least a limited deterioration in the value of the full
objective function fN . Enforcing fN (xk)−mk(pk) ≥ τ(mk(0)−mk(p

C
k )) is

a minimal requirement on the agreement between fN at xk and the model
at the trial step.

Finally, in Step 5 the step pk is accepted if the ratio between the predicted
reduction Predk(θk+1) and the actual reduction Aredk(θk+1) is larger than
a prefixed scalar η, otherwise the trust-region radius is reduced and the
procedure is repeated starting from Step 2.

Notice that the trust-region size can be reduced several times during one
iteration, i.e., only successful iterations yield to the increment of the itera-
tion counter k. To emphasize this fact, within each iteration, we introduce
an additional counter Tk for the number of decreases of the trust-region
size. The feasibility measure Nk+1 might be modified several times within
one iteration as well, but changes due to (10) and (12) do not necessarily
correspond to the number of reductions of the trust-region size. The penalty
parameter θk has an analogous behaviour. For this reason and to avoid no-
tation clustering, we do not introduce additional counters for Nk+1 and θk+1

within the same iteration.
We start the analysis of the new method proving that the kth iteration of

Algorithm iretr is well defined since appropriate values of Nk+1 and θk+1

will be reached in a finite number of attempts. Here and in Section 5, Bk+1

can be the null matrix and our analysis covers the use of both first-order
and second-order models.

Lemma 2.1 Steps 2 and 3 of Algorithm iretr are well-defined.

Proof. For any positive ∆
(Tk)
k inequality (10) trivially holds in the limit

case Nk+1 = Ñk+1. Analogously, Step 3 can not be repeated infinitely
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many times as for Tk large enough, ∆
(Tk)
k will be small enough to yield

Nk+1 = Ñk+1 = N . 2

We now make the following assumption.

Assumption 2.2 {xk} ⊂ Ω where Ω is a compact set in IRn.

Lemma 2.2 Let Assumptions 2.1 and 2.2 hold. Suppose that φi, 1 ≤ i ≤ N ,
are continuous in Ω. Then the sequence {θk} built in Algorithm iretr is
positive, nonincreasing and bounded away from zero, θk+1 ≥ θ > 0 with θ
independent of k and (17) holds.

Proof. We have θ0 > 0 and proceed by induction assuming that θk is
positive. First consider the case where Nk = Ñk+1 (equivalently Nk =
Ñk+1 = N). Then h(Nk) − h(Ñk+1) = 0 and, due to Step 3, Predk(θ) =
θ(fNk

(xk)−mk(pk)) > 0 for any positive θ. Thus θk+1 = θk and (17) holds.

Let now suppose Nk < Ñk+1. If inequality Predk(θk) ≥ η(h(Nk) −
h(Ñk+1)) holds then θk+1 = θk satisfies (17). Otherwise, we have

θk(fNk
(xk)−mk(pk)− (h(Nk)− h(Ñk+1))) < (η − 1)(h(Nk)− h(Ñk+1)),

and since the right hand-side is negative by construction, it follows

fNk
(xk)−mk(pk)− (h(Nk)− h(Ñk+1)) < 0.

Consequently, Predk(θ) ≥ η(h(Nk)− h(Ñk+1)) is satisfied if

θ(fNk
(xk)−mk(pk)− (h(Nk)− h(Ñk+1))) ≥ (η − 1)(h(Nk)− h(Ñk+1)),

i.e., if

θ ≤ θk+1
def
=

(1− η)(h(Nk)− h(Ñk+1))

mk(pk)− fNk
(xk) + h(Nk)− h(Ñk+1)

.

Hence θk+1 is the largest value satisfying (17) and θk+1 < θk.
Let us now prove that θk+1 ≥ θ. Using Assumptions 2.2 and continuity

of φi, 1 ≤ i ≤ N , let
κφ = max

1 ≤ i ≤ N
x ∈ Ω

|φi(x)|. (18)

Then, using (3), for M such that 0 < M ≤ N there holds

fN (xk)− fM (xk) =
1

N

∑
i∈IN

φi(xk)−
1

M

∑
i∈IM

φi(xk)

=

(
1

N
− 1

M

) ∑
i∈IM

φi(xk) +
1

N

∑
i∈IN�IM

φi(xk),
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and therefore for any integer M , 0 < M ≤ N

|fN (xk)− fM (xk)| ≤
N −M
NM

Mκφ +
N −M
N

κφ

=
2(N −M)κφ
N h(M)

h(M)

≤
2(N −M)κφ

N h
h(M)

≤
2(N − 1)κφ

N h
h(M)

def
= σh(M). (19)

Also note that by (9) and (3)

h(Nk)− h(Ñk+1) ≥ (1− r)h(Nk) ≥ (1− r)h. (20)

Moreover,

mk(pk)− fNk
(xk) + h(Nk)− h(Ñk+1) ≤ mk(pk)− fNk

(xk) + h(Nk)

≤ mk(0)− fNk
(xk) + h̄ = fNk+1

(xk)− fNk
(xk) + h̄

≤ |fNk+1
(xk)− fN (xk)|+ |fN (xk)− fNk

(xk)|+ h̄

≤ σ(h(Nk) + h(Nk+1)) + h̄ ≤ (2σ + 1)h̄,

and θk+1 in (13) satisfies

θk+1 ≥
(1− η)(1− r)h

(2σ + 1)h̄

def
= θ,

and the proof is completed. 2

To establish the well-definiteness of Steps 4 and 5, we make the following
assumptions.

Assumption 2.3 The gradients ∇φi, 1 ≤ i ≤ N , are Lipschitz continuous
on the segments [xk, xk + pk], for all k ≥ 0 and for all pk generated in the
repetition of Steps 2–5.

Assumption 2.4 There exists positive κB such that for all k

‖Bk+1‖ ≤ κB.

11



By Assumption 2.3 there is a t ∈ (0, 1) such that

fNk+1
(xk+pk)−mk(pk) =

∫ 1

0

(
∇fNk+1

(xk + tpk)−∇fNk+1
(xk)

)T
pkdt−

1

2
pTkBk+1pk,

[18, Lemma 4.1.2]. Consequently, using Assumptions 2.2–2.4 we have

|fNk+1
(xk + pk)−mk(pk)| ≤ κT∆2

k, (21)

with κT = (L+ κB/2) and L depending on the Lipschitz constants of ∇φi,
1 ≤ i ≤ N .

In the next result we use the key inequality

mk(0)−mk(p
C
k ) ≥ 1

2
‖∇fNk+1

(xk)‖min

{‖∇fNk+1
(xk)‖

β
,∆k

}
, (22)

with β = 1 + κB, see [16, Theorem 6.3.1].

Lemma 2.3 Let Assumptions 2.1– 2.4 hold. Assume θk ∈ (0, 1) and θk+1

as in (13). Then, Steps 4 and 5 of Algorithm IRETR are well defined.

