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Abstract

The delayed weighted gradient method, recently introduced in [13], is a low-cost
gradient-type method that exhibits a surprisingly and perhaps unexpected fast con-
vergence behavior that competes favorably with the well-known conjugate gradient
method for the minimization of convex quadratic functions. In this work, we establish
several orthogonality properties that add understanding to the practical behavior of
the method, including its finite termination. We show that if the n × n real Hessian
matrix of the quadratic function has only p < n distinct eigenvalues, then the method
terminates in p iterations. We also establish an optimality condition, concerning the
gradient norm, that motivates the future use of this novel scheme when low precision
is required for the minimization of non-quadratic functions.

Keywords: Gradient methods, conjugate gradient methods, smoothing techniques,
finite termination, Krylov subspace methods.

1 Introduction

Recently [13], Oviedo proposed a low-cost method for the minimization of large-scale con-
vex quadratic functions, which is based on a smoothing technique combined with a one-step
delayed gradient method. For gradient-type methods, smoothing techniques were previ-
ously developed [1, 11], as well as delayed schemes [7, 12]. A skillful combination of these
independent ideas produces the so-called delayed weighted gradient method (DWGM),
which exhibits an impressive fast convergence behavior that compares favorable with the
conjugate gradient (CG) method [13]. Moreover, we have observed that in exact arith-
metic DWGM also exhibits finite termination, which is a well-known property of the CG
method, as well as the Conjugate Residual (CR) method, in the convex quadratic case
[14]. Nevertheless, from the same initial guess, DWGM produces a different sequence of
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iterates to converge (or to terminate) at the same solution obtained by the CG or the CR
method (see Table 1 and Figure 1 below). In this work we will establish several properties
of the DWGM method, including its surprising finite termination for convex quadratics.

The rest of this document is organized as follows. In Section 2, we briefly describe the
DWGM algorithm and list the convergence properties established in [13]. In Section 3, we
describe and establish the additional properties concerning the orthogonality relationships
that exist among the involved sequence of vectors produced by the DWGM algorithm,
and we also establish the key results concerning finite termination and optimality of the
gradient norm. In Section 4, we present some final remarks and perspectives.

2 DWGM algorithm

Let us consider the minimization of the strictly convex quadratic function

f(x) =
1

2
xTAx− bTx, (2.1)

where b ∈ Rn, A ∈ Rn×n is a symmetric and positive definite (SPD) matrix. Since A is
SPD and the gradient g(x) ≡ ∇f(x) = Ax−b, then the global solution of (2.1) is the unique
solution A−1b of the linear system Ax = b. For large n, many low-cost iterative methods
have been proposed and analyzed, and in particular some of the so-called gradient-type
methods have shown to be very competitive since they show an impressive fast linear
convergence; see, e.g., [2, 3, 4, 5, 6, 9]. They can all be seen as improved extensions of the
classical steepest descent method. From a starting point x0 ∈ Rn, the well-known steepest
descent (or gradient) method is given by the iteration

xk+1 = xk − λkgk,

where gk = g(xk) and λk is the minimizer of f(xk − λgk). Therefore, if gk 6= 0,

λk =
gTk gk

gTk Agk
. (2.2)

This classical low-cost method is globally convergent but its rate of convergence is very
slow in most practical cases.

We focus our attention on the DWGM method, that can be viewed as a special gradient-
type method. Following the development in [13], the DWGM algorithm is now presented.
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Algorithm 1 DWGM

Require: A ∈ Rn×n SPD, x0 ∈ Rn, x−1 = x0, g0 = g(x0), g−1 = g0, ε > 0.
1: k = 0
2: while ‖gk‖2 > ε do

3: wk = Agk

4: αk = gTk wk/w
T
k wk

5: yk = xk − αkgk
6: rk = gk − αkwk
7: βk = gTk−1(gk−1 − rk)/‖gk−1 − rk‖22
8: xk+1 = xk−1 + βk(yk − xk−1)
9: gk+1 = gk−1 + βk(rk − gk−1)

10: k = k + 1
11: end while

Notice that the iterations in Algorithm DWGM are stopped when the 2-norm of the
gradient at xk is less than or equal to a preestablished small tolerance ε > 0. Note also that
in addition to the sequence of iterates {xk}, the algorithm DWGM generates an auxiliary
sequence {yk}, and two associated gradient-type sequences given by

gk = Axk − b and rk = Ayk − b. (2.3)

Finally, we note that at every k, the scalar βk is chosen at Step 7 to guarantee that
gTk+1(rk − gk−1) = 0, and the scalar αk is chosen at Step 4 to minimize the gradient norm
along the negative gradient direction, as explained in [13, p. 731]; see also [5].

