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Abstract In this paper, we study the interplay between acceleration and structure
identification for the proximal gradient algorithm. While acceleration is generally
beneficial in terms of functional decrease, we report and analyze several cases where
its interplay with identification has negative effects on the algorithm behavior (it-
erates oscillation, loss of structure, etc.). Then, we present a generic method that
tames acceleration when structure identification may be at stake; it benefits from a
convergence rate that matches the one of the accelerated proximal gradient under
some qualifying condition. We show empirically that the proposed method is much
more stable in terms of subspace identification compared to the accelerated proximal
gradient method while keeping a similar functional decrease.
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1 Introduction
In this paper, we consider composite optimization problems of the form

min F(z) := f(z) + g(z) (1.1)

where f and g are convex functions. We are interested in the case where f is smooth
(i.e. differentiable with a Lipschitz-continuous gradient) while g is nonsmooth and
enforces some structure to the solutions of (1.1) (e.g. belonging to some set, sparsity,
etc.). This type of problem often appears in signal processing and machine learning
in which case the goal is usually to find a point with a low error in the task at hand
while maintaining some structure. For instance, taking g as the #; norm promotes
sparsity, it is commonly used in the recovery of sparse signals or compressed sensing
[13]; we refer the reader to [40] for an overview.
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Problem (1.1) is typically solved by the proximal gradient algorithm, a spe-
cial case of Forward-Backward splitting, which alternates a gradient step on the
smooth function f and a proximal operator on the nonsmooth function g; see e.g.
[4, Chap. 27]. Moreover, in order to improve the convergence of this algorithm, ac-
celerated (also called fast or inertial) versions have been widely promoted, notably
thanks to the popularity of FISTA [7]. These modifications consist in producing the
next iterate by linearly combining the previous outputs of the proximal operator.
Using combination coefficients as per Nesterov’s fast method [31] (or similar ones [3,
15]) improves practically and theoretically the rate of convergence of the proximal
gradient (nonetheless to the price of a more involved analysis, see e.g. [1,15,30]).

Additionally, the handling of the nonsmooth function g by a proximity opera-
tor enforces some structure on the iterates. For instance, when g is the ¢;-norm,
the associated proximity operator, often called soft-thresholding, puts coordinates
with small values to zeros, thus producing sparse iterates [17]. More generally, an
important property of the proximity operator is that it has the same output for a
neighborhood of inputs around the points where ¢ is non-differentiable, which means
that reaching a neighborhood of the solution may be enough to capture the optimal
structure'. This property is often called identification and signals that the iterates
generated by proximal methods can have the same structure (sparsity pattern, be-
longing to a set, rank, etc.) as the final optimum in finite time. The analysis of this
property, including conditions for identification, has attracted a lot of attention in
the case of the projected gradient algorithm and then more generally in nonsmooth
optimization; see e.g. [8,12,26,18]. This interest is notably driven by the fact that i)
identification helps reducing the dimension of the problem and thus allows a faster
computation at each iteration; and ii) the uncovered structure often bears valuable
information. For instance, in ¢1-regularized regression problems such as the lasso, the
proximal gradient algorithm can identify the non-zero coordinates of the solution and
thus the most significant features [39)].

Although the accelerated versions of the proximal gradient are known to be faster
globally and locally around the optimum [29], there is a transient phase at the mo-
ment where the final manifold start being attained by the iterates where the interplay
between identification and acceleration can be negative, causing the iterates to leave
several times the optimal manifold before identifying it. Indeed, the accelerated prox-
imal gradient is known to suffer from an oscillatory, non-monotonical behavior (see
e.g. [29, Sec. 5.4]) which may make the iterates leave the identification neighborhood.
Several works of the literature considered modifications of the accelerated proximal
gradient aiming at limiting its downsides using heuristic restarts [38,33,23,14] or
adaptive acceleration [20,36]; unfortunately, most of these results are empirical and
lack a refined analysis. A notable exception is when the acceleration is limited to
the iterations where the functional value decreases [6,27], in which case the usual
convergence results hold.

In this paper, we provide structure-enhancing accelerations of the proximal point
algorithm that are aimed at producing iterates with stable identification properties
while maintaining a satisfying convergence rate. First, we motivate this study by
illustrating on several examples how acceleration and identification may interfere de-

1 For instance, if g is the absolute value on R, the proximity operator of g is equal to 0 for
all z € [—1,1] (and x — sign(z) elsewhere). Thus, if some sequence xj converges to a point
within (—1,1), then the output of the proximity operator of g at x will be equal to 0 for all
k greater than some finite, but unknown, K.
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structively, but also at times constructively. Then, we introduce a proximal gradient
method where, at each iteration, a test is performed to decide if acceleration should
be performed or not to produce the next iterate based on the structure uncovered
by the method. This test is designed to benefit from the positive above-mentioned
interactions while avoiding negative ones. We provide two simple but efficient tests
for which we show that i) both associated algorithms have the same theoretical rate
as the accelerated proximal gradient under some qualifying condition; but ii) they
exhibit a much more stable identification behavior in practice.

The paper is organized as follows. In Section 2, we recall the main properties
of the (accelerated) proximal gradient method, present the notion of identification,
and illustrate the interplay between acceleration and identification. In Section 3, we
introduce our structure-enhancing acceleration methods for which we carefully ana-
lyze the convergence. In Section 4, we illustrate the merits of the proposed methods
compared to the usual (accelerated) proximal gradient.

2 Proximal Gradient, Acceleration, and Identification
2.1 Proximal Gradient

We make the following usual assumption on the considered composite convex opti-
mization problem (1.1).

Assumption 1 (On Problem (1.1)).

(i) f is a differentiable convex function with an L-Lipschitz gradient;
(it) g is a proper, convezx, lower semi-continuous function;
(i) argmingcp. F(x) # 0 and we define F* = mingepn F(x).

Under these assumptions, the proximal gradient is arguably the baseline method
for solving (1.1). Its iterations involve a gradient step on the smooth function f and
a proximal step on the possibly nonsmooth part g:

Tp+1 = prox’yg (xk - ’va(xk)) (PG)

where v > 0 is a fixed stepsize and the proximity operator of g (see [5, Chap. 6] for
an overview) is defined by

. 1 2
prox., (u) := argmin {g(w) + —Jjw —ul| } .
Y9 R 2y
To lighten the notation, we will denote by 7, the proximal gradient operator
with step size v:
Ty(z) = prox,,(z — 7V f(2))

for any « € R™; the proximal gradient algorithm then writes zx11 = 75 (z).