Proof. Let us prove that Aredk(θk+1) − ηPredk(θk+1) is strictly positive

if ∆
(Tk)
k is small enough, i.e., after a finite number Tk of reductions of the

trust-region radius. Let θk+1 be computed at Step 4 for some ∆
(Tk)
k . By (15)

and (16), we have

Aredk(θk+1)− ηPredk(θk+1)

= θk+1(fNk
(xk)− fNk+1

(xk + pk)) + (1− θk+1)(h(Nk)− h(Nk+1))−
ηθk+1(fNk

(xk)−mk(pk))− η(1− θk+1)(h(Nk)− h(Ñk+1))

= θk+1(fNk
(xk)−mk(pk)) + θk+1(mk(pk)− fNk+1

(xk + pk)) +

(1− θk+1)(h(Nk)− h(Ñk+1)) + (1− θk+1)(h(Ñk+1)− h(Nk+1))−
ηθk+1(fNk

(xk)−mk(pk))− η(1− θk+1)(h(Nk)− h(Ñk+1))

= (1− η)
(
θk+1(fNk

(xk)−mk(pk)) + (1− θk+1)(h(Nk)− h(Ñk+1))
)

+

θk+1(mk(pk)− fNk+1
(xk + pk)) + (1− θk+1)(h(Ñk+1)− h(Nk+1))

= (1− η)Predk(θk+1) + θk+1(mk(pk)− fNk+1
(xk + pk)) +

(1− θk+1)(h(Ñk+1)− h(Nk+1)).

We now distinguish three cases.
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i) If h(Nk)− h(Ñk+1) > 0 then using (17) we get

Aredk(θk+1)− ηPredk(θk+1) ≥ η(1− η)(h(Nk)− h(Ñk+1))

+θk+1(mk(pk)− fNk+1
(xk + pk))

+(1− θk+1)(h(Ñk+1)− h(Nk+1)).(23)

The first term in the above right hand-side is strictly positive and uniformly
bounded from below due to (20). On the other hand, by (21) and (10)

|θk+1(mk(pk)−fNk+1
(xk+pk))+(1−θk+1)(h(Ñk+1)−h(Nk+1))| ≤ κT

(
∆

(Tk)
k

)2
+µ
(

∆
(Tk)
k

)1+γ

(24)
Therefore, for ∆Tk

k small enough we have Aredk(θk+1) − ηPredk(θk+1) > 0
and the iteration finishes.

ii) If h(Nk)−h(Ñk+1) = 0 (equivalently Nk = Ñk+1 = N) and Nk+1 = N
then using (15) and (16) we have

Aredk(θk+1)− ηPredk(θk+1) = (1− η)θk+1(fN (xk)−mk(pk)) +

θk+1(mk(pk)− fN (xk + pk)).

Thus, by (11), (21) and (22), if ∆
(Tk)
k is small enough we get

Aredk(θk+1)− ηPredk(θk+1)

≥ τ(1− η)θk+1(mk(0)−mk(p
C
k )) + θk+1(mk(pk)− fN (xk + pk))

≥ 1

2
τ(1− η)θk+1‖∇fN (xk)‖∆

(Tk)
k − θk+1|mk(pk)− fN (xk + pk)|

≥ 1

2
τθ(1− η)‖∇fN (xk)‖∆

(Tk)
k − |mk(pk)− fN (xk + pk)|

≥
(

1

2
τθ(1− η)‖∇fN (xk)‖ − κT∆

(Tk)
k

)
∆

(Tk)
k , (25)

and the last bound is positive for some finite Tk.
iii) Finally, suppose h(Nk)−h(Ñk+1) = 0 (equivalently Nk = Ñk+1 = N)

and Nk+1 < N then using (15) and (16) we have

Aredk(θk+1)− ηPredk(θk+1) = (1− η)θk+1(fN (xk)−mk(pk)) +

θk+1(mk(pk)− fNk+1
(xk + pk))− (1− θk+1)h(Nk+1).

Thus, by Step 3 of Algorithm 2.1, (21) and (22), if ∆Tk
k is small enough we
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get

Aredk(θk+1)− ηPredk(θk+1) ≥ (26)

≥ (1− η)θτ(mk(0)−mk(p
C
k ))− θk+1|mk(pk)− fNk+1

(xk + pk)| − h(Nk+1)

≥ 1

2
τθ(1− η)‖∇fNk+1

(xk)‖∆
(Tk)
k − θk+1|mk(pk)− fNk+1

(xk + pk)| − h(Nk+1)

≥
(

1

2
τθ(1− η)‖∇fNk+1

(xk)‖ − κT∆
(Tk)
k − µ

(
∆

(Tk)
k

)γ)
∆

(Tk)
k , (27)

and the last bound is positive for some finite Tk. 2

The analysis presented in the rest of this section concerns the case where
Algorithm iretr is invoked with εg = 0 and does not terminate in a finite
number of steps. Each iteration k − 1 of the Algorithm ends up with the
accepted iterate xk = xk−1 + pk−1 and the final sample size Nk. In the
following statements we are going to prove that h(Nk) → 0 and therefore
the full sample is eventually reached and maintained.

Theorem 2.4 Let Assumptions 2.1–2.4 hold. Then h(Nk)→ 0.

Proof. Inequalities (9) and (17) imply

h(Nk) ≤
h(Nk)− h(Ñk+1)

1− r
≤ Predk(θk+1)

η(1− r)
. (28)

We prove by contradiction that limk→∞ Predk(θk+1) = 0.
Taking into account that at termination of iteration k we have xk+1 =

xk + pk and Aredk(θk+1) ≥ ηPredk(θk+1), using (14) and (16) we have

θk+2fNk+1
(xk+1) ≤ θk+2fNk+1

(xk+1) + Aredk(θk+1)− ηPredk(θk+1)

= θk+1fNk
(xk) + (θk+2 − θk+1)fNk+1

(xk+1) +

(1− θk+1)(h(Nk)− h(Nk+1))− ηPredk(θk+1)

≤ θk+1fNk
(xk) + (θk+1 − θk+2) max

x∈Ω

∑
i∈INk+1

|φi(x)|+

(1− θk+1)(h(Nk)− h(Nk+1))− ηPredk(θk+1).

Using (18) we can rewrite the above inequality as

θk+2fNk+1
(xk+1) ≤ θk+1fNk

(xk) + (θk+1 − θk+2)Nκφ

+ (1− θk+1)(h(Nk)− h(Nk+1))− ηPredk(θk+1).

14



Then using recurrence, and −(1− θk+1)h(Nk+1) ≤ 0 we get

θk+2fNk+1
(xk+1) ≤ θkfNk−1

(xk−1) + (θk − θk+2)Nκφ + (1− θk)(h(Nk−1)− h(Nk))

+(1− θk+1)(h(Nk)− h(Nk+1)− η
k∑

j=k−1

Predj(θj+1)

≤ θkfNk−1
(xk−1) + (θk − θk+2)Nκφ +

(1− θk)h(Nk−1) + (θk − θk+1)h(Nk)− η
k∑

j=k−1

Predj(θj+1).