In [13], it is established that βk ≥ 0 for all k, that the sequence {‖gk‖2} is monotonically
decreasing, and moreover that the sequence {gk} converges to zero q-linearly when k goes
to infinity, which implies that the sequence {xk} converges to the unique global minimizer
of f(x). Furthermore, from the proof of Lemma 1 in [13], if gk 6= 0 we notice that

‖rk‖22 = ‖gk‖22 − αkgTk Agk,

and also that
‖gk+1‖2 ≤ ‖rk‖2 < ‖gk‖2 ≤ ‖rk−1‖2. (2.4)

Since αk can be seen as an inverse Rayleigh quotient of A evaluated at the vector A1/2gk,
where ‖gk‖2 6= 0, then for all k

0 <
1

λmax(A)
≤ αk ≤

1

λmin(A)
<∞, (2.5)

where λmin(A) and λmax(A) are the smallest and largest eigenvalues of A, respectively.
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3 Additional properties of DWGM

Let us recall that, in exact arithmetic, the A-orthogonality of the set of all search directions
plays a fundamental role in the finite termination of the CG method. Similarly, the
A-orthogonality of the set of all residual vectors plays a fundamental role in the finite
termination of the CR method see, e.g., [14]. We note that a similar A-orthogonality is
not imposed on any of the vector sets used by DWGM, however it also exhibits finite
termination for convex quadratic functions, as can be observed in Table 1 and Figure 1.
In order to establish this important fact we need a few preliminary results, which include
a few unexpected A-orthogonality relationships.

Lemma 1. In Algorithm DWGM

(a) β0 = 1, and hence x1 = y0 and g1 = r0.

The following equalities hold for all k ≥ 0

(b) rTk Agk = 0.

(c) rTk rk = rTk gk.

(d) gTk+1(rk − gk−1) = 0.

Proof. (a) Since g−1 = g0, using the definition of βk at Step 7 and αk at Step 4,
combined with the equality at Step 6, we obtain

β0 = gT0 (g0 − r0)/‖g0 − r0‖2 = α0(g
T
0 w0)/α

2
0‖w0‖22 = gT0 Ag0/(α0 g

T
0 A

2g0) = 1.

Now, using β0 = 1 in Steps 8 and 9, it follows that x1 = y0 and g1 = r0.
(b) Combining Steps 6, 4, and 3, we have

rTk Agk = (gk − αkAgk)TAgk = gTk Agk − αk(gTk A2gk) = 0.

(c) Using Step 6 and (b) we obtain

rTk rk − rTk gk = rTk (rk − gk) = −αk(rTk Agk) = 0.

(d) Follows from the definition of βk at Step 7 and simple algebraic manipulations.

We note that the choice of αk accounts for rTk Agk = 0 for all k ≥ 0, which is an
A-orthogonality result that will play a key role in the rest of this section.

Lemma 2. Algorithm DWGM generates the sequence of gradient vectors {gk} such that
for all k ≥ 1,

gTk Agk−1 = 0.

Proof. Using (a) and (b) from Lemma 1, it follows that g1 = r0 and gT1 Ag0 =
rT0 Ag0 = 0, and the result holds for k = 1. Let us now assume, by induction on k, that
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Table 1: Gradient norm at each iteration (Iter i) of DWGM, CG, and CR, from the same
initial point, for the minimization of a strictly convex quadratic function when n = 5, and
the eigenvalues of A are given by λi = i, for 1 ≤ i ≤ 5.