For any 0 < v < 2/L, the sequences of functional values (F(zy)) and iterates
(x) produced by the proximal gradient algorithm converge monotonically and Féjer
monotonically? respectively, at rate 1/k (more precisely, F(z;) — F* = O(1/k) and
|z — zx_1]|? = O(1/k)); see e.g. [5, Chap. 10].

2 That is for all iterates k > 0, |lzgyr1 — 2*|| < ||z — z*|| for any minimizer z* €
argming F'(z).
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2.2 Acceleration

The principle of adding an inertial (or momentum) step to accelerate the conver-
gence of optimization methods stems from Nesterov’s fast gradient [31] and Polyak’s
heavy ball [34] methods for vanilla gradient descent. It was later generalized and ana-
lyzed for the proximal gradient algorithm in [7], from which the accelerated proximal
gradient is often called FISTA.

Mathematically, this acceleration consists in adding to the output of the proximal
gradient x4 an inertial term made of the difference between the two previous points
ZTr4+1— T, weighted by an inertial coefficient a1 > 0. One iteration therefore reads:

i1 = ProXyg (e = 7V f(ye)) (Accel. PG)
Ykl = Tht1 + Opt1 (Thp1 — Tk)

where the inertial sequence () is chosen carefully as follows (see e.g. [5, Rem. 10.35]).

Assumption 2 (On the inertial sequence). For any k > 0, ap+1 = tt’;:ll with:
(i) thpy —tepr <t
(it) ti, > Ck for some C >0 and ty = 1.
The inertial sequence originally used in [31,7] comes from taking ¢, = (1 +
A1+ 4ti71)/2 and ¢; = 1. For that choice and 0 < v < 1/L, functional convergence

occurs with a faster O(1/k?) rate.
Other popular choices of the literature include: (i) ty = (k+a—1)/a with a > 2
which allows to prove the convergence of the iterates in [15] and a o(1/k?) improved

functional convergence rate in [3]; (ii) tp = (p+ /g +4t2_,)/2, t1 = 1, p € (0,1],
g > 0 in the recent [30].

2.3 Identification

Let us consider a generic algorithm including a proximal step
Ty = prox.,,(ux) (2.1)

such that ug converges to a point denoted by w* (which implies that z;, — z* =
prox.,(u*) by non-expansivity of the proximity operator [4, Prop. 12.27]).

We are particularly interested in the case where the limit point x* belongs to
some manifold of interest M. In that context, identification means that the iterates

(x) will reach the manifold M in finite time. For instance, when g = || - |1 (for
instance in the lasso problem [39]), the manifold of interest M can be equal to the
sparsity pattern of * (M = {z : x;; = 0 for all 4 s.t. $[*i] = 0} where x[; stands

for the i-th coordinate of z); meaning that identification brings information about
the nullity of the coordinates of the problem solution, enabling feature selection or
dimension reduction.

For identification to happen, a sufficient condition is that for any u close to
u*, the proximity operator maps u to a point in M. Mathematically, this qualifying
condition writes

3 e > 0 such that for all u € B(u*,¢), prox,,(u) € M. (QC)
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Considering the iteration (2.1), since ur — u*, after some finite but unknown
time, ux, € B(u*,€). The qualifying condition (QC) then implies that for such iterates
U, Tk = proxw(uk) belongs to M. Therefore after some finite time, xx € M. This
simple identification result can be formalized as follows.

Lemma 1 (Identification) Let (z) and (ug) be a pair of sequences such that
z), = prox,(uf) — 2* = prox_ (u*) and M be a manifold. If z* € M and (QC)
holds, then, after some finite time, xy € M.

This result indicates that the iterates of any converging algorithm including a
proximal step will identify the manifold M in finite time if (QC) is satisfied. Note
that this result depends only on the convergence of the iterates and the optimal
pair (z*,u*) but is independent from the algorithm itself or the initialization point.
In particular, it applies to the two algorithms we are concerned with: the Proximal
Gradient algorithm and its accelerated version.

Remark 2.1 (About the Qualifying constraint) The condition (QC) is rather general;
notably, it does not constrain the manifold nor the algorithm. Nevertheless, we can
show that it naturally encompasses usual qualifying constraints of the literature.
For instance, if g is partly smooth [21] relative to M and the non degeneracy con-
dition (u* — a*)/~ € ri dg(z*) is verified, then (QC) holds. We refer the reader to
Appendix A for a formal proof.

In the particular case of the proximal gradient method (PG) or its accelerated
version (Accel. PG), u* = z* — 4V f(2*); then, the non degeneracy condition sim-
plifies to =V f(2*) € ri dg(z*). This non-degeneracy condition, along with partial
smoothness, was used in [29, Th. 3.4] to show an identification result similar to
Lemma 1 for the proximal gradient algorithm and its accelerated variants.

Remark 2.2 (Failure cases) If one cannot find a ball centered on «* mapped to M
by prox,,, then identification may or may not occur, depending on the algorithm
and the initialization point. One can have x* € M but z; ¢ M for every iteration
of proximal gradient, for example with f = (- — 1)® and g = | - |. The associated
composite problem mingeg 4 (z — 1)? + || has solution * = 0 (as the optimality
condition writes 0 € z* — 1 + 9|z*|). If one defines proximal gradient iterates as
up = Tp—1 — YV f(rg—1) and (2.1) with v € (0,1), then, for a positive starting
point 2o > 0, z, = (1 — v)*zy — a* = 0. Therefore, when considering the manifold
M = {0}, z* belongs to M and yet none of the iterates do. This example illustrates
the failure of (QC). Indeed, ux = v + (1 — y)*xg — u* = v but there is no ball
around u* that is mapped to M = {0} since prox, ,(u* +¢) = ¢ ¢ M for any £ > 0.
Note finally that choosing z¢p < 0, or v = 1, or adding an inertial step, would make
the algorithm identify M in finite time, illustrating the dependency on the algorithm
and the initialization point for such unqualified problems.