Repeating this argument, using (θj − θj+1) ≥ 0 from Lemma 2.2 and (3) we
obtain

θk+2fNk+1
(xk+1) ≤ θ1fN0(x0) + (θ1 − θk+2)Nκφ + (1− θ1)h(N0) +

k∑
j=1

(θj − θj+1)h(Nj)− η
k∑
j=0

Predj(θj+1)

≤ θ1fN0(x0) + (1− θ)Nκφ + (1− θ)h̄+
k∑
j=1

(θj − θj+1)h̄−

η
k∑
j=0

Predj(θj+1)

≤ θ1fN0(x0) + (1− θ)Nκφ + (1− θ)h̄+ (θ1 − θk+1)h̄−

η
k∑
j=0

Predj(θj+1)

≤ θ1fN0(x0) + (1− θ)Nκφ + 2(1− θ)h̄− η
k∑
j=0

Predj(θj+1).

By (19) and (3) we have

θk+2fNk+1
(xk+1) = θk+2fN (xk+1) + θk+2(fNk+1

(xk+1)− fN (xk+1))

≥ θk+2fN (xk+1)− θk+2|(fNk+1
(xk+1)− fN (xk+1))|

≥ θk+2fN (xk+1)− σh̄,

and therefore

θk+2fN (xk+1) ≤ ξ − η
k∑
j=0

Predj(θj+1), (29)
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where
ξ = θ1fN0(x0) + (1− θ)Nκφ + 2(1− θ + σ)h̄, (30)

is independent of k.
Noting that Predj(θj+1) ≥ 0, we can conclude that if Predj(θj+1) is not

tending to zero, then
∑∞

j=0 Predj(θj+1) is diverging and this implies that
fN is unbounded below in Ω. This contradicts the compactness of Ω. 2

Corollary 2.5 Let Assumptions 2.1–2.4 hold. Then Nk = N for all k
sufficiently large.

Proof. By Theorem 2.4 and Assumption 2.1, it follows h(Nk) < h(N − 1)
for all k sufficiently large. This implies Nk = N . 2

Corollary 2.6 Let Assumptions 2.1–2.4 hold. Then, for k sufficiently large,
the iterations are generated by a (standard) trust-region scheme on fN and

i) liminfk→∞ ‖∇fN (xk)‖ = 0.

ii) limk→∞ ‖∇fN (xk)‖ = 0, provided that fN is Lipschitz continuous in Ω.

Proof. By Corollary 2.5 we know that at termination of iteration k− 1 we
have Nk = N for all k sufficiently large. Thus eventually, xk+1 = xk + pk
with pk satisfying (14) which now takes the form of the standard acceptance
rule of the trial point in trust-region methods, i.e,

fN (xk+1)− fN (xk)

mk(0)−mk(pk)
≥ η.

As a consequence, Theorem 4.6 in [32] yields item i). Item ii) is guaranteed
by [32, Theorem 4.7]. 2

3 On the realization of the algorithm

The realization of Algorithm iretr raises many issues and in this section we
discuss two important aspects: the form of the model used and related prop-
erties, and a computationally convenient adaptation of the rule for choosing
Nk+1 eventually. We will further address implementation issues in Section
6.
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Various models of the form (5) can be built. One possibility is the linear
model

mk(p) = fNk+1
(xk) +∇fNk+1

(xk)
T p,

which gives rise to a gradient method and step pk

pk = −∆k
∇fNk+1

(xk)

‖∇fNk+1
(xk)‖

.

Namely, Algorithm iretr becomes a subsampled gradient method with vari-
able stepsize determined accordingly to the trust-region strategy.

Another possibility is to use quadratic models of the form

mk(p) = fNk+1
(xk) +∇fNk+1

(xk)
T p+

1

2
pTBk+1p,

and fully exploit the advantages of the trust-region framework. If all func-
tions φi are twice continuously differentiable one can build the quadratic
model

mk(p) = fNk+1
(xk) +∇fNk+1

(xk)
T p+

1

2
pT∇2fDk+1

(xk)p,

with 1 ≤ Dk+1 ≤ Nk+1 and IDk+1
⊆ INk+1

. In fact, the Hessian matrix
∇2fNk+1

(x) is approximated via subsampling by

Bk+1 =
1

Dk+1

∑
i∈IDk+1

∇2φi(xk). (31)

The cardinality of IDk+1
now controls the precision of Hessian approximation

and allows for trade-off between precision and computational costs. This
particular form of Hessian approximation will be analysed in details for
strongly convex functions in the next section.

The use of quadratic models is crucial for the computation of (εg, εH)-
approximate second order critical point of nonconvex problems (1), i.e., a
point x such that

‖∇fN (x)‖ ≤ εg, λmin(∇2fDk+1
(x)) ≥ −εH , (32)

Supposing that full precision is reached, Nk = N , the trust-region problem
(6) has to be solved approximately finding pk such that

mk(pk) ≤ mk(p
C
k ) and mk(pk) ≤ mk(p

E
k ) if λmin(∇2fDk+1

(xk)) < 0, (33)
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where pCk is the Cauchy point (7) and pEk is a negative curvature direction
such that (pEk )T∇2fDk+1

(xk)p
E
k ≤ υλmin(∇2fDk+1

(xk))‖pEk ‖2 for some υ ∈
(0, 1], [16, §6.6].

We refer to [38, Theorem 1] for results on the computation of approxi-
mated second-order optimal solutions using trust-region methods with full
function and gradient and subsampled Hessian.

Let us now address the choice of the stopping criterion in Algorithm
iretr. Notice that the Algorithm may stop even if full precision at iter-
ation k is not achieved (i.e. Nk+1 < N), provided that Nk = N . This
choice is supported by observing that suitable sample sizes provide an ac-
curate approximation ∇fNk+1

(xk) to ∇fN (xk). In fact, by [4, Theorem 6.2]
∇fNk+1

(xk) is sufficiently accurate with fixed probability at least 1−pg, i.e.,

Pr(‖∇fN (xk)−∇fNk+1
(xk)‖ ≤ χg) ≥ 1− pg with χg ∈ (0, 1), pg ∈ (0, 1),

if the cardinality Nk+1 satisfies

Nk+1 ≥ min

{
N,

⌈
2

χg

(
Vg
χg

+
2ζ(xk)

3

)
log

(
n+ 1

pg

)⌉}
, (34)

with E(‖∇φi(xk)−∇fN (xk)‖2) ≤ Vg and maxi∈{1,...,N} |∇φi(x)| ≤ ζ(x), and
INk+1

is sampled uniformly in {1, 2, . . . , N}.
We conclude this section observing that, in the current form of the algo-

rithm, at each iteration an attempt is made to use Nk+1 < N (see Step 2).
By Corollary 2.5 we know that, for k sufficiently large, such a value will be
rejected and this fact implies useless repetitions of Steps 2–5. To overcome
this drawback, we replace (10) with

h(Nk+1)− h(Ñk+1) ≤ µ∆1+γ
k if Nk 6= N (35)

h(Nk+1)− h(N) ≤ min{µ∆1+γ
k , ‖∇fN (xk)‖} if Nk = N (36)

Then, the following result holds.

Corollary 3.1 Suppose (35) and (36) hold. For k sufficiently large, the use
of sets INk+1

of cardinality smaller than N is not attempted.