Method Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

CG 1.3347 0.6458 0.2418 0.0368 0.0
CR 1.2934 0.5778 0.2231 0.0363 0.0
DWGM 0.6679 0.2259 0.0442 0.0064 0.0
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Figure 1: Convergence history of DWGM, CG, and CR, from the same initial point, for
the minimization of a strictly convex quadratic function. On the left, n = 11 and we
use the following distribution of eigenvalues of A: λ1 = 0.1, λi = i for 2 ≤ i ≤ 10, and
λ11 = 1000. On the right, n = 60 and we use the following distribution of eigenvalues of
A: λ1 = 0.1, λi = i for 2 ≤ i ≤ 59, and λ60 = 6000.

gTk Agk−1 = 0 up to k = k̂ ≥ 2, and consider the next iteration. Hence, we need to show
that gT

k̂+1
Agk̂ = 0. Using Step 9, (b) from Lemma 1, and noticing that by the inductive

hypothesis gT
k̂−1Agk̂ = 0, we have

gT
k̂+1

Agk̂ = (gk̂−1 + βk̂(rk̂ − gk̂−1))
TAgk̂ = (1− βk̂)g

T
k̂−1Agk̂ + βk̂r

T
k̂
Agk̂ = 0,

and the result is established.

Lemma 3. In Algorithm DWGM the following statements hold for all k ≥ 1

(a) gTk rk−1 = gTk gk−1.

(b) gTk−1rk = gTk−1gk.

(c) gTk rk−1 = gTk−1rk.
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(d) ‖gk−1 − rk‖22 = ‖gk−1 − gk‖22 − [(gTk Agk)
2/gTk A

2gk].

(e) gTk+1(gk − gk−1) = 0.

Proof. (a) Using Steps 4 and 6 and Lemma 2, we have

gTk (rk−1 − gk−1) = −αk−1gTk Agk−1 = 0.

(b) Similar to the proof of (a),

gTk−1(rk − gk) = −αkgTk−1Agk = 0.

(c) The result is obtained directly from (a) and (b).

(d) Using Step 4 and 6 of the DWGM algorithm and Lemma 2, we have

‖gk−1 − rk‖22 = ‖gk−1 − gk + αkAgk‖22

= ‖gk−1 − gk‖22 + 2(gk−1 − gk)TαkAgk + α2
kg
T
k A

2gk

= ‖gk−1 − gk‖22 − 2αkg
T
k Agk + α2

kg
T
k A

2gk

= ‖gk−1 − gk‖22 − [(gTk Agk)
2/gTk A

2gk].

(e) Combining Step 6 of the DWGM algorithm, (d) from Lemma 1, and Lemma 2, it
follows that

gTk+1(gk − gk−1) = gTk+1(rk + αkAgk − gk−1) = gTk+1(rk − gk−1) + αkg
T
k+1Agk = 0.

Lemma 4. In Algorithm DWGM the following statements hold for all k ≥ 1

(a) gTk+1gk+1 = gTk+1gk = gTk+1gk−1.

(b) ‖gk−1 − gk‖22 = gTk−1(gk−1 − gk)

(c) βk = gTk−1(gk−1 − gk)/
(
‖gk−1 − gk‖22 − [(gTk Agk)

2/gTk A
2gk]

)
> 1.

Proof. (a) Combining Steps 3, 6, and 9 of the DWGM algorithm, we get

gTk+1gk+1 = gTk+1(gk−1+βk(gk−gk−1−αkAgk)) = gTk+1gk−1+βkg
T
k+1(gk−gk−1)−αkgTk+1Agk.

From (e) in Lemma 3, gTk+1(gk−gk−1) = 0, and from Lemma 2 we have that gTk+1Agk = 0,

and so gTk+1gk+1 = gTk+1gk−1. Now, using again (e) in Lemma 3, we obtain that

gTk+1gk−1 = gTk+1gk.
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(b) From (a) we obtain gTk (gk − gk−1) = 0, and hence

0 = (gk − gk−1 + gk−1)
T (gk − gk−1) = ‖gk − gk−1‖22 − gTk−1(gk−1 − gk),

which implies that ‖gk−1 − gk‖22 = gTk−1(gk−1 − gk).