2.4 On the practical use of identification

Identification results can be somehow nebulous since they only ensure that the it-
erates will eventually reach some structure. Nevertheless, identification can still be
leveraged in practice in many situations.
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More precisely, given an optimization problem, the user is often able to define
a collection of subspaces of interest C = {My,..., My} representing the structure
that the solution can have. For instance®, in ¢; regularized problems, the solution is
expected to be sparse and thus we will naturally look at collection C = {My, ..., M,}
where M; = {x € R" : 2j;) = 0}. Then, we say that an algorithm identifies the optimal
structure if, after some finite time, its iterates belong exactly to the same subspaces
as x*; i.e. they have the same sparsity pattern as z*. As mentioned above, this
phenomenon is highly valuable in many applications such as compressed sensing and
machine learning for which finding some (near-)optimal pattern is also an important
part of the problem. This multiple identification result can be stated as follows.

Lemma 2 (Multiple Identification) Let (z1) and (ux) be a pair of sequences
such that xp = proxvg(uk) — % = prox, (u*) and let C = {My,...,My} be a
collection of manifolds. For any M € C:

(i) if z* € M and (QC) holds, then, after some finite time, x, € M;

(ii) if x* ¢ M, then, after some finite time, xy, ¢ M.

Proof. The proof of the first point comes directly from Lemma 1. For the second
part, consider the union of the manifolds to which 2* does not belongs M = U{M €
C:x* ¢ M}. Then, 2* € R” \ M which is an open set. This means that as j — z*,
it will also belong to R” \ M in finite time and thus will not belong to any manifold
in M. O

From this result, we additionally get that xj will not identify manifolds to which
x* does not belong provided that the number of considered manifold is finite (which
is a rather mild assumption). In addition, we see that this result, as many results
in identification, also holds when the manifolds are replaced by mere closed sets
(closedness is however fundamental as per the proof of Lemma 2). We choose in this
paper to stand with the notion of manifold out of consistency with a large part of
the literature on identification and since many usual regularizers in signal processing
and machine learning enforce a manifold-based partition of the space; see e.g. [19]
and references therein.

2.5 Interplay between Acceleration and Identification

In this section, we argue that acceleration interferes with the identification process
that occurs with the proximal gradient algorithm, sometimes delaying it, sometimes
helping it*. We illustrate and detail this claim by considering the iterates of proximal
gradient, accelerated proximal gradient and monotone accelerated proximal gradient,
a slightly modified and widely used version of accelerated which ensures a monotonic
decrease of iterates sometimes called MFISTA [6]. These algorithms are tested on
three problems in R? of the form || Az — b||? + g(x) for different nonsmooth functions

3 Other examples include problems regularized with nuclear norm, for which the target struc-
ture is the rank of the current (matrix) iterate x € R™1*™2, Manifolds of interest are defined
as M; = {& € R™1X™2 : rank(z) = i}, and the collection is M = {Mog,...,M

4 Note that we are only interested here in the transient phase of identification when the
iterates are in the process of reaching the optimal manifold. The behavior of the accelerated
proximal gradient is usually better than the vanilla version before this phase and after identi-
fication; see e.g. the recent analyses of [29,2] and references therein.

min(ml,mz)}'
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Fig. 1: Iterates behavior for the Proximal Gradient (with and without acceleration) when
minimizing || Az — b||? + g(z) for different nonsmooth functions g. The candidate manifolds are
precised in the captions and represented in gray.

g: the £1 norm and the distances to the unit ball in 1.3 and 2.6 norms®. The natural
manifolds of interest for these nonsmooth functions are respectively the set of carte-
sian axes of R™ and the unit spheres of the 1.3 and 2.6 norm, which we denote by
S).5(0,1) and Sy, (0,1). Figure 1 highlights three interesting behaviors:

(1) Upon reaching a manifold, the inertial term of the accelerated versions will not
be aligned with the manifold in general and thus will have a non null orthogonal
component to M. Unless that orthogonal component is small enough, it will cause
iterates to miss the manifold and go beyond it. Fig. 1(a) illustrates this point
for accelerated proximal gradient over linear manifolds: the iterates go past the
optimal manifold My twice before reaching it definitively, while the proximal gra-
dient iterates identify it directly. Fig. 1(c) shows the same overshooting behavior
of accelerated proximal gradient. In Fig. 1(b), while proximal gradient iterates

5 g=min(]| - |lp — 1,0) for p in {1.3,2.6}, the proximity operator of which is prox. (u) is

w(l —v/|lullp) if lullp > 14+, u/ljullp if 1 < ||ullp <1+, and u otherwise.
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identify the optimal manifold definitively, iterates of both accelerated versions
go beyond it, only to reach it again after several iterations.

(2) In the case of a curved (non-affine) manifold M, the interplay between the cur-
vature and the inertial term can cause the iterates to leave the manifold. In
Fig. 1(c), iterates of both accelerated versions reach M a first time but leave it
after some iterations. It turns out that these iterates do reach M again, but only
to leave it again some time later and have this phenomenon happen periodically
(this periodicity can be seen in the zoom of Fig. 1(c) and numerically for both
problems with curved manifolds).

(3) Acceleration also has some kind of exploratory behavior that increases the chances
to encounter an optimal manifold, which can be helpful with problems not verify-
ing (QC). In Fig. 1(c) where (QC) does not hold, the iterates of both accelerated
versions reach the optimal manifold, at least for some time, while proximal gra-
dient iterates never does (this phenomenon is also illustrated in Remark 2.2).

3 Identification-promoting Acceleration

Based on these remarks, we introduce in this section a proximal gradient method
with provisional acceleration. By provisional, we mean that acceleration is carried
out as long as it does not jeopardize a fast identification. The general goal of this type
of algorithm is to maintain a satisfying practical and theoretical rate by accelerating
as soon as possible while making the iterates stick to the identified structure as much
as possible.

We first start by laying out a generic provisionally accelerated proximal gradient
and then propose efficient practical tests to determine whether or not to accelerate
an iteration.

3.1 Generic Provisionally Accelerated Proximal Gradient algorithm

Let us denote by T the boolean-valued function that will determine if an iteration
should be accelerated or not. It expects as an input some previously computed it-
erates and returns 1 if acceleration should be performed, 0 otherwise. The proposed
proximal gradient with provisional acceleration then writes:

wp + ag(zr — zr—1) i T({zeto<n, {yetecr) =1
T otherwise

Ury1 =Yk — YV (Yr)

Thy1 = Prox. (ur41)

Y =
(Prov. Alg.)

