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Abstract We consider an ℓ0-minimization problem where f(x)+γ‖x‖0 is min-
imized over a polyhedral set and the ℓ0-norm regularizer implicitly emphasizes
sparsity of the solution. Such a setting captures a range of problems in image
processing and statistical learning. Given the nonconvex and discontinuous
nature of this norm, convex regularizers are often employed as substitutes.
Therefore, far less is known about directly solving the ℓ0-minimization prob-
lem. Inspired by [19], we consider resolving an equivalent formulation of the
ℓ0-minimization problem as a mathematical program with complementarity
constraints (MPCC) and make the following contributions towards the char-
acterization and computation of its KKT points: (i) First, we show that feasible
points of this formulation satisfy the relatively weak Guignard constraint qual-
ification. Furthermore, under the suitable convexity assumption on f(x), an
equivalence is derived between first-order KKT points and local minimizers of
the MPCC formulation. (ii) Next, we apply two alternating direction method
of multiplier (ADMM) algorithms to exploit special structure of the MPCC
formulation: (ADMMµ,α,ρ

cf ) and (ADMMcf). These two ADMM schemes both
have tractable subproblems. Specifically, in spite of the overall nonconvexity,
we show that the first of the ADMM updates can be effectively reduced to a
closed-form expression by recognizing a hidden convexity property while the
second necessitates solving a convex program. In (ADMMµ,α,ρ

cf ), we prove sub-
sequential convergence to a perturbed KKT point under mild assumptions.
Our preliminary numerical experiments suggest that the tractable ADMM
schemes are more scalable than their standard counterpart and ADMMcf com-
pares well with its competitors to solve the ℓ0-minimization problem.
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1 Introduction

In this paper, we consider the ℓ0-minimization problem:

min
x

f(x) + γ‖x‖0 subject to Ax ≥ b, (1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and γ > 0. Suppose f(x) , fQ(x) +
g(x), where fQ : Rn → R is a quadratic function and g : Rn → R is a
smooth convex function. The ℓ0-norm of a vector captures the number of
nonzero entries while an ℓ0-norm regularizer implicitly emphasizes the sparsity
of the resulting minimizer. ℓ0-minimization problems of the form (1) assume
relevance in applications in image processing and statistical learning (cf. [13,
15,30]). The nonconvexity and discontinuity of the ℓ0-norm has prompted the
usage of convex ℓ1 or ℓ2-norm regularizers or other tractable variants [2, 30].
While relatively less is known about directly solving problem (1), a solution
of (1) may have better statistical property. In fact, global solutions of (1)
achieve model selection consistency and are known to be sparse under weaker
conditions than when utilizing the ℓ1-norm (cf. [37]). Therefore, despite the
computational challenges in addressing the ℓ0-norm penalty, resolution of the
ℓ0-minimization problem is still desirable. In this work, we focus on direct
resolution of (1).

Related work. To solve (1), Feng, Mitchell, Pang, Shen, and Wächter [19]
introduced two complementarity-based formulations equivalent with (1) and
processed them by standard nonlinear programming solvers. Blumensath and
Davis proposed an iterative hard-thresholding (IHT) algorithm, applicable
when f(x) is a least-squares metric and the constraint Ax ≥ b is absent [8].
Convergence to a local minimizer may be claimed and performance of the
scheme can be improved if warm-started from a point computed by matching
pursuit.

A problem class closely related to (1) is the ℓ0-constrained problem (2).
Although they are not equivalent due to nonconvexity of ℓ0-norm, solution
method of (2) may inspire efficient algorithms to tackle (1).

min
x

f(x) subject to Ax ≥ b, ‖x‖0 ≤M. (2)

This problem finds application in best subset regression [5,6], cardinality con-
strained portfolio optimization [6], and graphical model estimation [18]. To
solve (2), combining first-order methods and mixed-integer optimization [5]
was seen to be promising. By considering an equivalent complementarity for-
mulation of (2), Burdakov et al. [10] developed a regularization scheme. More-
over, a relatively weak constraint qualification was shown to hold at every
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feasible point of this reformulation and consequently KKT conditions are nec-
essary at local minima.

In addition to ℓ0-norm penalization, related work has examined the usage
of the ℓp-norm (p ∈ (0, 1)) [20, 21], the smoothly clipped absolute deviation
(SCAD) penalty [17, 26], the minimax concave penalty (MCP) [36], and the
capped-ℓ1 penalty [38]. More recently, a generalization of the ℓ0-norm con-
straint was considered in the form of an affine sparsity constraint [14].

Nonconvex ADMM schemes. Since our focus lies in developing an
ADMM framework to exploit the structure of an equivalent nonconvex formu-
lation of (1), we provide a brief review of the available convergence statements
in the context of ADMM schemes for nonconvex programs.

Encouraged by the success of ADMM on convex problems, researchers have
tried to implement and analyze ADMM on nonconvex problems. Table 1 lists
some of the main theoretical findings regarding variants of ADMM schemes
employed to address different types of nonconvex problems [9, 24, 25, 33]. In
the second column, we include the assumptions necessary for these authors to
prove convergence or derive complexity bounds. Note that these assumptions
pertain to the problem itself but may not be sufficient to guarantee the final re-
sult. More assumptions on the parameter settings or iterates of the algorithms
may well be needed. Moreover, for some of the findings, it is shown that if the
K L property (See Definition 6 in Appendix) is assumed, convergence can be
guaranteed [9, 33]. Also note that all of the papers in Table 1 assume global
resolution of each subproblem of ADMM, even when the subproblem is non-
convex. Specifically, in [33], it is explained that the proposed ADMM scheme
can address MPCC but requires globally resolving an MPCC at each step;
this is in sharp contrast with the tractable structure of each update in our
scheme in this paper (in other words, we do not require resolving a nonconvex
problem globally at each step).

There have also been extensions of nonconvex ADMM schemes to the lin-
earized regime [27], nonlinear equality-constrained settings [32], amongst oth-
ers [22, 31, 34, 35]. Despite all of these theoretical achievements on nonconvex
ADMM, we point out that no scheme introduced above can guarantee the
convergence or even the boundedness of the iterates when applying ADMM
or its variants to the following formulation with both blocks constrained and
one being nonconvex:

min F (x) +G(y)

subject to x− y = 0,

x ∈ X $ RN , y ∈ Y $ RN ,

(3)

where F is a quadratic function, G is smooth and convex, X is a nonconvex
set defined by a quadratic equality constraint, while Y is a convex set. Formu-
lation (3) is our focus in this paper because by reformulating the problem of
interest in this way and applying ADMM-type schemes, each subproblem will
be tractable and may possibly allow for a closed-form solution. Jiang et al. [25]
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Table 1: Main results on convergence of nonconvex ADMM

Problem Necessary Assumptions Result Lit.

min φ(x0, x1, . . . , xp, y)
s.t.

∑p
i=0Aixi +By = 0.

∇yφ(·, y) is Lipschitz
continuous in y.

Im([A1, . . . , Ap]) ⊆ Im(B).

Subsequential
convergence to

stationary points.
[33]

min f(x1, x2, . . . , xN )

+
∑N−1

i=1 ri(xi)

s.t.
∑N

i=1Aixi = b, xi ∈ Xi,
∀i = 1, . . . , N − 1.

f is differentiable.
For any i, Xi is convex.
AN has full row rank.

Iter. complexity
of O(1/ǫ2) to
obtain an

ǫ-stationary point.

[25]

min
∑K

k=1 gk(xk) + h(x0)
s.t. xk = x0, ∀k = 1, . . . ,K,

x0 ∈ X .

For any k = 1, . . . , K,
∇gk(x) is Lipschitz continuous.

h(·) is convex.
X is convex and compact.

Subsequential
convergence to

stationary points
. [24]

min
∑K

k=1 gk(xk) + ℓ(x0)

s.t.
∑K

k=1Akxk = x0,
xk ∈ Xk, ∀k = 1, . . . ,K.

gk(·) is either convex
or Lipschitz continuously

differentiable.
∇l(x) is Lipschitz continuous.
Xk is convex and compact.
Ak has full column rank.

Subsequential
convergence to

stationary points
. [24]

min F (z) +G(y) +H(x, y)
s.t. Ax− z = 0.

F and G are proper
lower semicontinuous.

∇H is Lipschitz continuous.
A is surjective.

Subsequential
convergence to
KKT points.

[9]

discussed how ADMM schemes may be applied to (3) to allow for deriving con-
vergence guarantees. Yet it requires changing the formulation of (3) through
the addition of an unconstrained auxiliary block and requires penalizing the
auxiliary variable in the objective function.

Motivation and contributions. Despite the breadth of prior research,
less is known regarding the nature of solutions and tractable convergent schemes
for continuous reformulations of (1). Motivated by this gap and inspired by
[19], we consider an equivalent MPCC reformulation of (1):

min
x±,ξ

f(x+ − x−) + γeT (e − ξ)
subject to A(x+ − x−) ≥ b, (x+ + x−)T ξ = 0,

x+, x− ≥ 0, 0 ≤ ξi ≤ 1, for i = 1, . . . , n.

(4)

In particular, we focus on characterizing stationary points of (4) as well as
developing tractable convergent scheme that may recover such solutions.
(i) Regularity properties and characterization of KKT points. In
Section 2, we show that a feasible point of the MPCC reformulation satisfies
the Guignard constraint qualification (GCQ). Under convexity of f , we derive
an equivalence between first-order KKT points and local minimizers.
(ii) ADMM schemes with tractable subproblems. In Sections 3 and 4,
we propose two ADMM schemes to exploit the special structure of the MPCC:
(ADMMµ,α,ρ

cf ) and (ADMMcf). In particular, we reformulate the MPCC (4)
in the form of (3) and apply the ADMM frameworks. The algorithms require
resolving two subproblems at each iteration where, one is convex and the
other, while nonconvex, is shown to possess a hidden convexity property [4],
and allow for closed-form solutions. In the perturbed proximal ADMM scheme
(ADMMµ,α,ρ

cf ), the perturbation technique (inspired by Hajinezhad and Hong
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[23]) allows us to show subsequential convergence. We also show that a limit
point of this scheme is a perturbed KKT point where the inexactness depends
on the choice of the perturbation parameters of the algorithm.
(iii) Numerics. In Section 5, we present some preliminary numerical exper-
iments showing that the tractable ADMM schemes are more scalable than
their standard counterpart and ADMMcf competes well with other solution
methods for a special case of the ℓ0-minimization problem.

Notation. We let e denote (1; . . . ; 1) for an appropriate dimension. Given
a set Z and a vector z, 1lZ(z) = 0 if z ∈ Z and ∞ otherwise. The requirement
a ⊥ b is equivalent to aibi = 0 for i = 1, . . . , n. The matrix In denotes the
n−dimensional identity matrix. [1, n] , {1, 2, . . . , n}. |S| denotes the cardinal-
ity of set S. (a)i or [a]i denote the ith entry of vector a. We may also use ai
to denote ith entry of vector a, but often ai may have other connotations such
as the ith iterate in an algorithm, which will be specified. Let the support set
of x be defined as supp(x) , {i ∈ {1, . . . , n} | xi 6= 0}. For any vector z ∈ RN ,
positive semidefinite matrix M ∈ RN×N , ‖z‖2M , zTMz.

2 Properties of the MPCC reformulation

In Section 2.1, we revisit the MPCC formulation (4) and study both its regu-
larity properties (Section 2.2) and the relation between KKT points and local
minimizers (Section 2.3).

2.1 Complementarity-based reformulations

In [19], several complementarity-based reformulations of (1) are introduced:
Half-complementarity

min
x,ξ

f(x) + γeT (e − ξ)
subject to Ax ≥ b, xiξi = 0,

0 ≤ ξi ≤ 1, for i = 1, . . . , n.

(5)

The term “half-complementarity” arises from noting that the equality con-
straint may be recast as x ⊥ ξ ≥ 0.
Full-complementarity

min
x,x±,ξ

f(x) + γeT (e− ξ)
subject to Ax ≥ b, x+ − x− = x,

(x+)Tx− = 0, (x+ + x−)T ξ = 0,
x+i , x

−
i ≥ 0, 0 ≤ ξi ≤ 1, for i = 1, . . . , n.

(6)

where x+, x−, ξ ∈ Rn. (6) may be further simplified by relaxing (x+)Tx− = 0,
resulting in (4). It can be formally shown that (4) is a tight relaxation of (6)
implying that a solution of (4) is a minimizer of (6) (See Lemma 8 in the
Appendix). Since equivalence between (6) and (1) has been established [19],
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the tightness of relaxation indicates equivalence between (4) and (1). Moreover,
the following result shows that local minimizers of (1) can also be recovered
by local minimizers of (4).

Lemma 1 Given x̂, x̂+, x̂−, ξ̂ ∈ Rn such that x̂ = x̂+ − x̂− and (x̂+; x̂−; ξ̂) is
a local minimum of (4). Then x̂ is a local minimum of (1).

Proof Suppose Z denotes the feasible region of (4). Since ẑ , (x̂+; x̂−; ξ̂)
is a local minimum of (4), ẑ ∈ Z and there exists an open neighbourhood
N , B(ẑ, r) , {z ∈ R3n | ‖z − ẑ‖ < r} such that for all (x+;x−; ξ) ∈ N ∩ Z,

f(x+ − x−) + γeT (e − ξ) ≥ f(x̂+ − x̂−) + γeT (e − ξ̂). Let X , {x | Ax ≥ b}.
It suffices to show that (a) x̂ ∈ X and (b) there exists an open neighbourhood
U ∋ x̂ such that for all x ∈ U ∩X , f(x) + γ‖x‖0 ≥ f(x̂) + γ‖x̂‖0. Of these, (a)
holds immediately by noting that Ax̂ = A(x̂+ − x̂−) ≥ b where the inequality

follows from the feasibility of (x̂+; x̂−; ξ̂) with respect to (4). Suppose U is
defined as a sufficiently small set such that the following hold: (i) For all
x ∈ U , f(x) ≥ f(x̂) − γ, a consequence of the continuity of f ;(ii) For all
x ∈ U ∩X , x̂i 6= 0 ⇒ xi 6= 0, ∀i = 1, . . . , n; (iii) U ⊆ B(x̂, r). Then (ii)
implies supp(x) ⊇ supp(x̂) for all x ∈ U ∩X (or ‖x̂‖0 ≤ ‖x‖0). Therefore,
the local optimality of x̂ can be shown through the following two cases: (I).
If x̄ ∈ {x ∈ U ∩ X | supp(x) ) supp(x̂)}, then ‖x̄‖0 ≥ ‖x̂‖0 + 1 implying

that f(x̄) + γ‖x̄‖0
(i)

≥ f(x̂) − γ + γ(‖x̂‖0 + 1) = f(x̂) + γ‖x̂‖0; (II). If x̄ ∈
{x ∈ U ∩ X | supp(x) = supp(x̂)}, then let x̄+i , x̂+i + max{x̄i − x̂i, 0},
x̄−i , x̂−i − min{x̄i − x̂i, 0} for i = 1, . . . , n. Then we see that x̄ = x̄+ − x̄−
and (x̄+; x̄−; ξ̂) ∈ N ∩Z. Therefore, f(x̄+− x̄−) + γeT (e− ξ̂) ≥ f(x̂+− x̂−) +

γeT (e− ξ̂) implying f(x̄+− x̄−) ≥ f(x̂+− x̂−) or f(x̄) ≥ f(x̂). It follows that
f(x̄) + γ‖x̄‖0 ≥ f(x̂) + γ‖x̂‖0.

While (1) can now be reformulated as a continuous problem, (4) is still an
MPCC. It may be recalled that MPCCs are ill-posed nonconvex nonlinear pro-
grams in that standard regularity conditions (such as LICQ or MFCQ) may
fail to hold at any feasible point [28]. Moreover, global resolution of such prob-
lems is generally challenging. We now discuss what constraint qualifications
do hold at a feasible point of (4).

2.2 Constraint Qualifications

In this subsection, we analyze whether regularity conditions hold at feasible
points for the simplified full complementarity formulation (4). This allows for
stating necessary conditions of optimality. Recall that some common CQs are
related as follows.

(I) LICQ⇒ CRCQ and (II) LICQ⇒ MFCQ⇒ ACQ⇒ GCQ (7)

The first relation is obvious from the definition of LICQ and CRCQ (See [16,
Page 262]) while the proof of the second relation may be found in [12]. In
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the context of the half-complementarity formulation (5), the constant rank
constraint qualification (CRCQ) is proven to hold at points satisfying certain
nondegeneracy property while LICQ may fail [19]. In this section, we focus
on the simplified full-complementarity formulation (4). It can be shown that
GCQ may hold at every feasible point while ACQ may fail.

We begin our discussion with some definitions. Suppose g : Rn → Rp and
h : Rn → Rq are continuously differentiable functions while Ω is a set defined
as follows.