(c) First, by Cauchy-Schwarz inequality and (2.4), we obtain

gTk−1gk ≤ ‖gk−1‖2‖gk‖2 < ‖gk−1‖22 = gTk−1gk−1,

and hence, using (b) in Lemma 3, we have that gTk−1(gk−1 − rk) = gTk−1(gk−1 − gk) > 0.
Therefore, the numerator at Step 7 of the DWGM algorithm is positive and βk > 0. Now,
combining Step 7 of the DWGM algorithm with (b) and (d) in Lemma 3 we get

βk =
gTk−1(gk−1 − rk)
‖gk−1 − rk‖22

=
gTk−1(gk−1 − gk)(

‖gk−1 − gk‖22 − [(gTk Agk)
2/gTk A

2gk]
) . (3.1)

Since βk > 0 and gTk−1(gk−1 − gk) > 0, we obtain that the denominator in (3.1) must be
also positive. As a consequence

0 < (gTk Agk)
2/gTk A

2gk < ‖gk−1 − gk‖22,

and we conclude using (b) that in (3.1) the numerator is strictly bigger than the denomi-
nator and both are positive, which establishes that βk > 1.

In what follows we will establish some key A-orthogonality results, which will be ob-
tained simultaneously using an inductive argument.

Theorem 5. Algorithm DWGM generates the sequences {gk} and {rk} such that

(i) For k ≥ 2, gTk Agj = 0 for all − 1 ≤ j ≤ k − 2.

(ii) For k ≥ 2, rTk Agj = 0 for all − 1 ≤ j ≤ k − 2.

Proof. Concerning (i), since g0 = g−1, g1 = r0 and α0 > 0 (see (2.5)), using (e) from
Lemma 3 and Steps 4 and 6 of the DWGM algorithm we obtain

gT2 Ag−1 = gT2 Ag0 = gT2 (g0 − r0)/α0 = gT2 (g0 − g1)/α0 = 0, (3.2)

and the result is obtained for k = 2. Concerning (ii), since αk > 0 for all k (see (2.5)),
using (e) in Lemma 3, (a) in Lemma 1, Step 6 (twice), Lemma 2, and (3.2), it follows that

rT2 Ag0 =
1

α0
rT2 (g0 − r0) = − 1

α0
rT2 (g1 − g0) + 0 = − 1

α0
rT2 (g1 − g0) +

1

α0
gT2 (g1 − g0)

=
1

α0
(g2 − r2)T (g1 − g0) =

α2

α0
gT2 A(g1 − g0) =

α2

α0
[gT2 Ag1 − gT2 Ag−1] = 0.
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Since rT2 Ag−1 = rT2 Ag0 = 0, the result is established for k = 2.
Let us now assume, by induction on k, that (i) and (ii) hold up to k = k̂ ≥ 3, and

consider the next iteration. Hence, we need to show that gT
k̂+1

Agj = 0, and also that

rT
k̂+1

Agj = 0 , for all −1 ≤ j ≤ k̂ − 1.

For −1 ≤ j ≤ k̂−2, using Lemma 2, Step 9 of the DWGM algorithm, and the inductive
hypothesis associated with (i) and (ii), we have that

gT
k̂+1

Agj = (gk̂−1 + βk̂(rk̂ − gk̂−1))
TAgj = (1− βk̂)g

T
k̂−1Agj + βk̂r

T
k̂
Agj = 0.

For j = k̂ − 1, using Step 6, adding and subtracting gk̂−2, and then using the fact that
rk̂−1 − gk̂−2 = (gk̂ − gk̂−2)/βk̂−1 (from Step 9 of DWGM algorithm), we get

gT
k̂+1

Agk̂−1 =
1

αk̂−1
gT
k̂+1

(gk̂−1 − rk̂−1) = − 1

αk̂−1
gT
k̂+1

(rk̂−1 − gk̂−2 + gk̂−2 − gk̂−1)

= − 1

αk̂−1

[
1

βk̂−1
gT
k̂+1

(gk̂ − gk̂−2) + gT
k̂+1

(gk̂−2 − gk̂−1)

]
.

