1807.04222v5 [cs.LG] 3 Jun 2020

arXiv

Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Make /; Regularization Effective
in Training Sparse CNN

Juncai He! - Xiaodong Jia®? -
Jinchao Xu' - Lian Zhang! - Liang Zhao?

Received: 24 Aug 2019 / Accepted: 30 May 2020

Abstract Compressed Sensing using ¢; regularization is among the most
powerful and popular sparsification technique in many applications, but why
has it not been used to obtain sparse deep learning model such as convolutional
neural network (CNN)? This paper is aimed to provide an answer to this
question and to show how to make it work. Following (2010), We first
demonstrate that the commonly used stochastic gradient decent (SGD) and
variants training algorithm is not an appropriate match with ¢; regularization
and then replace it with a different training algorithm based on a regularized
dual averaging (RDA) method. The RDA method of was originally
designed specifically for convex problem, but with new theoretical insight and
algorithmic modifications (using proper initialization and adaptivity), we have
made it an effective match with ¢; regularization to achieve a state-of-the-art
sparsity for the highly non-convex CNN compared to other weight pruning
methods without compromising accuracy (achieving 95% sparsity for ResNet-18
on CIFAR-10, for example).
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1 Introduction

This paper is devoted to the training of sparse deep neural networks. In the
many successful applications of deep learning [Lecun et al.| (2015), the number
of weights in most of the relevant models is often much more than the number
of data available (c.f. Pratt| (1988); [Han et al.| (2015a)); He et al.| (2016)). It
is therefore of great theoretical and practical interests to develop numerical
methods to reduce such weight redundancy and hence compress the network
models. The aim of this paper is to study sparse training algorithms for a
special class of deep neural networks, namely convolutional neural networks
(CNN).

As summarized in |Cheng et al.| (2017)), roughly speaking, there are four
major different methods that have been developed for compressing neural
network models: (1) network pruning and sharing, (2) low-rank factorization,
(3) transferred/compact convolutional filters and, (4) knowledge distillation. In
particular, the network pruning is the most popular compressing method due
to its good compatibility and competitive performance and it is also the one
that the current paper focuses on.

Among the many possible approaches for network pruning, the widely used
compressed sensing with ¢; regularization [Donoho| (2006); (Candes et al.| (2006)
appears to be an obvious choice. One natural step is to first add a proper
multiple of the 1 norm of the weights to a standard loss function and then train
the resulting model with the most commonly used training algorithms such as
SGD |Mine and Fukushima| (1981)). But this approach, as observed in [Han et al.
(2015b), does not give satisfactory sparse results for CNN models. Another
approach [Langford et al.| (2009); [Bertsekas| (2011)) is to zero out the weights
under a threshold at each iteration by using a proximal SGD (Prox-SGD). As
explained in this approach is slightly more efficient than the above method,
but still generates very limited sparsity due to its decaying soft-thresholding
parameter.

Perhaps due to the aforementioned non-satisfactory performances of SGD
when applied to ¢; regularization, no reports can be found in the literature
on any successful application of compressed sensing technique with ¢, regular-
ization to deep neural networks. Such a situation is, however, different in the
context of convex optimization such as logistic regressions. |Xiao| (2009)) suc-
cessfully developed a special compressed sensing technique for convex machine
learning models. In this work, he also observed that the SGD type method is
not effective when used with ¢; regularization. Instead he turns to the simple
dual averaging method (SDA) Nesterov| (2009), which is specifically designed for
convex optimization problems. By combining SDA with ¢; regularization, [Xiao
(2009) developed the regularized dual averaging (RDA) method and obtained
very satisfactory sparse solutions of convex stochastic regularized problems.
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One natural question is if the idea in [Xiao| (2009) can be generalized to
deep neural networks that are often highly non-convex. But, with an extensive
literature search, we have not yet found any works that discuss such a general-
ization. In fact, we could not find any works that use SDA type of methods for
the training of any machine learning models that are not convex. Given the fact
that SDA method is originally designed for convex problems naturally, SDA is
not expected to work and has never been applied for non-convex problems, not
to mention non-convex problems together with ¢; regularization.

Despite of these historic developments, we report in this paper that SDA,
with some appropriate modification, can also be made highly effective with
{1 regularization to obtain sparse convolutional neural networks. Our work is
motivated by a critical observation that we made and report in this paper: SDA
can be interpreted as a perturbation of SGD! Since SGD is a good training
algorithm for CNN, we expect that SDA is potentially also a good training
algorithm for CNN. Furthermore, we demonstrate that SDA can be combined
with a soft-thresholding operator in the forward-backward splitting form to
obtain an RDA algorithm for training sparse CNN.