Ω , {x ∈ Rn : g(x) ≤ 0, h(x) = 0} . (8)

Then the tangent cone TΩ(x∗) and linearized cone LΩ(x∗) of Ω at x∗ and the
ACQ and the GCQ are defined as follows:

Definition 1 (Abadie and Guignard CQ (ACQ, GCQ)) If I(x∗) = {i :
gi(x

∗) = 0}, then TΩ(x∗) and LΩ(x∗) of Ω at x∗ are defined as follows:

TΩ(x∗) ,

{

d : ∃{xk} ⊆ Ω, {tk} ↓ 0, s.t. xk → x∗and d = lim
k→∞

xk − x∗
tk

}

(9)

LΩ(x∗) ,
{
d : ∇gi(x∗)T d ≤ 0, ∀i ∈ I(x∗),∇hTj (x∗)d = 0, j = 1, . . . , q

}
. (10)

Then x∗ satisfies the Abadie Constraint Qualification (ACQ) iff TΩ(x∗) =
LΩ(x∗). Further, x∗ satisfies the Guignard Constraint Qualification (GCQ)
iff (TΩ(x∗))∗ = (LΩ(x∗))∗, where for a cone C ⊆ Rn, C∗ , {v : dT v ≤ 0, ∀d ∈
C}.

Next, we prove that the GCQ holds at every feasible point of (4).

Lemma 2 (GCQ holds at feasible points) Consider the problem (4) and
consider a feasible point x = (x+;x−; ξ). Then the GCQ holds at this point.

Proof For the point x = (x+;x−; ξ), define

AT , (a1, . . . , am) and E(x) , {i : aTi (x+ − x−) = bi}, (11)

S(x) =
{
i : x+i = x−i = 0

}
,

S0(x) = {i ∈ S(x) : ξi = 0} , S1(x) = {i ∈ S(x) : ξi = 1} . (12)

In addition, define cones C1(x) and C2(x) as

C2(x) ,











d1
d2
d3



 :

(d1)i = 0, (d2)i = 0, ∀i ∈ S(x) \ S0(x);

(d1)i ≥ 0, ∀i ∈ S0(x) ∪ (S(x)c ∩ {i : x+i = 0});
(d2)i ≥ 0, ∀i ∈ S0(x) ∪ (S(x)c ∩ {i : x−i = 0});
(d3)i ≥ 0, ∀i ∈ S0(x); (d3)i ≤ 0, ∀i ∈ S1(x);

(d3)i = 0, ∀i ∈ S(x)c; aTj d1 − aTj d2 ≥ 0, ∀j ∈ E(x)







,

C1(x) , C2(x) ∩ {d = (d1; d2; d3) : [(d1)i + (d2)i] (d3)i = 0, ∀i ∈ S0(x)} ,
(13)
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respectively where it may be noted that C1(x) is characterized by an extra
constraint [(d1)i + (d2)i] (d3)i = 0 for all i ∈ S0(x). Further, denote

X ,

{

(y+; y−; ζ) :
y+, y−, ζ ∈ Rn, (y+ + y−)T ζ = 0, A(y+ − y−) ≥ b,
y+ ≥ 0, y− ≥ 0, 0 ≤ ζi ≤ 1, ∀i = 1, . . . , n,

}

.

We proceed to show the following.
(i). TX(x) = C1(x): Suppose d ∈ TX(x). Then there exist sequences {xk}
and {tk} such that {xk} ⊆ X, xk → x, {tk} ↓ 0 and d = limk→∞

xk−x
tk

.

Denote xk , (x+(k);x
−
(k); ξ(k)), where x+(k), x

−
(k), ξ(k) ∈ Rn. Suppose that d ,

(d1; d2; d3), d1, d2, d3 ∈ Rn. Based on feasibility of xk, ∀k ≥ 1 and the fact that
xk → x, we may claim the following:

∀i ∈ S(x) \ S0(x), ∃K1, s.t., ∀k ≥ K1, (x
+
(k))i = (x−(k))i = 0

=⇒ (d1)i = (d2)i = 0, ∀i ∈ S(x) \ S0(x)

if i ∈ S1(x), then ξi = 1 and (ξ(k))i ≤ 1, ∀k
=⇒ (ξ(k))i − ξi ≤ 0, ∀k, (d3)i ≤ 0, ∀i ∈ S1(x).

Similarly we may claim the following:

∀i ∈ S(x)c, ∃K2, s.t.∀k ≥ K2, (ξ(k))i = 0, (x+(k))i ≥ 0, (x−(k))i ≥ 0

=⇒ (d3)i = 0, ∀i ∈ S(x)c; (d1)i ≥ 0, ∀i ∈ S(x)c ∩ {i : x+i = 0};
and (d2)i ≥ 0, ∀i ∈ S(x)c ∩ {i : x−i = 0}.

For indices i ∈ S0(x), the following holds:

x+i = x−i = ξi = 0⇒ (x+(k))i − x+i ≥ 0, (x−(k))i − x−i ≥ 0, (ξ(k))i − ξi ≥ 0, ∀k,
=⇒ (d1)i ≥ 0, (d2)i ≥ 0, (d3)i ≥ 0.
[

(x+(k))i + (x−(k))i
]

(ξ(k))i = 0, ∀k
=⇒ (x+(k))i + (x−(k))i = 0, or (ξ(k))i = 0, inf. often;

=⇒ (d1)i + (d2)i = 0, or (d3)i = 0 ⇐⇒ [(d1)i + (d2)i] (d3)i = 0

Furthermore,

∀j ∈ E(x), aTj x
+ − aTj x− = bj , a

T
j x

+
(k) − aTj x−(k) ≥ bj, for all k ≥ 1

=⇒ aTj (x+(k) − x+)− aTj (x−(k) − x−) ≥ 0, ∀j ∈ E(x) and k ≥ 1

=⇒ aTj d1 − aTj d2 ≥ 0, ∀j ∈ E(x).

Therefore, we may conclude from (13) that d ∈ C1(x) and TX(x) ⊆ C1(x).
We now proceed to show that C1(x) ⊆ TX(x). Choose any d ∈ C1(x).

Then based on property of C1(x), it is easy to see that we may choose λ large
enough such that x+d/(kλ) ∈ X, ∀k ≥ 1. Let xk , x+d/(kλ), tk , 1/(kλ) for
all k ≥ 1, implying that {xk} ⊆ X, xk → x, tk ↓ 0, d = limk→∞

xk−x
tk

implying
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that d ∈ TX(x) which further implies C1(x) ⊆ TX(x).
(ii). LX(x) = C2(x): The set X contains the following active constraints.

− y+i ≤ 0, ∀i ∈ S(x) ∪ {i ∈ S(x)c : x+i = 0};
− y−i ≤ 0, ∀i ∈ S(x) ∪ {i ∈ S(x)c : x−i = 0};
− ζi ≤ 0, ∀i ∈ S0(x) ∪ S(x)c; ζi ≤ 1, ∀i ∈ S1(x);

aTi (y+ − y−) ≥ bi, ∀i ∈ E(x); (y+ + y−)T ζ = 0.

This allows for defining the linearized cone LX(x) at x ∈ X .

LX(x),











d1
d2
d3



 :

− (d1)i ≤ 0, ∀i ∈ S(x) ∪ {i ∈ S(x)c : x+i = 0};
− (d2)i ≤ 0, ∀i ∈ S(x) ∪ {i ∈ S(x)c : x−i = 0};
(d3)i ≤ 0, ∀i ∈ S1(x);−(d3)i ≤ 0, ∀i ∈ S0(x) ∪ S(x)c;

aTi (d1 − d2) ≥ 0, ∀i ∈ E(x);

ξT (d1 + d2) + (x+ + x−)Td3 = 0.







(14)

Suppose d ∈ LX(x). Then the following holds:

ξT (d1 + d2) + (x+ + x−)Td3 = 0

⇐⇒
∑

i∈S(x)\S0(x)

ξi[(d1)i + (d2)i] +
∑

i∈S(x)c
(d3)i(x

+
i + x−i ) = 0

⇐⇒ (d1)i = (d2)i = 0, ∀i ∈ S(x) \ S0(x); (d3)i = 0, ∀i ∈ S(x)c, (15)

where the first equivalence follows from the definition of S0(x) and S(x) while
the second follows from noting that (d1)i ≥ 0, (d2)i ≥ 0, ξi > 0, ∀i ∈ S(x) \
S0(x) and (d3)i ≥ 0, x+i + x−i > 0, ∀i ∈ S(x)c. Therefore, by replacing ξT (d1 +
d2) + (x+ + x−)T d3 = 0 with (15) in the representation (14), we observe that
LX(x) = C2(x).
(iii). We conclude the proof by showing that C2(x) = cl(conv(C1(x))). Since
C2(x) is a polyhedral cone, it is closed and convex. Furthermore, by defini-
tion, C2(x) ⊇ C1(x), implying that C2(x) ⊇ cl(conv(C1(x))). To prove the
reverse direction, choose any vector d , (d1; d2; d3) ∈ C2(x) where d1, d2, d3 ∈
Rn. It is easy to verify that both vectors d̃ , (0n×1; 0n×1; 2d3) and d̂ ,

(2d1; 2d2; 0n×1) are in C1(x). Note that d = 1
2 d̃+ 1

2 d̂ ∈ cl(conv(C1(x))). There-
fore, C2(x) ⊆ cl(conv(C1(x))).

By (iii) LX(x) = cl(conv(TX(x))), implying that TX(x)∗ = LX(x)∗.

Remark 1 (i) At a feasible point x = (x+;x−; ξ) such that [x+ + x−]i = 0
and ξi = 0 for some index i, ACQ may fail to hold. In fact, it is very likely
that TX(x) = C1(x) $ C2(x) = LX(x). On the other hand, at all other
points, S0(x) = ∅ and ACQ holds. (ii) KKT conditions are necessary at local
minimum.
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2.3 KKT conditions and local optimality

In this subsection, we discuss the relation between (first-order) KKT condi-
tions and local optimality. We begin with the definition of KKT conditions.

Definition 2 (KKT conditions) Consider the problem {minx∈Ω F (x)},
where F (x) is a continuously differentiable function and Ω is defined in (8).
Suppose x∗ denotes a feasible solution of Ω. Then x∗ satisfies the first-order
KKT conditions if and only if there exists λ ∈ Rp+, µ ∈ Rq such that

∇F (x∗) +

p
∑

i=1

λi∇gi(x∗) +

q
∑

j=1

µj∇hj(x∗) = 0,

λigi(x
∗) = 0, ∀i = 1, . . . , p.

(16)

Then by Definition 2, a point x , (x+;x−; ξ) satisfies the first-order KKT
conditions of problem (4) if there exist multipliers (µ, β1, β2, β3, β4, π) ∈ R ×
Rn × Rn × Rn × Rn × Rm such that the following conditions hold:

0 =





∇xf(x+ − x−)
−∇xf(x+ − x−)

−γe



+ µ





ξ
ξ

x+ + x−



+





−β1 −ATπ
−β2 +ATπ
β4 − β3



 , (17a)

0 ≤ β1 ⊥ x+ ≥ 0, (17b)

0 ≤ β2 ⊥ x− ≥ 0, (17c)

0 ≤ β3 ⊥ ξ ≥ 0, (17d)

0 ≤ β4 ⊥ e− ξ ≥ 0, (17e)

0 ≤ π ⊥ A(x+ − x−)− b ≥ 0, (17f)

(x+ + x−)T ξ = 0. (17g)

Before presenting the main result, we point out a non-degeneracy property
of KKT points.

Lemma 3 (Nondegeneracy of first-order KKT points) Consider a point
x = (x+;x−; ξ) and a set of multipliers (µ, β1, β2, β3, β4, π) that satisfy the
first-order KKT conditions (17) of (4). Then x satisfies the nondegeneracy
property:

[x+ + x−]i = 0⇒ ξi = 1. (18)

Proof Suppose that (x+;x−; ξ) verifies KKT conditions (17) with multipliers
µ, β1, β2, β3, β4, π. Then, by (17a), we have that (x++x−)i = 0⇒ (β4−β3)i =
γ > 0. But for a given i, for both [β4]i and [β3]i to be positive, we require
that both [ξ]i = 0 and [1 − ξ]i = 0 hold, which is impossible. It follows that
the only possibility is that [β4]i = γ and [β3]i = 0, implying that [ξ]i = 1. It
follows that (x+;x−; ξ) satisfies the property (18).
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Lemma 3 leads to the rather surprising equivalence between local minimiz-
ers and (first-order) KKT points.

Theorem 1 (Equivalence between local minimizers and KKT points)
Consider problem (4), and let x = (x+;x−; ξ) denote a feasible point. Assume
that f in (4) is convex. Then the following statements are equivalent:

(a) x is a local minimizer of (4);
(b) There exist µ ∈ R, β1, β2, β3, β4 ∈ Rn, and π ∈ Rm such that the first-order

KKT conditions (17) hold;

Proof (a)⇒(b). This is true because GCQ holds at every feasible point by
Lemma 2.
(b)⇒(a). Suppose that x = (x+;x−; ξ) satisfies KKT conditions (17) with
multipliers (µ, β1, β2, β3, β4, π). Then by the nondegeneracy property of a KKT
point (Lemma 3), the set {1, . . . , n} can be partitioned into the following two
sets, as in the same fashion when proving the CQ: S(x) , {i ∈ {1, . . . , n} :
x+i = x−i = 0, ξi = 1} and Sc(x) , {i ∈ {1, . . . , n} : x+i + x−i > 0, ξi = 0}. We
denote that A = (a1, . . . , an) (Note different notation from (11)). Then (17a)
implies

(∇xf(x+ − x−))i − aTi π = (β1)i ≥ 0

−(∇xf(x+ − x−))i + aTi π = (β2)i ≥ 0

}

∀i ∈ Sc(x).

because ξi = 0 for all i ∈ Sc(x). Consequently, (β1)i = −(β2)i where β1 and
β2 are nonnegative. It follows that (β1)i = (β2)i = 0, and

(∇xf(x+ − x−))i = aTi π, ∀i ∈ Sc(x). (19)

We proceed to prove that (x+;x−) is a global minimizer of the following pro-
gram:

min f̃(z) , f(z+ − z−), subject to z = (z+; z−) ∈ X̃(x), (20)

where

X̃(x) ,
{

(z+; z−) | z+, z− ∈ Rn+, A(z+ − z−) ≥ b, z+i = z−i = 0, ∀i ∈ S(x)
}
.

Consider any feasible point (x̃+; x̃−) of (20). By applying (19) and noticing
x±i , x̃

±
i = 0 ∀i ∈ S(x) (by def.), πTA(x+ − x−) = πT b, π ≥ 0 (by (17)), and

A(x̃+ − x̃−)− b ≥ 0,

(
∇xf(x+ − x−)
−∇xf(x+ − x−)

)T [(
x̃+

x̃−

)

−
(
x+

x−

)]

= ∇xf(x+ − x−)T [(x̃+ − x̃−)− (x+ − x−)]

=
∑

i∈Sc(x)

(∇xf(x+ − x−))i[(x̃
+
i − x̃−i )− (x+i − x−i )]

=
∑

i∈Sc(x)

aTi π(x̃+i − x̃−i )−
∑

i∈Sc(x)

aTi π(x+i − x−i )
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=
∑

i∈S(x)∪Sc(x)

aTi π(x̃+i − x̃−i )−
∑

i∈S(x)∪Sc(x)

aTi π(x+i − x−i )

= πT [A(x̃+ − x̃−)− b] ≥ 0.

It follows that (x+;x−) is a solution of VI(X̃(x),∇xf̃). By convexity of f (thus
f̃) and X̃(x), (x+;x−) is a global minimizer of (20). Since ξi = 1 for i ∈ S(x),
by the separability of the objective and the structure of the constraint sets, it
follows that (x+;x−; ξ) is a minimizer of the tightened (4) as follow:

min f(x̃1 − x̃2) + γeT (e− x̃3) subject to (x̃1; x̃2; x̃3) ∈ Xtight(x),

where

Xtight(x) ,











x̃1
x̃2
x̃3



 :

x̃1, x̃2 ≥ 0, 0 ≤ x̃3 ≤ e, A(x̃1 − x̃2) ≥ b,
(x̃1)i = (x̃2)i = 0, ∀i ∈ S(x),

(x̃3)i = 0, ∀i ∈ Sc(x)







.

If X denotes the feasible region in (4), then we can take a sufficiently small
neighborhood of x, denoted by N (x), such that X ∩N (x) = Xtight(x)∩N (x).
Since x = (x+;x−; ξ) is a global minimizer of f(x̃1 − x̃2) + γeT (e − x̃3) over
Xtight(x), it is a global minimizer of f(x̃1− x̃2) + γeT (e− x̃3) over the smaller
set N (x) ∩Xtight(x). Since N (x) ∩Xtight(x) = N (x) ∩X , it follows that x is
a local minimizer of (4).

