
Single-Forward-Step Projective Splitting: Exploiting
Cocoercivity

Patrick R. Johnstone∗ Jonathan Eckstein∗

August 24, 2020

Abstract

This work describes a new variant of projective splitting for solving maximal mono-
tone inclusions and complicated convex optimization problems. In the new version,
cocoercive operators can be processed with a single forward step per iteration. In
the convex optimization context, cocoercivity is equivalent to Lipschitz differentiabil-
ity. Prior forward-step versions of projective splitting did not fully exploit cocoercivity
and required two forward steps per iteration for such operators. Our new single-
forward-step method establishes a symmetry between projective splitting algorithms,
the classical forward-backward splitting method (FB), and Tseng’s forward-backward-
forward method (FBF). The new procedure allows for larger stepsizes for cocoercive
operators: the stepsize bound is 2β for a β-cocoercive operator, the same bound as has
been established for FB. We show that FB corresponds to an unattainable boundary
case of the parameters in the new procedure. Unlike FB, the new method allows for a
backtracking procedure when the cocoercivity constant is unknown. Proving conver-
gence of the algorithm requires some departures from the prior proof framework for
projective splitting. We close with some computational tests establishing competitive
performance for the method.

1 Introduction

1.1 Problem Statement

For a collection of real Hilbert spaces {Hi}ni=0 consider the finite-sum convex minimization
problem:

min
x∈H0

n∑
i=1

(
fi(Gix) + hi(Gix)

)
, (1)

where every fi : Hi → (−∞,+∞] and hi : Hi → R is closed, proper, and convex, every hi is
also differentiable with Li-Lipschitz-continuous gradients, and the operators Gi : H0 → Hi

∗Department of Management Science and Information Systems, Rutgers Business School Newark and New
Brunswick, Rutgers University. Contact: patrick.r.johnstone@gmail.com, jeckstei@business.rutgers.edu

1

ar
X

iv
:1

90
2.

09
02

5v
3

 [
m

at
h.

O
C

]
 2

0
A

ug
 2

02
0

mailto::patrick.r.johnstone@gmail.com
mailto::jeckstei@business.rutgers.edu

are linear and bounded. Under appropriate constraint qualifications, (1) is equivalent to the
monotone inclusion problem of finding z ∈ H0 such that

0 ∈
n∑
i=1

G∗i (Ai +Bi)Giz (2)

where all Ai : Hi → 2Hi and Bi : Hi → Hi are maximal monotone and each Bi is L−1i -
cocoercive, meaning that it is single-valued and

Li〈Bix1 −Bix2, x1 − x2〉 ≥ ‖Bix1 −Bix2‖2

for some Li ≥ 0. (When Li = 0, Bi must be a constant operator, that is, there is some vi ∈ Hi

such that Bix = vi for all x ∈ Hi.) In particular, if we set Ai = ∂fi (the subgradient map
of fi) and Bi = ∇hi (the gradient of hi) then the solution sets of the two problems coincide
under a special case of the constraint qualification of [9, Prop. 5.3].

Defining Ti = Ai +Bi for all i, problem (2) may be written as

0 ∈
n∑
i=1

G∗iTiGiz. (3)

This more compact problem statement will be used occasionally in our analysis below.

1.2 Background

Operator splitting algorithms are an effective way to solve structured convex optimization
problems and monotone inclusions such as (1), (2), and (3). Their defining feature is that
they decompose a problem into a set of manageable pieces. Each iteration consists of rel-
atively easy calculations confined to each individual component of the decomposition, in
conjunction with some simple coordination operations orchestrated to converge to a so-
lution. Arguably the three most popular classes of operator splitting algorithms are the
forward-backward splitting (FB) [11], Douglas/Peaceman-Rachford splitting (DR) [26], and
forward-backward-forward (FBF) [40] methods. Indeed, many algorithms in convex opti-
mization and monotone inclusions are in fact instances of one of these methods. The popular
Alternating Direction Method of Multipliers (ADMM), in its standard form, can be viewed
as a dual implementation of DR [20].