With careful theoretical analysis and extensive numerical experiments,
we find that the effectiveness of our RDA method depends crucially on two
important techniques, namely (1) proper initialization, and (2) adaptive sparse
retraining. The first one is the key for RDA to work with CNN, and the
second one further improves both sparsity and accuracy. Consequently, our
RDA training process can be described as a two-step pipeline: (1) train CNN
by RDA with a specific initialization, and (2) apply adaptive sparse retraining.
These two steps lead to state-of-the-art performance of RDA to achieve high
sparsity for CNN without compromising accuracy in comparison with other
weight pruning methods.

The remainder of this paper is organized as follows. In we briefly review
SGD, SDA, Prox-SGD and RDA, then provide a comparison of these methods
to explain why RDA performs better than the other methods. We describe in
4] two techniques that are essential in utilizing RDA. Following the detailed
implementation listed in §5, we show the numerical results of different methods
and compare them with some existing work. In we summarize our results.

2 Related works

Recently, there have been many discussions in the literature on the value of net-
work pruning. [Liu et al.| (2018) reviews various pruning methods and proposes
that the value of network pruning is to search good architectures. [Mittal et al.
(2018)) shows that a randomly pruned network has comparable performance to
the original one due to its plasticity. [Zhu and Guptal (2017)) argues that pruned
large sparse models outperform small-dense models, although their memory
footprints are almost the same, and hence indicates that network pruning is
meaningful in practice.
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In general, network pruning includes individual weight pruning and struc-
tured pruning. The earliest examples of individual weight pruning methods
are Optimal Brain Damage LeCun et al. (1990)) and Optimal Brain Surgeon
[Hassibi and Stork| (1993). Recently, Han et al| (2015b]) presents a general
three-step pipeline: training, pruning and fine-turning. Typically, individual
weight pruning can only guarantee the sparsity of weight matrices, but does
not necessarily lead to compression and speedup without the support of specific
hardware and libraries. A three-stage pipeline is proposed by [Han et al.| (2015a)
to reduce the storage and energy required to run the networks. The first stage
is based on the individual weight pruning in Han et al. (2015b)), followed by
quantization and Huffman coding stages to reduce the storage.

Structured pruning, on the other hand, aims to prune the filters or channels.
Filters can be pruned based on their corresponding ¢; norm .
Similarly, some other methods prune filters based on the information of output
channels [Hu et al (2016)); [Luo et al.| (2017); [He et al] (2017)). Group sparsity
is also widely used in the pruning process after training. Wen et al.| (2016)
proposes a group sparsity strategy including filter-wise, channel-wise, shape-
wise and depth-wise structured sparsity. [Alvarez and Salzmann| (2016]) makes
use of a group regularizer on the neurons of the fully connected layers.
(2017) utilizes the scaling factors in BN layers as a metric to prune
filters. Huang and Wang| (2017)) selects sparse structures by imposing sparsity
constraints on the outputs of specific structures, such as neurons, groups or
residual blocks.

Compressed sensing with ¢; regularization has been successfully used in
many applications [Eldar and Kutyniok| (2012); [Lustig et al| (2007). As an
important technique, ¢; regularization is also adopted in machine learning fields
to obtain sparse model in specific learning problems. In past few years, numerous
algorithms are designed to find solutions of regularized convex optimization
problems. Among them, the Prox-SGD method, also known as FOBOS
land Singer| (2009) in forward-backward splitting form Lions and Mercier|
has been used in deep learning, for example in Huang and Wang| (2017). As
noticed in (2010), one drawback of Prox-SGD is that the thresholding
parameters will decay in the training process, which results in unsatisfactory
sparsity. Thus developed the RDA method to obtain more sparse
solution while keeping the accuracy, and further established the convergence of
his RDA method for convex problems. But Xiao’s RDA method has not yet
been applied in deep learning thus far.

3 Algorithms using ¢; regularization

In this section, we first briefly review SGD and SDA as training algorithms
for deep learning, and prove that SDA can be viewed as a perturbation of
SGD. We then introduce Prox-SGD and RDA for ¢; regularized problems. In
the equivalent forward-backward splitting form, these two algorithms can be
viewed as iteratively using SGD or SDA with soft-thresholding. Finally, we
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explain why RDA is much more effective than Prox-SGD for obtaining sparsity,
which motivates its use to a sparse training algorithm for deep learning.