Remark 2 Note that while convexity of f is observed for many loss functions,
it does not guarantee the overall convexity of the problem and (4) is still a
nonconvex problem.

3 Tractable ADMM frameworks

In this section we discuss how to use ADMM to efficiently address MPCC (4).
In Section 3.1, we present a perturbed proximal ADMM framework for obtain-
ing a suitably defined solution of (4) and show in Section 3.2 that both of the
ADMM subproblems can be solved tractably, of which, one can be recast as a
convex program, while the other can be resolved in closed form. In Section 3.3,
a basic ADMM framework will be presented, along with a discussion regarding
why we consider its perturbed proximal variant. A standard ADMM applied
to an alternative formulation of (4) is introduced in Section 3.4. Note that
ADMM applied to this formulation is easier to analyze but does have compu-
tational disadvantages arising from the intractability of the subproblem.

3.1 A perturbed proximal ADMM framework

We may reformulate (4) as follows.

min f(x+ − x−) + γ
n∑

i=1

(1− ξi) + 1lZ1(w) + 1lZ2(w). (21)
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Recall that f(x) = fQ(x) + g(x), where fQ(x) , xTMx+ dTx, g(x) is convex
and smooth, M ∈ Rn×n is a symmetric matrix, and d ∈ Rn. Let Z1, Z2, and
w be defined as

Z1 ,
{

(x+;x−; ξ) : (x+ + x−)T ξ = 0
}
,

Z2 ,











x+

x−

ξ



 :

0 ≤ ξi ≤ 1, ∀i
0 ≤ x+, x−

b ≤ A(x+ − x−)







,
(22)

and w ,
(
x+;x−; ξ

)
, respectively. We introduce separability into the objec-

tive by adding a variable y , (y+; y−; ζ), y+, y−, ζ ∈ Rn and imposing an
additional linear constraint.

min
w=y

fQ(x+ − x−) + γ

n∑

i=1

(1− ξi) + 1lZ1(w) + g(y+ − y−) + 1lZ2(y). (23)

Note that (23) is in the form of (3). The intuition behind this formulation is
that by separating the nonconvex set Z1 from the convex polytope Z2, we may
potentially obtain easier subproblems when applying a splitting method. We
now define a perturbed augmented Lagrangian function as follows.

L̃ρ,α(w, y, λ) , fQ(x+ − x−) + γ

n∑

i=1

(1− ξi) + g(y+ − y−)

+ (1− ρα)λT (w − y − αλ) +
ρ

2
‖w − y‖2,

where w , (x+;x−; ξ), α > 0, ρ > 0. The perturbed proximal ADMM algo-
rithm is presented as Algorithm 1, denoted as ADMMµ,α,ρ

cf , where “cf” stands
for “complementarity formulation”, and µ, α, ρ are algorithm parameters. The
perturbation technique is inspired by Hajinezhad and Hong [23]. Note that
(ADMMµ,α,ρ

cf ) reduces to a basic ADMM when µ = α = 0, which will be dis-
cussed in Section 3.3. We refer the readers to Remark 4 and Remark 6 for
discussion of the stopping criteria.

Algorithm 1 A perturbed proximal ADMM scheme: ADMMµ,α,ρ
cf

(0) Given w0, y0, λ0; Choose α, ρ, µ, ǫ0 > 0 such that ρα ∈ (0, 1), (ρ + µ)I + 4M ≻ 0, and set
k := 0.

(1) Let wk+1, yk+1, λk+1 be given by the following:

wk+1 := arg min
w∈Z1

L̃ρ,α(w, yk, λk) +
µ

2
‖w − wk‖2, (Update-1)

yk+1 := argmin
y∈Z2

L̃ρ,α(wk+1, y, λk), (Update-2)

λk+1 := (1− ρα)λk + ρ (wk+1 − yk+1) . (Update-3)

(3) If max{‖ρ(yk+1 − yk) + µ(wk+1 − wk)‖, ‖λk+1 − λk‖/ρ} < ǫ0, STOP; else k := k + 1 and
return to (1).
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We observe that there are indeed some benefits by considering decompo-
sition (23) that separates the nonconvex domain Z1 and the convex polytope
Z2. It turns out that this approach reduces the difficulty of both subproblems
of the ADMM framework. Next, (Update-1) and (Update-2) are shown to be
tractable1.

3.2 Tractable resolution of ADMM Updates

We now show that (Update-1) possesses a hidden convexity property [4], al-
lowing for claiming tractability of (Update-1) and obtaining its closed form
solution.

Proposition 1 (Tractability of Update-1) Recall that fQ(x) = xTMx+
dTx where M may be a symmetric indefinite matrix with real eigenvalues
given by s1, . . . , sn. Consider (Update-1) in scheme (ADMMµ,α,ρ

cf ) at iteration
k+ 1. Then (ρ+µ)I + 4M ≻ 0 implies ρ+ µ+ 4si > 0, ∀i = 1, . . . , n, and the
following hold:
(i) The solution wk+1 , (x+k+1;x−k+1; ξk+1) can be obtained as a solution to a
tractable convex program.
(ii) The solution wk+1 is available in closed form. In particular, let h ,

(d;−d;−γe) + (1 − ρα)λk − ρyk − µwk, and let V be an orthogonal matrix
such that V TMV = diag(s1, . . . , sn) , S, and let

G ,






1
2In

√
2
2 In

1
2In

1
2In −

√
2
2 In

1
2In

−
√
2
2 In

√
2
2 In










In
V
In



 . (24)

Also let q , GTh , (q1; q2; q3), z ,
(
z1; z2; z3

)
, q1, q2, q3, z1, z2, z3 ∈ Rn, and

z1 ,

{−(‖q1‖+‖q3‖)q1
2(ρ+µ)‖q1‖ , ‖q1‖ > 0
‖q3‖

2(ρ+µ)u, ‖u‖ = 1, ‖q1‖ = 0
, z3 ,

{−(‖q1‖+‖q3‖)q3
2(ρ+µ)‖q3‖ , ‖q3‖ > 0
‖q1‖

2(ρ+µ)v, ‖v‖ = 1, ‖q3‖ = 0

(z2)i , −(q2)i/(ρ+ µ+ 4si), ∀i = 1, . . . , n.

Then wk+1 , Gz is the solution to (Update-1).

Proof (i). The first subproblem in (ADMMcf) is equivalent to the following:

min
w∈Z1

L̃ρ,α(w, yk, λk) +
µ

2
‖w − wk‖2 (25)

≡ min
(x++x−)T ξ=0

{

fQ(x+ − x−) + γ

n∑

i=1

(1 − ξi) + (1 − ρα)λTkw +
ρ

2
‖w − yk‖2

1 By saying that an optimization problem is tractable we mean that it either has a closed-
form solution or lies in the range of convex programs that are polynomially solvable. We
refer the readers to [3] for detailed discussion.
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+
µ

2
‖w − wk‖2

}

≡ min
wT Q̃w=0

{
wTHw + hTw

}
, (26)

where H ,





M + ρ+µ
2 I −M

−M M + ρ+µ
2 I

ρ+µ
2 I



 , Q̃ ,





I
I

I I



. In fact, H, Q̃ can

be simultaneously orthogonally diagonalized by using G defined in (24) (See
Lemma 9 in Appendix for the linear algebra). Therefore, by leveraging the
hidden convexity (See discussion in Section 7.1 in Appendix), a global solution
to this nonconvex QCQP (26) can be obtained by solving a tractable convex
program (In [4], it is described how a polynomial time interior point method
can be applied to solve this convex program).
(ii). By substituting z = GTw, z , (z1; z2; z3), z1, z2, z3 ∈ Rn, (25) is equiva-
lent to a simple QCQP,

min
ρ+ µ

2
‖z1‖2 +

n∑

i=1

(
ρ+ µ

2
+ 2si

)

(z2)2i +
ρ+ µ

2
‖z3‖2 + qT z

subject to ‖z1‖2 = ‖z3‖2. (27)

Again, this is a result by leveraging Lemma 9. To obtain an optimal solution
of (27), we require that the objective value is bounded below. By completing
squares, a sufficient condition for boundedness of (27) is ρ+µ

2 + 2si > 0, ∀i =
1, . . . , n because z2 is unconstrained. This is implied by the condition (ρ +
µ)In + 4M ≻ 0. The result of (ii) follows by noting that all optimal solutions
(z∗1 ; z∗2 ; z∗3) of (27) can be characterized as follows:

z∗1 =

{−(‖q1‖+‖q3‖)q1
2(ρ+µ)‖q1‖ , ‖q1‖ > 0
‖q3‖

2(ρ+µ)u, ‖u‖ = 1, ‖q1‖ = 0
, z∗3 =

{−(‖q1‖+‖q3‖)q3
2(ρ+µ)‖q3‖ , ‖q3‖ > 0
‖q1‖

2(ρ+µ)v, ‖v‖ = 1, ‖q3‖ = 0
,

(z∗2)i = −(q2)i/(ρ+ µ+ 4si), for i = 1, . . . , n. (28)

Next we show that this is true. Note that (z∗2)i = −(q2)i/(ρ + µ + 4si), ∀i,
because z2 is unconstrained. Since the problem is separable with respect to z2,
it may be removed, leading to the problem of

min
z1,z3

ρ+ µ

2
‖z1‖2 +

ρ+ µ

2
‖z3‖2 + qT1 z1 + qT3 z3 subject to ‖z1‖2 − ‖z3‖2 = 0.

Since z1 and z3 have the same magnitude, let z1 , rd1 and z3 , rd3, where
‖d1‖ = ‖d3‖ = 1. Then the constraint may be removed and the problem is
further simplified as

min
r,d1,d3

(ρ+ µ)r2 + rqT1 d1 + rqT3 d3 subject to r ≥ 0, ‖d1‖ = 1, ‖d3‖ = 1.

It follows that r∗ = argminr≥0{(ρ+µ)r2−(‖q1‖+‖q3‖)r} = (‖q1‖+‖q3‖)/(2(ρ+
µ)). This leads to concluding that if ‖q1‖ > 0, ‖q3‖ > 0, z∗1 = −(‖q1‖ +
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‖q3‖)q1/(2(ρ + µ)‖q1‖), z∗3 = −(‖q1‖ + ‖q3‖)q3/(2(ρ + µ)‖q3‖). If ‖q1‖ =
0, ‖q3‖ > 0, then ‖z∗1‖ = ‖q3‖/(2(ρ + µ)) and z∗3 = −q3/(2(ρ + µ)) and z∗1
can take any direction. If ‖q3‖ = 0, ‖q1‖ > 0, then ‖z∗3‖ = ‖q1‖/(2(ρ+µ)) and
z∗1 = −q1/(2(ρ+ µ)) and z∗3 can take any direction. If ‖q1‖ = ‖q3‖ = 0, then
z∗1 = z∗3 = 0.

Remark 3 Note that in order to compute the closed form solution, we do need
eigendecomposition M = V SV −1. However, this only needs to be done once
instead of in every iteration.

Next, (Update-2) is shown to be tractable and its solution may be available
in closed-form.

Proposition 2 (Tractability of Update-2) Consider (Update-2) at itera-
tion k+1 in (ADMMµ,α,ρ

cf ). Then the following hold: (i) (Update-2) is a convex
program and can be computed tractably. (ii) If g(x) ≡ 0 and the constraints
Ax ≥ b are absent, (Update-2) reduces to

yk+1 =





yk+1,1

yk+1,2

yk+1,3



 ,

(yk+1,1)i := max{(x+k+1)i + (1− ρα)(λk,1)i/ρ, 0}
(yk+1,2)i := max{(x−k+1)i + (1− ρα)(λk,2)i/ρ, 0}
(yk+1,3)i := Π[0,1]((ξk+1)i + (1− ρα)(λk,3)i/ρ)







∀i,

(29)

where λk , (λk,1;λk,2;λk,3), yk+1,1, yk+1,2, yk+1,3, λk,1, λk,2, λk,3 ∈ Rn, and
ΠZ(z) denotes the projection of z onto set Z.

Proof (i). (Update-2) can be cast as a linearly constrained convex smooth
program: miny∈Z2

{
g(y+ − y−)− (1− ρα)λTk y + ρ

2‖(x
+
k+1;x−k+1; ξk+1)− y‖2

}
,

which may be tractably resolved [3].
(ii). When g ≡ 0 and the constraints Ax ≥ b are absent, then (Update-2) can
be viewed as a projection of (x+k+1;x−k+1; ξk+1)+(1−ρα)λk/ρ onto a Cartesian

set: Ẑ2 , {(y1; y2; y3) | y1, y2, y3 ∈ Rn, y1 ≥ 0, y2 ≥ 0, 0 ≤ (y3)i ≤ 1, ∀i} . Con-
sequently, the projection onto this set reduces to the update given by (29).

3.3 A basic ADMM framework with tractable subproblems

In Algorithm 1, a perturbation parameter and a proximal term are introduced.
In fact, as we see in Section 4, an explicit bound can be derived for the multi-
plier sequence generated by Algorithm 1. Therefore, we may show subsequen-
tial convergence and estimate a norm of the limit point. In this subsection, we
present the vanilla ADMM framework (denoted by ADMMcf and defined in
Algorithm 2) applied to the tractable decomposition (23). In (ADMMcf), the
augmented Lagrangian function Lρ is defined as follows.

Lρ(x+, x−, ξ, y, λ) , fQ(x+ − x−) + γ
n∑

i=1

(1 − ξi) + g(y+ − y−)
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Algorithm 2 ADMMcf

(0) Given y0, λ0, ǫ > 0, k := 0; Choose ρ0, s.t. ρ0In + 4M ≻ 0;

(1) Let x+
k+1, x

−

k+1, ξk+1, yk+1, λk+1 be given by the following:

(x
+
k+1; x

−

k+1; ξk+1) ∈ argmin
(x±,ξ)

Lρk
(x

+
, x

−
, ξ, yk, λk), (Update-1)

yk+1 := argmin
y

Lρk
(x+

k+1, x
−

k+1, ξk+1, y, λk), (Update-2)

λk+1 := λk + ρk

(

(x+
k+1;x

−

k+1; ξk+1)− yk+1

)

. (Update-3)

(2) Update ρk and let ρk+1 ← ρk;

(3) If max{‖(x+
k+1;x

−

k+1; ξk+1) − yk+1‖, ρk‖yk+1 − yk‖} < ǫ, STOP; else k := k + 1, return to

(1).

+ λT (w − y) +
ρ

2
‖w − y‖2 + 1lZ1((x+;x−; ξ)) + 1lZ2(y).

We will specify in Section 5 the update rule for ρk in Step 2. Note that if we
let µ = 0, α = 0 and replace ρ by ρk, then ADMMµ,α,ρ

cf reduces to (ADMMcf).
The similarity between these two algorithms allows for (ADMMcf) to maintain
the property of tractability of the subproblems (A special case of proposition 1
and 2 when α = 0, µ = 0). However, convergence analysis of (ADMMcf) is by
no means straightforward. Since (23) is in the form of (3), we have discussed in
Section 1 that no existing convergence theory for ADMM schemes in noncon-
vex regimes is applicable. It turns out that even to show boundedness of the
multiplier sequence is challenging. On the other hand, if we assume bound-
edness of a subsequence of the multiplier together with other assumptions,
subsequential convergence of the algorithm may be obtained. Convergence
properties can be further enhanced given the K L property. Details of these
discussions are kept in Section 7.4 in the Appendix while an investigation of
the numerical behavior of this algorithm is presented in Section 5.

3.4 A standard ADMM framework on an alternative formulation

In section 3.1, we consider reformulation (23) of (4), which allows for efficient
resolution of the subproblem; Note that an alternative formulation of (4) exists
as specified next.

min 1lZ(w) + f(y+ − y−) + γeT (e− ζ) subject to w − y = 0, (30)

where w = (x+;x−; ξ), y = (y+; y−; ζ), Z , Z1 ∩ Z2, Z1 and Z2 are defined
as in (22). Note that in (30), the y block is unconstrained and has a smooth
objective function. Such a reformulation of optimization over complementarity
constraints is considered in [33] and an ADMM scheme can be applied (See
Algorithm 3 below). We referred to this framework as a standard ADMM
framework (or (ADMM0)), since this type of ADMM scheme is favored and
most studied in literature due to clear convergence guarantee. As indicated
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Algorithm 3 A standard ADMM framework: ADMM0

(0) Given y0, λ0, ρ0 > 0, ǫ > 0, set k := 0.
(1) Let wk+1, yk+1, λk+1 be given by the following:

wk+1 ∈ argmin
w∈Z

‖w − yk + λk/ρk‖2, (Update-1)

yk+1 := argmin
y

f(y+ − y−) + γeT (e− ζ) +
ρk

2
‖y −wk+1 − λk/ρk‖2, (Update-2)

λk+1 := λk + ρk(wk+1 − yk+1). (Update-3)

(2) Update ρk and let ρk+1 ← ρk ;
(3) If max(‖wk+1 − yk+1‖, ρk‖yk+1 − yk‖) < ǫ, stop; else k := k + 1 and return to (1).

in [33, Corollary 3], if ρk ≡ ρ is large enough and the augmented Lagrangian
function has the K L property, (ADMM0) generates a sequence convergent to
a stationary point. However, such a framework is potentially slow because
(Update-1) requires globally resolving an MPCC and may render the scheme
impractical. We will further explain with numerical experiments in Section 5.