Adding and subtracting gT
k̂+1

gk̂−1, using (e) from Lemma 3, and Step 9, we obtain

gT
k̂+1

Agk̂−1 = − 1

αk̂−1

[
gT
k̂+1

(gk̂ − gk̂−1) + gT
k̂+1

(gk̂−1 − gk̂−2)
βk̂−1

+ gT
k̂+1

(gk̂−2 − gk̂−1)

]

= γk̂g
T
k̂+1

(gk̂−1 − gk̂−2) = γk̂[(1− βk̂)gk̂−1 + βk̂rk̂]
T (gk̂−1 − gk̂−2), (3.3)

where γk̂ = (βk̂−1 − 1)/(αk̂−1 βk̂−1) is a well-defined positive number. Finally, from (a)

in Lemma 4 we have that gT
k̂−1(gk̂−1 − gk̂−2) = 0 and also that gT

k̂
(gk̂−1 − gk̂−2) = 0, and

hence using (3.3) combined with Step 6, Lemma 2, and the inductive hypothesis, yields

gT
k̂+1

Agk̂−1 = γk̂βk̂ r
T
k̂

(gk̂−1 − gk̂−2) = γk̂βk̂ (gk̂ − αk̂Agk̂)
T (gk̂−1 − gk̂−2)

= γk̂βk̂αk̂ g
T
k̂
A(gk̂−2 − gk̂−1) = γk̂βk̂αk̂ [gT

k̂
Agk̂−2 − g

T
k̂
Agk̂−1] = 0,

and (i) is established for all k ≥ 2 and for −1 ≤ j ≤ k − 2.
Concerning (ii), for −1 ≤ j ≤ k̂− 1, using Step 9 of the DWGM algorithm, Lemma 2,

(i) which has now been established, and that βk > 1 for all k, we obtain

rT
k̂+1

Agj =
1

βk̂+1

[gk̂+2 + (βk̂+1 − 1)gk̂]
TAgj =

1

βk̂+1

gT
k̂+2

Agj +
βk̂+1 − 1

βk̂+1

gT
k̂
Agj = 0,

and (ii) is also established.

Summing up, combining (b) from Lemma 1 with (ii) from Theorem 5, it follows that
rTk Agj = 0 for j = k and for j ≤ k − 2. In other words, for all k, rk is A-orthogonal to
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all previous gradient vectors except to gk−1. Moreover, combining Lemma 2 with (i) from
Theorem 5, it follows that for all k, gk is A-orthogonal to all previous gradient vectors,
i.e., for all k ≥ 1

gTk Agj = 0 for all j ≤ k − 1. (3.4)

We are now ready to show the finite termination of the DWGM algorithm.

Theorem 6. For any initial guess x0 ∈ Rn, Algorithm DWGM generates the iterates xk,
k ≥ 1, such that xn = A−1b.

Proof. From (3.4) we have that the n vectors gk, 0 ≤ k ≤ n−1, form an A-orthogonal
set, and hence they form a linearly independent set of n vectors in Rn. Therefore, the next
vector gn ∈ Rn must be zero to be able to keep the A-orthogonality with all the previous
gradient vectors. Thus, Axn = b and hence xn = A−1b.
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Figure 2: Convergence history of DWGM, CG, and CR, from the same initial point, for
the minimization of a strictly convex quadratic function, when n = 1000 and the matrix
A has only 5 distinct eigenvalues, equally distributed in the interval [10, 1000], each one
repeated 200 times.

It is worth noticing that in exact arithmetic the final termination of DWGM, as in the
CG and CR methods, is related to the number of distinct eigenvalues of the matrix A, and
not to the dimension of A. In Figure 2 this fact is illustrated on a strictly convex quadratic
function, with n = 1000 and for which the matrix A has only 5 distinct eigenvalues. Indeed,
we can observe that the three methods terminate in 5 iterations. A key observation, before
establishing this important result, is that for each k the gradient vector gk generated by
DWGM belongs to the Krylov subspace Kk+1(A, g0) (to be defined in our next lemma)
that only depends on the matrix A and the initial gradient vector g0.
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Lemma 7. In Algorithm DWGM, for all k ≥ 1

gk ∈ Kk+1(A, g0) := span{g0, Ag0, A2g0, . . . , A
kg0}.