Projective splitting is a relatively recent and currently less well-known class of operator
splitting methods, operating in a primal-dual space. Each iteration k of these methods
explicitly contructs an affine “separator” function ϕk for which ϕk(p) ≤ 0 for every p in
the set S of primal-dual solutions. The next iterate pk+1 is then obtained by projecting the
current iterate pk onto the halfspace defined by ϕk(p) ≤ 0, possibly with some over- or under-
relaxation. Crucially, ϕk is obtained by performing calculations that consider each operator
Ti separately, so that the procedures are indeed operator splitting algorithms. In the original
formulations of projective splitting [18, 19], the calculation applied to each operator Ti was
a standard resolvent operation, also known as a “backward step”. Resolvent operations
remained the only way to process individual operators as projective splitting was generalized
to cover compositions of maximal monotone operators with bounded linear maps [1] — as in

2

the Gi in (3) — and block-iterative (incremental) or asynchronous calculation patterns [10,
17]. Convergence rate and other theoretical results regarding projective splitting may be
found in [22, 23, 28, 29].

The algorithms in [39, 21] were the first to construct projective splitting separators by
applying calculations other than resolvent steps to the operators Ti. In particular, [21]
developed a procedure that could instead use two forward (explicit or gradient) steps for op-
erators Ti that are Lipschitz continuous. However, that result raised a question: if projective
splitting can exploit Lipschitz continuity, can it further exploit the presence of cocoercive
operators? Cocoercivity is in general a stronger property than Lipschitz continuity. How-
ever, when an operator is the gradient of a closed proper convex function (such as hi in (1)),
the Baillon-Haddad theorem [2, 3] establishes that the two properties are equivalent: ∇hi is
Li-Lipschitz continuous if and only if it is L−1i -cocoercive.

Operator splitting methods that exploit cocoercivity rather than mere Lipschitz continu-
ity typically have lower per-iteration computational complexity and a larger range of permis-
sible stepsizes. For example, both FBF and the extragradient (EG) method [25] only require
Lipchitz continuity, but need two forward steps per iteration and limit the stepsize to L−1,
where L is the Lipschitz constant. If one strengthens the assumption to L−1-cocoercivity,
one can instead use FB, which only needs one forward step per iteration and allows stepsizes
bounded away from 2L−1. One departure from this pattern is the recently developed method
of [31], which only requires Lipschitz continuity but uses just one forward step per iteration.
While this property is remarkable, it should be noted that its stepsizes must be bounded
by (1/2)L−1, which is half the allowable stepsize for EG or FBF and just a fourth of FB’s
stepsize range.

Much like EG and FBF, the projective splitting computation in [21] requires Lipschitz
continuity1, two forward steps per iteration, and limits the stepsize to be less than L−1 (when
not using backtracking). Considering the relationship between FB and FBF/EG leads to
the following question: is there a variant of projective splitting which converges under the
stronger assumption of L−1-cocoercivity, while processing each cocoercive operator with a
single forward step per iteration and allowing stepsizes bounded above by 2L−1?

This paper shows that the answer to this question is “yes”. Referring to (2), the new
procedure analyzed here requires one forward step on Bi and one resolvent for Ai at each
iteration. In the context of (1), the new procedure requires one forward step on ∇hi and one
proximal operator evaluation on fi. When the resolvent is easily computable (for example,
when Ai is the zero map and its resolvent is simply the identity), the new procedure can
effectively halve the computation necessary to run the same number of iterations as the
previous procedure of [21]. This advantage is equivalent to that of FB over FBF and EG
when cocoercivity is present. Another advantage of the proposed method is that it allows
for a backtracking linesearch when the cocoercivity constant is unknown, whereas no such
variant of general cocoercive FB is currently known.

The analysis of this new method is significantly different from our previous work in
[21], using a novel “ascent lemma” (Lemma 17) regarding the separators generated by the
algorithm. The new procedure also has an interesting connection to the original resolvent

1If backtracking is used, then all three of these methods can converge under weaker local continuity
assumptions.

3

calculation used in the projective splitting papers [18, 19, 1, 10]: in Section 2.2 below, we
show that the new procedure is equivalent to one iteration of FB applied to evaluating the
resolvent of Ti = Ai+Bi. That is, we can use a single forward-backward step to approximate
the operator-processing procedure of [18, 19, 1, 10], but still obtain convergence.