4 Convergence Analysis

In the prior section, we consider the formulation (23) to resolve (4) and present
a perturbed proximal ADMM framework (ADMMµ,α,ρ

cf ) reliant on tractable
updates at each iteration. In this section, we analyze the convergence property
of this framework. Specifically, we show that under mild assumptions, the
sequence {λk} is bounded and a subsequence of {(wk, yk, λk)}k≥1 converges
to a perturbed KKT point of (23). The main results are Theorem 2, Corollary 1
and Theorem 3. First we present some definitions used in this section. We refer
interested readers to [1] and [29] for more details.

Definition 3 ((Limiting) subdifferential and critical point) Let F :
Rn → R ∪ {+∞} be a proper lower semicontinuous function and let ∂̄F (x)
denote the Fréchet subdifferential of F at x, i.e.,

∂̄F (x) ,

{

d : lim inf
z 6=x,z→x

1

‖z − x‖ [F (z)− F (x)− dT (z − x)] ≥ 0

}

,

for x ∈ domF = {x : F (x) < +∞} and ∂̄F (x) = ∅ if x /∈ domF . Then,

(i). The (limiting) subdifferential of F at x ∈ domF , is defined as follows.

∂F (x) ,

{d ∈ Rn : ∃{xk}k≥1, s.t. xk → x, F (xk)→ F (x), dk → d, dk ∈ ∂̄F (xk)}.

(ii). x is a critical point of F if and only if 0 ∈ ∂F (x).
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Definition 4 ((Limiting) normal cone) Suppose Z is a nonempty closed
subset of Rn, and N̄Z(x) denotes the Fréchet normal cone to Z at x, so

N̄Z(x) = {v ∈ Rn : vT (z − x) ≤ o(x− z), ∀z ∈ Z},

if x ∈ Z and N̄Z(x) = ∅ if x /∈ Z. Then the (limiting) normal cone to Z at
x ∈ Z, denoted as NZ(x), is defined as follows.

NZ(x) , {v ∈ Rn : ∃{xk}k≥1, s.t. xk → x, xk ∈ Z, vk → v, vk ∈ N̄Z(xk)}.

These concepts have the following properties:

(i). (Closedness of ∂F ) If dk → d, xk → x and dk ∈ ∂F (xk), F (xk) → F (x),
then d ∈ ∂F (x).

(ii). Let F = F0 + F1. If F0 is finite at x and F1 is smooth in a neighborhood
of x, then ∂F = ∂F0 +∇F1.

(iii). If x∗ ∈ argmin F (x), then x∗ is a critical point of F .
(iv). ∂1lZ(z) = NZ(z), ∀z ∈ Z.

To simplify the notation, we rewrite (23) as the following structured pro-
gram:

min
w∈Z1,y∈Z2

h(w) + p(y) subject to w − y = 0, (31)

where Z1, Z2 are defined by (22), w , (x+;x−; ξ), y , (y+; y−; ζ), h(w) ,

fQ(x+−x−)+γ
∑n
i=1(1−ξi), fQ(x+−x−) , (x+−x−)M(x+−x−)+dT (x+−

x−), p(y) , g(y+ − y−). In addition, the perturbed augmented Lagrangian
function is rewritten as follows.

L̃ρ,α(w, y, λ) , h(w) + p(y) + (1 − ρα)λT (w − y − αλ) +
ρ

2
‖w − y‖2.

Let rk , wk− yk and ∆λk+1 , λk+1−λk for all k ≥ 0. We define a Lyapunov
function P kτ for any τ > 0 and k ≥ 1.

P kτ , L̃ρ,α(wk, yk, λk) +
(1− ρα)α

2
‖λk‖2 + τ

(
1− ρα

2ρ

)

‖λk − λk−1‖2. (32)

We intend to show that the sequence {P kτ }k≥1 is nonincreasing and the fol-
lowing two lemmas are needed.

Lemma 4 Consider the sequence {wk, yk, λk} generated by (ADMMµ,α,ρ
cf ).

Then the following holds for any ν > 0, and any k ≥ 1,

1− ρα
2ρ

(
‖λk+1 − λk‖2 − ‖λk − λk−1‖2

)

≤ −
(

α− ν

2

)

‖λk+1 − λk‖2 +
1

2ν
‖wk+1 − wk‖2. (33)
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Proof Let Gk+1 , ∇yp(yk+1). By (Update-2), for all y ∈ Z2 and k ≥ 0,

0 ≥ (Gk+1 − (1− ρα)λk − ρrk+1)T (yk+1 − y)

= (Gk+1 − λk+1)
T

(yk+1 − y).
(34)

Consequently, we have that ∀k ≥ 1,

(Gk − λk)T (yk − y) ≤ 0, ∀y ∈ Z2. (35)

By choosing y = yk in (34), y = yk+1 in (35), then adding (34) and (35), we
have that for any k ≥ 1,

(Gk+1 −Gk − λk+1 + λk)T (yk+1 − yk) ≤ 0,

=⇒ (Gk+1 −Gk)
T

(yk+1 − yk)− (λk+1 − λk)T (yk+1 − yk) ≤ 0,

=⇒ − (λk+1 − λk)T (yk+1 − yk) ≤ 0, (36)

where the last step follows from convexity of p(y). Recall∆λk , λk−λk−1, ∀k ≥
1. Then by adding ∆λTk+1(wk+1 −wk) on both sides, (36) can be rewritten as
follows for ∀k ≥ 1,

∆λTk+1(wk+1 − wk)

(36)

≥ ∆λTk+1(wk+1 − yk+1 − wk + yk)

= ∆λTk+1(rk+1 − rk)

= ∆λTk+1(rk+1 − αλk − rk + αλk−1) +∆λTk+1(αλk − αλk−1)

= ∆λTk+1

(
∆λk+1

ρ
− ∆λk

ρ

)

+ α∆λTk+1∆λk

=
1− ρα
ρ

∆λTk+1(∆λk+1 −∆λk) + α‖∆λk+1‖2. (37)

Note that ∆λTk+1(∆λk+1−∆λk) = 1
2 (‖∆λk+1‖2−‖∆λk‖2+‖∆λk+1−∆λk‖2).

Let ∆wk+1 , wk+1 − wk. Then by (37),

1− ρα
2ρ

· (‖∆λk+1‖2 − ‖∆λk‖2 + ‖∆λk+1 −∆λk‖2) + α‖∆λk+1‖2

≤ ∆λTk+1∆wk+1

=⇒ 1− ρα
2ρ

· (‖∆λk+1‖2 − ‖∆λk‖2)

≤ −α‖∆λk+1‖2 +∆λTk+1∆wk+1

≤ −α‖∆λk+1‖2 +
ν‖∆λk+1‖2

2
+
‖∆wk+1‖2

2ν

=
‖∆wk+1‖2

2ν
−
(

α− ν

2

)

‖∆λk+1‖2.

Then the proof is complete.
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Lemma 5 Consider {wk, yk, λk} generated by (ADMMµ,α,ρ
cf ). Then

(

L̃ρ,α(wk+1, yk+1, λk+1) +
(1− ρα)α

2
‖λk+1‖2

)

−
(

L̃ρ,α(wk, yk, λk) +
(1− ρα)α

2
‖λk‖2

)

≤ −µ
2
‖wk+1 − wk‖2 −

ρ

2
‖yk+1 − yk‖2 +

(1− ρα)(2 − ρα)

2ρ
‖∆λk+1‖2. (38)

Proof From (Update-1),

L̃ρ,α(wk+1, yk, λk) +
µ

2
‖wk+1 − wk‖2 − L̃ρ,α(wk, yk, λk) ≤ 0

=⇒ L̃ρ,α(wk+1, yk, λk)− L̃ρ,α(wk, yk, λk) ≤ −µ
2
‖wk+1 − wk‖2. (39)

Also, by the optimality condition of (Update-2), if G̃k+1 , ∇yL̃ρ,α(wk+1, yk+1, λk),

then G̃Tk+1(y− yk+1) ≥ 0, ∀y ∈ Z2. Using this fact and the strong convexity of

L̃ρ,α in terms of y with constant ρ,

L̃ρ,α(wk+1, yk+1, λk)− L̃ρ,α(wk+1, yk, λk)

≤ −G̃Tk+1(yk − yk+1)− ρ

2
‖yk+1 − yk‖2 ≤ −

ρ

2
‖yk+1 − yk‖2. (40)

The fact that ∆λk+1 = ρrk+1− ραλk and λTk+1∆λk+1 = 1
2 (‖λk+1‖2−‖λk‖2 +

‖∆λk+1‖2) imply:

L̃ρ,α(wk+1, yk+1, λk+1)− L̃ρ,α(wk+1, yk+1, λk)

= (1− ρα)λTk+1(rk+1 − αλk+1)− (1− ρα)λTk (rk+1 − αλk)

= (1− ρα)λTk+1(rk+1 − αλk − α∆λk+1)− (1− ρα)λTk (rk+1 − αλk)

= (1− ρα)(λk+1 − λk)T (rk+1 − αλk)− (1 − ρα)λTk+1α∆λk+1

=
1− ρα
ρ
‖∆λk+1‖2 −

(1 − ρα)α

2
(‖λk+1‖2 − ‖λk‖2 + ‖∆λk+1‖2)

=
(1− ρα)(2 − ρα)

2ρ
‖∆λk+1‖2 −

(1− ρα)α

2
(‖λk+1‖2 − ‖λk‖2). (41)

Finally, by adding (39), (40) and (41), the following holds ∀k ≥ 0,

L̃ρ,α(wk+1, yk+1, λk+1)− L̃ρ,α(wk, yk, λk)

= L̃ρ,α(wk+1, yk+1, λk+1)− L̃ρ,α(wk+1, yk+1, λk) + L̃ρ,α(wk+1, yk+1, λk)

− L̃ρ,α(wk+1, yk, λk) + L̃ρ,α(wk+1, yk, λk)− L̃ρ,α(wk, yk, λk)

≤ −µ
2
‖wk+1 − wk‖2 −

ρ

2
‖yk+1 − yk‖2

+
(1− ρα)(2 − ρα)

2ρ
‖∆λk+1‖2 −

(1− ρα)α

2
(‖λk+1‖2 − ‖λk‖2).

Then the result follows.
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We now impose a requirement on h(w)+p(y)+ ρ
2‖w−y‖2 and define several

constants to be used later.

Assumption 1 h(w) + p(y) + ρ
2‖w − y‖2 ≥ L̄ for all w ∈ Z1, y ∈ Z2.

Definition 5 Recall that α, τ, µ, ρ are nonnegative parameters from Algo-
rithm 1 and the definition (32). Let ν and R be nonnegative constants. Then

c1(ν) , µ
2 − τ

2ν , c2 ,
ρ
2 , c3(ν) , τ

(
α− ν

2

)
− (1−ρα)(2−ρα)

2ρ ,

c4(R) , (1−ρα)[(R+1)ρα−1]
2ρR , c5(R) , 1−ρα

2ρ [τ − (1 − ρα)R] .

Assumption 2 ∃ν > 0, R > 0 such that c1(ν), c3(ν), c4(R), c5(R) > 0.

In the next Lemma, we prove that {P kτ }k≥1 is a nonincreasing sequence.

Lemma 6 Consider {wk, yk, λk} generated by (ADMMµ,α,ρ
cf ). Then,

(i). P k+1
τ −P kτ ≤ −c1(ν)‖wk+1 −wk‖2 − c2‖yk+1 − yk‖2 − c3(ν)‖λk+1 − λk‖2,

∀k ≥ 1.
(ii). Suppose that Assumption 2 holds. Then {P kτ }k≥1 is non-increasing. If
Assumption 1 also holds, then P kτ is bounded from below.
(iii). If Assumption 1 and 2 hold, then lim

k→∞
(wk+1 −wk) = lim

k→∞
(yk+1 − yk) =

lim
k→∞

(λk+1 − λk) = 0.

Proof (i). Take τ × (33) + (38) and the result follows.
(ii). When c1(ν), c2, c3(ν) > 0 for certain ν, we conclude from (i) that P k+1

τ ≤
P kτ for all k ≥ 1. Further,

(1− ρα)λTk (rk − αλk)

= (1 − ρα)λTk (rk − αλk−1 − α∆λk)

= (1 − ρα)λTk [∆λk/ρ− α∆λk]

=
(1 − ρα)2

ρ
λTk (λk − λk−1)

=
(1 − ρα)2

2ρ
(‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2) (42)

≥ [(1 − ρα)2/(2ρ)](‖λk‖2 − ‖λk−1‖2), k ≥ 1. (43)

Then,

P kτ = h(wk) + p(yk) +
ρ

2
‖wk − yk‖2

+ (1− ρα)λTk (rk − αλk) +
(1− ρα)α

2
‖λk‖2 + τ

(
1− ρα

2ρ

)

‖∆λk‖2

≥ L̄+ (1− ρα)λTk (rk − αλk) +
(1− ρα)α

2
‖λk‖2 + τ

(
1− ρα

2ρ

)

‖∆λk‖2

(44)

≥ L̄+ (1− ρα)λTk (rk − αλk)
(43)

≥ L̄+
(1− ρα)2

2ρ
(‖λk‖2 − ‖λk−1‖2).
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Then,
∑K
k=1(P kτ − L̄) ≥ (1−ρα)2

2ρ

∑K
k=1(‖λk‖2 − ‖λk−1‖2) ≥ − (1−ρα)2

2ρ ‖λ0‖2,

∀K ≥ 1. Since {P kτ − L̄}k≥1 is a non-increasing sequence and the above in-
equality holds, {P kτ − L̄}k≥1 is nonnegative. Thus {P kτ }k≥1 is bounded from
below. (iii). This may be concluded based on (i) and (ii).

Remark 4 By Lemma 6(iii) and the stopping criterion, Algorithm ADMMµ,α,ρ
cf

may terminate in finite time.

The following Lemma provides an inequality related to ‖λk‖, which helps in
showing boundedness of ‖λk‖.
Lemma 7 Consider {wk, yk, λk} generated by (ADMMµ,α,ρ

cf ). Suppose As-

sumption 1 holds. Then P kτ ≥ L̄ + c4(R)‖λk‖2 + c5(R)‖λk − λk−1‖2 for all
R > 0 and k ≥ 1. Therefore, if Assumption 2 holds, ‖λk‖2 ≤ 1

c4(R) (P
k
τ − L̄)

for all k ≥ 1.

Proof We may use the following result for any R > 0:

‖λk−1‖2 = ‖λk−1 − λk + λk‖2

≤ (1 +R)‖λk−1 − λk‖2 + (1 + 1/R)‖λk‖2. (45)

From the definition of P kτ , we have that:

P kτ
(44),(42)

≥ L̄+
(1− ρα)α

2
‖λk‖2 + τ

(
1− ρα

2ρ

)

‖λk − λk−1‖2

+
(1 − ρα)2

2ρ
(‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2)

(45)

≥ L̄+
(1− ρα)α‖λk‖2

2
+ τ

(
(1− ρα)‖λk − λk−1‖2

2ρ

)

−
(1 − ρα)2

(
‖λk‖2
R +R‖λk − λk−1‖2

)

2ρ

≥ L̄+
(1− ρα)[(R + 1)ρα− 1]

2ρR
‖λk‖2 +

1− ρα
2ρ

[τ − (1 − ρα)R] ‖λk − λk−1‖2.

Then the result follows from definitions of c4(R) and c5(R).

Boundedness of ‖λk‖ and subsequential convergence are proved in the next
theorem.