Proof. For k = 1, using (a) in Lemma 1, we have g1 = r0 = g0 − α0Ag0, and so
g1 ∈ span{g0, Ag0}. Let us now assume, by induction on k, that for all 1 ≤ j ≤ k

gj ∈ Kj+1(A, g0) = span{g0, Ag0, A2g0, . . . , A
jg0},

and consider gk+1. From Step 9 and Step 6 of the DWGM algorithm, we have

gk+1 = (1− βk)gk−1 + βkrk = (1− βk)gk−1 + βkgk − βkαkAgk.

By the inductive hypothesis, gk−1 ∈ Kk(A, g0), gk ∈ Kk+1(A, g0), and soAgk ∈ Kk+2(A, g0).
Consequently, gk+1 ∈ Kk+2(A, g0) and the result is established.

Krylov spaces are closely related to polynomials. In fact, for any nonzero vector z ∈ Rn
and any positive integer m, it is clear that

Km(A, z) := span{z,Az,A2z, . . . , Am−1z} = {q(A)z : q ∈ Pm−1},

where Pm−1 denotes the space of all polynomials of degree at most m − 1. Let us recall
that the minimal polynomial of z with respect to A is the nonzero monic polynomial q̂ of
lowest degree such that q̂(A)z = 0. The results stated in our next theorem are well-known
and we present them here without a proof; for a complete discussion on the connection
between Krylov spaces and polynomials see, e.g., [15, Ch. VI] and [16, Ch. 4].

Theorem 8. The Krylov subspace Km(A, z) is of dimension m if and only if the degree of
the minimal polynomial q̂ of z with respect to A is greater than or equal to m. Moreover,
if η is the degree of the the minimal polynomial q̂ of z with respect to A, then Kη(A, z) is
invariant under A and Km(A, z) = Kη(A, z) for all m ≥ η.

We note that, based on Theorem 8, the degree of the minimal polynomial q̂ can also
be characterized as the smallest positive integer η such that Kη(A, z) = Kη+1(A, z). In
particular, the relation between Krylov subspaces and the minimal polynomial of the
initial gradient vector g0 has played a fundamental role to study the finite termination
of the CG and CR methods when the matrix A has only p < n distinct eigenvalues; see
e.g., [10, 14]. It will also play a key role to study the finite termination of the DWGM
algorithm at iteration p.

Theorem 9. If A has only p < n distinct eigenvalues, then for any initial guess x0 ∈ Rn
Algorithm DWGM generates the iterates xk, k ≥ 1, such that xp = A−1b.

Proof. Since A is symmetric and positive definite, the eigenvalues λi, 1 ≤ i ≤ p, are
positive and the associated eigenvectors vi, 1 ≤ i ≤ n, can be chosen to form an orthonor-
mal set. Without loss of generality we can assume that the eigenvectors {v1, . . . , vi1} are
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associated with λ1, the eigenvectors {vi1+1, . . . , vi2} with λ2, and so on, until finally the
eigenvectors {vip−1 , . . . , vn} are associated with λp, where 1 ≤ i1 < · · · < ip−1 ≤ n. Clearly,
the set of eigenvectors form a basis in Rn, and so there exist real scalars γi, 1 ≤ i ≤ n,
such that

g0 =

i1∑
j=1

γjvj +

i2∑
j=i1+1

γjvj + · · ·+
n∑

j=ip−1

γjvj =

p∑
i=1

ŵi,

where ŵ1 =
∑i1

j=1 γjvj , ŵ2 =
∑i2

j=i1+1 γjvj , and so on until ŵp =
∑n

j=ip−1
γjvj . Hence,

g0 ∈ span{ŵ1, ŵ2, . . . , ŵp}. Moreover, for any 1 ≤ j ≤ p, Aŵj = λjŵj , and so the
subspace span{ŵ1, ŵ2, . . . , ŵp} is invariant under A. Furthermore, for any 0 ≤ k ≤ p− 1,
Akg0 =

∑p
i=1 λ

k
i ŵi and we obtain the following column-wise matrix equality | | |

g0 Ag0 · · · Ap−1g0
| | |

 =

 | | |
ŵ1 ŵ2 · · · ŵp
| | |


 1 λ1 · · · λp−11

...
...

...