3.1 SGD and SDA

Consider a classification problem. Let z = (z,y) be an input-output pair of
data, such as a picture and its corresponding label. Let w be weights in the
model, and f(w, z) be the loss function corresponding to z and w. Our aim is
to solve the optimization problem

min {i}jfwa@}, (1)

zZ€EZ

where Z = {21, 22, ..., 2, } is the dataset.
SGD is a commonly used algorithm for solving . The major step in SGD
with mini-batch can be represented as:

W41 = W — Nt YGe, (2)

with g, = L Zzext V. f(wt, z) on mini-batch X; C Z. In another form, ws4

m
can be interpreted as follows

. 1
wen =argmin {gfw+ oo - w3 | (3)
w Tt

Intuitively, the empirical loss function in is replaced with its first-order
approximation, then we have g w on X;. And regularization term 1 ||w — w,||3,
which uses w; as moving proximal center, is added to control the distance
between w1 and wy. Generally speaking, for convex functions, 7y can be taken
as a%/% in Nemirovsky and Yudin| (1983)) with hyper-parameter «. And in real
application of CNN, we use the strategy as discussed in

SDA can be understood as solving a different subproblem at each time step
with respect to the SGD form in . As shown in [Nesterov| (2009), SDA is
primal-dual type method since, it generates a feasible approximation to the
optimum of an appropriately formulated dual problem. Specifically, the update
scheme of SDA we consider here is

. 1
W41 = argmin {g?w—k”w—wc”g}. (4)

w 28
where g, = %Zi:l g-. Unlike SGD, the original loss function in is approx-
imated by % Zi:l gXw, a linear function obtained by averaging all previous
stochastic gradient g,. This sequence corresponds to the support functions g7 w
in the dual space. Also, the second term establishes a dynamically updated
scale between the primal and dual spaces. The regularization term % [w — w,||3
is strongly convex and uses w, as fixed proximal center, which is different from
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SGD. According to RDA in Xiao| (2010), w. = 0 if we apply the ¢; regulariza-
tion term. Thus, we will take w. = 0 in the rest of our paper. And {&} is a
nonnegative and nondecreasing sequence which determines the convergence
rate. Here, following the idea in |Nesterov| (2009)), & is chosen to be g

Originally, the SDA method was designed for solving convex optimization
problems because it was first inspired by convex combination of linear functions.
Some comparison and connections between SDA and SGD are discussed in
McMahan| (2011} 2017)). We also show the underlying relation between SGD
and SDA with a concise lemma below.

Lemma 1 The SDA method is equivalent to the following perturbed SGD
method:
w1 = (1 — €)wy — Yege (5)

where

1 1
e < s
t+VEE—t  2t—1

€t

and’yt:%:a%/{,

Proof The update scheme of can be rewritten as

wip1 = =& (we =0 in )
t
_ &
Ry > 9
=1
t
=1
Then SDA can be expanded recursively as
t
W41 = — V¢ Z 9r
T=1
t—1
o (Sova)
T=1

t—1
Vt
= —7712 gr) — g
%_1( t 2 ) tJt

Yt
= W¢— NtGe
Yt—1
= (1 — e)wy — ge,

where
1 1

t+Vt2—t  2t—1

This finishes the proof. a

€t
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Thus SDA can be viewed as a perturbation of SGD, since, as either ¢ is
sufficiently large

1
1= =\ /1->~1, (8)
Ve—1 t

and y; = %‘ = %ﬂ From the lemma above, SDA may potentially have similar

efficiency with SGD in solving non-convex problems, even applied to deep
learning fields.

Lemma 2 Let wy and w; be the sequences generated by SGD and SDA respec-
tively. Then

’lUt—'UNJt—)O

as t — 00, in some appropriate sense.

3.2 ¢ regularization, sparsity and algorithms

A natural idea to obtain a sparse CNN model is to add an ¢; regularization term
to the loss function, which is a well-known technique in compressed sensing
Donoho]| (2006)). In other words, we hope to achieve the sparsity by solving the
following regularized problem

min {¢><w> =23 s+ Anwnl}, ©)

z€Z

where A is a hyper-parameter which controls the sparsity of solution. Despite
the fact that there is no rigorous theory to prove the sparsity for the solution
of such a complex model @, numerical soft-thresholding introduced by the
{1 norm may generate sparsity at the cost of accuracy. That is to say, an
appropriate training algorithm with ¢; regularization may achieve sparsity with
acceptable accuracy. Naturally, we have the following two strategies for solving
the above problem:

— Prox-SGD: add the ¢; regularization into , which will be discussed in

— RDA: add the ¢; regularization into , which will be discussed in

Before these two algorithms are introduced, the soft-thresholding operator
related to ¢; regularization defined as entry-wised form

(soft(z,6)) D = sgn(z?) max{\x(i)\ -4, 0} ) (10)
where ¢ is the index of element. Numerically speaking, we can conclude from

the definition of the soft-thresholding operator that the larger the parameter 9,
the more sparse the solution we will be.
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3.3 Prox-SGD: applying ¢; directly to SGD

Adding the regularization term A||w||; to subproblem directly gives prox-
SGD as:

. 1
Wiy = arg min {gfw+2 ||w—wt||%+x||w|1}. (1)
w Tt

With some simple induction, Prox-SGD can be written in the forward-backward
splitting (FOBOS Duchi and Singer| (2009)) scheme

Wy 1 = We — NGt
(1 ) (12)
Wy = arg min Tme —wpallz + Awlly g,
w

where the forward step is a single step of SGD, and the backward step is
equivalent to a soft-thresholding operator working on w; 1 with parameter ny\.
The learning rate n, = %ﬂ to obtain reasonable convergence rate in convex
problem.