The new procedure has significant potential for asynchronous and incremental implemen-
tation following the ideas and techniques of previous projective splitting methods [10, 17, 21].
To keep the analysis relatively manageable, however, we plan to develop such generalizations
in a follow-up paper. Here, we will simply assume that every operator is processed once per
iteration.

1.3 The Optimization Context

For optimization problems of the form (1), our proposed method is a first-order proximal
splitting method that “fully splits” the problem: at each iteration, it utilizes the proximal
operator for each nonsmooth function fi, a single evaluation of the gradient ∇hi for each
smooth function hi, and matrix-vector multiplications involving Gi and G∗i . There is no need
for any form of matrix inversion, nor to use resolvents of composed functions like fi ◦ Gi,
which may in general be much more challenging to evaluate than resolvents of the fi. Thus,
the method achieves the maximum possible decoupling of the elements of (1). There are
also no assumptions on the rank, row spaces, or columns spaces of the Gi. Beyond the basic
resolvent, gradient, and matrix-vector multiplication operations invoked by our algorithm,
the only computations at each iteration are a constant number of inner products, norms,
scalar multiplications, and vector additions, all of which can all be carried out within flop
counts linear in the dimension of each Hilbert space.

Besides projective splitting approaches, there are a few first-order proximal splitting
methods that can achieve full splitting on (1). The most similar to projective splitting are
those in the family of primal-dual (PD) splitting methods; see [13, 12, 7, 35] and refer-
ences therein. In fact, projective splitting is also a kind of primal-dual method, since it
produces primal and dual sequences jointly converging to a primal-dual solution. However,
the convergence mechanisms are different: PD methods are usually constructed by applying
an established operator splitting technique such as FB, FBF, or DR to an appropriately
formulated primal-dual inclusion in a primal-dual product space, possibly with a specially
chosen metric. Projective splitting methods instead work by projecting onto (or through)
explicitly constructed separating hyperplanes in the primal-dual space.

There are several potential advantages of our proposed method over the more established
PD schemes. First, unlike the PD methods, the norms ‖Gi‖ do not effect the stepsize con-
straints of our proposed method, making such constraints easier to satisfy. Furthermore,
projective splitting’s stepsizes may vary at each iteration and may differ for each operator.
In general, projective splitting methods allow for asynchronous parallel and incremental
implementations in an arguably simpler way than PD methods (although we do not de-
velop this aspect of projective splitting in this paper). Projective splitting methods can
incorporate deterministic block-iterative and asynchronous assumptions [10, 17], resulting
in deterministic convergence guarantees, with the analysis being similar to the synchronous
case. In contrast, existing asynchronous and block-coordinate analyses of PD methods re-
quire stochastic assumptions which only lead to probabilistic convergence guarantees [35].

4

1.4 Notation and a Simplifying Assumption

We use the same general notation as in [21, 23, 22]. Summations of the form
∑n−1

i=1 ai will
appear throughout this paper. To deal with the case n = 1, we use the standard convention
that

∑0
i=1 ai = 0.

We will use a boldface w = (w1, . . . , wn−1) for elements of H1 × . . . × Hn−1. Let H ,
H0 × H1 × · · · × Hn−1, which we refer to as the “collective primal-dual space”, and note
that the assumption on Gn implies that Hn = H0. We use p to refer to points in H, so
p , (z,w) = (z, w1, . . . , wn−1).

Throughout, we will simply write ‖ · ‖i = ‖ · ‖ as the norm for Hi and let the subscript
be inferred from the argument. In the same way, we will write 〈·, ·〉i as 〈·, ·〉 for the inner
product of Hi. For the collective primal-dual space we will use a special norm and inner
product with its own subscript defined in (16).

We use the standard “⇀” notation to denote weak convergence, which is of course equiv-
alent to ordinary convergence in finite-dimensional settings.

