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Abstract

The delayed weighted gradient method, recently introduced in [13], is a low-cost
gradient-type method that exhibits a surprisingly and perhaps unexpected fast con-
vergence behavior that competes favorably with the well-known conjugate gradient
method for the minimization of convex quadratic functions. In this work, we establish
several orthogonality properties that add understanding to the practical behavior of
the method, including its finite termination. We show that if the n x n real Hessian
matrix of the quadratic function has only p < n distinct eigenvalues, then the method
terminates in p iterations. We also establish an optimality condition, concerning the
gradient norm, that motivates the future use of this novel scheme when low precision
is required for the minimization of non-quadratic functions.

Keywords: Gradient methods, conjugate gradient methods, smoothing techniques,
finite termination, Krylov subspace methods.

1 Introduction

Recently [13], Oviedo proposed a low-cost method for the minimization of large-scale con-
vex quadratic functions, which is based on a smoothing technique combined with a one-step
delayed gradient method. For gradient-type methods, smoothing techniques were previ-
ously developed [1, 11], as well as delayed schemes [7, 12]. A skillful combination of these
independent ideas produces the so-called delayed weighted gradient method (DWGM),
which exhibits an impressive fast convergence behavior that compares favorable with the
conjugate gradient (CG) method [13]. Moreover, we have observed that in exact arith-
metic DWGM also exhibits finite termination, which is a well-known property of the CG
method, as well as the Conjugate Residual (CR) method, in the convex quadratic case
[14]. Nevertheless, from the same initial guess, DWGM produces a different sequence of
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iterates to converge (or to terminate) at the same solution obtained by the CG or the CR
method (see Table 1 and Figure 1 below). In this work we will establish several properties
of the DWGM method, including its surprising finite termination for convex quadratics.

The rest of this document is organized as follows. In Section 2, we briefly describe the
DWGM algorithm and list the convergence properties established in [13]. In Section 3, we
describe and establish the additional properties concerning the orthogonality relationships
that exist among the involved sequence of vectors produced by the DWGM algorithm,
and we also establish the key results concerning finite termination and optimality of the
gradient norm. In Section 4, we present some final remarks and perspectives.

2 DWGM algorithm

Let us consider the minimization of the strictly convex quadratic function

fz) = %xTA:r — bz, (2.1)
where b € R", A € R"" is a symmetric and positive definite (SPD) matrix. Since A is
SPD and the gradient g(z) = V f(x) = Axz—b, then the global solution of (2.1) is the unique
solution A~1b of the linear system Az = b. For large n, many low-cost iterative methods
have been proposed and analyzed, and in particular some of the so-called gradient-type
methods have shown to be very competitive since they show an impressive fast linear
convergence; see, e.g., [2, 3, 4, 5, 6, 9]. They can all be seen as improved extensions of the
classical steepest descent method. From a starting point g € R", the well-known steepest
descent (or gradient) method is given by the iteration

Th1 = Tk — AkJk
where g = g(z)) and )\ is the minimizer of f(x — Agx). Therefore, if g, # 0,

A
9t Agr,

(2.2)

This classical low-cost method is globally convergent but its rate of convergence is very
slow in most practical cases.

We focus our attention on the DWGM method, that can be viewed as a special gradient-
type method. Following the development in [13], the DWGM algorithm is now presented.



Algorithm 1 DWGM

Require: A € R SPD, xy € R", x_1 = x0, 9o = g(x0), g—1 = go, € > 0.
1: k=0
2: while ||gx|l2 > ¢ do

wg = Agg

o = glwr/w} wy

Yk = Tk — Qkgk

Tk = gk — QWY

Br = gi_1(gr—1 — 1)/ lgk—1 — &3
Th1 = Th—1 + Br(Yr — Th—1)

Gk+1 = Gk—1 + Br(Te — gr—1)

10: k=k+1
11: end while

Notice that the iterations in Algorithm DWGM are stopped when the 2-norm of the
gradient at xj, is less than or equal to a preestablished small tolerance € > 0. Note also that
in addition to the sequence of iterates {z}}, the algorithm DWGM generates an auxiliary
sequence {yx}, and two associated gradient-type sequences given by

g, = Az —b and 71, = Ay, —b. (2.3)

Finally, we note that at every k, the scalar S is chosen at Step 7 to guarantee that
ng+1(7"k — gk—1) = 0, and the scalar a4 is chosen at Step 4 to minimize the gradient norm
along the negative gradient direction, as explained in [13, p. 731]; see also [5].