Theorem 2 Suppose {(wk; yk;λk)}k≥0 is generated by (ADMMµ,α,ρ
cf ). As-

sume that the sequences {wk} and {yk} are bounded. Suppose Assumptions 1
and 2 hold. Then the sequence {λk}k≥1 is bounded and a subsequence of
{(wk; yk;λk)} converges to (w∗; y∗;λ∗) such that

0 ∈ ∂(h+ 1lZ1)(w∗) + λ∗, 0 ∈ ∂(p+ 1lZ2)(y∗)− λ∗, w∗ − y∗ = αλ∗. (46)
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Proof Since c1(ν) > 0, c3(ν) > 0, then by Lemma 6, {P kτ } is a non-increasing
sequence. Futhermore, since c4(R) > 0, c5(R) > 0, Lemma 7 indicates that

‖λk‖2 ≤
1

c4(R)
(P kτ − L̄) ≤ 1

c4(R)
(P 1
τ − L̄) < +∞. (47)

Therefore, the sequence {λk} is bounded, implying that {(wk; yk;λk)} is bounded.
Suppose {(wnk

; ynk
;λnk

)} denotes a convergent subsequence of {(wk; yk;λk)}
such that (wnk

; ynk
;λnk

) → (w∗; y∗;λ∗) as k → ∞. Based on the optimal-
ity conditions of (Update-1), (Update-2) translated using property of critical
points, and the multiplier update, the following hold:

0 ∈ ∂(h+ 1lZ1)(wnk
) + λnk

+ ρ(ynk
− ynk−1) + µ(wnk

− wnk−1),
0 ∈ ∂(p+ 1lZ2)(ynk

)− λnk
, wnk

− ynk
− αλnk−1 = (λnk

− λnk−1)/ρ.
(48)

By Lemma 6, wnk
−wnk−1 → 0, ynk

− ynk−1 → 0, λnk
−λnk−1 → 0, k→ +∞,

so we also have λnk−1 → λ∗, k → +∞. Therefore, by taking limits and the
closedness of a subdifferential map, we may conclude the result.

Remark 5 (i). Boundedness of {yk} and {wk} is a mild assumption. First,
boundedness of {yk} can be obtained from adding constraints such as x+ ≤
ub+, x− ≤ ub− to Z2. If ub+ and ub− are large enough, Z2 will still include
the optimal solution. Second, since rk = wk − yk = 1

ρλk −
1−ρα
ρ λk−1, ∀k ≥ 1

and {λk} is bounded, rk is also a bounded sequence. Thus, boundedness of
{wk} is implied by boundedness of {yk}.
(ii). It can be shown that the conditions (46) are equivalent to KKT conditions
with a feasibility error (See Theorem 3 below).
(iii). Denote Hτ (w, y, λ) as

Hτ (w, y, λ)

, L̃ρ,α(w, y, λ) + 1lZ1(w) + 1lZ2(y) +
(1− ρα)α

2
‖λ‖2 +

ρ‖w − y − αλ‖2
2(1− ρα)/τ

.

Then Hτ (wk, yk, λk) = P kτ , ∀k ≥ 1, τ > 0. If the assumptions in Theorem 2
hold, and in addition, Hτ (w, y, λ) satisfies the K L property at (w∗, y∗, λ∗),
then {(wk, yk, λk)} converges to (w∗, y∗, λ∗). The proof is similar to [1, Theo-
rem 3.1] and is omitted.
(iv). The K L property assumption on Hτ indeed holds when p(y) is semialge-
braic (See Definition 7 in the Appendix). In fact, Hτ is a sum of semialgebraic
functions and is therefore semialgebraic. Then the result follows from the fact
that a semialgebraic function satisfies the K L property at every point in its
domain [1].
(v). Although in the context of this paper we focus on problem (23), it should
be noted that Theorem 2 may be generalized. Specifically, Theorem 2 may
hold if we apply ADMMµ,α,ρ

cf to tackle a more general class of problem:

min f(x) + g(y) subject to Ax +By = b, x ∈ X, y ∈ Y,
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where g is smooth and convex, Y is convex, but f could be nonsmooth and
nonconvex, X could be nonconvex, A,B, b are matrices and vectors with ap-
propriate dimensions and do not need to be I,−I, 0. The analysis will basically
remain the same.

Note that (46) are not the precise conditions for (w∗; y∗;λ∗) to be a critical
point of the Lagrangian L(w, y, λ) , h(w)+1lZ1(w)+p(y)+1lZ2(y)+λT (w−y),
i.e. 0 ∈ ∂L(w∗, y∗, λ∗). There exists an infeasibility error αλ∗ and the following
corollary discusses how to choose the parameters such that this error can be
made arbitrarily small.

Corollary 1 Suppose that sequences {wk} and {yk} are bounded. In addition,
assume that ∃ρ− > 0 such that h(w) + p(y) + ρ−

2 ‖w − y‖2 ≥ l for all w ∈ Z1,
y ∈ Z2. Then for any ǫ > 0 such that ǫ ≤ 1/(4ρ− + 2), if the parameters
in Algorithm 1 satisfy α = ǫ, ρ = 1

2ǫ , µ >
2
ǫ , w0 = y0, then a subsequence of

{(wk; yk;λk)}k≥1 converges to (w∗; y∗;λ∗) such that

0 ∈ ∂(h+ 1lZ1)(w∗) + λ∗, 0 ∈ ∂(p+ 1lZ2)(y∗)− λ∗,
‖w∗ − y∗‖2 ≤ α2‖λ∗‖2 ≤ (64(h(w0) + p(y0))− 64l+ (14 + 5ǫ)‖λ0‖2)ǫ.

Proof Let ν = α = ǫ, R = 2 and τ = 2, then

c1(ν) =
µ

2
− τ

2ν
=
µ

2
− 1

ǫ
> 0, c2 =

ρ

2
=

1

4ǫ
,

c3(ν) = τ
(

α− ν

2

)

− (1− ρα)(2 − ρα)

2ρ
= 2

(

ǫ − ǫ

2

)

− (1− 1
2 )(2 − 1

2 )

1/ǫ
=
ǫ

4
,

c4(R) =
(1− ρα)[(R + 1)ρα− 1]

2ρR
=

(1− 1/2)[(2 + 1)/2− 1]

2/ǫ
=
ǫ

8
,

c5(R) =
1− ρα

2ρ
[τ − (1− ρα)R] =

1− 1/2

1/ǫ
[2− (1− 1/2) · 2] =

ǫ

2
.

Therefore, Assumption 2 holds. Since ρ = 1
2ǫ ≥ 2ρ− + 1, we have that

h(w) + p(y) +
ρ

2
‖w − y‖2 ≥ h(w) + p(y) +

ρ−
2
‖w − y‖2 ≥ l, ∀w ∈ Z1, y ∈ Z2.

Thus Assumption 1 holds. Based on Theorem 2, it suffices to show that
α2‖λ∗‖2 ≤ (64(h(w0) + p(y0))− 64l+ (14 + 5ǫ)‖λ0‖2)ǫ. By (47) in Theorem 2,
for k ≥ 1,

‖λk‖2 ≤
1

c4(R)
(P 1
τ − l) =

(
2

1− ρα

)(
ρR

(R + 1)ρα− 1

)

(P 1
τ − l)

=⇒ α2‖λk‖2 ≤
(

2

1− ρα

)(
αR

R+ 1− 1/(ρα)

)

(P 1
τ − l). (49)

Since P 1
τ = L̃ρ,α(w1, y1, λ1) + (1−ρα)α

2 ‖λ1‖2 + τ
(

1−ρα
2ρ

)

‖λ1 − λ0‖2,

P 1
τ

(38)

≤ L̃ρ,α(w0, y0, λ0) +
(1 − ρα)α

2
‖λ0‖2 + τ

(
1− ρα

2ρ

)

‖λ1 − λ0‖2
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− µ

2
‖w1 − w0‖2 −

ρ

2
‖y1 − y0‖2 +

(1− ρα)(2 − ρα)

2ρ
‖λ1 − λ0‖2

≤ h(w0) + p(y0) +
ρ

2
‖r0‖2 + (1− ρα)λT0 (r0 − αλ0)

+
(1− ρα)α

2
‖λ0‖2 +

(1 − ρα)(2 + τ − ρα)

2ρ
‖λ1 − λ0‖2

= h(w0) + p(y0) + 0− (1 − 1/2)ǫ‖λ0‖2 +
(1 − 1/2)ǫ

2
‖λ0‖2

+
(1− 1/2)(2 + 2− 1/2)

1/ǫ
‖(1− 1/2)λ0 + ρ(w1 − y1)− λ0‖2

≤ h(w0) + p(y0)− ǫ

4
‖λ0‖2 +

7ǫ

4
·
(

1

2
‖λ0‖2 + 2ρ2‖w1 − y1‖2

)

≤ h(w0) + p(y0) +
5ǫ

8
‖λ0‖2 +

7

8ǫ
‖w1 − y1‖2. (50)

Adding (39) and (40) and letting k = 0, we obtain the following.

L̃ρ,α(w1, y1, λ0)− L̃ρ,α(w0, y0, λ0) ≤ −µ
2
‖w1 − w0‖2 −

ρ

2
‖y1 − y0‖2,

which indicates that

h(w1) + p(y1) + (1− ρα)λT0 (w1 − y1 − αλ0) +
ρ

2
‖w1 − y1‖2

≤ h(w0) + p(y0) + (1− ρα)λT0 (w0 − y0 − αλ0) +
ρ

2
‖w0 − y0‖2

= h(w0) + p(y0)− (1− ρα)α‖λ0‖2

=⇒ (1− ρα)λT0 (w1 − y1) +
ρ− ρ−

2
‖w1 − y1‖2

≤ h(w0) + p(y0)− h(w1)− p(y1)− ρ−
2
‖w1 − y1‖2

=⇒ ρ− ρ−
2
‖w1 − y1‖2 ≤ h(w0) + p(y0)− l − (1− ρα)λT0 (w1 − y1)

≤ h(w0) + p(y0)− l+ (1− ρα)‖λ0‖2/2 + (1− ρα)‖w1 − y1‖2/2

=⇒ ρ− ρ− − (1 − ρα)

2
‖w1 − y1‖2 ≤ h(w0) + p(y0)− l + (1− ρα)‖λ0‖2/2

=⇒ 1/ǫ− 2ρ− − 1

4
‖w1 − y1‖2 ≤ h(w0) + p(y0)− l+ ‖λ0‖2/4.

=⇒ ‖w1 − y1‖2 ≤ 8ǫ(h(w0) + p(y0)− l+ ‖λ0‖2/4), (51)

where the last inequality holds because ǫ ≤ 1/(4ρ− + 2). By (50) and (51),

P 1
τ ≤ 8(h(w0) + p(y0))− 7l+

(
7

4
+

5ǫ

8

)

‖λ0‖2 (52)

By combining (49) and (52), we have for any k ≥ 1,

α2‖λk‖2
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≤ 2

1− 1/2
· 2

2 + 1− 2

(

8(h(w0) + p(y0))− 7l+

(
7

4
+

5ǫ

8

)

‖λ0‖2 − l
)

ǫ

= (64(h(w0) + p(y0))− 64l+ (14 + 5ǫ)‖λ0‖2)ǫ. (53)

This implies that α2‖λ∗‖2 ≤ (64(h(w0) + p(y0))− 64l+ (14 + 5ǫ)‖λ0‖2)ǫ.

Remark 6 Based on the optimality conditions of (Update-1), (Update-2), and
the multiplier update, the following holds for any k ≥ 0:

0 ∈ ∂(h+ 1lZ1)(wk+1) + λk+1 + ρ(yk+1 − yk) + µ(wk+1 − wk),
0 ∈ ∂(p+ 1lZ2)(yk+1)− λk+1, wk+1 − yk+1 − αλk = (λk+1 − λk)/ρ.

According to (53), if we choose the parameters as in Corollary 1, the stopping
criteria in Algorithm 1 indicates that:

dist(0, ∂(h+ 1lZ1)(wk+1) + λk+1) < ǫ0, 0 ∈ ∂(p+ 1lZ2)(yk+1)− λk+1,

‖wk+1 − yk+1‖ <
√

(64(h(w0) + p(y0))− 64l+ (14 + 5ǫ)‖λ0‖2)ǫ + ǫ0.

Finally we will show that the conditions (46) in Theorem 2 are equivalent
to KKT conditions of (23) with a feasibility error αλ∗.

Denote w∗ , (x∗+;x∗−; ξ∗), w , (x+;x−; ξ), y∗ , (y∗1 ; y∗2 ; y∗3), y , (y1; y2; y3).
By Definition 2, (w∗; y∗) satisfies first-order KKT conditions of (23) if there
exist µ ∈ R, β1, β2, β3, β4 ∈ Rn, π ∈ Rm such that





∇fQ(x∗+ − x∗−) +∇g(y∗1 − y∗2)
−∇fQ(x∗+ − x∗−)−∇g(y∗1 − y∗2)

−γe



+





µξ∗ − β1 −ATπ
µξ∗ − β2 +ATπ

µ(x∗+ + x∗−) + β4 − β3



 = 0, (54a)

0 ≤ β1 ⊥ y∗1 ≥ 0, (54b)

0 ≤ β2 ⊥ y∗2 ≥ 0, (54c)

0 ≤ β3 ⊥ y∗3 ≥ 0, (54d)

0 ≤ β4 ⊥ e− y∗3 ≥ 0, (54e)

0 ≤ π ⊥ A(y∗1 − y∗2)− b ≥ 0, (54f)

(x∗+ + x∗−)T ξ∗ = 0, (54g)

w∗ − y∗ = 0. (54h)

It can be easily seen that (54) is equivalent to (17) by mergingw∗ and y∗. Recall
that according to discussions in Section 2, point satisfying (17) is exactly the
local minimum of (4), thus the local minimum of ℓ0-minimization (1).

Theorem 3 Suppose that (w∗; y∗;λ∗) satisfies (46), and recall that h(w) =
fQ(x+ − x−) + γeT (e − ξ), p(y) = g(y1 − y2) are smooth functions. Assume
that vector (ξ∗; ξ∗;x∗+ + x∗−) 6= 0. Then ∃µ ∈ R, β1, β2, β3, β4 ∈ Rn, π ∈ Rm

such that (54a) - (54g) hold and w∗ − y∗ = αλ∗.
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Proof We know that ∂1lZ1(w) = NZ1(w), ∂1lZ2(y) = NZ2(y). Due to (46) and
the smoothness of function h, 0 ∈ ∂(h+ 1lZ1)(w∗) +λ∗ ⇒ 0 ∈ ∇wh(w∗) +λ∗+
∂1lZ1(w∗) ⇒ −∇wh(w∗) − λ∗ ∈ NZ1(w∗). Recall Z1 = {(x+;x−; ξ) ∈ R3n |
ξT (x+ + x−) = 0}. Then by Lemma 10 in the Appendix and the assumption
(ξ∗; ξ∗;x∗+ + x∗−) 6= 0, we have NZ1(w∗) = {µ(ξ∗; ξ∗;x∗+ + x∗−) | µ ∈ R}.
Therefore, ∃µ ∈ R s.t.

∇wh(w∗) + λ∗ + µ(ξ∗; ξ∗;x∗+ + x∗−) = 0. (55)

On the other hand, (46) and smoothness of function p imply 0 ∈ ∂(p +
1lZ2)(y∗)− λ∗ ⇒ 0 ∈ ∇yp(y∗) − λ∗ + ∂1lZ2(y∗)⇒ −∇yp(y∗) + λ∗ ∈ NZ2(y∗).
Since Z2 is a convex set, NZ2(y∗) = {v | vT (y − y∗) ≤ 0, ∀y ∈ Z2}. Therefore,
(∇yp(y∗) − λ∗)T (y − y∗) ≥ 0, ∀y ∈ Z2. This indicates that y∗ is the optimal
solution of the linear program: miny∈Z2{(∇yp(y∗) − λ∗)T y}. Thus the KKT
conditions are satisfied at y∗, i.e. ∃β1, β2, β3, β4 ∈ Rn, π ∈ Rm s.t.

∇yp(y∗)− λ∗ + (−β1 −ATπ;−β2 +ATπ;β4 − β3) = 0,

0 ≤ β1 ⊥ y∗1 ≥ 0, 0 ≤ β2 ⊥ y∗2 ≥ 0, 0 ≤ β3 ⊥ y∗3 ≥ 0,

0 ≤ β4 ⊥ e− y∗3 ≥ 0, 0 ≤ π ⊥ A(y∗1 − y∗2)− b ≥ 0.

(56)

From (55) and (56), utilizing the def. of h and p, and adding the feasibility
constraints (x∗+ + x∗−)T ξ∗ = 0, w∗ − y∗ = αλ∗, we obtain the perturbed KKT
conditions.

5 Preliminary numerics

In Section 5.1, we describe the test problem of interest while in Section 5.2, we
study the impact of tractability by comparing tractable ADMM frameworks
to their standard counterpart. In Section 5.3, performance of (ADMMcf) is
examined by comparing it with other methods.2

5.1 Least squares regression with ℓ0-norm

Suppose fQ(x) , ‖Cx − d‖2, C ∈ Rp×n, g(x) ≡ 0, and there is no linear
constraint Ax ≥ b in (1), leading to the following ℓ0-regularized least-squares
regression:

min ‖Cx− d‖2 + γ‖x‖0. (ℓ0-LSR)

This special case finds application in signal recovery and regression problems.
The rows of C are generated from a multivariate normal N(0, In) while the
true coefficients xtrue are created as follows: (1) Generate xtruei for i = 1, . . . , n
from uniform distribution U(−60, 60). (2) If |xtruei | ≥ 60κ

n then xtruei ← 0 for
i = 1, . . . , n. Then xtrue is approximately κ-sparse (or ‖xtrue‖0 ≈ κ). The
observation vector d = Cxtrue + ǫ, where ǫi ∼ N(0, σ2) and σ2 = ‖xtrue‖2/10.