For the definition of maximal monotone operators and their basic properties, we refer
to [4]. For any maximal monotone operator A and scalar ρ > 0, we will use the notation
JρA , (I + ρA)−1, to denote the resolvent operator, also known as the backward or implicit
step with respect to A. Thus,

x = JρA(t) ⇐⇒ x+ ρa = t and a ∈ Ax, (4)

the x and a satisfying this relation being unique. Furthermore, JρA is defined everywhere and
range(JA) = dom(A) [4, Prop. 23.2]. If A = ∂f for a closed, convex, and proper function
f , the resolvent is often referred to as the proximal operator and written as Jρ∂f = proxρf .
Computing the proximal operator requires solving

proxρf (t) = arg min
z

{
ρf(z) +

1

2
‖z − t‖2

}
.

Many functions encountered in applications to machine learning and signal processing have
proximal operators which can be computed exactly with low computational complexity. In
this paper, for a single-valued maximal monotone operator A, a forward step (also known as
an explicit step) refers to the direct evaluation of Ax (or ∇f(x) in convex optimization) as
part of an algorithm.

For the rest of the paper, we will impose the simplifying assumption

Gn : Hn → Hn , I (the identity operator).

As noted in [21], the requirement that Gn = I is not a very restrictive assumption. For
example, one can always enlarge the original problem by one operator, setting An = Bn = 0.

2 Projective Splitting

The goal of our algorithm will be to find a point in

S ,
{

(z, w1, . . . , wn−1) ∈H
∣∣ (∀ i ∈ {1, . . . , n− 1}) wi ∈ TiGiz, −

∑n−1
i=1 G

∗
iwi ∈ Tnz

}
.
(5)

5

It is clear that z∗ solves (2)–(3) if and only if there exist w∗1, . . . , w
∗
n−1 such that

(z∗, w∗1, . . . , w
∗
n−1) ∈ S.

Under reasonable assumptions, the set S is closed and convex; see Lemma 2. S is often
called the Kuhn-Tucker solution set of problem (3).

A separator-projector algorithm for finding a point in S (and hence a solution to (3))
will, at each iteration k, find a closed and convex set Hk which separates S from the current
point, meaning S is entirely in the set (preferably, the current point is not). One can then
attempt to “move closer” to the solution set by projecting the current point onto the set
Hk. This general setup guarantees that the sequence generated by the method is Fejér
monotone [8] with respect to S. This alone is not sufficient to guarantee that the iterates
actually converge to a point in the solution set. To establish this, one needs to show that
the set Hk “sufficiently separates” the current point from the solution set, or at least does
so sufficiently often. Such “sufficient separation” allows one to establish that any weakly
convergent subsequence of the iterates must have its limit in the set S, from which overall
weak convergence follows from [8, Prop. 2].

With S as in (5), the separator formulation presented in [10] constructs the halfspace Hk

using the function ϕk : H→ R defined as

ϕk(z, w1, . . . , wn−1) ,
n−1∑
i=1

〈Giz − xki , yki − wi〉+

〈
z − xni , yni +

n−1∑
i=1

G∗iwi

〉
(6)

=

〈
z,

n∑
i=1

G∗i y
k
i

〉
+

n−1∑
i=1

〈xki −Gix
k
n, wi〉 −

n∑
i=1

〈xki , yki 〉, (7)

for some auxiliary points (xki , y
k
i) ∈ H2

i . These points (xki , y
k
i) will be specified later and must

be chosen at each iteration in a specific manner guaranteeing the validity of the separator
and convergence to S. Among other properties, they must be chosen so that yki ∈ Tixki for
i = 1, . . . , n. Under this condition, it follows readily that ϕk has the promised separator
properties:

Lemma 1. The function ϕk defined in (6) is affine, and if yki ∈ Tixki for all i = 1, . . . , n,
then ϕk(z, w1, . . . , wn−1) ≤ 0 for all (z, w1, . . . , wn−1) ∈ S.