In [13], it is established that 55 > 0 for all &, that the sequence {||gx||2} is monotonically
decreasing, and moreover that the sequence {gx} converges to zero g-linearly when k goes
to infinity, which implies that the sequence {xj} converges to the unique global minimizer
of f(z). Furthermore, from the proof of Lemma 1 in [13], if gx # 0 we notice that

I7.l13 = 1lgkl13 — awgl Age,
and also that
lgrrille < llrell2 < llgellz < llrr—1ll2- (2.4)

Since ay, can be seen as an inverse Rayleigh quotient of A evaluated at the vector AY2g,
where ||gx||2 # 0, then for all &k

0<#<a <#
o k_)\min(A)

2.
-y < 00, (2.5)
where Apin(A) and Apax(A) are the smallest and largest eigenvalues of A, respectively.



3 Additional properties of DWGM

Let us recall that, in exact arithmetic, the A-orthogonality of the set of all search directions
plays a fundamental role in the finite termination of the CG method. Similarly, the
A-orthogonality of the set of all residual vectors plays a fundamental role in the finite
termination of the CR method see, e.g., [14]. We note that a similar A-orthogonality is
not imposed on any of the vector sets used by DWGM, however it also exhibits finite
termination for convex quadratic functions, as can be observed in Table 1 and Figure 1.
In order to establish this important fact we need a few preliminary results, which include
a few unexpected A-orthogonality relationships.

Lemma 1. In Algorithm DWGM

(a) Bo =1, and hence 1 = yo and g1 = 1p.
The following equalities hold for all k > 0
(b) ri Agy = 0.

(c) rIre = rlgg.

(d) giry1 (i — gr—1) = 0.

Proof. (a) Since g_; = go, using the definition of f; at Step 7 and «j at Step 4,
combined with the equality at Step 6, we obtain

Bo = g0 (90 — 10)/Ilgo — roll2 = w0 (gg wo) /i l|wolls = g§ Ago/ (v g5 A%go) = 1.

Now, using Sy = 1 in Steps 8 and 9, it follows that z1 = yo and g1 = ro.
(b) Combining Steps 6, 4, and 3, we have

rE Agr = (gk — cxAgr) T Agr. = g Agr — ar(gi A%gr) = 0.
(¢) Using Step 6 and (b) we obtain
rgrk — rkTgk = rkT(rk —gr) = —ak(rkTAgk) =0.

(d) Follows from the definition of 5y at Step 7 and simple algebraic manipulations. 0

We note that the choice of oy accounts for r%Agk = 0 for all £k > 0, which is an
A-orthogonality result that will play a key role in the rest of this section.

Lemma 2. Algorithm DWGM generates the sequence of gradient vectors {gi} such that
forallk > 1,
9k Agr—1 = 0.

Proof. Using (a) and (b) from Lemma 1, it follows that g; = 79 and g{ Agy =
rg Ago = 0, and the result holds for £ = 1. Let us now assume, by induction on k, that



Table 1: Gradient norm at each iteration (Iter i) of DWGM, CG, and CR, from the same
initial point, for the minimization of a strictly convex quadratic function when n = 5, and
the eigenvalues of A are given by A\; =4, for 1 <1 < 5.

Method 1Iter1 Iter2 Iter3 Iter4 TIterb

CG 1.3347 0.6458 0.2418 0.0368 0.0

CR 1.2934 0.5778 0.2231 0.0363 0.0

DWGM 0.6679 0.2259 0.0442 0.0064 0.0

Gradient norm
Gradient norm

—DWGM
w | +CR

L 2 L
1 2 3 4 5 6 7 8 9 10 1 0 10 2 30 40 50 60

Iterations Iterations

Figure 1: Convergence history of DWGM, CG, and CR, from the same initial point, for
the minimization of a strictly convex quadratic function. On the left, n = 11 and we
use the following distribution of eigenvalues of A: Ay = 0.1, A\; = i for 2 < ¢ < 10, and
A11 = 1000. On the right, n = 60 and we use the following distribution of eigenvalues of
A: A1 =01, \; =i for 2 < ¢ <59, and Ago = 6000.