Proof. By Corollary 2.5 and Corollary 2.6, we know that Nk = N for
all k sufficiently large and ‖∇fN (xk)‖ tends to zero. Thus, letting k∗ be
the iteration index such that ‖∇fN (xk)‖ < h(N − 1), ∀k ≥ k∗, it follows
Nk+1 = N , ∀k ≥ k∗. 2
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4 Strongly convex problems

In this section we assume that fN is strongly convex with strongly convex
functions φi, 1 ≤ i ≤ N , and analyze the local behaviour of iretr method
when full precision for the function and the gradient has been reached and
a quadratic model of the following form is used:

mk(p) = fN (xk) +∇fN (xk)
T p+

1

2
pT∇2fDk+1

(xk)p,

with 1 ≤ Dk+1 ≤ N , IDk+1
⊆ IN . Thus, we are focusing on the local

behaviour of the trust-region method employing second order models with
exact function and gradient and subsampled Hessian. Such a method has
been investigated in [38] with respect to iteration complexity but not with
respect to local convergence.

The additional assumptions used in this section are stated below.

Assumption 4.1 The functions φi, i = 1, . . . , N , are twice continuously
differentiable and strongly convex in IRn,

λ1I � ∇2φi(x) � λnI, with 0 < λ1 < λn, (37)

where, given two matrices A and B, A � B means that B − A is positive
semidefinite.

Trivially, fN is strongly convex and admits an unique minimizer x∗.
Moreover, Bk+1 is as in (31), both λmin(Bk+1) ≥ λ1 and λmax ≤ λn hold
and Corollary 2.6 implies limk→∞ xk = x∗.

The following theorem analyzes the behaviour of {xk} denoting

e(Dk+1) = ‖∇2fN (xk)−∇2fDk+1
(xk)‖, (38)

the error between ∇2fN (xk) and ∇2fDk+1
(xk). We also invoke the assump-

tion below.

Assumption 4.2 The Hessian ∇2fN is Lipschitz continuous on Bδ(x
∗) :=

{x ∈ Rn : ‖x− x∗‖ ≤ δ} with Lipschitz constant 2LH .

Theorem 4.1 Suppose that Assumptions 2.1, 2.2, 4.1, 4.2 hold. Let {xk}
be generated by Algorithm iretr, εg as in (8), β as in (22), η as in the
Algorithm iretr and Bk+1 given by (31).
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i) Let ε ∈ (0, 1) and Dk+1 such that

1

τ min
{
λ21
4β ,

λ1
2

} (2LHε+ e(Dk+1)) ≤ 1− η. (39)

Then, if k is sufficiently large, pk is accepted in the first pass in Step
5 and Tk = 0.

ii) There exist sufficiently small δ > 0 and sufficiently large D such that,
for all xk ∈ Bδ(x

∗) and Dk+1 = D, the error ‖xk−x∗‖ reduces linearly,
i.e., ‖xk+1 − x∗‖ < τ̃‖xk − x∗‖ for some τ̃ ∈ (0, 1).

Proof. i) Let us consider k sufficiently large such that Nk+1 = N at
termination of iteration k. Lemma 6.5.1 in [16] gives

‖pk‖ ≤
2

λ1
‖∇fN (xk)‖. (40)

Let us consider the step pk returned by iteration k. Combining (40) with
(22) and (11) we obtain

mk(0)−mk(pk) ≥
1

2
ω‖pk‖2, (41)

with ω = τ min{λ12β , 1}
λ1
2 .

At Step 5 of the Algorithm, (14) has the form fN (xk) − fN (xk + pk) ≥
η(mk(0)−mk(pk)). By Assumption 4.2 and (38), it follows∣∣∣∣fN (xk)− fN (xk + pk)

mk(0)−mk(pk)
− 1

∣∣∣∣ =
|fN (xk + pk)−mk(pk)|

mk(0)−mk(pk)

≤
|12p

T
k (∇2fN (xk + tpk)−∇2fDk+1

(xk))pk|
1
2ω‖pk‖2

≤ 1

2
‖pk‖2

(‖∇2fN (xk + tpk)−∇2fN (xk)‖
1
2ω‖pk‖2

+
‖∇2fN (xk)−∇2fDk+1

(xk)‖
1
2ω‖pk‖2

)
≤ 2LH‖pk‖+ e(Dk+1)

ω
,

where t is some scalar in t ∈ (0, 1) [16, Theorem 3.1.2]. Now, given ε ∈ (0, 1)
and Dk+1 as in (39), (40) and Corollary 2.6 imply ‖pk‖ ≤ ε for k large
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enough, say k ≥ k̄, and (39) implies the acceptance of the step. Then, ∆k

is not reduced and ∆k ≥ ∆k̄ for any k ≥ k̄.
ii) Using (40), Corollary 2.6 and item i) we can conclude that the trust-

region bound becomes inactive for k sufficiently large, i.e., the step

pk = −(∇2fDk+1
(xk))

−1∇fN (xk),

is accepted eventually. Consequently, using multivariate calculus results [18,
Lemma 4.1.12] and Assumption 4.1

‖xk+1 − x∗‖ = ‖xk − (∇2fDk+1
(xk))

−1∇fN (xk)− x∗‖
= ‖(∇2fDk+1

(xk))
−1(∇fN (x∗)−∇fN (xk)−∇2fDk+1

(xk)(x
∗ − xk)‖

≤ ‖(∇2fDk+1
(xk))

−1‖
(
‖∇fN (x∗)−∇fN (xk)−∇2fN (xk)(x

∗ − xk)‖
+‖(∇2fN (xk)−∇2fDk+1

(xk))(x
∗ − xk)‖

)
≤ 1

λ1
‖xk − x∗‖ (LH‖xk − x∗‖+ e(Dk+1)) (42)

Thus, the claim follows if δ and Dk+1 = D are such that τ̃ := LHδ+e(D)
λ1

< 1
and D satisfies (39).

2

Item ii) above may require a rather large value Dk+1 = D which is ad-
verse for practical computation. A more stringent condition on Dk+1 of the
form e(Dk+1) = O(‖∇fN (xk)‖) yields quadratic convergence but again such
Dk+1 might be very close to N . We next investigate on the more realistic
situation where the Hessian accuracy requirement in (39) is guaranteed only
with high-probability and provide a linear convergence result in expectation.

Let us now suppose that, given an accuracy requirement χH > 0, the
probability of ‖∇2fN (xk) − ∇2fDk+1

(xk)‖ being smaller than χH is larger
than 1− pH :

P (‖∇2fN (xk)−∇2fDk+1
(xk)‖ ≤ χH) ≥ 1− pH , (43)

for pH ∈ (0, 1). If the subsample IDk+1
is chosen randomly and uniformly,

then the lower bound on the sample size ensuring (43) takes the form

Dk+1 ≥ min

{
N,

⌈
2

χH

(
λ2
n

χH
+
λn
3

)
log

(
2n

pH

)⌉}
. (44)

The above bound is derived in [5, Lemma 3.1] and a similar bound is given
in [3, Lemma 4].
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We now provide a linear convergence result in expectation; the step pk
taken is the global minimizer of (6), i.e.,

(∇2fDk+1
(xk) + νkI)pk = −∇fN (xk),

for some νk ≥ 0, see [16, Theorem 7.2.1].