Proof. That ϕk is affine is clear from its expression in (7). Now suppose that yki ∈ Tixki for
all i = 1, . . . , n and p = (z, w1, . . . , wn−1) ∈ S. Then

ϕk(p) = −

(
n−1∑
i=1

〈Giz − xki , wi − yki 〉+ 〈z − xni , wn − yni 〉

)
, (8)

where wn , −
∑n−1

i=1 G
∗
iwi. From (z, w1, . . . , wn−1) ∈ S and the definition of S, one has that

wi ∈ Tiz for all i = 1, . . . , n − 1, as well as wn ∈ Tnz. Since yi ∈ Tixi for i = 1, . . . , n,
it follows from the monotonicity of T1, . . . , Tn that every inner product displayed in (8) is
nonnegative, and so ϕk(p) ≤ 0.

6

S

pk = (zk, wk
1 , . . . , w

k
n−1)ϕk(p) = 0

ϕk(p) > 0ϕk(p) ≤ 0

Figure 1: Properties of the hyperplane {p ∈H | ϕk(p) = 0} obtained from the affine func-
tion ϕk. This hyperplane is the boundary of the halfspace Hk, and it always holds that
ϕk(p

∗) ≤ 0 for every p∗ ∈ S. When ϕk(p
k) > 0 (as shown), the hyperplane separates the

current point pk from the solution set S.

pk = (zk, wk
1 , . . . , w

k
n−1)ϕk(p) = 0

pk+1

pk+2

ϕk+1(p) = 0

S

Figure 2: The basic operation of the method. Each iteration k constructs a separator ϕk
as shown in Figure 1 and then obtains the next iteration by projecting onto the halfspace
Hk = {p ∈H | ϕk(p) ≤ 0}, within which the solution set S is known to lie.

7

Figure 1 presents a rough depiction of the current algorithm iterate pk = (zk, wk1 , . . . , w
k
n−1)

and the separator ϕk in the case that ϕk(p
k) > 0. The basic iterative cycle pursued by pro-

jective splitting methods is:

1. For each operator Ti, identify a pair (xki , y
k
i) ∈ graTi. These pairs define an affine

function ϕk such that ϕk(p) ≤ 0 for all p ∈ S, using the construction (6) (or related
constructions for variations of the basic problem formulation).

2. Obtain the next iterate pk+1 by projecting the current iterate pk onto the halfspace
Hk , {p | ϕk(p) ≤ 0}, with possible over- or under-relaxation.

Figure 2 presents a rough depiction of two iterations of this process in the absence of
over- or under-relaxation. The projection operation in part 2 of the cycle is a straightforward
application of standard formulas for projecting onto a halfspace. For the particular formula-
tion (3), the necessary calculations are derived in [21] and displayed in Algorithm 3 below.
This projection is a low-complexity operation involving only inner products, norms, matrix
multiplication by Gi, and sums of scalars. For example, when Hi = Rd for i = 1, . . . , n and
each Gi = I, then the projection step has computational complexity O(nd).

The key question in the design of algorithms in this class therefore concerns step 1 in
the cycle: how might one select the points (xki , y

k
i) ∈ graTi so that convergence to S may be

established? The usual approach has been to choose (xki , y
k
i) ∈ graTi to be some function

of (zk, wki) such that ϕk(p
k) is positive and “sufficiently large” whenever pk 6∈ S. Then

projecting the current point onto this hyperplane makes progress toward the solution and
can be shown to lead (with some further analysis) to overall convergence. In the original
versions of projective splitting, the calculation of (xki , y

k
i) involved (perhaps approximately)

evaluating a resolvent; later [21] introduced the alternative of a two-forward-step calculation
for Lipschitz continuous operators that achieved essentially the same sufficient separation
condition.

Here, we introduce a one-forward-step calculation for the case of cocoercive operators.
A principal difference between this analysis and earlier work on projective splitting is that
processing all the operators T1, . . . , Tn at iteration k need not result in ϕk(p

k) being positive.
Instead, we establish an “ascent lemma” that relates the values ϕk(p

k) and ϕk−1(p
k−1) in

such a way that overall convergence may still be proved, even though it is possible that
ϕk(p

k) ≤ 0 at some iterations k. In particular, ϕk(p
k) will be larger than the previous value

ϕk−1(p
k−1), up to some error term that vanishes as k →∞.