ngAgk_l =0upto k= k > 2, and consider the next iteration. Hence, we need to show

that ggﬂAgk = 0. Using Step 9, (b) from Lemma 1, and noticing that by the inductive

hypothesis gng_ 1Agig =0, we have

g,;:JrlAg;; = (g5, + By(ry —95_,)) " Ag;, = (1 — 5;;)9,{_1149,; + ﬁ,;?“,{Ag;; =0,

and the result is established. |

Lemma 3. In Algorithm DWGM the following statements hold for all k > 1
(a) gi i1 = g{ gk
(b) Gi_17m% = gi_ 19k

(C) ggrkfl = g]{_lrk-



(@) llgr—1 = 7xl13 = llgr-1 — gxll3 — [(gf Age)?/ g Agr].
() 9f1(gk — gr—1) = 0.
Proof. (a) Using Steps 4 and 6 and Lemma 2, we have
gk (re—1 — gr—1) = =19}, Agr—1 = 0.
(b) Similar to the proof of (a),
i1 (ri — ) = —argi_1 Agy = 0.

(¢) The result is obtained directly from (a) and (b).
(d) Using Step 4 and 6 of the DWGM algorithm and Lemma 2, we have

lge—1 = .l3 = llgr—1 — g + s Agll3

9k—1 — Gkll2 9k—1 — 9k) OpAGE T Qg A gk
| 115 + 2( ) o Agr + ajgi A

lgk—1 — gkl|3 — 200t Agy, + aZgF A%g,,
= Nlge—1 — 9ll3 — (9} Agr)*/ g A%gi].

(e) Combining Step 6 of the DWGM algorithm, (d) from Lemma 1, and Lemma 2, it
follows that

Gr1(9k — gh—1) = Gh1 (e + ke Agr — gr—1) = g1 (Tk — gb—1) + argiy1 Agi = 0.

0

Lemma 4. In Algorithm DWGM the following statements hold for all k > 1
(a) gL\ 1 9k+1 = 9} 19k = 9} 19k—1-

(0) lgr—1 = 9ull3 = 9/ (9r—1 — gx)

(¢) Br = gi—1(96—1 — gr)/ (lge—1 — gkll3 — (9§ Agr)*/ 95 A%gi]) > 1.

Proof. (a) Combining Steps 3, 6, and 9 of the DWGM algorithm, we get

Gi1Gke1 = Ghi1 (Gh—1+Br(gr—gk—1—kAgr)) = g1 9k—1FBris1 (9r—r—1)— kg1 Agr.

From (e) in Lemma 3, ggﬂ(gk —gr—1) = 0, and from Lemma 2 we have that g,{HAgk =0,
and so g,ngkH = ngHgk_l. Now, using again (e) in Lemma 3, we obtain that

T T
9k+19k—-1 = Gi4+-19k-



(b) From (a) we obtain g} (gx — gx—1) = 0, and hence
0= (gr— gh1+9k-1)" (9 — 1) = llgr — ge—1113 — gi—1(96—1 — 1),
which implies that [lgx—1 — gxll5 = g/ (91 — g&)-
(c) First, by Cauchy-Schwarz inequality and (2.4), we obtain
gi-19k < llge—1ll2llgrll2 < llgr-1l3 = gi—19x-1,

and hence, using (b) in Lemma 3, we have that g7 |(gx—1 — &) = g} (9k—1 — gx) > 0.
Therefore, the numerator at Step 7 of the DWGM algorithm is positive and 8 > 0. Now,
combining Step 7 of the DWGM algorithm with (b) and (d) in Lemma 3 we get

5, — gt (gr—1— k) _ gt 1 (gk—1 — gr) (3.1)
lge—1 —7l3  (lgr—1 — g&ll3 — [(9F Agr)?/ gk A%gx])

Since B > 0 and g} | (gx—1 — gk) > 0, we obtain that the denominator in (3.1) must be
also positive. As a consequence

0 < (g Agr)? /gt A%gr < |lgk—1 — gkl3,

and we conclude using (b) that in (3.1) the numerator is strictly bigger than the denomi-
nator and both are positive, which establishes that 5, > 1. 0

In what follows we will establish some key A-orthogonality results, which will be ob-
tained simultaneously using an inductive argument.