3.4 RDA by Xiao: applying #; in a different way

Regularized dual averaging (RDA) is originally designed for convex online
learning and stochastic optimization problems |Xiao| (2010). However, RDA
can also be understood as SDA with an additional ¢; regularization. Based
on the analysis in [I] connecting of SDA and SGD, and the success of SGD in
non-convex optimization, we hope that RDA may also work for non-convex
problems, especially for CNN models.

Similar to Prox-SGD, RDA is obtained from adding A||w]|; to subproblem
, and it also requires w, = 0. The update scheme takes the form

N 1
we = angamin { g+ el + Aluil | (13)

We can clearly see the underlying relation between Prox-SGD and SGD with
soft-thresholding from the forward-backward splitting form. The following
induction

[ 1
wers = argumin {g7w + o ol + Alulh |
w t

) (14
—argmin { g + €l + Alulh |
w t
gives us the forward-backward splitting of RDA,
Wiy 1 = =Gt
(15)

. 1
W41 = arg min {lw — w13 + >\||w|1} ;
w 28, 2
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Algorithm 1 Prox-SGD (Directly applying ¢; to SGD)

Input: a dataset Z and a loss function % > ez f(w,2) + Mw|l1 where w is a vector of
the weights.
Initialization: initialize wg with the standard method.
fort=1to T do
Select a mini-batch X; from the dataset.
Compute g; = i ZzEXg Vo f(wt, 2).
Update w¢41 with Prox-SGD in element-wised form:

o wi? = ne(gf? + 2, w” —negl? > e,
w;y =40, _ _ |w§_1) - T]tg,gl)\ <A, (16)
w — (gt =), wl — gl < —m,
where where i is the index of the elements.
end for

where & = % to obtain the best convergence rate in the convex case |Xiao
(2010)), and « is hyper-parameter. From , one can see that the forward step
is actually SDA’s single step and the backward step is the soft-thresholding
operator working on w, 41 with the parameter \; = ’\T‘ﬁ as presented in .

The final algorithms of Prox-SGD and RDA for CNN with ¢; regularization

term can be found in Algorithm [I] and Algorithm

Algorithm 2 RDA (Applying ¢; in a different way)

Input: a dataset Z and a loss function % > ez fw,2) + Alw|l1 where w is a vector of
the weights.
Initialization: randomly choose w; as introduced in and set go = 0.
fort=1to T do
Select a mini-batch X; from the dataset.
Compute g+ = i ZZEXt Vo f(we, 2).
Update

t—1
t

gt =

_ 1

gt—1 + —gt-
t

Update w¢4+1 with RDA in element-wise form:

_ —&(a) + ), g <=,
wif =30, 190”1 < A, (17)
—&(g) =N, g >

where 7 is the index of the elements.
end for

3.5 Comparison of Prox-SGD and RDA

The soft-thresholding of Prox-SGD and RDA are quite different.
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— In Algorithm [2] we have
wity =0, i 3" <A (18)

where the criterion to zero out wt(fgl only depends on a constant A.

— In Algorithm [I] we have

wily =0, i Juwf” —nig” | <m, (19)
where 1, = a%/{, thus the criterion in this case depends on a%/{)\, which
approaches to 0 as t goes to infinity.

Considering that wt(i) — ntgt(i) will converges to certain point which many not
be zero in , we cannot expect significant sparsity in Algorithm 1| since ny A
will approach to 0. However, the right hand term (thresholding value) in
will keep constant as in RDA, which may produce a better sparsity. Similar
discussions can also be found in Xiao| (2010).

Furthermore, from the formulation of the regularized problem (E[), one can
see that there is a trade-off between the accuracy and the regularization term,
which can be concluded as too large regularization term controlled by A\ can
weaken the effect of the loss function. In other words, increasing regularization
term A will decrease the accuracy of the model. Thus, it is necessary to make
use of an algorithm which can produce a sparse solution with small A\. As our
analysis above shows, RDA has a good balance between sparsity and accuracy.

4 Two techniques for RDA in CNN

In this section, we introduce two techniques, the initialization and the adaptive
sparse retraining method. The first one is essential for RDA to work, and the
second one gives much improvement to the results given by RDA.