Theorem 4.2 Suppose that Assumptions 2.1, 2.2, 4.1, 4.2 hold. Let {xk}
be generated by Algorithm iretr invoked with εg = 0 in (8), Bk+1 as in
(31) and pk being the global minimizer of (6). If (43) holds and there exists
a ν∗ ∈ (0, 1) such that for all k

νk
λ1 + νk

≤ ν∗, (45)

then there exist δ, χH , pH sufficiently small such that

E(‖xk+1 − x∗‖) ≤ τ̄E(‖xk − x∗‖), (46)

for all k large enough and some τ̄ ∈ (0, 1).

Proof. Take δ ∈ (0, 1), χH > 0, pH ∈ (0, 1) such that

ρ =
LH δ

λ1
+
χH
λ1

+ ν∗ ≤ τ̄ , (47)

pH ≤
(τ̄ − ρ)

1 + 2λ1
λn

. (48)

for some τ̄ ∈ (0, 1). Let k large enough such that xk ∈ Bδ(x
∗).

Denote by Ak the event

‖∇2fDk+1
(xk)−∇2fN (xk)‖ ≤ χH . (49)

Then P (Ak) ≥ 1−pH and P (Āk) < pH , where Āk denotes the event Ak does
not occur. If Ak happens then using multivariate calculus results [18, Lemma
4.1.12], Assumption 4.1, (45) and (47)

‖xk+1 − x∗‖ = ‖xk − (∇2fDk+1
(xk) + νkI)−1∇fN (xk)− x∗‖

= ‖(∇2fDk+1
(xk) + νkI)−1(∇fN (x∗)−∇fN (xk)− (∇2fDk+1

(xk) + νkI)(x∗ − xk)‖
≤ ‖(∇2fDk+1

(xk) + νkI)−1‖
(
‖∇fN (x∗)−∇fN (xk)−∇2fN (xk)(x

∗ − xk)‖
+‖(∇2fN (xk)−∇2fDk+1

(xk))(x
∗ − xk) + νk(x

∗ − xk)‖
)

≤ 1

λ1 + νk
(LH‖xk − x∗‖+ e(Dk+1) + νk) ‖xk − x∗‖

≤
(
LH δ

λ1
+
χH
λ1

+ ν∗
)
‖xk − x∗‖

= ρ‖xk − x∗‖ (50)
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Otherwise, if Āk is realized then by (40) we have

‖xk+1 − x∗‖ ≤
(

1 +
2λ1

λn

)
‖xk − x∗‖.

Therefore,

E(‖xk+1 − x∗‖) = P (Ak)E(‖xk+1 − x∗‖|Ak) + P (Āk)E(‖xk+1 − x∗‖|Āk)

≤ ρE(‖xk − x∗‖) + pH

(
1 +

2λ1

λn

)
E(‖xk − x∗‖)

≤ τ̄E(‖xk − x∗‖),

where we have used (48) and p(Ak) ≤ 1. 2

5 Worst-case iteration and evaluation complexity
to first-order critical points

In this section we provide an upper bound on the number of iterations
and function-evaluations needed to find an εg-accurate first-order optimality
point (8). The number of function-evaluations is intended as the number of
evaluations of functions of the form fM , for some M ≤ N . We recall that
a standard trust-region approach shows O(ε−2

g ) worst-case iteration and full
function complexity for first-order optimality [22].

Recalling that h(Nk) − h(Ñk+1) = 0 is equivalent to Nk = Ñk+1 = N ,
consider the following partition of iteration indices k:

• I1 = {k ≥ 0 s.t. h(Nk)− h(Ñk+1) > 0},

• I2 = {k ≥ 0 s.t. h(Nk) = h(Ñk+1) = 0, Nk+1 = N and ‖∇fN (xk)‖ >
εg},

• I3 = {k ≥ 0 s.t. h(Nk) = h(Ñk+1) = 0, Nk+1 < N and ‖∇fNk+1
(xk)‖ >

εg}.

The value of Nk+1 may change within iteration k before acceptance of
the iterate; above Nk+1 is the value at the end of iteration k, i.e., the value
used for building the accepted iterate xk+1.

Our analysis is carried out fixing γ = 1 in Algorithm iretr and the first
result provides a lower bound on the trust-region radius at termination of
iteration k.

23



Lemma 5.1 Let Assumptions 2.1–2.4 hold. Suppose furthermore γ = 1 in
Algorithm iretr. Then,

i) for any k ∈ I1

∆k ≥ min

{
ζ1

√
η(1− η)

κT + µ
(1− r)h, ∆0

}
,

ii) for any k ∈ I2 ∪ I3,

∆k ≥ min

{
ζ1

√
h

µ
, ζ1Γεg, ∆0

}
, (51)

for some positive Γ and µ as in the Algorithm.

Proof. The initial ∆k may be reduced in Steps 3 and 5 of the Algorithm.
Step 3 is performed only if k ∈ I3.

Let us consider case i). Since γ = 1 equation (24) becomes

|θk+1(mk(pk)−fNk+1
(xk+pk))+(1−θk+1)(h(Ñk+1)−h(Nk+1))| ≤ (κT+µ)∆2

k.

From (23), inequality (14) is satisfied whenever

∆k ≤

√
η(1− η)

κT + µ
(h(Nk)− h(Ñk+1)) .

Thus, using (9), if

∆k ≤

√
η(1− η)

κT + µ
(1− r)h,

then (14) holds and the claim i) follows from the rule for decreasing ∆k in
Step 5 of Algorithm iretr.

Let us consider case ii). Concerning Step 3, it is performed as long as
Nk+1 < N . Then, (10) ensures that at termination of the loop in Steps 2–3

∆k ≥ ζ1

√
h

µ
.

Concerning Step 5, first suppose k ∈ I2 and ∆k ≤ εg/β with β as in
(22). Using (25) we can conclude that if

∆k ≤
τθ(1− η)

2κT
εg,
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then (14) is satisfied.
Suppose now k ∈ I3 and ∆k ≤ εg/β. Using γ = 1, equation (27) becomes

Aredk(θk+1)−ηPredk(θk+1) ≥
(

1

2
τθ(1− η)‖∇fNk+1

(xk)‖ − (κT + µ)∆k

)
∆k,

and if

∆k ≤
τθ(1− η)

2(κT + µ)
εg,

then (14) is satisfied.
The upper bound on ∆k for k ∈ I3 is sharper than the one obtained for

k ∈ I2. Then, due to the rule used to decrease ∆k in Step 5, we can conclude
that, at iteration k ∈ I2 ∪ I3, condition (14) is satisfied if

∆k > ζ1 min

{
1

β
,
τθ(1− η)

2(κT + µ)

}
εg

def
= ζ1Γεg, (52)

and the claim follows. 2

Theorem 5.2 Let Assumptions 2.1–2.4 hold. Suppose furthermore γ = 1
in Algorithm iretr and let flow the lower bound of fN in Ω. Then,

i) the cardinality |I1| satisfies

|I1| ≤
⌈
ν1h
−1
⌉
,

with ν1 = ξ−θflow
η2(1−r) , ξ as in (30), θ as in Lemma 2.2, η and r as in the

Algorithm iretr.