Theorem 5. Algorithm DWGM generates the sequences {gx} and {ry} such that
(i) Fork>2, gt Agi =0 forall —-1<j<k-—2.
(i) For k >2,rFAg; =0 forall —1<j<k-2.

Proof. Concerning (i), since go = g—1, g1 = 7o and ag > 0 (see (2.5)), using (e) from
Lemma 3 and Steps 4 and 6 of the DWGM algorithm we obtain

95 Ag_1 = g3 Ago = g2 (g0 — o) /a0 = g4 (g0 — g1) /a0 = 0, (3.2)

and the result is obtained for k£ = 2. Concerning (i7), since oy, > 0 for all k (see (2.5)),
using (e) in Lemma 3, (@) in Lemma 1, Step 6 (twice), Lemma 2, and (3.2), it follows that

1 1 1 1
r3Ago = —r3(go—10) =——73 (91— g0) +0=——73(g1 — go) + —33 (91 — 90)
Qo (o7} (&%) Qo
1 o (&%)
= —(g2—12) (91— 90) = —93 Alg1 — 90) = — 93 Ag1 — g3 Ag_1] = 0.
Qg Qg Qo

7



Since 4 Ag_1 = 11 Ago = 0, the result is established for k = 2.
Let us now assume, by induction on k, that (¢) and (i) hold up to k = k£ > 3, and
consider the next iteration. Hence, we need to show that ggHAgj = 0, and also that

i Agi =0, forall -1<j< k—1.
For-1<j5< k—2, using Lemma 2, Step 9 of the DWGM algorithm, and the inductive
hypothesis associated with (i) and (i7), we have that

951 A95 = (G5 + Bi(ri, — 941) " Agj = (1= B)g]_ Agj + Byri Agj = 0.

For j = k — 1, using Step 6, adding and subtracting g; ,, and then using the fact that
Ti1 = 9o = (9i — 9i_o)/Bi_; (from Step 9 of DWGM algorithm), we get

1 1

T _ T _ T
951 A1 = 91 G~ i) = 9 T — G 9 — %)
Q-1 Q-1

Qf_1

= - [ﬁ;;lgf““(g’; ~ 9i—2) T 91 (G2 — 9i—1)
Adding and subtracting gl%T+1g’5—1’ using (e) from Lemma 3, and Step 9, we obtain

T T
9i (9 = 95_1) t 9 (Gi_q — Gi_s)
T _ k+1 k+1 T
g/%+1Agl%—1 = _O‘l% ; [ B, +9,;+1(9;;_2 — 1)

= %9 Gy — i) = (= Bgiy + Bl (g5, — 9iy), (3:3)

where v; = (8;_; — 1)/(a;_; B;_;) is a well-defined positive number. Finally, from (a)
in Lemma 4 we have that 95_1(91%71 — g;_5) = 0 and also that 9,;:(9;;,1 —g;_5) =0, and
hence using (3.3) combined with Step 6, Lemma 2, and the inductive hypothesis, yields

T _ T _ T

1A% = WP 7% Gy — Gim2) = %55 (9 — A% (91 — Gi2)
Bion 97 Al — 051 = 1830 9F Agiy — 9F Agi_,] =0
TePkY% Ip k-2 ~ Jie—1) T VePiY% Yi, A2 T 95 A9kl T

and (i) is established for all k > 2 and for —1 < j <k —2.
Concerning (i), for —1 < j < k — 1, using Step 9 of the DWGM algorithm, Lemma 2,
(7) which has now been established, and that S > 1 for all k, we obtain

P49 = g—hso + Bry — Vgl Agj = 505, Agi + =50, Agj =0,
k+1 k+1 k+1
and (7) is also established. 0

Summing up, combining (b) from Lemma 1 with (i7) from Theorem 5, it follows that
r,{Agj =0 for j = k and for j < k — 2. In other words, for all k, r; is A-orthogonal to



all previous gradient vectors except to gi_1. Moreover, combining Lemma 2 with (i) from
Theorem 5, it follows that for all k, g is A-orthogonal to all previous gradient vectors,
ie, forall k> 1

gt Ag; =0 forall j<k-1. (3.4)

We are now ready to show the finite termination of the DWGM algorithm.