4.1 Initialization

In the original paper Xiao| (2010), the theoretical analysis requires that w. =0
and wy = argmin,, [jw|; = 0 as an initialization. Such an initialization is also
shown to work very well numerically for convex problem studied in [Xiao| (2010).
Let us examine now how this initialization technique would work for a typical
CNN model, such as VGG [Simonyan and Zisserman| (2014), ResNet [He et al.
(2016)) which we will test in this paper. We note that a typical CNN model can
be written as:

f(w;z) = S(W fonn (65 2) +b), (20)
where S(y) = Softmax(y) := (Z) and fonx (6 ) stands for the main CNN

structure except for the fully connected layer with Softmax. Let w = {W, b, 0},
where {W,b} are the parameters for last fully connected layer with Softmax
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and 6 represents all parameters in the main structure of CNN models. One
simple but important observation is that all those CNN models satisfying the
following property

fCNN(O;x) = 0, (21)

as long as the underly activation function satisfies
o(0) = 0. (22)

This property is satisfied by o(z) = ReLU(z) := max{0,z}. That is to say, if
all parameters are chosen as zero, the output of the main structure of a general
CNN model will always equal to zero. Thus, for a general CNN model f(w;x)

as in with property , we will have

Af D (w; x) oy ©
OWGR | aW(Jk) ZW FRN(0;2) + 1) (23
B w=0
= 5'(b)8; é%(o; ) =0, ¥ijk
That is to say
Of (w;x)
G =0 24
ow |, (24)
Furthermore,
af(i) (w; ) _ (i,p) ¢(p)
o | = Jk) ZW FR(O;2) + b))
w=0 (25
8f (6; x)
o z) (i,k) YJONN\Y» 2/ _
=5'(b Z w 007 0,
w=0
for all i,j as W = 0. That indicates that
Of(w;x)
I _ 9
o0 |, " (26)

Considering the observations and for zero initialization in CNN, we
have the next proposition.

Proposition 1 The RDA method with w1 = 0 cannot converge for CNN with
activation function o satisfying o(0) = 0.

As a result, non-zero initialization is a necessary condition in all gradient-
based training algorithm including RDA for CNN. Thus we propose to initialize
wy via some random strategies as discussed later in this subsection. Actually,
this modification will not influence the convergence of the algorithm. As
proven in Theorem [} the convergence rate for convex problems based on this
modification is still (9( -) when & = O(Vt).
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Theorem 1 Assume the loss function f(w,z) in the problem (@ 1S conver
and there exists an optimal solution w* to the problem (9) with ¥(w) = A||wl|1
that satisfies %||w*||3 < D? for some D > 0. In addition, we assume that we
have the next bound for the randomly chosen w1 :

P(w1) = Awr 1 < Q. (27)

Let the sequences {wi};>1 be generated by Algorithm|[9 and assume || g:||2 < G
for some constant G. Then the expected cost Ep(w;) converges to ¢* with rate

()

) (28)
with @, = %23:1 w, and ¢* = p(w*).

By adding the extra assumption that for the bound of w; as in , we
can then prove the above result by following Xiao’s work in Xiao| (2010]) with
difference of an extra coeflicient in C’)(%) which is related to Q). The only
difference between the original RDA and RDA used in Algorithm [2]is that the
former one takes wy; = argmin,, ||w||; = 0 as initialization whereas the latter
one allows us to chooses wi randomly. This is a small modification in algorithm
and proof but it plays a crucial role in applying RDA to CNN as discussed in
the beginning of this section.

In particular, when the activation function is ReLLU, the weights in CNN
are usually initialized with a uniform or a normal distribution |[LeCun et al.
(2012); |Glorot and Bengio| (2010)); He et al.[ (2015)). For RDA, we propose to
initialize the weights with a uniform distribution /(—b,b), where
. (29)

s
\Vn
For a convolutional layer, n = k2c is the size of the filter, where ¢ is the number
of input channels and k is the width of the filter. For a fully connected layer, n
is the dimension of the input vector. In both cases, s is a scalar to increase the
weights (e.g. [He et al.| (2015)) proposes to choose s = 6).

Since f is non-linear, the effect of initialization on g, the gradient of wy, is
not that clear. Assuming that f is a linear function, then g; is scaled in the
same way as wi. Since with a thresholding (ignoring the initial learning rate
m = 1), g1 becomes the value of ws, the initial value should not be too small,
nor should it be too large because of the exploding gradient problem Pascanu
et al.[(2012), as shown in Table|l|and Table 2| Here we have the next definition
for sparsity of CNN models:

the number of zero weights

S ity =
PASIY = e number of all weights ’

for all tables referred later.
Finally, we listed some good choices for s in Table [3]
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Table 1 Different initialization scalars on ResNet-18, CIFAR-10 with RDA. This table shows
TOP-1 and TOP-5 accuracy on validation dataset. All models are trained for 120 epochs.
(TOP-1 accuracy is the conventional accuracy, which means that the model answer (the
one with the highest probability) must be exactly the expected answer. TOP-5 accuracy
means that any of your model that gives 5 highest probability answers that must match the
expected answer.)