A general bound on suboptimality can be derived for this algorithm, indepen-
dently of the value of the test T, as stated in the following lemma.
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Lemma 3 Let Assumptions 1 and 2 hold and take v > 0. Then, the iterates of
(Prov. Alg.) verify

" 1-~L 1
ti[F(an)—F*]S—kZO 3y tilloen —wl + llao a3

- 1 * 112
+ ;u ~ T(aeecr fydecn)) 3= llan — '
Proof. We start from the standard accelerated descent inequality (recalled in Lemma 6
of Appendix B), with vy := F(zp41) — F*:

_fyL

tevg — th_qvp—1 < — Itkzr1 — teyill® (3.2)

1 1

- ﬂ”thwrl — (tr — Dz — ¥ + ﬂ”tkyk = (ty = Dy, — ™|,
This equation can be specified to the different extrapolation updates:

— The accelerated update T({z¢}e<, {ys}e<r) = 1 specifies (3.2) to:

—~L

t — trysll? 3.3
> ltkrr1 — teywll (3.3)

2 2
tkvk - tk—lvk—l S -

1 1
- %Hthk-s-l — (ty — Dy — z*|* + %Htk—ﬂ% = (tg—1 = Dap—1 — y*|?

since the update gives t(yx — xx) = (tk—1 — 1)(zr — Tp—1)-
— The proximal gradient update T({z¢}s<k, {ye}e<r) = 0 specifies (3.2) to:

_fyL

tivk — tﬁ_lvk_l < - Hthk—kl — tkyk||2 (3.4)

1 1
— It —(t. — 1 _ % 12 - _x2
ZWH kTht1 = (e — Dag — ™" + QWHIk |
since the update is y = xg.-
Both Egs. (3.3) and (3.4) can be summarized, at the cost of introducing some
error when acceleration is performed, as:

7’YL

thok — 13 _yvp—1 < — [tewrsr — teyel?

1 1
- ﬂ“tkwlﬂ-l — (tr — D)z — 2*| + a“tk—lxk — (the1 — Dagoy — 2|2

+ (1= T{ze}o<k, {ye}e<k))%||xk —z*|?

A functional error bound can now be deduced, by summing these inequalities up
to iteration n and re-arranging terms:

n

1—~L
ti[F(il?nJ,-l)_F*] SF(IL’l)—F*—Z il |‘tk$k+1_tkyk|l2
k=1
— s = (b= D —a* | + e P (35)
27 ndn+1 n n 27 1 .

3 0 = Tardesi furdras)) gl — |

k=1



10 Gilles Bareilles, Franck Iutzeler

where ty = 1. Suboptimality at first iteration can be approximated by applying the
descent lemma (Lemma 5) to (z = 2*,y = yo):

2—~L 1 .
F(xy) - F* < — % ||x1—y0\|2+;<y0—x ,T1— Yo)
_1-9L o, 1 w2 1 112
R

Finally, recalling that yo = x¢, applying the previous majoration and — % ltnxntr1—
(tn — D)xn, — %> < 0 to Eq. (3.5) yields the result. O

At this point, we mention that most articles of the literature concerning adap-
tive acceleration of the proximal gradient are either heuristic [33,23,24] or include
functional monotonicity tests [6,27,20] (a notable exception being alternated inertia
[25] in a slightly different context).

Since the originality of our approach is to study the joint effect of acceleration and
identification, we need to link the functional convergence coming from the analysis
of accelerated methods (see Theorem 3) with the iterates convergence necessary for
identification (see Lemma 1). This can be done rather generally by considering the
following error bound.

Assumption 3. There exists § > 0 and p > 1 such that F(z)—F* > g dist? (z,argmin F)
for all x.

This type of (global Holderian) error bound is verified for a large class of func-
tions (for instance proper, convex, lower-semicontinuous, and semi-algebraic func-
tions; see [10]) and no knowledge about the actual values of § and p is needed.
Furthermore, it was shown in [11] that for convex functions, this error bound im-
plies that dist(0, 0F (T, (x))) upper-bounds (some power of) F'(x)—F*, which is often
called the Kurdyka-Y.ojasiewicz property. This enables us to show that Assumption 3
implies that ||z — T, (z)|| > B dist!~ v (z,argmin F) for some B > 0 (see Lemma 7
in Appendix C) which will be used in the following results to control the iterates
deviation. We refer the reader to Appendix C for more discussions on Error Bounds,
the Kurdyka-tojasiewicz property, and their joint use.

3.2 Identification Promoting Tests

Let us define a set of candidate manifolds C = {My,...,My} onto which identi-
fication is of particular importance. We now propose two tests that will promote
identification onto these particular subspaces. The tests will be based on whether or
not some points belong to a manifold of interest M.

From a numerical perspective, testing if a point belongs to a set (for instance,
testing which coordinates are null) is a often delicate issue due to limited machine
precision. However, in our context the tested points will always be the output of a
proximal operator which enjoys an explicit formulation. The considered manifolds
will match this formulation. Manifold testing will thus be done naturally and exactly
when computing the proximity operator.
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Ezample 8.1 When g = || -||1 (for instance in ¢;-regularized problems), the structure
of interest is the sparsity pattern, that is the collection of coordinates of z* which are
null. The proximity operator Prox. .|, (u) returns a point x such that, coordinate-
wise, [prox, ., (v)]; = 0 if and only if u; € [-7,7] and @; = w; — v sign (u;) # 0
otherwise. It is thus clear that testing if [prox.., («)]; = 0 matches the closed-form
expression of the proximity operator for the ¢; norm.

As we are mainly interested in final identification, it seems natural to do acceler-
ated steps as long as the iterates are far away from the solution. Therefore, we only
allow to consider non-accelerated steps when iterates live in the following set:

Z={y:|T(y) —yI* < Cand F(T,(y)) < F(xo)},

where ( is any positive constant (in practice, we find that ¢ = || 75 (z) — zol|? is a
reasonable choice).

To determine whether y;_1 € Z or not in (Prov. Alg.), one just has to check if
llzx—yre_1]?> < ¢ and F(xy) < F(x0)°. Thus, it depends only on previously computed
iterates and not on the outcome of the test at time k.