1 λp · · · λp−1p

 . (3.5)

We note that the second matrix on the right hand side of (3.5) is a real p×p Vandermonde’s
matrix, whose determinant is given by

∏
1≤i<j≤p(λj − λi); see, e.g., [8, Sec. 6.1]. Since

the p eigenvalues of A are distinct, we conclude that it is a nonsingular matrix. Hence,
the column space of the two n× p matrices in (3.5) are equal, which implies that

Kp(A, g0) := span{g0, Ag0, A2g0, . . . , A
p−1g0} = span{ŵ1, ŵ2, . . . , ŵp}.

Consequently, Kp(A, g0) is also invariant under A, which in turn implies from Theorem 8
that the degree of the the minimal polynomial q̂ of g0 with respect to A is p. Therefore,
combining (3.4) and Lemma 7, it follows that the only way for the vector gp to be A-
orthogonal to all the previous gradient vectors while being in Kp(A, g0) is that gp = 0.
Thus, Axp = b and we obtain that xp = A−1b.

In addition to the A-orthogonality results shown in Theorem 5, we can also study
the A-orthogonality of the current gradient gk with all the previously explored search
directions. As can be noticed from Step 8 of the DWGM algorithm, the search direction
to move from xk to the next iterate is not given explicitly, instead it is given the direction
to move from xk−1 to xk+1, which uses the auxiliary vector yk. Nevertheless, we can
consider the vector xk − xk−1 as the search direction to move from xk−1 to xk. Notice
that for any 1 ≤ j ≤ k,

gTk A(xj − xj−1) = gTk [(Axj − b)− (Axj−1 − b)] = gTk (gj − gj−1).

Using this equality, our next result establishes the mentioned A-orthogonality.

Theorem 10. Algorithm DWGM generates the sequences {gk} such that for k ≥ 2

gTk (gj − gj−1) = 0 for all 1 ≤ j ≤ k. (3.6)

11



Proof. Let us notice, from (e) in Lemma 3, that gT2 (g1 − g0) = 0, and so the result is
obtained for k = 2. Let us now assume, by induction on k, that (3.6) holds up to k = k̂ ≥ 3,
and consider the next iteration. Hence, we need to show that gT

k̂+1
(gj − gj−1) = 0 for all

−1 ≤ j ≤ k̂ + 1.
When j = k̂, the result follows directly from (e) in Lemma 3, and when j = k̂+ 1, the

result follows directly from (a) in Lemma 4. Now, if j ≤ k̂− 2, using Steps 6 and 9 of the
DWGM algorithm, the inductive hypothesis on (3.6), Lemma 2, and (i) from Theorem 5,
we have

gT
k̂+1

(gj − gj−1) = [(1− βk̂)gk̂−1 + βk̂rk̂]
T (gj − gj−1) = βk̂r

T
k̂

(gj − gj−1)

= βk̂(gk̂ − αk̂Agk̂)
T (gj − gj−1) = −αk̂βk̂g

T
k̂
A(gj − gj−1)

= −αk̂βk̂[(g
T
k̂
Agj)− (gT

k̂
Agj−1)] = 0.

Finally, when j = k̂ − 1, using Steps 6 (twice) and 9 of the DWGM algorithm, (d) from
Lemma 1, Lemma 2, and (i) from Theorem 5, we obtain

gT
k̂+1

(gk̂−1 − gk̂−2) = gT
k̂+1

(gk̂−1 − rk̂ + rk̂ − gk̂−2) = gT
k̂+1

(rk̂ − gk̂−2)

= gT
k̂+1

(gk̂ − αk̂Agk̂ − gk̂−2) = gT
k̂+1

(gk̂ − gk̂−2)

= gT
k̂+1

(gk̂−2 + βk̂−1(rk̂−1 − gk̂−2)− gk̂−2) = βk̂−1g
T
k̂+1

(rk̂−1 − gk̂−2)

= βk̂−1g
T
k̂+1

(gk̂−1 − gk̂−2 − αk̂−1Agk̂−1) = βk̂−1g
T
k̂+1

(gk̂−1 − gk̂−2).

Therefore, (βk̂−1 − 1)gT
k̂+1

(gk̂−1 − gk̂−2) = 0. Since βk > 1 for all k ≥ 1 ((c) in Lemma 4),

we conclude that gT
k̂+1

(gk̂−1 − gk̂−2) = 0, and (3.6) is established.