Theorem 6. For any initial guess xog € R™, Algorithm DWGM generates the iterates xj,
k > 1, such that z, = A~'b.

Proof. From (3.4) we have that the n vectors gg, 0 < k < n—1, form an A-orthogonal
set, and hence they form a linearly independent set of n vectors in R™. Therefore, the next
vector g, € R™ must be zero to be able to keep the A-orthogonality with all the previous
gradient vectors. Thus, Az, = b and hence z,, = A~'b. d

n=1000, 5 distinct eigenvalues

10°

Gradient norm
=
o
&

1010 1

10715 I I I I I I I

Iterations

Figure 2: Convergence history of DWGM, CG, and CR, from the same initial point, for
the minimization of a strictly convex quadratic function, when n = 1000 and the matrix
A has only 5 distinct eigenvalues, equally distributed in the interval [10, 1000], each one
repeated 200 times.

It is worth noticing that in exact arithmetic the final termination of DWGM, as in the
CG and CR methods, is related to the number of distinct eigenvalues of the matrix A, and
not to the dimension of A. In Figure 2 this fact is illustrated on a strictly convex quadratic
function, with n = 1000 and for which the matrix A has only 5 distinct eigenvalues. Indeed,
we can observe that the three methods terminate in 5 iterations. A key observation, before
establishing this important result, is that for each k£ the gradient vector g; generated by
DWGM belongs to the Krylov subspace Ki11(A, go) (to be defined in our next lemma)
that only depends on the matrix A and the initial gradient vector go.



Lemma 7. In Algorithm DWGM, for all k > 1

9 € Kit1(A, go) = spanf{go, Ago, A%go, . .., A¥go}.

Proof. For k = 1, using (a) in Lemma 1, we have g1 = 19 = go — aAgo, and so
g1 € span{go, Ago}. Let us now assume, by induction on k, that for all 1 < j <k

9j € Kj+1(4, go) = span{go, Ago, A%go, ..., Al go},

and consider gi4+1. From Step 9 and Step 6 of the DWGM algorithm, we have

k1 = (1= Br)gr—1 + Berre = (1 — Br)gr—1 + Brgr — Brau Agy.-

By the inductive hypothesis, gx—1 € Kr(A, g0), gr € Kr+1(A, go), and so Agi € Kir2(A, go)-
Consequently, gr+1 € Kri2(A, go) and the result is established. a

Krylov spaces are closely related to polynomials. In fact, for any nonzero vector z € R™
and any positive integer m, it is clear that

Km(A, 2) == span{z, Az, A%z,..., A" 12} = {¢(A)z : ¢ € Pm_1},

where P,,—1 denotes the space of all polynomials of degree at most m — 1. Let us recall
that the minimal polynomial of z with respect to A is the nonzero monic polynomial g of
lowest degree such that g(A)z = 0. The results stated in our next theorem are well-known
and we present them here without a proof; for a complete discussion on the connection
between Krylov spaces and polynomials see, e.g., [15, Ch. VI] and [16, Ch. 4].

Theorem 8. The Krylov subspace K., (A, z) is of dimension m if and only if the degree of
the minimal polynomial § of z with respect to A is greater than or equal to m. Moreover,
if n is the degree of the the minimal polynomial q of z with respect to A, then K, (A, z) is
invariant under A and K, (A, z) = K, (4, z) for all m > 1.

We note that, based on Theorem 8, the degree of the minimal polynomial ¢ can also
be characterized as the smallest positive integer n such that IC;)(4,2) = Ky41(A4,2). In
particular, the relation between Krylov subspaces and the minimal polynomial of the
initial gradient vector go has played a fundamental role to study the finite termination
of the CG and CR methods when the matrix A has only p < n distinct eigenvalues; see
e.g., [10, 14]. It will also play a key role to study the finite termination of the DWGM
algorithm at iteration p.

Theorem 9. If A has only p < n distinct eigenvalues, then for any initial guess xg € R™
Algorithm DWGM generates the iterates xy, k > 1, such that x, = A™1b.