3.2.1 Test 1: Stopping when reaching

As noticed in Section 2.5 point (1), upon identification the momentum term is in
general not aligned with the identified subspace. One further accelerated step may
cause the next iterate to leave the subspace, while the vanilla proximal gradient
would have stayed in it. A first natural method is thus to “reset” the inertial term, by
performing one non-accelerated step when reaching a new manifold in our candidate
set C:

T ({@e}e<k, {ye}e<r) = 0 (no acceleration) if and only if yx_; € Z and

{xkl #M for some M € C.
T €M

Intuitively, acceleration is performed by default if the iterates are too far from
optimum and as long as no new structure is identified. This means that we can
benefit from the exploratory behavior of acceleration. Then, accelerated iterations
will be performed as long as they do not prevent identifying a new manifold. Note
that this way, if finite-time identification is possible, iterations should asymptotically
all be accelerated. As expected, this method has the same rate of convergence as the
accelerated proximal gradient whenever identification is possible, which is proven
in the following theorem. The interest of this method lies in its non-asymptotic
identification behavior, not captured by theory, which should be improved compared
with proximal and accelerated proximal gradient.

6 This functional evaluation is actually only needed if the function is sharp with p = 1 in
Assumption 3. For instance, this is the case when f = 0 and g(z) = ||z||1, in which case
F(z) = ||z||1 verifies Assumption 3 with 8 = 1,p = 1. In these rather degenerate cases, the
proximal gradient converges in a finite number of steps.
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Theorem 3.1 Let Assumptions 1, 2, and 3 hold and take v € (0,1/L] . Then, the
iterates of (Prov. Alg.) with test T! verify

|lzo —2*]|> nR 1
F(zp)— F* < —0( =
(Tn+1) ST e

for any x* € argmin,cpn F(z) and some R > 0.

Furthermore, if Problem (1.1) has a unique minimizer x* and the qualifying
constraint (QC) holds for all M € C such that z* € M at u* = z* — 4V f(z*),
then the iterates sequence (xy) converges, finite-time identification happens, and

l|lzo —2*||*> KR 1
F —F*< =0|—=]).
(@n+1) - 2982 + 2yt2 n?

for some finite K > 0.

Proof. First, since at any iteration k for which the test returned 0, we have ||z —
ye—1|| < ¢ and F(zr) < F(yo) as yr—1 € Z and thus Assumption 3 tells us that
|lzr — 2*||? is bounded by some constant R (see Lemma 7 in Appendix C for a
proof). Dropping the first term of the right hand side of (3.1) and using the linear
minoration of ¢,, from Assumption 2, we get the first result.

Then, if there is a unique minimizer, the error bound of Assumption 3 along
with the first part of the result tells us that zp — z* and thus y, — z* and
uP — 2* —yV f(x*). Since the qualifying constraint (QC) holds for all final manifolds
(i.e. all M € C such that z* € M), it follows from Lemma 2 that z; € M after some
finite time. Furthermore, for the other manifolds (i.e. all M € C such that z* ¢ M),
the same lemma gives us that z ¢ M after some finite time. All in all, this means
that the test T! will produce non accelerated iterates only a finite number of times
K which gives the second part of the result. O

8.2.2 Test 2: Prospective reach

Another method to deal with the negative effects of inertia when the additional
term is misaligned with the local manifold is to compute one proximal gradient step
forward to investigate which structure can be expected from the next iterate. In-
tuitively, if the iterate obtained after acceleration is at least as structured as the
non-accelerated one, it is kept, otherwise the point obtained after the simple proxi-
mal gradient step is taken. This is done in order to counteract both issues (1) and
(2) mentioned in Sec. 2.5 while still benefiting from the exploratory behavior of
acceleration (see point (3) in Sec. 2.5).
T2({@e}e<k, {ye}e<r) = 0 (no acceleration) if and only if yx_1 € Z and

{ﬂ(xk) eM

for some M € C.
Ty (g + ap(zg — 21-1)) €M

This approach is further motivated by the desirable retraction property of the
proximal (gradient) operator (see e.g. [16, Th. 28]). However, a drawback of this
test is the necessity to compute two proximal gradient steps (for the accelerated and
the non-accelerated point) much like monotone versions of FISTA (MFISTA [6] and
Monotone APG [27]).
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Similarly to (Prov. Alg.) with test T!, we expect T2 to provide at least a con-
vergence similar to that of proximal gradient, and in cases when identification is
possible, equivalent to that of accelerated proximal gradient.

Theorem 3.2 Let Assumptions 1, 2, and 3 hold and take v € (0,1/L]. Then, the
iterates of (Prov. Alg.) with test T2 werify

oo —*1? | nR _ (1>

2yt2 2yt2 n
for any x* € argmingcpn F(z) and some R > 0.

Furthermore, if Problem (1.1) has a unique minimizer y* and the qualifying con-
straint (QC) holds for all M € C such that x* € M at u* = x* —yV f(z*), then the
iterates sequence (xy) converges, finite-time identification happens, and

|lzo —2*||> KR 1
F(xpe1) — F* < =0 =
(@n+1) - 42 + 2912 n?

F(2ng1) — F*

IN

for some finite K > 0.

Proof. The proof is the same as the one of Theorem 3.1. Indeed, like T', T2 is such
that i) the test can return 0 only for bounded iterates; and ii) as soon as identification
happens, the test returns 1 (i.e. acceleration). O

3.3 Linear convergence rate under local restricted strong convexity

It has been observed in the literature [28,37,29] that algorithms showing finite time
identification generally benefit from a local linear convergence property under some
additional assumptions. It is also the case for (Prov. Alg.) with both tests.

Corollary 1 (Linear convergence) Let Assumptions 1, 2, and 3 hold, take v €
(0,1/L] and M a manifold. Assume in addition that Problem (1.1) has a unique min-
imizer x*, where g is partly smooth relative to M and the non-degeneracy condition
~Vf(x*) € ri g(z*) holds. Then, (Prov. Alg.) equipped with either test T* or T2
generates a sequence (xy) such that

— after some finite time K1, identification happens: Vk > Ky, x € M,
— after some finite time Ko > K;, R-linear convergence happens: there exists some
€ (0,1) and C > 0 such that

Vk > Ky, |ag —2*|| < CaF||lzg, — 2*||.