Let us recall that the step length αk is obtained in the DWGM algorithm to guarantee
that the gradient norm is minimized along the negative gradient direction to obtain yk;
see [13, p. 731]. Our next result establishes, using Theorem 10, that the gradient norm at
iteration k actually attains the minimum possible value on the linear manifold (subspace
if x0 = 0) of dimension k generated by all the search directions that have been explored
so far:

Vk = {x ∈ Rn : x = x0 +

k∑
j=1

ηj(xj − xj−1) and ηj ∈ R, for 1 ≤ j ≤ k}.

In that sense, the gradient norm in the DWGM algorithm plays a similar role to the one
played by the objective function in the CG method. Indeed, in the CG method (starting
at x0 = 0) the step length is chosen to guarantee that the function value f(x) is minimized
along the k-th search direction, but in reality based on the orthogonality of the gradient
with all the previous search directions, the function value attains the minimum value on
the entire explored subspace.

12



Corollary 11. In Algorithm DWGM, for all k ≥ 1, the iterate xk is obtained such that
‖gk‖2 is the minimum possible value of ‖∇f(x)‖2 on Vk.

Proof. Let us notice that the minimization of ‖∇f(x)‖2 = ‖Ax−b‖2 subject to x ∈ Vk
is equivalent to the unconstrained minimization of

G(η) ≡ ‖A(x0 +

k∑
j=1

ηj(xj − xj−1))− b‖22 = ‖
k∑
j=1

ηj(gj − gj−1) + g0‖22, (3.7)

where η = (η1, . . . , ηk)
T ∈ Rk. Notice that the objective function G(η) is clearly a strictly

convex function in Rk. Hence, (3.7) has a unique solution, say η∗ ∈ Rk, and let us define
R(η∗) = (

∑k
j=1 η

∗
j (gj − gj−1) + g0) ∈ Rn. Since G(η) is strictly convex, the necessary

optimality conditions

∂G(η)

∂ηj
= R(η∗)T (gj − gj−1) = 0, for 1 ≤ j ≤ k,

are also sufficient. Hence, it follows that R(η∗) is orthogonal to the subspace generated by
the vectors {gk − gk−1, . . . , g1 − g0}. From Theorem 10 we have that gk is also orthogonal
to the subspace generated by {gk − gk−1, . . . , g1 − g0}. Moreover, notice that choosing
η ∈ Rk such that ηj = 1 for 1 ≤ j ≤ k, we obtain that xk ∈ Vk and R(η) = gk. Therefore,
by the uniqueness of the solution of (3.7) we obtain that gk = R(η∗) ∈ Rn. Using now the
equivalence of the two minimization problems stated above, we have that the iterate xk
in algorithm DWGM can be written as

xk = x0 +
k∑
j=1

η∗j (xj − xj−1),

and the result is established.

4 Conclusions and perspectives

We have discussed and established several properties of the DWGM algorithm, originally
developed and analyzed in [13], which add understanding to the surprisingly good behavior
of the method. In particular, we have shown the A-orthogonality of the gradient vector
at the current iteration with all the previous gradient vectors, which yields the finite
termination of the method for the minimization of strictly convex quadratics. We have
also established the A-orthogonality of the gradient vector at the current iteration with all
the previously explored directions, including the current one, which shows that the method
guarantees at each iteration that the norm of the current gradient is optimal on the entire
explored linear manifold. We have also studied the finite termination in p < n iterations
when the n× n Hessian matrix has only p distinct eigenvalues, as it also happens for the
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CG and CR methods. This result clearly motivates the use of preconditioning strategies
when solving large-scale symmetric and positive definite linear systems.

An advantage of the DWGM algorithm is that it does not impose any of the estab-
lished A-orthogonality results in its algorithmic steps and as a consequence its extension
to the local minimization of non-quadratic functions is appealing, as observed by Oviedo
[13]. Another advantage for the possible extension of the DWGM algorithm to the non-
quadratic case is the tendency to outperform the CG method when low accuracy in the
gradient norm is required, which could be a key issue in practical applications.
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The first author would like to thank the Operations Research Group at CMA (Centro de
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