Proof. Since A is symmetric and positive definite, the eigenvalues \;, 1 < i < p, are
positive and the associated eigenvectors v;, 1 < ¢ < n, can be chosen to form an orthonor-
mal set. Without loss of generality we can assume that the eigenvectors {vy,...,v;, } are

10



associated with A, the eigenvectors {vi,1+1,...,v;,} with A2, and so on, until finally the
eigenvectors {v;,_,, ..., v, } are associated with \,, where 1 <4y < --- <, 1 < n. Clearly,
the set of eigenvectors form a basis in R, and so there exist real scalars v;, 1 < i < n,

such that ‘ ‘
21 192 n p
0= vt D vtk Y =) B
j=1 j=int J=ip1 i=1

where w; = 221:1 vvj, Wo = Z?ziﬁ—l v;v4, and so on until W, = Z?:ip,l v;v;. Hence,
go € span{wi,Ws,...,Wy}. Moreover, for any 1 < j < p, Aw; = A\jwj, and so the
subspace span{wi,Ws, ..., Wy} is invariant under A. Furthermore, for any 0 <k <p —1,
Akgy = b )\f@i and we obtain the following column-wise matrix equality

-1
] | IR I R
90 AgO . Ap_lgo = wy Wy - Wy . (35)
| \ | | | | 1A, - )\24

We note that the second matrix on the right hand side of (3.5) is a real pxp Vandermonde’s
matrix, whose determinant is given by H1§i<j§p()‘3' — \i); see, e.g., [8, Sec. 6.1]. Since
the p eigenvalues of A are distinct, we conclude that it is a nonsingular matrix. Hence,
the column space of the two n x p matrices in (3.5) are equal, which implies that

Kp(A, go) := span{go, Ago, AQQ(), e Apflgg} = span{wWi, Wa, ..., Wp}.

Consequently, (A, go) is also invariant under A, which in turn implies from Theorem 8
that the degree of the the minimal polynomial ¢ of gy with respect to A is p. Therefore,
combining (3.4) and Lemma 7, it follows that the only way for the vector g, to be A-
orthogonal to all the previous gradient vectors while being in K, (A4, go) is that g, = 0.
Thus, Az, = b and we obtain that x, = A~ 1p. d

In addition to the A-orthogonality results shown in Theorem 5, we can also study
the A-orthogonality of the current gradient g with all the previously explored search
directions. As can be noticed from Step 8 of the DWGM algorithm, the search direction
to move from x; to the next iterate is not given explicitly, instead it is given the direction
to move from xj_1 to xxy1, which uses the auxiliary vector yi. Nevertheless, we can
consider the vector x, — xr_1 as the search direction to move from z,_1 to x,. Notice
that for any 1 < j <k,

gr Al — xj-1) = gi [(Azj = b) — (Azj—1 = b)] = gi (95 — gj—1)-
Using this equality, our next result establishes the mentioned A-orthogonality.

Theorem 10. Algorithm DWGM generates the sequences {gx} such that for k > 2

gt(g; —gji—1) =0 forall 1<j<Ek. (3.6)

11



Proof. Let us notice, from (e) in Lemma 3, that g2 (g1 — go) = 0, and so the result is
obtained for k = 2. Let us now assume, by induction on k, that (3.6) holds up to k = k > 3,
and consider the next iteration. Hence, we need to show that ggﬂ(gj —gj—1) = 0 for all
~1<j<k+1.

When j = l%, the result follows directly from (e) in Lemma 3, and when j = k+ 1, the
result follows directly from (a) in Lemma 4. Now, if j < k — 2, using Steps 6 and 9 of the
DWGM algorithm, the inductive hypothesis on (3.6), Lemma 2, and (7) from Theorem 5,
we have

9 (95— 9i-0) = (1= Bpgi_y + Byl (95 — 9j-1) = Birt (95 — 9j-1)
= Bilgy — a;Ag) (95 — 95-1) = —a;B9; Alg; — gj—1)
= —;Bil(g] Agj) — (9] Agj-1)] = 0.