Vs TOP-1 TOP-5 Sparsity
1,2 10.00 50.00 N/A
3 85.52 99.24 0.98
4 86.72 99.45 0.97
5 90.03 99.44 0.95
10 90.67 89.50 0.94
100 91.41 99.58 0.84
1000 90.36 99.62 0.63
10000 71.80 97.94 0.34
20000 68.06 97.39 0.99

Table 2 Different initialization scalars on ResNet-18, CIFAR-100 with RDA. This table
shows TOP-1 and TOP-5 accuracy on validation dataset. All models are trained for 120
epochs.

Vs TOP-1 TOP-5 Sparsity
1 63.67 87.85 0.91
2 66.90 88.53 0.60
5 65.47 88.09 0.60
10 65.54 88.21 0.42
15 64.22 87.53 0.43
25 63.06 88.10 0.50
30 62.75 86.80 0.42
50 64.48 87.14 0.38
100 60.00 86.14 0.36

4.2 Adaptive sparse retraining (ASR)

Fine-tuning is a widely used technique that retrains a pruned model, since
the pruning method often decreases the accuracy. This is equivalent to fix
the weights to be pruned to zero in the original model, and only update the
remaining weights.

During our retraining step, we fix the zero weights and update the remaining
weights. If there are newly trained zero weights, they will also be fixed. Thus,
in retraining, once a weight becomes zero, it will never be updated. This can
be viewed as a stronger fine-tuning, and we call this method adaptive sparse
retraining, where the optimization method we use is the same as that used in
the first phase. This technique helps improve both the accuracy and sparsity
of a model, as shown in Table [4]
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Table 3 Suitable /s for different models and datasets. ImageNet represents ILSVRC2012.

Dataset Model Vs

CIFAR-10 ResNet-18 10
VGG-16bn 20
VGG-19bn 10
CIFAR-100  ResNet-18 2
VGG-16bn 60
VGG-19bn 40
ImageNet ResNet-18 2

Table 4 ASR helps improve both the sparsity and the accuracy. This table shows TOP-1
accuracy on validation dataset, and the sparsity of weights. The dataset is CIFAR-10.

RDA RDA (ASR)
Model TOP-1  Sparsity TOP-1  Sparsity
ResNet-18 91.34 0.87 93.47 0.95
VGG-16bn 93.07 0.92 93.24 0.94
VGG-19bn  92.65 0.74 93.02 0.90

5 Experiments

In this section, we compare the results of RDA and other methods. All results
of RDA are based on the two techniques introduced in All accuracies are of
the validation dataset. The implementation is listed as follows.

All experiments are carried out with PyTorch (pytorch.org)on TITAN V
GPU. For Prox-SGD, we use the same strategy with SGD for initialization and
take learning rate as in Algorithm [1} The total epoch number for Prox-SGD
as reported in Table [5]is 120. This number of epochs is reasonable because,
first, the accuracy reaches the highest point in the end, and second, due to
the decreasing threshold of Prox-SGD, there should not be too many training
epochs, otherwise there will be no sparsity in the end as discussed in §

For RDA, filters, and weights as well as bias in fully connected layers,
are initialized with uniform distribution introduced in Weights in batch
normalization are initialized with default settings in PyTorch (the mean is
set to a O-vector, and the variant is set to a 1-vector). In all experiments, the
training mini-batch size is 128 El Models are all first trained by RDA for 2400
epochs, and then RDA with ASR for 1200 epochs. Furthermore, in Section
we have reduced the number of epochs to 300 on CIFAR-10 and CIFAR-100
with ResNet-18 by tuning the parameter o and A .

1 In the original paper [Xiao| (2010), RDA is proposed as an online learning algorithm,
which takes one input at each time.
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Fig. 1 An example of the first 120 epochs of loss and accuracy curves for different methods,
and the sparsity curve of RDA on ResNet-18, CIFAR-10.

ResNet-18 is based on [He et al.| (2016). VGG-16bn and VGG-19bn are
based on |Simonyan and Zisserman| (2014), and both are implemented with
batch normalization.

5.1 Numerical results

Table 5 Compare RDA and prox-SGD for ResNet-18 on CIFAR-10 with 120 epochs. RDA
achieves better accuracy and sparsity.

Method TOP-1 TOP-5 A a Sparsity

prox-SGD  89.80 99.40 107° 0.8 0.03
RDA 91.41 99.69 1076 1.0 0.84
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We first compare RDA and prox-SGD for ResNet-18 on CIFAR-10 with
both 120 epochs as shown in Table[5] One can see that RDA performs much
better than prox-SGD, and achieves a sparsity of 95%. We have analyzed why
RDA could be better than prox-SGD in and the experiments support our
claim.