2 All experiments are conducted on Matlab and the code is uploaded to
https://github.com/yue-xie/l0-minimization.
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5.2 Impact of tractable subproblems

In this subsection, we will compare the ADMM based algorithms (Algorithms 1-
3) proposed in Section 3 to resolve (ℓ0-LSR).
Algorithm descriptions and settings. We start all algorithms from an
initial point w0 = y0 = (e; 0n; 0n), λ0 = 03n. The maximum runtime allowed is
200s. Experiments are run on CPU of 1.3GHz Intel Core i5 with 8GB memory.
Other settings are as follows.
(ADMMcf): Please refer to Algorithm 2 for details. Specifically, we use the
following rule for updating ρk:3

If (ρk − δ)‖yk+1 − yk‖ <
√

2‖λk+1 − λk‖ and ρk ≤ ρmax, then ρk+1 := δρρk;

else ρk+1 := ρk.

In addition, ρ0 = 1, ρmax = 2000, δ = ρ0/2, δρ = 1.01, ǫ = 10−4;
(ADMMµ,α,ρ

cf ): Algorithm 1. α = 10−3, ρ = 1/(2α), µ = 3/α, ǫ0 = 10−2.
(ADMM0): Algorithm 3 with Update-1 solved by Baron. The maximum run-
time for Baron is set to 200s. Note that we do not fix the penalty parameter
at a value suggested by theory, which more often than not is impractical and
involves problem parameter estimation. Instead, we update it adaptively. The
update rule for ρk, inspired by augmented Lagrangian schemes [7], is as follows:

If k = 0 or (hk+1 ≥ 10−2 and hk+1 > 0.9hk and ρk < 500), ρk+1 = 1.01ρk;

otherwise ρk+1 = ρk;

where hk = ‖wk − yk‖ for all k ≥ 0. ρ0 = 1, ǫ = 10−4.
Stopping criteria. The stopping criteria for (ADMMcf) and (ADMM0) guar-
antee that the KKT residual is below ǫ if terminated within time limit. For
(ADMMµ,α,ρ

cf ), it is guaranteed that the KKT residual is below ǫ0 + O(
√
ǫ)

(See Remark 6). Thus, stopping criteria of the three algorithms are related to
the optimality conditions.
Metric. In Table 2, KKT residual for (ADMMcf), (ADMMµ,α,ρ

cf ) and (ADMM0)
are max{ρK−1‖yK − yK−1‖, ‖(x+K ;x−K ; ξK) − yK‖}, max{‖ρ(yK − yK−1) +
µ(xK − xK−1)‖, ‖wK − yK‖} and max{ρK−1‖yK − yK−1‖, ‖wK − yK‖}, re-
spectively. K is the last iteration.
Results. In Table 2, we provide a comparison of (ADMMcf), (ADMMµ,α,ρ

cf )
and (ADMM0) to address (ℓ0-LSR). Note that (ADMMcf), (ADMMµ,α,ρ

cf ) are
designed for formulation (23), which renders tractable subproblems, while
(ADMM0) is for formulation (30), which requires global resolution of an MPCC
as the subproblem. Therefore, even though (ADMM0) can be efficient when
the dimension is relatively low, but becomes less so when n is larger. This is be-
cause the subproblem solver does not scale well with problem size and requires
significant time for larger dimensions. This is supported by the drastically re-
duced number of outer loop iterations and large KKT residual upon termina-
tion when n is larger. Meanwhile, (ADMMcf) and (ADMMµ,α,ρ

cf ) appear to be

3 This update rule for ρk is related to the convergence property of (ADMMcf). Please
refer to Section 7.4 for details.
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scale far better with n due to tractability of the subproblem. Furthermore, it
can be seen that (ADMMcf) is far more efficient than the other two methods.
It spends far less time to find solutions with lower KKT residual. In fact, it
also provides better objective function value than the other two methods as
observed during the experiment. Further exploration of (ADMMcf) through
comparison with other ℓ0-minimization solvers is presented in the next sub-
section.

(n, ‖xtr.‖0, γ) (ADMMcf) (ADMMµ,α,ρ
cf

) (ADMM0)
t(s) res. iter. t(s) res. iter. t(s) res. iter.

(20, 1, 1) 0.38 9.4e-5 587 2.2e0 1.0e-2 4.90e3 201 3.0e-3 135
(20, 1, 10) 0.46 7.9e-5 515 2.0e2 3.5e-1 2.05e5 200 1.0e-2 158
(20, 4, 1) 0.26 7.2e-5 214 2.0e2 7.6e-2 2.67e5 200 8.7e-3 197
(20, 4, 10) 0.70 9.9e-5 798 2.0e2 1.8e-1 2.18e5 200 2.1e-2 150
(50, 10, 1) 1.10 1.0e-4 781 6.3e-1 9.9e-3 551 209 7.2e0 2
(50, 10, 10) 2.10 9.9e-5 1093 2.0e0 1.6e-1 1.18e5 201 2.5e-1 101
(50, 18, 1) 0.62 7.7e-5 283 2.0e0 1.8e-1 1.42e5 215 1.3e1 2
(50, 18, 10) 4.20 9.9e-5 1802 2.0e0 6.9e-1 1.29e5 201 4.8e-1 47
(100, 6, 1) 0.58 9.3e-5 617 2.5e-1 9.6e-3 200 209 9.8e0 2
(100, 6, 10) 0.66 9.8e-5 593 2.0e2 1.4e-1 2.10e5 399 4.8e0 14
(100, 19, 1) 0.76 9.2e-5 483 4.0e-1 9.9e-3 376 211 1.0e1 2
(100, 19, 10) 1.80 9.0e-5 535 2.0e2 1.3e-1 1.72e5 289 5.5e0 5

Table 2: Comparison of methods on (ℓ0-LSR), p = 10

5.3 Comparison among (ADMMcf) and other methods

In this set of experiments, we test (ADMMcf) on (ℓ0-LSR) with higher dimen-
sions (p = 256, n = 1024) and compare it with other known methods directly
addressing ℓ0-minimization: iterative hard thresholding (IHT) and iterative
hard thresholding with warm start (IHTWS) [8]. We again test the schemes
on (ℓ0-LSR) and choose almost the same settings as in Section 5.1, the only dif-

ference being that ǫ ∈ Rp, ǫi ∼ N(0, σ2), i.i.d., σ2 = (xtrue)T Inx
true

SNR , where SNR
refers to the signal-to-noise ratio. All experiments are conducted on CPU of
3.4GHz Intel Core i7 with 16GB memory.
Algorithm descriptions and settings.
(IHT) and (IHTWS): (IHT) is implemented with 50 initial points (includ-
ing the origin and points drawn from normal distribution N(0, In)), and the
best solution is chosen. (IHTWS) is warm-started from a point computed by
matching pursuit. The termination condition for both (IHT) and (IHTWS) is
‖xk+1 − xk‖ < 1× 10−6.
(ADMMcf): Implementation of (ADMMcf) is almost the same with the last
experiment in Section 5.2: Initial point is selected as y0 = (en,0n,0n), λ0 = 03n,
and the parameters are chosen as ρ0 = γ, ǫ = 10−4, δρ = 1.01, δ = ρ0/2,
ρmax = 2000, timemax = 300 for all cases.
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Metric. In Table 3, RDF ,
fmethod−fADMMcf

fADMMcf

, where fADMMcf
is calculated as

follows. Suppose Algorithm 2 terminates when k = T . Let (x̄+; x̄−; ξ̄) = yT+1.
Then the solution given by (ADMMcf) is x̄+ − x̄− and

fADMMcf
=







‖C(x̄+ − x̄−)− d‖2 + γ(n− eT ξ̄),
if max(‖wT+1 − yT+1‖, ρT ‖yT+1 − yT ‖) ≤ ǫ

‖C(x̄+ − x̄−)− d‖2 + γ‖x̄+ − x̄−‖0,
if max(‖wT+1 − yT+1‖, ρT ‖yT+1 − yT ‖) > ǫ

RDF time(s) ‖xsol.‖0
(SNR, ‖xtr.‖0, γ) (I) (W) (I) (W) (A) (I) (W) (A)

(5, 16, 0.10) 1.92 -0.02 1.2 1.2 95.4 624 194 98
(5, 16, 1.00) 0.83 -0.03 1.3 0.3 17.2 135 77 62
(5, 16, 10.00) 0.58 -0.05 1.5 0.1 41.7 7 15 12
(5, 16, 50.00) 0.93 -0.10 2.0 0.1 42.5 0 10 7
(5, 87, 0.10) 2.93 0.62 1.2 2.2 102.1 981 404 180
(5, 87, 1.00) 3.37 0.59 1.3 1.7 19.5 893 326 161
(5, 87, 10.00) 2.94 0.46 1.5 4.5 75.8 639 230 133
(5, 87, 50.00) 0.82 0.33 20.1 1.0 92.4 261 168 103
(5, 253, 0.10) 2.75 0.80 1.4 2.5 236.3 1006 483 268
(5, 253, 1.00) 2.69 0.59 1.5 2.0 234.2 990 425 268
(5, 253, 10.00) 2.49 0.34 1.6 1.8 300.0 932 357 267
(5, 253, 50.00) 2.15 0.11 1.9 3.1 63.7 831 293 264
(10, 20, 0.10) 1.65 -0.18 1.3 0.5 118.7 529 128 68
(10, 20, 1.00) 0.29 -0.18 1.5 0.2 15.4 76 53 22
(10, 20, 10.00) 2.09 -0.03 1.6 0.1 43.2 4 16 14
(10, 20, 50.00) 0.34 -0.18 2.1 0.1 58.7 0 10 4
(10, 82, 0.10) 2.82 0.42 1.3 1.7 96.1 978 365 164
(10, 82, 1.00) 3.83 0.56 1.4 4.3 20.9 881 285 150
(10, 82, 10.00) 2.68 0.35 1.7 1.8 73.8 599 209 117
(10, 82, 50.00) 0.74 0.23 3.8 0.7 72.8 212 138 93
(10, 249, 0.10) 2.32 0.66 1.4 2.6 12.4 1010 506 304
(10, 249, 1.00) 2.26 0.47 1.4 2.1 8.7 990 446 304
(10, 249, 10.00) 2.11 0.25 1.5 1.8 6.1 945 381 304
(10, 249, 50.00) 1.91 0.05 1.8 2.4 6.6 877 316 301

Table 3: Comparison of methods on (ℓ0-LSR) (p× n = 256 × 1024 )
(I): (IHT) (W): (IHTWS) (A): (ADMMcf)

Results. From Table 3, we conclude the following:

(1) Although (ADMMcf) takes more time, it generally produces solutions that
are superior to (IHT) in objective function value and provides better values
than (IHTWS) in most cases. Note that (ADMMcf ) is cold started.

(2) (ADMMcf) generally produces sparser solution than (IHTWS) and (IHT),
which indicates that (ADMMcf) scheme is potentially more favorable from
a statistical standpoint.
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6 Concluding remarks and future work

We consider a full complementarity reformulation of a general class of ℓ0-norm
minimization problems. The focus of this paper lies on the characterization
and efficient computation of KKT points for this formulation. In particular,
we show that a suitable (Guignard) constraint qualification holds at every
feasible point. Moreover, when f is a convex function, a point satisfies the
first-order KKT conditions if and only if it is a local minimizer. Next, two
tractable ADMM schemes are presented for resolution. In these schemes, a
hidden convexity property is leveraged to allow for tractable resolution of
ADMM subproblems. For the perturbed proximal ADMM framework, subse-
quential convergence to KKT points with arbitrarily small error under mild
assumptions can be shown. Preliminary empirical studies show the significance
of having tractable subproblems in ADMM schemes and that the tractable
ADMM framework compares well with its competitors. In future work, we
may consider characterization and computation of KKT points of problems
complicated by cardinality constraints (2) and affine sparsity constraints [14].
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7 Appendix

7.1 Hidden Convexity

Consider a QCQP defined as follows:

min
{
xTHx+ hTx | ℓ ≤ xTQx ≤ r

}
, (57)

where x ∈ Rn, H ∈ Rn×n, Q ∈ Rn×n, h ∈ Rn, ℓ ∈ R, r ∈ R. Suppose that (57)
is feasible and the two matrices H and Q can be simultaneously diagonalized.
Recall from [4] that H and Q can be simultaneously diagonalized if there exists
a nonsingular matrix P ∈ Rn×n such that

PTHP = D , diag(d1, . . . , dn) and PTQP = S , diag(s1, . . . , sn).

Let d , (d1; . . . ; dn), s , (s1; . . . ; sn). Then, by utilizing a transformation
x = Py and c = PTh, (57) can be written as follows:

min
{
yTDy + cT y | ℓ ≤ yTSy ≤ r

}
, (58)

Further, consider the following convex program:

min
w1,...,wn

{
n∑

i=1

(diwi − |ci|
√
wi) | ℓ ≤

n∑

i=1

siwi ≤ r, w ≥ 0

}

, (59)

which is defined using c, d, ℓ, and r. In fact, problems (58) and (59) are equiv-
alent in the following sense: (i) if one is unbounded, so is the other; (ii) if both
are finite, the infimum of (58) is equal to the the infimum of (59); (iii) the
optimal solution y∗ of (58) can be constructed from the optimal solution w∗

of (59) through the following equations:

y∗j = − sgn(cj)
√

w∗j , j = 1, . . . , n (60)

where sign(cj) = 1 if cj ≥ 0 and sign(cj) = −1 if cj < 0. Through the above
arguments, a global minimizer of the solution to nonconvex program (58) may
be obtained by the solution of a suitably defined convex program (59). Thus
(58) may have hidden convexity. This property of QCQP is first discovered by
Ben-Tal and Teboulle in 1996 [4].
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7.2 Proofs

Lemma 8 (Tightness of relaxation) Consider the problem (4) and sup-
pose a global minimizer to this problem is denoted by (x±, ξ). Let (x̃, x̃±, ξ̃)
be defined as follows:

ξ̃ , ξ, x̃+i ,

{

x+i − x−i , if x+i ≥ x−i
0, otherwise

, x̃−i ,

{

0, if x+i ≥ x−i
x−i − x+i . otherwise

, (61)

∀i = 1, . . . , n.x̃ , x̃+ − x̃−.

Then (x̃, x̃±, ξ̃) is a a global minimizer of (6).

Proof Consider a solution (x±, ξ) to (4). We first prove that the constructed
solution (x̃, x̃±, ξ̃) is feasible with respect to (6) and then prove that it is
optimal.
Feasibility of (x̃, x̃±, ξ̃). By definition (61), we have that x̃± ≥ 0 and
min(x̃+i , x̃

−
i ) = 0 for i = 1, . . . , n. Consequently, x̃+ ⊥ x̃−. Furthermore, x̃ =

x̃+ − x̃− = x+ − x− and ξ̃ = ξ. This implies that Ax̃ = Ax̃+ − Ax̃− =
Ax+ − Ax− ≥ b. Finally, it suffices to show that (x̃+ + x̃−)T ξ̃ = 0. By the
feasibility of (x±, ξ) with respect to (4), we have that

0 =
n∑

i=1

(x+i + x−i )ξi =
∑

i∈I+
(x+i − x−i
︸ ︷︷ ︸

,x̃+
i

+2x−i )ξi +
∑

i∈I−
(2x+i + x−i − x+i

︸ ︷︷ ︸

,x̃−

i

)ξi

=
∑

i∈I+
(x̃+i + x̃−i

︸︷︷︸

=0

+2x−i )ξi +
∑

i∈I−
( x̃+i
︸︷︷︸

=0

+x̃−i + 2x+i )ξi, (62)

where I+ , {i : x+i ≥ x−i } and I− , {i : x+i < x−i }. Since, (62) can be
expressed as follows:

0 =
∑

i∈I+
(x̃+i + x̃−i + 2x−i )ξi +

∑

i∈I−
(x̃+i + x̃−i + 2x+i )ξi

= (x̃+ + x̃−)T ξ +
∑

i∈I+
2x−i ξi +

∑

i∈I−
2x+i ξi, (63)

and x±, x̃±, ξ ≥ 0 implying that

(x̃+ + x̃−)T ξ ≥ 0,
∑

i∈I+
2x−i ξi ≥ 0,

∑

i∈I−
2x−i ξi ≥ 0

=⇒ (x̃+ + x̃−)T ξ = 0,
ξ=ξ̃
=⇒ (x̃+ + x̃−)T ξ̃ = 0.