Finally, when j = k — 1, using Steps 6 (twice) and 9 of the DWGM algorithm, (d) from
Lemma 1, Lemma 2, and (¢) from Theorem 5, we obtain

T . T o7
gl%+1(gfc—1 — 99 = 9k+1(9;;_1 — T T = G y) = gl%H(r,; — 9i_o)
— T T
- 91%+1(9fc — 0 Ag;, = 9j_s) = 9;;+1(9;; — Gj_s)
_ T B T
= i1 Gho T B 1 (Mg = 9 0) = 95 0) = B 1954, (My — 950

T _ T
G191 9ot = Giea = @im1A%—1) = Bic1931 (Gi-1 — Gia)-

Therefore, (8;_; — 1)gg+1(g,;_1 — 94_o) = 0. Since B > 1 for all £ > 1 ((c) in Lemma 4),
we conclude that ggH(g,%_l — 9i_o) = 0, and (3.6) is established. O

Let us recall that the step length 4 is obtained in the DWGM algorithm to guarantee
that the gradient norm is minimized along the negative gradient direction to obtain yy;
see [13, p. 731]. Our next result establishes, using Theorem 10, that the gradient norm at
iteration k actually attains the minimum possible value on the linear manifold (subspace
if zyp = 0) of dimension k generated by all the search directions that have been explored
so far:

k
Vi={zeR" : $:x0+277j(a:j—azj_1) and n; € R, for 1 <j <k}
j=1
In that sense, the gradient norm in the DWGM algorithm plays a similar role to the one
played by the objective function in the CG method. Indeed, in the CG method (starting
at o = 0) the step length is chosen to guarantee that the function value f(x) is minimized
along the k-th search direction, but in reality based on the orthogonality of the gradient
with all the previous search directions, the function value attains the minimum value on
the entire explored subspace.

12



Corollary 11. In Algorithm DWGM, for all k > 1, the iterate xi is obtained such that
llgk|l2 is the minimum possible value of |V f(x)||2 on Vi.

Proof. Let us notice that the minimization of ||V f(z)||2 = ||Az —b||2 subject to x € Vj
is equivalent to the unconstrained minimization of

k k
G(n) = | Alwo + > mjley — z5-1)) = bl5 = 1> ni(g5 — 95-1) + goll3, (3.7)
j=1 j=1

where n = (11,...,m7)7 € R¥. Notice that the objective function G(n) is clearly a strictly
convex function in R¥. Hence, (3.7) has a unique solution, say 7* € R¥, and let us define
R(n*) = (Z?Zl n:(9; — gj—1) + go) € R™. Since G(n) is strictly convex, the necessary
optimality conditions

0G(n)
on;

= R(n*)T(gj —gj—1) =0, for 1 <j <k,

are also sufficient. Hence, it follows that R(n*) is orthogonal to the subspace generated by
the vectors {gr — gk—1,.--,91 — go}. From Theorem 10 we have that g is also orthogonal
to the subspace generated by {gx — gk—1,.-.,91 — go}. Moreover, notice that choosing
n € RF such that n; = 1for 1 < j <k, we obtain that x, € Vj, and R(n) = gi. Therefore,
by the uniqueness of the solution of (3.7) we obtain that g, = R(n*) € R™. Using now the
equivalence of the two minimization problems stated above, we have that the iterate xy
in algorithm DWGM can be written as

K
v =20+ > 15— 251),
=1

and the result is established. |

4 Conclusions and perspectives

We have discussed and established several properties of the DWGM algorithm, originally
developed and analyzed in [13], which add understanding to the surprisingly good behavior
of the method. In particular, we have shown the A-orthogonality of the gradient vector
at the current iteration with all the previous gradient vectors, which yields the finite
termination of the method for the minimization of strictly convex quadratics. We have
also established the A-orthogonality of the gradient vector at the current iteration with all
the previously explored directions, including the current one, which shows that the method
guarantees at each iteration that the norm of the current gradient is optimal on the entire
explored linear manifold. We have also studied the finite termination in p < n iterations
when the n x n Hessian matrix has only p distinct eigenvalues, as it also happens for the

13



CG and CR methods. This result clearly motivates the use of preconditioning strategies
when solving large-scale symmetric and positive definite linear systems.

An advantage of the DWGM algorithm is that it does not impose any of the estab-
lished A-orthogonality results in its algorithmic steps and as a consequence its extension
to the local minimization of non-quadratic functions is appealing, as observed by Oviedo
[13]. Another advantage for the possible extension of the DWGM algorithm to the non-
quadratic case is the tendency to outperform the CG method when low accuracy in the
gradient norm is required, which could be a key issue in practical applications.
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