Table 6 RDA on different models and CIFAR-10. RDA works well on different CNN models.

MODEL TOP-1 TOP-5 A « Sparsity

ResNet-18 93.47 99.69 107% 1.0 0.95
VGG-16bn 93.24 99.52 107% 1.0 0.94
VGG-19bn 93.02 99.34 107% 1.0 0.90

For RDA itself, we show the results on ResNet-18, VGG-16bn and VGG-
19bn, CIFAR-10 in Table[6] One can see that RDA performs well on all models
tested. In we have shown that SDA is a perturbation of SGD, and based
on SDA, RDA keeps its general optimization ability on different models.

Table 7 RDA on ResNet-18 and different datasets. RDA works well on different datasets.

Dataset TOP-1 TOP-5 A « Sparsity
MNIST 99.63 100.00 106 0.1 0.95
CIFAR-10 93.47 99.69 106 1.0 0.95
CIFAR-100 72.29 89.94 108 0.09 0.56
ImageNet 64.93 84.92 108 0.1 0.36

Table [7] shows the results of ResNet-18 on CIFAR-10, CIFAR-100 and
ImageNet (ILSVRC2012). In general, RDA performs well on different datasets.
For ImageNet, the typical accuracy of SGD for ResNet should be around 69%. In
some sense, ResNet-18 could lack the redundancy to be sparse while maintaining
satisfactory accuracy. A larger model may help improve the performance.

Table |8| compares RDA with the three-step pipeline in [Han et al.| (2015b)),
based on the source code provided by |Liu et al. (2018]). |Han et al.| (2015b)
proposes the pipeline to compress CNN models, where the first step is training
a model, the second is pruning a given percentage of weights in the trained
model, and the third is fine tuning it. We compare the two methods based on
the same sparsity, i.e. if a model trained by RDA has sparsity 0.95, then the
model trained by SGD will be pruned 95% weights and then fine tuned. One
can see that the results of RDA are comparable to Han et al.| (2015b). This
shows RDA is a powerful sparse optimization method for CNN.
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Table 8 To compare RDA with the three-step pipeline in [Han et al.| (2015b)), we adapt the
implementation in |Liu et al.| (2018]) where the model is first trained by SGD with 160 epochs,
then pruned according to the sparsity, and finally fine tuned with 40 epochs to retrieve the
performance (denoted as Model (Han)). The results of RDA are comparable to |[Han et al.
(2015b).

Dataset Model TOP-1  Sparsity
CIFAR-10 ResNet-18 (RDA) 93.47 0.95
ResNet-18 (Han) 93.95 0.95
VGG-16bn (RDA) 93.24 0.94
VGG-16bn (Han) 93.55 0.94
VGG-19bn (RDA) 93.02 0.90
VGG-19bn (Han) 93.60 0.90
CIFAR-100 ResNet-18 (RDA)  72.29 0.56
ResNet-18 (Han) 74.67 0.56
VGG-16bn (RDA) 69.04 0.67
VGG-16bn (Han) 73.56 0.67
VGG-19bn (RDA) 67.46 0.48
VGG-19bn (Han)  72.52 0.48

5.2 Additional heuristic techniques

The numerical results presented in the previous subsections show that RDA
works well in CNN. Next, we present some heuristic techniques that help
improve the performance of RDA. In training algorithms like SGD and RDA,
when the iteration step t gets large, the learning rate becomes too small to
lead to any significant update of the weights at each step. In order to solve
this problem, we developed some heuristic strategy for parameter turning for
RDA. For example, we modify the parameter o and A after training appropri-
ate number of epochs, which can speed up the training process significantly
according to our investigation on CIFAR-10 and CIFAR-100 with ResNet-18
shown in Table |§| and Table By trial and error, {107°,1076,10"7} is a
suitable search space for the parameter A, and for the parameter «, it should
be decreasing during the training process. These numerical experiments reveal
the possibility to speed up and improve RDA with suitable adaptive parameter
strategies. How to automatically find a proper adaptive parameter on different
datasets and networks by theoretical analysis and more parameters tuning is
still under further investigation.

6 Concluding remarks

In contrary to the common perception that the SDA method of |[Nesterov| (2009)
should only work for convex optimization problem for which the SDA was
originally designed, in this paper, we manage to make this method as an effective
training algorithm for the highly non-convex CNN. In particular, by combining
it with ¢; regularization, we develop the corresponding RDA method that
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Table 9 RDA with adaptive a helps speed up the training process. The dataset is CIFAR-10
and the network is ResNet-18.

Epochs « A TOP-1  Sparsity
[ 1,100 1 107%  92.19 0.9257
(101, 200] 0.2 10-° 93.38 0.9422
[201,300] 0.05 107° 93.13 0.9645

Table 10 RDA with adaptive a helps speed up the training process. The dataset is CIFAR-
100 and the network is ResNet-18.