Proof. See Appendix D. O

4 Numerical experiments

In this section, we first show how the proposed methods can overcome the issues
presented on test cases in Section 2.5. Then, we illustrate the improved identification
properties of these methods on typical machine learning/signal processing objectives.
The code used for the experiments is written in Julia [9] and is available at https:
//github.com/GillesBareilles/Acceleration-Identification.
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Fig. 2: F(z) = |Az — b||? + g(x) with g(z) = ||z||1; M1 = y-axis and My = x-axis

4.1 Application to the initial test cases

We now return on the test cases presented in Section 2.5, and show the iterates
trajectories and suboptimality evolution along with the time of identification. For a
fair comparison between (Prov. Alg.) with test T2 and the other algorithms, we plot
the suboptimality versus the number of proximal gradient steps (equal to the number
of iterations for all algorithms except with test T? which performs two proximal
gradient steps per iteration). The moment of identification of the final structure is
denoted by the symbol @ on the suboptimality plots.

In Fig. 2, the ¢; norm is taken as a nonsmooth function and the candidate
(linear) manifolds are the cartesian axes. Both tests allow to identify in finite time,
and prevent issue (1) of Section 2.5.

In Fig. 3 and Fig. 4, the candidate (curved) manifolds are respectively the 1.3-
norm and 2.6-norm unit sphere. Test T2 allows to get finite identification, while T!
and accelerated proximal gradient struggle in doing so. Furthermore, the algorithm
based on test T2 identifies the manifold as soon as one of its iterates belong to it, as
opposed to the accelerated proximal gradient or T?.

All in all, we observe that test T2 corrects the problems noted in Section 2.5 on
these three examples. We advocate the use of T? when identifying the structure is
most important. If reaching a high precision solution is the primary objective, we
recommend to use test T', for which each iteration is as costly as an accelerated
proximal gradient one.

4.2 Behavior for other nonsmooth structures

In this section, we illustrate the behavior of the algorithms in terms of identification.
In order to do so, we generate and solve several instances of (non-strongly convex)
least squares regularized problems with all algorithms. We then display per iteration
the number of final manifolds identified by the current iterate.

We consider composite problems of the form

min || Az — b||3 + Ag(2)
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Fig. 3: F(x) = || Az — b||? + g(x) with g(z) = max(0, ||z|l1.5 — 1); M = S|-11.5(0,1)
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Fig. 4: F(z) = || Az — b||? + g(x) with g(z) = max(0, ||z|l2.6 — 1); M = S|l -fl2.6 (0, 1)

where

— A € R™*™ is a random matrix whose coefficients follow a centered reduced
normal distribution;
— b= As + e where s is a structured random vector, and e € R™ is an error term.

e follows a centered gaussian distribution of variance 62 with 6 = 0.01;

— X = § so that the composite problem has the same structure as s (see [41, Th.

1]).

The considered regularizers, along with corresponding problems parameters and
structure of initial signal s are detailed in Table 1. For the first problem the initial
point z¢ is drawn uniformly in [0, 10]", while for the second and third problems the
entries of the initial matrix are drawn independently following the normal distribu-
tion.

Globally, we observe that the moment of identification happens roughly at the
same time for the accelerated and proposed algorithms while the vanilla proximal
gradient takes more time. This justifies the use of acceleration in the first steps in
order to explore correctly the search space.
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Figure nonsmooth term g Problem size Structure to recover
Fig. 5(a) £1 norm/lasso n =128, m = 60 120 null entries
Fig. 5(b) nuclear norm n=6x7m=2x2 rank 3

Fig. 6 nuclear norm n =20 X 20, m =16 x 16 rank 3

Table 1: Figure references and corresponding problem parameters.

Between accelerated proximal gradient and the proposed methods, the conclu-
sions vary depending on whether the identified manifolds are curved or flat. Fig-
ure 5(a) illustrates the flat manifolds case, in which identification happens soonest
with accelerated proximal gradient. However, this method often looses the identified
manifolds some time before complete identification (see near iteration 4.10%), while
the proposed methods appear to identify in a more monotonous way.

The case of curved manifolds is illustrated in Fig. 5(b), which shows the average
percentage of identified manifolds over 30 least-square problems with nuclear norm
regularization. While the proximal gradient converges too slowly to show any identi-
fication in the considered iterations range, all the other methods eventually identify
the correct structure. The accelerated proximal gradient does so less efficiently in
average than both proposed methods, and test T? performs best both in terms of
identification time and stability.

Figure 6 shows a larger instance of nuclear-norm regularized least squares, in
which this stability appears even more. Indeed, while the number of correctly identi-
fied manifolds increases almost monotonically for T2, accelerated proximal gradient
and T! seem to lose all structure upon identifying a new manifold. This means that
if one stops all algorithms at a 1072 suboptimality, almost no structure is recovered
for the accelerated proximal gradient, while test T' and even more T2 are able to
recover half the structure of the original signal.

All in all, the identification performance among the algorithms depends largely on
whether the manifold is flat or has curvature. This can be partially explained recalling
the three observations drawn on the interplay between acceleration an identification
(see Section 2.5). Only two apply for flat manifolds: the negative interplay of inertia
misalignment — point (1), and the positive interplay induced by the exploratory
behavior of acceleration — point (3). However, when dealing with curved manifolds
the linear extrapolation of acceleration inertia naturally yields a point that does not
lie on the manifold anymore — point (2). This additional interplay explains to some
extent the instability of accelerated proximal gradient noticed for curved manifolds
in Fig. 6, and gives an intuition as to why T2 performs better in that case.

5 Conclusion

We established that acceleration can interfere with identification for the proximal
gradient algorithm, sometimes positively, sometimes negatively. However, we showed
that it is possible to counteract the negative effects of acceleration on the iterates
structure by not accelerating certain iterations. From this observation, we proposed
two methods exhibiting a stable identification behavior while maintaining an ac-
celerated convergence rate both in theory and in practice. As for future directions,
we mention the possiblity of extending our reasonings to more general primal-dual
methods (such as ADMM, Chambolle-Pock, etc.); this would be particularly inter-
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esting in the case where two different proximity operators are involved leading to
two different identification tracks.
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A Obtaining the qualifying condition

The general qualifying condition (QC) can be recovered under the setting of partial smoothness
of g and a usual non-degeneracy condition at the optimal point x* and associated point u*
such that * = prox, ,(z*).

Definition 1 (Relative interior) The relative interior of a subset S, noted ri S is defined

as

riS={zxe€S:3>0,B(x,e) NAFS C S}

where Aff denotes the affine hull of a set.
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Definition 2 (Parallel space) For a connex subset A, the parallel space of A, noted par A,
is defined as the vector space parallel to the affine space generated by A.