Optimality of (x̃, x̃±, ξ̃). We observe that the f(x̃)+γ
∑n
i=1(1− ξ̃i) = f(x+−

x−)+γ
∑n
i=1(1−ξi) for x̃ = x+−x− and ξ̃ = ξ. But since (4) is a relaxation of

(6), the optimality of (x̃, x̃±, ξ̃) follows from feasibility of (x̃, x̃±, ξ̃) with respect
to the tightened optimization problem with an identical objective value.
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Lemma 9 Given H ,





M + ρ+µ
2 In −M

−M M + ρ+µ
2 In

ρ+µ
2 In



 , Q̃ ,





In
In

In In



,

and G ,






1
2In

√
2
2 In

1
2In

1
2In −

√
2
2 In

1
2In

−
√
2
2 In

√
2
2 In










In
V
In



, where V is orthogonal such

that S , V TMV is diagonal. Then G is an orthogonal matrix, and H, Q̃ can
be simultaneously diagonalized through G.

Proof

GTG

=





In
V T

In










1
2In

1
2In −

√
2
2 In√

2
2 In −

√
2
2 In

1
2In

1
2In

√
2
2 In









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1
2In

√
2
2 In

1
2In

1
2In −

√
2
2 In

1
2In

−
√
2
2 In

√
2
2 In










In
V
In





=





In
V T

In









In
In
In









In
V
In



 =





In
V TV

In



 = I3n

Therefore, G is orthogonal. Note that


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2
In

1

2
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.

This fact implies:

GTHG

=





In
V T

In









ρ+µ
2 In

2M + ρ+µ
2 In

ρ+µ
2 In









In
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2 In

2V TMV + ρ+µ
2 V TV
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2 In


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
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2 In

ρ+µ
2 In





Meanwhile,

GT Q̃G
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−
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2
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√
2
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In 0 In
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
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


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=





In
V T

In









−
√

2In
0 √

2In









In
V
In



 =





−
√

2In
0 √

2In





Thus, H and Q̃ can be simultaneously diagonalized through G.

7.3 Miscellaneous

Definition 6 (Kurdyka- Lojasiewicz (K L) property) A proper lower
semi-continuous function L : RN → R ∪ {+∞} has the K L property at x̄ ∈
dom(∂L), if there exists η ∈ (0,+∞), a neighborhood U of x̄, and a continuous
concave function φ : [0, η) → R+ such that the following hold: (i) φ(0) = 0,
and φ is continuously differentiable on (0, η). For all s ∈ (0, η), φ′(s) > 0; (ii)
For all x in U ∩ {x ∈ RN : L(x̄) < L(x) < L(x̄) + η], the Kurdyka- Lojasiewicz
(K L) inequality holds: φ′(L(x) − L(x̄))dist(0, ∂L(x)) ≥ 1.

Definition 7 (Semialgebraic function) Recall that a semialgebraic set
S ⊆ Rn is defined as:

S , {x ∈ Rn : pi(x) = 0, qi(x) < 0, i = 1, . . . ,m},

where pi and qi are real polynomial functions. A function F : Rn → R∪{+∞}
is a semialgebraic function if and only if its graph {(x; y) ∈ Rn×R : y = F (x)}
is a semialgebraic subset in Rn+1.

Remark 7 Semialgebraic function has the following properties: (i). It satisfies
K L property with φ(s) = cs1−θ for some θ ∈ [0, 1) ∩Q and c > 0. (ii). Finite
sums and products of semialgebraic functions are semialgebraic. See [1, Section
4.3] for more details.

Lemma 10 (Theorem 10 [11]) In Rn1 , let C = {x ∈ X | F (x) ∈ D}, for
closed convex sets X ⊂ Rn1 , D ⊂ Rn2 , and a C1 mapping F : Rn1 → Rn2 ,
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written componentwise as F (x) = (f1(x); . . . ; fn2(x)). Suppose the following
constraint qualification is satisfied at a point x̄ ∈ C:

n2∑

j=1

yj∇fj(x̄) + z = 0, y = (y1; . . . ; yn2) ∈ ND(F (x̄)), z ∈ NX(x̄)

=⇒ y = 0, z = 0.

Then the normal cone NC(x̄) consists of all vectors v of the form

v = y1∇f1(x̄) + . . .+ yn2∇fn2(x̄) + z with y = (y1; . . . ; yn2) ∈ ND(F (x̄)),

z ∈ NX(x̄).

Note: When X = Rn1 , the normal cone NX(x̄) = {0}, so the z terms here
drop out. When D is a singleton, ND(F (x̄)) = Rn2 .

7.4 Convergence analysis of ADMMcf

We now analyze convergence of (ADMMcf) under the following update rule of
ρk:

If (ρk − δ)‖yk+1 − yk‖ <
√

2‖λk+1 − λk‖ and ρk ≤ ρmax, then ρk+1 := δρρk;

else ρk+1 := ρk.

Further, we make the following assumption.

Assumption 3 The penalty parameter sequence {ρk} in (ADMMcf ) never
exceeds the prescribed upper bound, i.e. ρk ≤ ρmax, ∀k ≥ 0.

Proposition 3 (Limit points of (ADMMcf) are KKT Points) Consider
problem (4) with fQ(x) = xTMx + dTx. Suppose (ADMMcf) generates a

sequence {wk , (x+k ;x−k ; ξk), yk, λk}. Assume that this sequence converges to
a limit point denoted by (w̄, ȳ, λ̄). Then, we may claim the following: (a) The
point w̄ = (x̄+; x̄−; ξ̄) satisfies first-order KKT conditions of (4). (b) If f is
convex, then w̄ is a local minimum of (4).

Proof (a). By the update rule of (ADMMcf), ∃K > 0, s.t. ρk ≡ ρ, ∀k ≥ K.
Consequently, suppose ρk ≡ ρ for all k without loss of generality. (Otherwise,
we may initialize using wK , yK , λK , ρK) By (Update-1) at iteration k + 1, we
have that

wk+1 ∈ argmin
(x++x−)T ξ=0

[

fQ(x+ − x−)− γeT ξ +
ρ

2
‖w − yk + λk/ρ‖2

]

.

Let zk+1 , GTwk+1 and qk , GT
((
d;−d;−γe

)
+ λk − ρyk

)
, where G is

defined in (24). Denote zk+1 , (zk+1,1; zk+1,2; zk+1,3), zk+1,1, zk+1,2, zk+1,3 ∈
Rn. From (28), we have ∃uk, vk ∈ Rn such that

zk+1,1 =

{−(‖qk,1‖+‖qk,3‖)qk,1

2ρ‖qk,1‖ , ‖qk,1‖ > 0
‖qk,3‖
2ρ uk, ‖uk‖ = 1, ‖qk,1‖ = 0

,
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zk+1,3 =

{−(‖qk,1‖+‖qk,3‖)qk,3

2ρ‖qk,3‖ , ‖qk,3‖ > 0
‖qk,1‖
2ρ vk, ‖vk‖ = 1, ‖qk,3‖ = 0

,

(zk+1,2)i = −(qk,2)i/(ρ+ 4si), ∀i = 1, . . . , n, (64)

where qk , (qk,1; qk,2; qk,3), qk,1, qk,2, qk,3 ∈ Rn. Since wk+1 → w̄, yk → ȳ,

λk → λ̄ as k → ∞, zk+1 → z̄ = GT w̄ and as k → +∞, qk → q̄ ,

GT
((
d;−d;−γe

)
+ λ̄− ρȳ

)
. We proceed to show that z̄ and q̄ also satisfy

the following: ∃ū, v̄ ∈ Rn such that

z̄1 =

{−(‖q̄1‖+‖q̄3‖)q̄1
2ρ‖q̄1‖ , ‖q̄1‖ > 0

‖q̄3‖
2ρ ū, ‖ū‖ = 1, ‖q̄1‖ = 0

; z̄3 =

{−(‖q̄1‖+‖q̄3‖)q̄3
2ρ‖q̄3‖ , ‖q̄3‖ > 0

‖q̄1‖
2ρ v̄, ‖v̄‖ = 1, ‖q̄3‖ = 0

(65)

(z̄2)i = −(q̄2)i/(ρ+ 4si), ∀i = 1, . . . , n, (66)

where z̄ = (z̄1; z̄2; z̄3) and q̄ = (q̄1; q̄2; q̄3). First, we prove that z̄1 and q̄ satisfy
(65).
(i) Case 1. ‖q̄1‖ > 0. Then ∃K s.t. ∀k ≥ K, ‖qk,1‖ > 0,

zk+1,1 =
−(‖qk,1‖+ ‖qk,3‖)qk,1

2ρ‖qk,1‖
.

Therefore,

z̄1 = lim
k→+∞

zk+1,1 = lim
k→+∞

−(‖qk,1‖+ ‖qk,3‖)qk,1
2ρ‖qk,1‖

=
−(‖q̄1‖+ ‖q̄3‖)q̄1

2ρ‖q̄1‖
.

(ii) Case 2. ‖q̄1‖ = 0. Then

‖z̄1‖ = lim
k→+∞

‖zk+1,1‖ = ‖q̄3‖/(2ρ) =⇒ ∃ū, ‖ū‖ = 1, s.t., z̄1 =
‖q̄3‖
2ρ

ū.

Note that expression of z̄3 can be proven similarly and we omit proof of (66).
Therefore,

w̄ = Gz̄ ∈ argmin
(x++x−)T ξ=0

[

fQ(x+ − x−)− γeT ξ +
ρ

2
‖(x+;x−; ξ)− ȳ + λ̄/ρ‖2

]

.

(67)

In particular, it follows that (x̄+ + x̄−)T ξ̄ = 0. Next, we consider whether such
a limit point satisfies the first-order KKT conditions of (67) by examining two
cases:
(i) Suppose (ξ̄; ξ̄; x̄++ x̄−) 6= 0. Then the linear independence constraint quali-
fication (LICQ) holds at (x̄+, x̄−, ξ̄). Consequently, there exists a scalar µ such
that





∇fQ(x̄+ − x̄−)
−∇fQ(x̄+ − x̄−)

−γe



+ ρ(w̄ − ȳ + λ̄/ρ) + µ





ξ̄
ξ̄

x̄+ + x̄−



 = 0. (68)
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(ii) Suppose (ξ̄, ξ̄, x̄+ + x̄−) = 0, implying ξ̄ = 0 and x+ + x− = 0. Since
(x̄+; x̄−; ξ̄) is a global optimizer of (67), when we fix ξ ≡ ξ̄ = 0, the following
must hold:

(
x̄+

x̄−

)

∈ argmin
x+,x−

fQ(x+ − x−) +
ρ

2

(∥
∥
∥
∥
x+ − ȳ1 +

λ̄1
ρ

∥
∥
∥
∥

2

+

∥
∥
∥
∥
x− − ȳ2 +

λ̄2
ρ

∥
∥
∥
∥

2
)

=⇒ 0 =

(
∇fQ(x̄+ − x̄−)
−∇fQ(x̄+ − x̄−)

)

+ ρ

(
x̄+ − ȳ1 + λ̄1/ρ
x̄− − ȳ2 + λ̄2/ρ

)

.

If we fix x+ ≡ x̄+, x− ≡ x̄−, then

ξ̄ ∈ argmin
ξ∈Rn

[

−γeT ξ +
ρ

2
‖ξ − ȳ3 + λ̄3/ρ‖2

]

=⇒ 0 = −γe+ ρ(ξ̄ − ȳ3 + λ̄3/ρ),

where ȳ = (ȳ1; ȳ2; ȳ3), ȳ1, ȳ2, ȳ3 ∈ Rn, λ̄ = (λ̄1; λ̄2; λ̄3), λ̄1, λ̄2, λ̄3 ∈ Rn. Thus,
(68) holds for every µ ∈ R. Next, in (Update-2), we need to compute yk+1,
where yk+1 = argminy∈Z2 g(y+− y−) + ρ

2‖y−wk+1−λk/ρ‖2. Note that the
following first order condition holds because it is a convex program:

([∇g(yk+1,1 − yk+1,2);−∇g(yk+1,1 − yk+1,2); 0n] + ρ(yk+1 − wk+1 − λk/ρ))T

(y − yk+1) ≥ 0,

∀y ∈ Z2, yk+1 = (yk+1,1; yk+1,2; yk+1,3), yk+1,i ∈ Rn, i = 1, 2, 3.

By continuity of ∇g(•), since wk+1 → w̄, yk+1 → ȳ, λk → λ̄, we have that

([∇g(ȳ1 − ȳ2);−∇g(ȳ1 − ȳ2); 0n×1] + ρ(ȳ − w̄ − λ̄/ρ))T (y − ȳ) ≥ 0, ∀y ∈ Z2,

=⇒ ȳ ∈ argminy∈Z2

[

g(y+ − y−) +
ρ

2
‖y − w̄ − λ̄/ρ‖2

]

.

Thus, by the definition of Z2 in (22), ∃β1, β2, β3, β4 ∈ Rn, π ∈ Rm such that




∇g(ȳ1 − ȳ2)
−∇g(ȳ1 − ȳ2)

0n×1



+ ρ(ȳ − w̄ − λ̄/ρ) +





−β1 − ATπ
−β2 + ATπ
β4 − β3



 = 0, (69)

0 ≤ βi ⊥ ȳi ≥ 0, i = 1, 2, 3, 0 ≤ e− ȳ3 ⊥ β4 ≥ 0, 0 ≤ A(ȳ1 − ȳ2)− b ⊥ π ≥ 0.

Note that λk → λ̄ implies that wk+1 − yk+1 = (λk+1 − λk)/ρ → 0, which
further implies that w̄ = ȳ. By combining (68) and (69), letting ȳ = w̄, and
by adding (x̄+ + x̄−)T ξ̄ = 0, we have exactly the KKT conditions ((17)) at
(x̄+; x̄−; ξ̄) for (4).

(b). If f is convex, then by Theorem 1, w̄ = (x̄+; x̄−; ξ̄) is a local minimum
of (4).

Next, suppose h(w) , fQ(x+ − x−) + γ
∑n

i=1(1 − ξi), p(y) , g(y+ − y−).
Define:

L(w, y, λ, ρ) , h(w) + p(y) + λT (w − y) +
ρ

2
‖w − y‖2

H(w, y, λ) , h(w) + 1lZ1(w) + p(y) + 1lZ2(y) + λT (w − y)
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Hρ(w, y, λ) , h(w) + 1lZ1(w) + p(y) + 1lZ2(y) (70)

+ λT (w − y) +
ρ

2
‖w − y‖2.

Then the updates of (ADMMcf) can be rewritten as follows:

wk+1 := argmin
w∈Z1

L(w, yk, λk, ρk) = argmin
w
Hρk(w, yk, λk), (71)

yk+1 := argmin
y∈Z2

L(wk+1, y, λk, ρk) = argmin
y
Hρk(wk+1, y, λk), (72)

λk+1 := λk + ρk(wk+1 − yk+1).

Deriving convergence statements of Algorithm 2 necessitates the following
lemma.

Lemma 11 Consider the sequence {wk, yk, λk, ρk} generated by (ADMMcf).
Then for all k ≥ 0, where ∆Lk , L(wk+1, yk+1, λk+1, ρk+1)−L(wk, yk, λk, ρk),

∆Lk ≤
(

1

ρk
+
ρk+1 − ρk

2ρ2k

)

‖λk+1 − λk‖2 −
ρk
2
‖yk+1 − yk‖2. (73)

Proof From the definition of augmented Lagrangian function,

L(wk+1, yk+1, λk, ρk)− L(wk+1, yk, λk, ρk)

≤ −∇yL(wk+1, yk+1, λk, ρk)T (yk − yk+1)− ρk
2
‖yk+1 − yk‖2

≤ −ρk
2
‖yk+1 − yk‖2, (74)

where the first inequality follows since L(wk+1, y, λk, ρk) is ρk-strongly convex
in y with constant ρk, while the second inequality may be derived from the
optimality conditions of update (72) whereby ∇yL(wk+1, yk+1, λk, ρk)T (y −
yk+1) ≥ 0, ∀y ∈ Z2. Since wk+1 is a minimizer associated with (71), we have
that

L(wk+1, yk, λk, ρk)− L(wk, yk, λk, ρk) ≤ 0. (75)

By invoking the definition of the augmented Lagrangian function, and utilizing
the update rule for λk+1, i.e. λk+1 = λk + ρk(wk+1 − yk+1),

L(wk+1, yk+1, λk+1, ρk)− L(wk+1, yk+1, λk, ρk)

= (λk+1 − λk)T (wk+1 − yk+1)

= ‖λk+1 − λk‖2/ρk (76)

L(wk+1, yk+1, λk+1, ρk+1)− L(wk+1, yk+1, λk+1, ρk)

=
ρk+1 − ρk

2
‖wk+1 − yk+1‖2

=
ρk+1 − ρk

2ρ2k
‖λk+1 − λk‖2. (77)

By adding (74), (75), (76), and (77), we obtain the required result.
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Proving convergence requires the Kurdyka- Lojasiewicz property and a re-
quirement on the multiplier sequence.