ii) the cardinality |I2|+ |I3| satisfies

|I2|+ |I3| ≤


⌈
ν2 ε

−2
g

⌉
if Γεg ≤ min

{√
h

µ
,
∆0

ζ1

}
,

ν3h
− 1

2 ε−1
g if

√
h

µ
≤ min

{
Γεg,

∆0

ζ1
,

}

with positive ν2 = 2
ηΓ

(
fN0(x0)− flow + (ση + 1− θ) ξ−θflow

η2(1−r)

)
, ν3 =

ν2Γ
√
µ.
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Proof. Let us denote with k̄ the last iterate of Algorithm iretr and note
that Nk̄ = N by definition of the algorithm. From (29) it follows

k̄−1∑
k=0

Predk(θk+1) ≤
ξ − θk̄+1fN (xk̄)

η
≤ ξ − θflow

η
, ∀k ≥ 0,

and consequently (28) yields

k̄−1∑
k=0

h(Nk) ≤
ξ − θflow
η2(1− r)

. (53)

Then the number of indices k such that h(Nk) > h is bounded above by

ξ − θflow
hη2(1− r)

,

and i) follows.
Let us consider the case k ∈ I2 ∪ I3. Note that by (16), (14), (15), (19)

and (11), we have

Aredk(θk+1) = θk+1(fN (xk)− fNk+1
(xk+1))− (1− θk+1)h(Nk+1)

≥ ηθk+1(fN (xk)− fNk+1
(xk) +mk(0)−mk(pk))

≥ −σηθk+1h(Nk+1) + ηθk+1(mk(0)−mk(pk))

≥ −σηθk+1h(Nk+1) + τηθk+1(mk(0)−mk(p
C
k ))

Then, by using (51) and (22) it follows

fN (xk)− fNk+1
(xk+1) + σηh(Nk+1) ≥ τη

2
min

{
ζ1Γεg, ζ1

√
h

µ
,∆0

}
εg.

(54)
Moreover, note that due to the definition of Aredk(θk+1) and inequalities
(17) and (14), the following inequality holds at termination of each iteration
k ≥ 0:

Aredk(θk+1)

θk+1
= fNk

(xk)− fNk+1
(xk+1) +

1− θk+1

θk+1
(h(Nk)− h(Nk+1)) ≥ 0

(55)

Then, since
Aredk(θk+1)

θk+1
is positive,

∑
k∈I2∪I3

Aredk(θk+1)

θk+1
≤

k̄−1∑
k=0

Aredk(θk+1)

θk+1
,
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and this implies

∑
k∈I2∪I3

(
fN (xk)− fNk+1

(xk+1)
)
≤

k̄−1∑
k=0

(
fNk

(xk)− fNk+1
(xk+1)

)
+

k̄−1∑
k=0

1− θk+1

θk+1
(h(Nk)− h(Nk+1)) −

∑
k∈I2∪I3

1− θk+1

θk+1
(h(Nk)− h(Nk+1))

=
k̄−1∑
k=0

(
fNk

(xk)− fNk+1
(xk+1)

)
+

∑
k∈I1

1− θk+1

θk+1
(h(Nk)− h(Nk+1))

≤
k̄−1∑
k=0

(
fNk

(xk)− fNk+1
(xk+1)

)
+

1− θ
θ

k̄−1∑
k=0

h(Nk).

This implies

k̄−1∑
k=0

(
fNk

(xk)− fNk+1
(xk+1)

)
+

1− θ
θ

k̄−1∑
k=0

h(Nk) ≥∑
k∈I2∪I3

(
fN (xk)− fNk+1

(xk+1)
)

(56)

Then, (56), (53), (54) and h(Nk̄) = 0 yield

fN0(x0)− flow +

(
ση +

1− θ
θ

)
ξ − θflow
η2(1− r)

≥
k̄−1∑
k=0

(
fNk

(xk)− fNk+1
(xk+1)

)
+

(
ση +

1− θ
θ

) k̄−1∑
k=0

h(Nk)

≥
∑

k∈I2∪I3

(
fN (xk)− fNk+1

(xk+1) + σηh(Nk+1)
)

≥ (|I2|+ |I3|)
η

2
min

{
ζ1Γεg, ζ1

√
h

µ
,∆0

}
εg,

and claim ii) follows. 2

Considering that εg is an optimality measure and h is expected to be
small, it is reasonable to suppose that

∆0 ≥ ζ1 max

{
Γεg,

√
h

µ

}
. (57)
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Under this condition, Theorem 5.2 gives the iteration complexity

|I1|+ |I2|+ |I3| = O
(
h−1 + max{ε−2

g , h−
1
2 ε−1
g }
)
.

As a consequence, for suitable values of h, the worst-case iteration com-
plexity O(ε−2

g ) of the standard trust-region method is retained, despite in-
accuracy in functions and gradients. This result is stated below, where
we count the number of iterations needed to satisfy ‖∇fN (xk)‖ ≤ εg or
‖∇fNk+1

(xk)‖ ≤ εg and Nk = N , i.e., iterations in I1 ∪ I2 ∪ I3 and iteration
k̄.

Corollary 5.3 Let Assumptions 2.1–2.4 hold. Assume furthermore γ = 1
in Algorithm iretr. Then, there exists a constant ν4 > 0 such that Algo-
rithm iretr needs at most

dν4ε
−2
g e+ 1

iterations, provided that h−1 = O(ε−2
g ) and (57) holds.

In case h(M) = (N−M)/N , it holds h = 1/N and h−1 = O(ε−2
g ) implies

N = O(ε−2
g ). In case N is larger, the number of iterations taken before full-

accuracy is reached may deteriorate the complexity of the standard trust-
region approach.

In order to derive the worst-case function evaluation complexity we need
to bound the total number of trust-region reductions as each trust-region
reduction calls for one (possibly subsampled) function evaluation at trial
point xk + pk.

Theorem 5.4 Let Assumptions 2.1–2.4 hold. Assume furthermore γ = 1
in Algorithm iretr and let Tj be the number of trust-region reductions at a
generic iteration j of the algorithm. Then, for any k ≥ 1,

k∑
j=0

Tj ≤
⌈

log(∆/∆0)

log(ζ1)
− k log(ζ2)

log(ζ1)

⌉
,

where

∆ = min

{
ζ1

√
η(1− η)

κT + µ
(1− r)h, ζ1

√
h

µ
, ζ1Γεg,∆0

}
.