Definition 3 (Manifold) A subset M of R™ is said to be a p-dimensional C*-submanifold
of R" around z € M (1 < k < +00) if there exists a local parameterization of M around «,
that is, a C¥ function ¢ : R? — R™ such that ¢ realizes a local homeomorphism between a
neighborhood of 0 € RP and a neighborhood of z € M and the derivative of ¢ at ¢~1(z) = 0
is injective.

A p-dimensional C¥-submanifold of R™ can alternatively be defined via a local equation,
that is, a C* function @ : R® — R™~P with a surjective derivative at Z € M, that satisfies for
all = close enough to Z: x € M < &(z) = 0.

To lighten notations, we will only indicate the dimensionality and the smoothness degree
of a manifold when it is relevant to the discussion.

Definition 4 (Tangent space) Given a point z living in a manifold M, defined either by a
local parametrization ¢ or a local equation @, the tangent space of M at z, denoted Ty (z), is
defined as:

Tm(z) = Im Dy, (0) = KerDg (0)

Definition 5 (Partly smooth function) Let g : R™ — R be a proper, convex, lower semi-
continuous function. g is said to be partly smooth at x relative to a manifold M containing x
if 8g(z) # 0, and moreover

— Smoothness: M is a C2-manifold around z, g restricted to M is C? around z;
— Sharpness: The tangent space Ty (z) coincides with par(dg(z))*;
— Continuity: The set-valued mapping Jg is continuous at x relative to M.

Lemma 4 Let M be a manifold and u* a point such that * = prox., (u*) € M. If g is partly

smooth at z* relative to M and “*;z* € ri dg(z*), then (QC) holds.

Proof. The proof follows the reasoning of [16, Lem. 27, Th. 28]. Let us define the function
plu,z) = g(z) + %Hm — ul|?. Since g is partly smooth at z* relative to M, the function
(u,z) — g(x) is also partly smooth at (u*,z*) relative to R™ x M [26, Prop. 4.5]. Since the
addition of a smooth function does not change this property [26, Cor. 4.6], p is partly smooth
at (u*,z*) relative to R™ x M.
Besides, defining the parametrized function py» (-) = p(u*,-), we have that
i) a* = prox,,(u*) = argmingcgn {g(x) + %Hz — u*||?} = argmin,cgn pu+ (z) and as pyx
is 1/~-strongly convex, we have for all © € R™, py» (z) > py* (z*) + %Hx —x*||%;
ii) the qualifying constraint “*;z* € ri dg(z*) implies that 0 € ri (8g(x*) + z*%“*) =

ti Opy» (z*);
which enable us to use [16, Lem. 27] (or equivalently [21, Th. 3.2 and 6.2i]).

Thus, there exists a neighborhood B(u*,¢) of u* and a function @ such that for all u in
B(u*,e), (u) € M and is a critical point of p,, restricted to a neighborhood of z*. Since py, is
convex, P(u) is actually the global optimum of p,,. Therefore, we have that for all u in B(u*,€),
prox, (u) € M which is exactly (QC).

B Recalls on the (Accelerated) Proximal Gradient descent

We recall here the descent lemma for the composite objective function F', which is central in
the analysis of any first order method.

Lemma 5 (Descent lemma) Let v > 0, the following inequalities hold for any x,y € R™

(1—~L)

F (@) +

1 1
17 () — ] + 5 T3 (@) = I < Fy) + o=l —yl?
Y 2y

FR@) + E 2 T @) el + ey @) - 2) < F)
Y Y
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Proof. The first inequality is directly equivalent to [15, Lem. 1]. The second is derived from
the identity || 7 (z) — z||* + [ly — z||* = 2(T(z) — 2,y — 2) + [ly — T3 (2)||*. O

We now give an accelerated descent lemma for the composite objective F', that is funda-
mental in the analysis of our provisional algorithm in Section 3.1.

Lemma 6 (Accelerated Descent lemma) Let Assumptions 1 and 2 hold. For any v > 0,
any pair of points (xx,yr) and for x* a fized point of T (i.e. a minimizer of F), we have
(independently of the acceleration step)

7’}/[/

o —t2_vp_1 < — Izt — teyel®

1 1
= oo ltkres = (tk — Dok — a1+ —lltrye — (b — D — a*||%,
Y 2y

where xi+1 = T4 (yk), and v := F(xg41) — F*.

Proof. The proof follows the same global layout as the one of FISTA [7]. Using the Lemma 5
at (z =yi,y =) and (z = yg,y = z*),

2 —~L

1
v — Vg1 = F(xpq1) — Flzg) < — k1 — yill® = ;(yk — T, Thy 1 — Yk)

2—~L 1
vp = Fzpp) — F* < - o k1 — yell® — ;(yk — 2, Tpy1 — Yk)

The first equation times (t; — 1) added to the second yields:

2 —
tpvg — (ty — Dvg—1 < —

L 1
tellertr — yell> — ;<tkyk — (tk = Dz — 2™, Tpg1 — Yn)

Multiplying by tj, using the relation ti —tp < ti_l from Assumption 2(i), we get:

—~L 1
ltkarst — tryrll® — ;<tkyk — (tk — Do — 2™, tpTpy1 — tpyr)

2
tivk — tiflvk—l < -

Applying the identity ||c — al|2 +2(a —b,c —a) = ||b—¢||? — ||b — a||? to the inner product
of the last identity yields the result. O

C About Error Bounds

In order to connect the functional suboptimality with the iterates behavior, the geometry of
the function can be used. For a proper convex lower-semicontinuous function F' achieving its
minimum F* two common variants of geometric inequalities are Error Bounds and Kurdyka-
Lojasiewicz inequalities [10,11,32]. For any” x ¢ argmin F, they respectively write

— FError Bound p(F(z) — F*) > dist(z, argmin F)

— Kurdyka-Lojasiewicz (KL) dist(0,0F (z)) > 1/¢' (F(z) — F*)
where ¢(t) = Ct?/0 with C > 0 and 6 € (0,1] is called a desingularizing function. These
properties are widely satisfied (e.g. by any semi-algebraic function [10]) but the desingularizing
function (more particularly 6) is often hard to estimate®.

It is easy to see that Assumption 3 is a (global) error bound with ¢(t) = (1/8)Y/Ptl/P
(matching the definition of ¢ with C = 1/p(1/8)/P > 0 and § = 1/p € (0,1]) but the
knowledge of the constants is not necessary.