Epochs « A TOP-1  Sparsity
[ 1,100] 028 10~ 68.2 0.7455
(101,200 021 107  71.25 0.6842
[201,300] 0.08 1076 72.67 0.7782

proves to be very effective to obtain sparse CNN models without compromising
generalization accuracy. The theoretical foundation of this approach is based
on a critical observation we make, namely the SDA method (with a slight
modification) is equivalent to a small perturbation of the SGD method if the
learning rate is chosen appropriately. While our work is motivated by |Xiao
(2010) for convex optimization problem, we find that the effectiveness of our
RDA method depend crucially on proper initialization and adaptive sparse
retraining. Preliminary numerical experiments show that our new method can
be used to train sparse CNN with performances comparable to the state-of-the-
art weight pruning methods |Han et al.| (2015b]). We further provide theoretical
justification of this method for convex optimization problems and analysis of
the effectiveness of different choices of hyper-parameters in the algorithm.



Make ¢ Regularization Effective in Training Sparse CNN 19

References

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in
deep networks. In Advances in Neural Information Processing Systems, pages
2270-2278, 2016.

Dimitri P. Bertsekas. Incremental proximal methods for large scale convex
optimization. 2011.

Emmanuel J Candes, Justin Romberg, and Terence Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on information theory, 52(2):489-509, 2006.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model
compression and acceleration for deep neural networks. arXiv preprint
arXi:1710.09282, 2017.

D. L Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289-1306, 2006.

John Duchi and Yoram Singer. Efficient online and batch learning using
forward backward splitting. Journal of Machine Learning Research, 10(Dec):
2899-2934, 2009.

Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249-256, 2010.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXw preprint arXiw:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in neural information
processing systems, pages 1135-1143, 2015b.

Babak Hassibi and David G Stork. Second order derivatives for network pruning;:
Optimal brain surgeon. In Advances in neural information processing systems,
pages 164-171, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEFE international conference on computer vision, pages
1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 770-778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating
very deep neural networks. In International Conference on Computer Vision
(ICCV), volume 2, 2017.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trim-
ming: A data-driven neuron pruning approach towards efficient deep archi-
tectures. arXiv preprint arXiv:1607.03250, 2016.



20 Juncai Hel et al.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for
deep neural networks. arXiv preprint arXiv:1707.01213, 2017.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated
gradient. Journal of Machine Learning Research, 10(2):777-801, 2009.

Y Lecun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436,
2015.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In
Advances in neural information processing systems, pages 598-605, 1990.
Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9—48.

Springer, 2012.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. Siam Journal on Numerical Analysis, 16(6):964-979, 1979.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and
Changshui Zhang. Learning efficient convolutional networks through network
slimming. In Computer Vision (ICCV), 2017 IEEE International Conference
on, pages 2755-2763. IEEE, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270,
2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level
pruning method for deep neural network compression. arXiv preprint
arXiv:1707.06342, 2017.

Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The application
of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine:
An Official Journal of the International Society for Magnetic Resonance in
Medicine, 58(6):1182-1195, 2007.

Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equiv-
alence theorems and 11 regularization. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 525—
533, 2011.

H Brendan McMahan. A survey of algorithms and analysis for adaptive online
learning. The Journal of Machine Learning Research, 18(1):3117-3166, 2017.

Hisashi Mine and Masao Fukushima. A minimization method for the sum of
a convex function and a continuously differentiable function. Journal of
Optimization Theory and Applications, 33(1):9-23, 1981.

Deepak Mittal, Shweta Bhardwaj, Mitesh M. Khapra, and Balaraman Ravin-
dran. Recovering from random pruning: On the plasticity of deep convolu-
tional neural networks. 2018.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem com-
plexity and method efficiency in optimization. J. Wiley & Sons, New York,
1983.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathe-
matical programming, 120(1):221-259, 2009.



Make ¢ Regularization Effective in Training Sparse CNN 21

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the
exploding gradient problem. CoRR, abs/1211.5063, 2012.

Lorien Y. Pratt. Comparing biases for minimal network construction with back-
propagation. In International Conference on Neural Information Processing
Systems, pages 177-185, 1988.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. Computer Science, 2014.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learn-
ing structured sparsity in deep neural networks. In Advances in Neural
Information Processing Systems, pages 2074-2082, 2016.

Lin Xiao. Dual averaging method for regularized stochastic learning and online
optimization. In Advances in Neural Information Processing Systems, pages
2116-2124, 2009.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11(Oct):2543—-2596,
2010.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy
of pruning for model compression. 2017.



	1 Introduction
	2 Related works
	3 Algorithms using 1 regularization
	4 Two techniques for RDA in CNN
	5 Experiments
	6 Concluding remarks