Proof. Let us proceed by induction. By the updating rules of the trust-
region radius in Step 5 of Algorithm iretr, at termination of the iteration
j = 0 we have

∆1 ∈ [ζT01 ∆0, ζ2ζ
T0
1 ∆0].
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Then, assume that at iteration k ≥ 1

∆k ∈ [ζwk
1 ∆0, ζ

k
2 ζ

wk
1 ∆0], (58)

with wk =
∑k−1

j=0 Tj . At the end of iteration k, after Tk reductions of the
trust-region radius we have

∆k+1 ∈ [ζTk1 ∆k, ζ2ζ
Tk
1 ∆k],

and consequently,

∆k+1 ∈ [ζ
wk+1

1 ∆0, ζ
k+1
2 ζ

wk+1

1 ∆0],

i.e., (58) holds for any k ≥ 1. Taking into account that Lemma 5.1 ensures
that iteration k terminates with ∆k ≥ ∆, in the adverse case where the
initial ∆k is given by ζk2 ζ

wk
1 ∆0 (see (58)), at termination of iteration k we

are ensured that
ζk2 ζ

wk+1

1 ∆0 ≥ ∆.

This yields the thesis, taking into account that ζ1 < 1. 2

Using the previous results we can now state our function evaluation
complexity result.

Corollary 5.5 Let Assumptions 2.1–2.4 hold. Assume furthermore γ = 1
in Algorithm iretr. Then, if h−1 = O(ε−2

g ) and ∆0 satisfies (57) and it is
independently of εg, there exists a constant ν5 such that Algorithm iretr
needs at most ⌈

ν4ε
−2
g

(
1− log(ζ2)

log(ζ1)

)
−

log(ν5ε
−1
g )

log(ζ1)

⌉
function evaluations, where ν4 is given in Corollary 5.3.

Proof. Assumption h−1 = O(ε−2
g ), (57) and ∆0 independent of εg ensure

∆ = ν5εg, for some positive ν5. Then Corollary 5.3 and Theorem 5.4 yield
the thesis. 2

6 Numerical experiments

In this section we report on our numerical experience with Algorithm iretr
employing the second order model (5) and Dk+1 equal to a fixed fraction of
Nk+1. Our aim is to show that our adaptive and deterministic strategy for
choosing the sample size Nk and the use of subsampled functions, gradients
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and Hessians is effective and provides a gain in the overall computational cost
with respect to a standard trust-region approach. To this end, we compare
our method with “standard” trust-region implementations, i.e. implemen-
tations where functions and gradients are computed at full accuracy too.
Specifically, we compare with the implementation, named statr sh, em-
ploying full functions and gradients and subsampled Hessian Bk as in (31)
with Dk+1 = d0.1Ne, and with the implementation, named statr fh, where
functions, first and second order derivatives are computed at full accuracy.

All the results have been obtained running a Matlab R2019b code on an
Intel Core i5-6600K CPU 3.50 GHz x 4, 16.0GB RAM.

6.1 Test problems

We tested our method both on convex and nonconvex problems arising in
binary classification problems. Let {(ai, bi)}Ni=1 denote the pairs forming the
data set with ai ∈ IRn being the vector containing the entries of the i-th
example and bi being its label. The data set we employed are displayed in
Table 1. In the table for each data set we report the number N of training
examples and the dimension n of each instance. Moreover we report the
number of elements in the testing set NT .

We performed a logistic regression to solve classification problems as-
sociated to the data sets Mushrooms, Cina0 and Gisette. In this case
bi ∈ {−1,+1} and the strongly convex objective function is given by the
logistic loss with `2-regularization

fN (x) =
1

N

N∑
i=1

log(1 + e−bia
T
i x) +

1

2N
‖x‖2.

Classification problems associated with the remaining data sets were
solved using the sigmoid function and least-squares loss. Here bi ∈ {0,+1}
and the non-convex objective function has the form

fN (x) =
1

N

N∑
i=1

(
bi −

1

1 + e−a
T
i x

)2

.

6.2 Implementation issues

The trust-region parameters of the procedures under comparison are fixed
as

∆0 = 10, τ = 0.1, η = 0.1, ζ1 = 0.5, ζ2 = 1.2.
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Training set Testing set

Data set N n NT

Mushrooms [24] 5000 112 3124
Cina0 [14] 10000 132 6033
Gisette [24] 5000 5000 1000
A9a [24] 22793 123 9768
Covertype [24] 464810 54 116202
Ijcnn1 [15] 49990 22 91701
Mnist [23] 60000 784 10000
Htru2 [24] 10000 8 7898

Table 1: Data sets used

The trust-region problem is solved approximately using CG-Steihaug method
[16]. The Conjugate Gradient (CG) method is applied without precondition-
ing and the procedure is stopped when the relative residual becomes smaller
than 10−3 or a maximum of 100 iterations is performed. In Step 5, in case
of successful iterations, we update the trust-region radius as follows. If

Aredk(θk+1)/Predk(θk+1) ≥ 1.1 we set ∆
(0)
k+1 = ζ2∆

(Tk)
k , otherwise we set

∆
(0)
k+1 = ∆

(Tk)
k .

Focusing on Algorithms iretr, we tested two rules for choosing the sam-
ple size. In the first implementation, later referred to as iretr d, the sample
size varies dynamically. The infeasibility measure h and the initialization
parameters for inexact restoration are:

h(M) =
N −M
N

, N0 = d0.1Ne , θ0 = 0.9.

The parameters γ = 1, µ = 100/N are used in (10). The updating rules for
choosing Ñk+1, Nk+1 in Steps 1 and 2 are the following:

Ñk+1 = min{N, d1.2Nke},

Nk+1 =



⌈
Ñk+1 − 102∆1+γ

k

⌉
if
⌈
Ñk+1 − 102∆1+γ

k

⌉
∈ [N0, 0.95N ],

Ñk+1 if
⌈
Ñk+1 − 102∆1+γ

k

⌉
< N0,

N if
⌈
Ñk+1 − 102∆1+γ

k

⌉
> 0.95N.

We note that the choice of Ñk+1 falls into (9) with r = (N − 0.2)/N .
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In the second implementation, we set again

h(M) =
N −M
N

, θ0 = 0.9.

Then, the sample size Nk+1 is increased according the geometric growth:

N0 = d0.1Ne , Nk+1 = Ñk+1 = min{N, d1.2Nke}.

We will refer to this implementation as iretr gg. We note that this choice
of Nk+1 amount to choosing µ = 0 in (10).

In both implementations iretr d and iretr gg the first time that Nk =

Nk+1 = N occurs, then the value of the trust-region radius is set to ∆
(Tk)
k =

max{1, ∆
(Tk)
k }. Moreover, the Hessian matrix Bk is formed via (31) with

Dk+1 = d0.1Nk+1e , ∀k ≥ 0.

Thus, the Hessian sample size changes dynamically until the full sample for
function and gradient is reached. The sets INk+1

and IDk+1
are generated

using the Matlab function randsample with no replacement. When the
sample size Nk+1 is increased, the new sample set can be computed from
scratch or can be obtained randomly adding new samples to the previous
sample set. Despite this latter choice produces computational savings, in
view of a truly random process we generate each INk+1

from scratch.
Concerning the stopping criteria, for all the algorithms under compari-

son, we imposed a maximum of 1000 iterations and we declared a successful
termination when one of the two following conditions is met

‖∇fNk
(xk)‖ ≤ ϕ, |fNk

(xk)− fNk−1
(xk−1)| ≤ ϕ|fNk

(xk)|, (59)

with ϕ = 10−4. We underline that for iretr d and iretr gg the above
checks are on possibly subsampled functions and gradients and we allow for
termination before full precision is reached.