Then, an important result about Error Bounds and KL inequalities is that they are equiv-
alent with the same desingularizing function [11, Th. 5] which allows us to get the following
result for the proximal gradient operator.

7 These properties are often supposed to hold only locally but can be globalized easily [11,
Sec. 2.4, Cor. 6].

8 An example of such a computation is performed for the lasso problem F(z) =
L|Az — b)|3 + A1lz|l1 in [11, Lem. 10]
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Lemma 7 Let Assumptions 1 and 3 hold. Then, there exists a constant B > 0 such that for
all x

1
|le = Ty(z)|]| > B dist' ™7 (z,argmin F).

Proof. First, let us notice that the KL and error bound properties can be combined as

dist(0, OF( ))>*1 (F(x) — F*)! > ; ( )196 (dist(z, a i F))lge
i T T ist(z, argmin .
) 20 Zc\c ,arg

Furthermore, using that dist(0, 0F(T~(z))) < #Hx — Ty (z)|| for all x € R™ (see e.g. [11,
Sec. 4.1]), we get that

le = Ty (@) > (")159 (dist(z, argmin F)) 7"

T — x — | = ist(z, argmin ,
=y \e &

which, combined with the fact that 6 = 1/p, gets the claimed result. O

D Proof of Corollary 1

Proof. First, Theorem 3.1 or Theorem 3.2 give the convergence of the sequence (zj) to the
unique minimizer z* and finite time convergence since the partial smoothness assumption of
Corollary 1 implies the qualifying constraint (QC) of both theorems from Lemma 4.

In order to show the linear convergence behavior, we follow [29] and [35, Chap. 2.1.2]
and apply their first-order analysis of accelerated proximal gradient to (Prov. Alg.). We are
in the same setting and have compatible assumptions so that we can apply [29, Prop. 4.5] to
(Prov. Alg.) as often as identification happened since both tests will return acceleration after
that moment. We have, for rp = xp —a*, d = [rp_1  73]7:

diyr = Mdi +ex,  lexll = o(lld ) (D.1)

with M a matrix of spectral radius p(M) < 1 as vy € (0,1/L] from [29, Cor. 4.9, Rem. 4.10].
Take any € € (0,(1 — p(M))/2) and let K2 > 0 be the smallest time from which i)
identification holds; and ii) ||eg||/||dk| < €. K2 is finite since identification happens in finite
time and ||eg|| = o(||dk]|)-
Expliciting Eq. (D.1) yields, for & > 0,

k

k k—1
diothk1 = M dg, 41 + E M™ekyt1-
=1

Taking the norm and applying triangular inequalities yield

k k
k k—1 k k—1
gy s all < IMFldacall + Y 1M lercyall < Carp*lldica 1+ Car > P llercy 4l
=1 =1

where p := p(M) + ¢ and Cp; > 0 is a constant such that ||M*| < Carp® for all k (see [22,
Cor. 5.6.13]).

Let us denote wi41 = C']T/II (p+ &) Flldrytrt1ll (p+e = p(M)+ 2 € (0,1)) and show
that this sequence is uniformly bounded by a constant Cy,. The initialization is clear. Suppose
that w; < C for all I < k; multiplying the previous equation by C&l (p+ €)~F yields

k
k k—1
p 1 Z p lldectill llex+ll
wy < (7) di + ( )
=\t Il prei=\pte (p+ )=t lldgsill

p \* 1o~/ o VU el
=) w2 ) ey
p+e pte pte lldr 41l

=1
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By recursion, we have

o \* ¢ k o\l
< Cy Cuw
R (p+6) * p+el_zl(p+e)

k

k 1—(-£

:Cw( P ) +Cy € (p-‘rpe) =Cy
p+e p+e 1—p+€

Therefore, for all k > 0, ||[dxy+k+1ll < CrCuw(p(M) + 2e)F||dg11]| for any € > 0. O

E Additional Illustrations

We provide here additional illustrations Fig. 7 and Fig. 8, which consist in the same experiments
as in Fig. 5(a) and Fig. 6 except for the starting point of the algorithms, which are taken here
as the null vector (or matrix). The conclusions are quite similar to those of Section 4.2; the
identification stability of the proposed methods is even more explicit.

Besides, we also report one further experiment where the solution is non qualified, and
the structure-encoding manifolds have non-null curvature. The smooth part f is again a least-
squares function, while the non-smooth part is defined as g(z) = max(0, ||z1:5]1.3 —1)+...+
max(0, ||45:50]]1.3 — 1) for € R30. The structure-encoding manifolds of g are any cartesian
product M = x19 M; C R%?, where each manifold M; is either R® or {z € R® : ||z|j1.3 = 1}
(i.e. the 1.3-norm unit sphere). Fig. 9 displays the performance of the four algorithms of inter-
est (stopped as soon as suboptimality gets below 10’12). None is able to recover the complete
structure of the solution, which lives in M* = x12 {z € R : ||lz||1.3 = 1}. This is not surpris-
ing for a non-qualified problem. The vanilla proximal gradient recovers half of the elementary
manifolds, and T2 recovers 4 but much faster. Interestingly, the accelerated proximal gradient
and T! iterates are not able to retain even one of the manifolds they encountered. This be-
havior is consistent with the one noticed in Fig. 1(b) and suggests that proximal gradient may
have more robust identification properties than accelerated proximal gradient for non-qualified
problems. The second test seems to behave comparably to proximal gradient descent in terms
of identification, while converging with the same number of iterations as accelerated proximal
gradient.

100 | Accel. Proximal Gradient | , -
g Proximal Gradient :
& gol |~ ProvAlg-T! | : h
;; —— Prov. Alg — T2
=]
.20
0 60 |
g
B
=
o 40 1
@]
%)
i)
£ 20 .
=]
]
g
0 -
Ll Ll Ll Ll Lol il
100 10! 102 103 10% 10°
iterations

Fig. 7: g = - |1 — 5 runs w/ initialization at 0 — 120 manifolds to identify
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Fig. 8: g = - ||+ — 1 run w/ null initialization — 17 manifolds to identify
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Fig. 9: g(z) = max(0,||z1:5]l1.3 — 1) + ... + max(0, ||z45:50/[1.3 — 1) — 1 runs w/ random
initialization — 10 manifolds to identify
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