Assumption 4 lim infk→+∞ ‖λk‖ < +∞.

Theorem 4 Consider the sequence {wk, yk, λk, ρk} generated by (ADMMcf).
Suppose that Assumption 3, 4 hold and {yk} is bounded. Then the following
hold:
(i) ∃K0 ∈ N, s.t.ρk ≡ ρ, ∀k ≥ K0. ‖λk+1 − λk‖ ≤ C‖yk+1 − yk‖, ∀k ≥ K0,
C ,

ρ−δ√
2

.

(ii) {L(wk, yk, λk, ρk)}k≥K0 is a non-increasing sequence satisfying

L(wk+1, yk+1, λk+1, ρ)− L(wk, yk, λk, ρ)

≤
(
C2/ρ− ρ/2

)
‖yk+1 − yk‖2

≤ −(δ/2)‖yk+1 − yk‖2, ∀k ≥ K0. (78)

(iii) {L(wk, yk, λk, ρk)}k≥K0 is bounded from below. Furthermore, yk+1−yk →
0, yk − wk → 0 as k → ∞ and {wk} is a bounded sequence. Therefore,
{(wk; yk;λk)} has a convergent subsequence with limit point given by z∗ ,

(w∗; y∗;λ∗).
(iv) Suppose Hρ satisfies the K L property at z∗. Then

∑∞
k=0 ‖yk+1−yk‖ <∞.

(v) Suppose Hρ satisfies the K L property at z∗. Then (wk; yk;λk) converges
to z∗, and z∗ satisfying the first-order KKT conditions of (4).

Proof (i). By Assumption 3, ρk remains unchanged for sufficiently large k, so
we denote ρ,K0 such that ρk ≡ ρ ≤ ρmax, ∀k ≥ K0. Moreover, by the update
rule in step 2 of Alg. 2, ‖λk+1 − λk‖ ≤ ρ−δ√

2
‖yk+1 − yk‖, ∀k ≥ K0.

(ii). From Lemma 11 and (i), for ∀k ≥ K0, ρk = ρ, and

L(wk+1, yk+1, λk+1, ρk+1)− L(wk, yk, λk, ρk)

≤ 1

ρ
‖λk+1 − λk‖2 −

ρ

2
‖yk+1 − yk‖2

≤ (ρ− δ)2
2ρ

‖yk+1 − yk‖2 −
ρ

2
‖yk+1 − yk‖2

=
δ2 − 2δρ

2ρ
‖yk+1 − yk‖2

(δ<ρ)

≤
(

−δ +
δ

2

)

‖yk+1 − yk‖2

= − δ
2
‖yk+1 − yk‖2. (79)

Thus, {L(wk, yk, λk, ρk)}k≥K0 is a non-increasing sequence.
(iii). We first show that infk≥0{h(wk) + p(yk) + ρ

2‖wk − yk‖2} is finite. Note
that

h(w)− nγ + p(y) +
ρ

2
‖w − y‖2
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= fQ(x+ − x−)− γeT ξ + p(y) +
ρ

2
‖w − y‖2

= (x+ − x−)TM(x+ − x−) + dT (x+ − x−)− γeT ξ + p(y) +
ρ

2
‖w − y‖2

= wTHw + [(d;−d;−γe)− ρy]Tw +
ρ

2
‖y‖2 + p(y)

=

∥
∥
∥
∥
w +

1

2
H−1[(d;−d;−γe)− ρy]

∥
∥
∥
∥

2

H

+
ρ

2
‖y‖2 + p(y)

− 1

4
‖(d;−d;−γe)− ρy‖2H−1

≥ ρ

2
‖y‖2 + p(y)− 1

4
‖(d;−d;−γe)− ρy‖2H−1 ,

where H ,





M + ρ
2I −M

−M M + ρ
2I

ρ
2I



 and H ≻ 0 (Note that ρ0I + 4M ≻ 0

leading to ρI + 4M ≻ 0, further implying H ≻ 0). Since {yk} is bounded by
assumption, and p(y) = g(y+ − y−) is smooth,

inf
k≥0

[
h(wk)− nγ + p(yk) + (ρ/2)‖wk − yk‖2

]

≥ inf
k≥0

[(ρ/2)‖yk‖2 + p(yk)− (1/4)‖(d;−d;−γe)− ρyk‖2H−1 ] > −∞.

If L̄ , infk≥0{h(wk) + p(yk) + ρ
2‖wk − yk‖2}, then

L(wk, yk, λk, ρk) ≥ L̄+ λTk (wk − yk)

= L̄+ λTk (λk − λk−1)/ρ

= L̄+
1

2ρ
(‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2),

implying that

N∑

k=K0

(L(wk , yk, λk, ρk)− L̄) ≥ ‖λN‖
2 − ‖λK0−1‖2

2ρ
≥ −‖λK0−1‖2

2ρ
>−∞,

for all N ≥ K0. Since {L(wk, yk, λk, ρk)− L̄}k≥K0 is a non-increasing sequence

from (ii), it’s nonnegative. Otherwise, limN→+∞
∑N

k=K0
(L(wk, yk, λk, ρk) −

L̄) = −∞. This is a contradiction. Therefore, {L(wk, yk, λk, ρk)}k≥K0 is bounded
from below. Consequently, hk , Hρ(wk, yk, λk) is a convergent sequence be-
cause Hρ(wk, yk, λk) = L(wk, yk, λk, ρ) = L(wk, yk, λk, ρk), ∀k ≥ K0. Without
loss of generality, suppose hk → 0. Then, by summing up (79) for k ≥ K0,

we have
∑∞

k=K0
‖yk+1 − yk‖2 ≤ hK0

δ/2 < ∞. It follows that yk+1 − yk → 0

as k → ∞. From (i), we also have ‖λk+1 − λk‖ → 0 as k → ∞. In other
words, ρ‖wk − yk‖ → 0 as k →∞. But {yk} is a bounded sequence, implying
that {wk} is a bounded sequence. By Assumption 4, there exists a convergent
subsequence of {λk}. Therefore, there exists a subsequence of {wk, yk, λk} con-
verging to a point denoted by {w∗, y∗, λ∗} , z∗.



44 Yue Xie, Uday V. Shanbhag

(iv). Next we prove ‖yk+1−yk‖ is summable by using the K L inequality. By as-
sumption, Hρ admits the K L property at z∗ and suppose the concave function
ψ, a neighborhood U , and a scalar η > 0 are associated with the K L property.
Further, suppose B(z∗, r) ⊆ U and denote zk = (wk; yk;λk). We know that
hk → 0. If for some k0 ≥ K0, hk0 = 0, then by (78), yk = yk+1, ∀k ≥ k0, the
proof is complete. Therefore, let hk > 0, ∀k ≥ K0. Since a subsequence of {zk}
converges to z∗, and hk → 0, ∃K ≥ K0 + 1 such that:

(
2C

ρ
+ C + 2

)
√

hK−1
ρ/2− C2/ρ

+

(
C

ρ
+
C

2
+ 1

)

×



ψ(hK)

C0
+

[

ψ(hK)

C0

(

ψ(hK)

C0
+ 4

√

hK−1
ρ/2− C2/ρ

)]1/2


+ ‖zK − z∗‖ < r,

(80)

where hK < η and C0 =
ρ
2−C2

ρ
C
ρ
+2C+ρ

. Then we inductively prove (81) for k ≥
K + 1:

zk ∈ B(z∗, r), ‖yk−1 − yk−2‖ > 0,
C0‖yk − yk−1‖2
‖yk−1 − yk−2‖

≤ ψ(hk−1)− ψ(hk).

(81)

We first prove two useful inequalities. From (78), we have (82) for k ≥ K − 1:

‖yk+1 − yk‖2 ≤
hk − hk+1

ρ/2− C2/ρ
≤ hK−1
ρ/2− C2/ρ

=⇒ ‖yk+1 − yk‖ ≤
√

hK−1
ρ/2− C2/ρ

. (82)

Furthermore, ‖zk+1 − zk‖ may be bounded as follows for ∀k ≥ K.

‖zk+1 − zk‖ =
√

‖wk+1 − wk‖2 + ‖yk+1 − yk‖2 + ‖λk+1 − λk‖2
≤ ‖wk+1 − wk‖+ ‖yk+1 − yk‖+ ‖λk+1 − λk‖
≤ ‖wk+1 − yk+1‖+ ‖yk − wk‖+ 2‖yk+1 − yk‖+ ‖λk+1 − λk‖
≤ (1/ρ+ 1)‖λk+1 − λk‖+ ‖λk − λk−1‖/ρ+ 2‖yk+1 − yk‖
(i)

≤ C‖yk − yk−1‖/ρ+ (C/ρ+ C + 2)‖yk+1 − yk‖. (83)

We utilize these inequalities to show (81) by induction.
K + 1K + 1K + 1: Through (80), (82), (83), the following holds

‖zK+1 − z∗‖ ≤ ‖zK+1 − zK‖+ ‖zK − z∗‖
(83)

≤ C‖yK − yK−1‖/ρ+ (C/ρ+ C + 2)‖yK+1 − yK‖+ ‖zK − z∗‖
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(82)

≤
(

2C

ρ
+ C + 2

)
√

hK−1
ρ/2− C2/ρ

+ ‖zK − z∗‖
(80)
< r,

implying zK+1 ∈ B(z∗, r). From the optimality conditions of (71) and (72),

0 ∈ ∇wh(wK) + λK−1 + ρ(wK − yK−1) + ∂1lZ1(wK)

=⇒ ∆λK − ρ∆yK ∈ ∇wh(wK) + λK + ρ(wK − yK) + ∂1lZ1(wK) (84)

0 ∈ ∇yp(yK)− λK−1 + ρ(yK − wK) + ∂1lZ2(yK)

=⇒ −∆λK ∈ ∇yp(yK)− λK + ρ(yK − wK) + ∂1lZ2(yK), (85)

where ∆λK , λK − λK−1, ∆yK , yK − yK−1. So (84), (85) and the fact that

∂Hρ(zK) = (∇wh(wK) + λK + ρ(wK − yK) + ∂1lZ1(wK))

× (∇yp(yK)− λK + ρ(yK − wK) + ∂1lZ2(yK))× (wK − yK)

imply that ∂Hρ(zK) ∋
(
∆λK − ρ∆yK ;−∆λK ;wK − yK

)
and

dist(0, ∂Hρ(zK)) ≤
√

‖∆λK − ρ∆yK‖2 + ‖∆λK‖2 + ‖wK − yK‖2
≤ ‖∆λK − ρ∆yK‖+ ‖∆λK‖+ ‖wK − yK‖

≤ (1/ρ+ 2)‖∆λK‖+ ρ‖∆yK‖
(i)

≤ (C/ρ+ 2C + ρ)‖∆yK‖ (86)

=⇒ −∆ψ(hK+1) ≥ ψ′(hK)(hK − hK+1)
(78)

≥ ψ′(hK)

(
ρ

2
− C2

ρ

)

‖∆yK+1‖2

≥
(ρ2 − C2

ρ )‖∆yK+1‖2
dist(0, ∂Hρ(zK))

(86)

≥
(ρ2 − C2

ρ )‖∆yK+1‖2

(Cρ + 2C + ρ)‖∆yK‖
=
C0‖∆yK+1‖2
‖∆yK‖

, (87)

where ∆ψ(hK+1) , ψ(hK+1)−ψ(hK), the first inequality of (87) follows from
the concavity of ψ, and the third inequality is due to the K L inequality ψ′(hK)
dist(0, ∂Hρ(zK)) ≥ 1 because ‖zK − z∗‖ < r. Moreover, the K L inequality
indicates that dist(0, ∂Hρ(zK)) > 0, thus ‖∆yK‖ > 0 by (86). Therefore, the
inductive hypothesis holds for K + 1. Assume that it holds for K + 2, . . . , k
and consider k + 1.
k + 1k + 1k + 1: We begin by showing that:

k−1∑

i=K

‖yi+1 − yi‖ ≤
1

2




ψ(hK)

C0
+

[

ψ(hK)

C0

(

ψ(hK)

C0
+ 4

√

hK−1
ρ/2− C2/ρ

)]1/2


 .

(88)

Combining inductive hypothesis (81) for K + 1, . . . , k, we have that

ψ(hK)− ψ(hk) ≥ C0

k−1∑

i=K

‖yi+1 − yi‖2
‖yi − yi−1‖

=⇒ ψ(hK)− ψ(hk)

C0

k−1∑

i=K

‖yi − yi−1‖ ≥
(
k−1∑

i=K

‖yi+1 − yi‖2
‖yi − yi−1‖

)(
k−1∑

i=K

‖yi − yi−1‖
)
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(∗)
≥
(
k−1∑

i=K

‖yi+1 − yi‖
)2

=⇒
(
k−1∑

i=K

‖yi+1 − yi‖
)2

≤ ψ(hK)

C0

k−2∑

i=K−1
‖yi+1 − yi‖

≤ ψ(hK)

C0

k−1∑

i=K−1
‖yi+1 − yi‖

=
ψ(hK)

C0

(
k−1∑

i=K

‖∆yi+1‖+ ‖∆yK‖
)

(82)

≤ ψ(hK)

C0

(
k−1∑

i=K

‖∆yi+1‖+

√

hK−1
ρ/2− C2/ρ

)

,

where (∗) holds because of Hölder’s inequality. If x ,
∑k−1
i=K ‖yi+1− yi‖, C1 ,

ψ(hK)
C0

, and C2 ,
ψ(hK)
C0

√
hK−1

ρ/2−C2/ρ , then the above inequality is equivalent to

x2 − C1x − C2 ≤ 0 =⇒ x ≤ 1
2

(

C1 +
√

C2
1 + 4C2

)

. This is exactly (88).

Therefore,

‖zk+1 − zK‖ ≤
k∑

i=K

‖zi+1 − zi‖

(83)

≤
k∑

i=K

(‖yi − yi−1‖
ρ/C

+

(
C

ρ
+ C + 2

)

‖yi+1 − yi‖
)

=
C‖yK − yK−1‖

ρ
+

k−1∑

i=K

(
2C

ρ
+ C + 2

)

‖yi+1 − yi‖

+

(
C

ρ
+ C + 2

)

‖yk+1 − yk‖

(82)(88)

≤
(

2C

ρ
+ C + 2

)
√

hK−1
ρ/2− C2/ρ

+

(
C

ρ
+
C

2
+ 1

)(

C1 +
√

C2
1 + 4C2

)

=⇒ ‖zk+1 − z∗‖ ≤ ‖zk+1 − zK‖+ ‖zK − z∗‖
(80)
< r.

Thus, zk+1 ∈ B(z∗, r). Since zk ∈ B(z∗, r), the K L inequality holds for zk, and

in a fashion similar to (87), we obtain that ‖yk−yk−1‖ > 0 and C0‖yk+1−yk‖2
‖yk−yk−1‖ ≤

ψ(hk) − ψ(hk+1), completing the proof of the inductive hypothesis. By the
hypothesis, (88) holds for k ≥ K + 1. This indicates that

∑+∞
i=K ‖yi+1− yi‖ <

+∞, implying that
∑+∞
i=0 ‖yi+1 − yi‖ < +∞.

(v). From (iv) and by recalling that ‖λk+1 − λk‖ ≤ C‖yk+1 − yk‖ for k suf-
ficiently large, we have that {yk} and {λk} are Cauchy sequences, convergent



Title Suppressed Due to Excessive Length 47

to y∗ and λ∗, respectively. Since wk−yk → 0, {wk} also converges to w∗ = y∗.
By Proposition 3, (w∗, y∗, λ∗) is a KKT point.

Remark 8 (i). To derive convergence of the sequence, we leverage the K L prop-
erty of Hρ. When p(y) is semialgebraic [1, Sec. 4.3], Hρ is a sum of semialge-
braic functions and is therefore semialgebraic. Then the result follows from [1,
Sec. 4.3] whereby a semialgebraic function L satisfies the K L property at every
point in dom(∂L).
(ii). If we cannot invoke the K L property to show convergence of {(wk, yk, λk)},
we may merely conclude that any cluster point of {(wk, yk, λk)} satisfies first
order KKT conditions of (4). The proof is similar to Proposition 3 thus omit-
ted.
(iii). Boundedness of {yk} holds by assuming compactness of Z2 (obtainable
by adding constraints x+ ≤ ub+, x− ≤ ub−).
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