The initial guess is x0 = (0, . . . , 0)T for all runs.

6.3 Numerical results

The first set of results presented shows the performance of Algorithms
iretr d, iretr gg, statr sh and statr fh. In our test problems, the
main cost in the computation of φi for any 1 ≤ i ≤ N is the scalar product
aTi x. Once this product is evaluated, it can be reused for computing ∇φi
and ∇2φi. In particular, computing ∇2φi times a vector v at each CG iter-
ation requires a scalar product aTi v i.e., it is as expensive as evaluating φi.
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Data set nfe nfe(save)

iretr d iretr gg statr sh statr fh

Mushrooms 27 30 (10%) 51 (47%) 108 (75%)
Cina0 88 99 (11%) 96 ( 8%) 416 (78%)
Gisette 346 362 ( 4%) 432 (20%) 594 (42%)
A9a 22 25 (12%) 45 (51%) 445 (95%)
Covertype 17 23 (26%) 48 (65%) 698 (98%)
Ijcnn1 20 25 (20%) 36 (44%) 128 (84%)
Mnist 46 50 ( 8%) 58 (20%) 955 (95%)
Htru2 38 37 ( -3%) 43 (12%) 87 (56%)

Table 2: Function evaluations performed by iretr d, iretr gg, statr sh
and statr fh and saving obtained by iretr d over iretr gg, statr sh
and statr fh.

Therefore, if one full function evaluation is denoted as nfe, computing fM

costs
M

N
nfe while each CG iteration costs

Dk+1

N
nfe. Since the selection

of sets INk+1
and IDk+1

in Algorithms iretr d, iretr gg and statr sh is
random, the cost associated to such algorithms is measured on average over
50 runs.

In Table 2 for each method and for each data set we report the number
nfe of full function evaluations performed and the percentage of saving
obtained by Algorithm iretr d with respect to iretr gg, statr sh and
to statr fh. First, we can observe that Algorithm iretr d is in general
less costly than the variant iretr gg; this indicates that the dynamic choice
of the sample size, aiming to make slow progress to full precision, is effective
and does not deteriorate the performance of iretr when the geometrical
growth of the sample size is the most effective (see the results for Htru2).
Second, we observe a remarkable saving of both iretr d and iretr gg with
respect to the full standard trust-region for all the data sets used; compared
to statr sh the saving is lower, as expected, but still considerable overall.

To give more insight into the two implementations iretr d, in Figures
1 and 2 we plot the sample size Nk versus the iterations for Mushrooms
and A9a problems. The dashed line plots Nk+1 =

⌈
(1.2)kN0

⌉
versus itera-

tions, that is the sample size corresponding to the geometric growth used in
iretr gg. The increase of Nk along iterations in iretr d is considerably
slower than that provided by the geometric growth; in two runs, the car-
dinality Nk in iretr d reaches the value N , as expected from the theory,
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Figure 1: Mushrooms data set. Nk versus iretr d iterations (“ * ”),
sample size Nk+1 = (1.2)kN0 (dashed line).

but in the first phase of the iterative process it is a small fraction of N and
decreases at some iterations. In the other two runs, iretr d does not reach
full precision, iterations terminate with a cardinality Nk+1 = 2780, corre-
sponding to the 56% of the training set and Nk+1 = 16495, corresponding
to the 72% of the training set, respectively. In fact, despite the adaptive
strategy of iretr yields Nk = N for k sufficiently large, our stopping rule
(59) is applied on possibly subsampled functions and gradients. This fea-
ture is in accordance with the motivations for using subsampling: data in
a training set show redundancy and in general using subsets of the sample
data is enough to provide a small testing error. At this regard, consider
Figure 3 related to the data set Mushrooms, N = 5000. At each iteration
and for three runs corresponding to different sample sizes at termination,
we plot the training loss fNk

(xk) versus the value of Nk; at termination: Nk

=1941 (dashed line), Nk= 4241 (dash-dotted line), Nk = N (solid line). We
also display the testing loss fNT

at termination. Although in two runs the
final sample size is approximately 39% and 85% of the data in the training
set, interestingly the testing loss is in between 1 · 10−1 and 3 · 10−1 in all
runs. Thus, monitoring the values of subsampled functions and gradients in
(59) is effective.

The previous discussion is supported by further observations. In Figure
4, we plot the value of the training loss versus the number of function eval-
uations required to solve Mushrooms and Htru2 problems with iretr d,
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Figure 2: A9a data set. Nk versus iretr d iterations (“ * ”), sample size
Nk+1 = (1.2)kN0 (dashed line).
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Figure 3: Mushrooms data set, N=5000. Training loss versus Nk and
testing loss at termination using iretr d. Values of Nk at termination:
1941 (dashed line); 4241 (dash-dotted line); 5000 (solid line).
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Figure 4: Training loss versus function evaluations and testing loss: iretr d
(dash-dotted line); statr sh (dashed line) and statr fh (solid line). Up-
per: Mushrooms data set, lower: Htru2 data set.

statr sh and statr fh. In these runs, iretr d terminates with Nk = N
in Mushrooms problem while terminates with Nk = 7426 (74% of the sam-
ples) in Htru2 problem. At termination, the values of both the training
loss and the testing loss provided by the three methods are similar and this
feature further supports both termination before full precision is reached
and the inexact restoration approach for handling subsampled functions and
derivatives.

Finally, Figure 5 refers to the dataset Cina0 and displays the values of
the training and testing logistic loss along the iterations of iretr d using
the tolerance ϕ = 10−8 in (59). In the progress of the iterations the loss
values settle and performing the last thirteen iterations is pointless.
Acknowledgement Dedicated with friendship to José Mario Mart́ınez for
his outstanding scientific contributions.

References

[1] Bastin F., Cirillo C., Toint P.L., An adaptive Monte Carlo algorithm for
computing mixed logit estimators, Computational Management Science

36



0 5 10 15 20 25 30 35
Iterations

0.2

0.25

0.3

0.35

0.4

0.45

Loss 
functi

on

training loss
testing loss

Figure 5: Cina0 data set: training and testing loss function versus iterations
computed by itetr d. Stopping threshold ϕ = 10−8.

3(1), 55-79, 2006.

[2] Bastin F., Cirillo C., Toint P.L., Convergence theory for nonconvex
stochastic programming with an application to mixed logit, Mathe-
matical Programming, 108, 207-234, 2006.

[3] Bellavia, S., Gurioli, G., Morini, B., Adaptive cubic regularization
methods with dynamic inexact Hessian information and applications
to finite-sum minimization, IMA J. Numerical Analysis, 2020, drz076,
https://doi.org/10.1093/imanum/drz076

[4] Bellavia, S., Gurioli, G., Morini, B., Toint, Ph.L., Adaptive regulariza-
tion algorithms with inexact evaluations for nonconvex optimization,
SIAM Journal on Optimization, 29(4), pp. 2281–2915, 2019.
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[27] Krejić N., Krklec N., Line search methods with variable sample size for
unconstrained optimization, Journal of Computational and Applied
Mathematics 245, 213-231, 2013.
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