When ϕk(p
k) ≤ 0, projection onto Hk = {p | ϕk(p) ≤ 0} results in pk+1 = pk. In this

case, the algorithm continues to compute new points (xk+1
i , yk+1

i), (xk+2
i , yk+2

i), . . . until, for
some ` ≥ 0, it constructs a hyperplane Hk+` such that the ϕk+`(p

k) > 0 and projection
results in pk+`+1 6= pk+` = pk.

Additional Notation for Projective Splitting

For an arbitrary (w1, w2, . . . , wn−1) ∈ H1 ×H2 × . . .×Hn−1 we use the notation

wn , −
n−1∑
i=1

G∗iwi,

8

as in the proof of Lemma 1. Note that when n = 1, w1 = 0. Under the above convention,
we may write ϕk : H→ R in the more compact form

ϕk(z, w1, . . . , wn−1) =
n∑
i=1

〈Giz − xki , yki − wi〉.

We also use the following notation for i = 1, . . . , n:

ϕi,k(z, wi) , 〈Giz − xki , yki − wi〉.

Note that ϕk(z, w1, . . . , wn−1) =
∑n

i=1 ϕi,k(z, wi).

2.1 The New Procedure

Suppose Ai = 0 for some i ∈ {1, . . . , n}. Since Bi is cocoercive, it is also Lipschitz continuous.
In [21] we introduced the following two-forward-step update for Lipschitz continuous Bi:

xki = Giz
k − ρki (BiGiz

k − wki)
yki = Bix

k
i .

Under Li-Lipschitz continuity and the condition ρki < 1/Li, it is possible to show that
updating (xki , y

k
i) in this way leads to ϕi,k(z

k, wki) being sufficiently positive to establish
overall convergence. Although we did not discuss it in [21], this two-forward step procedure
can be extended to handle nonzero Ai in the following manner:

xki + ρki a
k
i = Giz

k − ρki (BiGiz
k − wki) : aki ∈ Aixki (9)

yki = aki +Bix
k
i . (10)

Following (4), it is clear that (9) is essentially a resolvent calculation applied to its right-hand
side Giz

k − ρki (BiGiz
k − wki). This type of update, with forward steps and backward steps

together, was introduced in [39] for a more limited form of projective splitting.
An obvious drawback of (9)–(10) is that it requires two forward steps per iteration, one

to compute BiGiz
k and another to compute Bix

k
i . The initial motivation for the current

paper was the following question: is there a way to reuse Bix
k−1
i so as to avoid computing

BiGiz
k at each iteration, perhaps under the stronger assumption of cocoercivity? With some

effort we arrived at the following update for each block i = 1, . . . , n at each iteration k ≥ 0:

xki + ρia
k
i = (1− αi)xk−1i + αiGiz

k − ρi
(
bk−1i − wki

)
: aki ∈ Aixki (11)

bki = Bix
k
i (12)

yki = aki + bki , (13)

where αi ∈ (0, 1), ρi ≤ 2(1 − αi)/Li, and b0i = Bix
0
i . Condition (11) is readily satisfied

by some simple linear algebra calculations and a resolvent calculation involving Ai. In
particular, referring to (4), one may see that (11) is equivalent to computing

t = (1− αi)xk−1i + αiGiz
k − ρi

(
bk−1i − wki

)
xki = JρiAi

(t)

aki = (1/ρi)
(
t− xki

)
.

9

Following this resolvent calculation, (12) requires only an evaluation (forward step) on Bi,
and (13) is a simple vector addition. In comparison to (9), we have replaced BiGiz

k with
the previously computed point Bix

k−1
i . However, in order to establish convergence, it turns

out that we also need to replace Giz
k with a convex combination of xk−1i and Giz

k.
The parameter ρi plays the role of the stepsize in the resolvent calculation. It also plays

the role of a forward (gradient) stepsize, since it multiplies −bk−1i in (11), and bk−1i = Bix
k−1
i

by (12). From the assumptions on αi and ρi immediately following 13, it follows that ρi may
be made arbitrarily close to 2/Li by setting αi close to 0. However, in practice it may be
better to use an intermediate value, such as αi = 0.1, since doing so causes the update to
make significant use of the information in zk, a point computed more recently than xk−1i .

Computing (xki , y
k
i) as proposed in (11)-(13) does not guarantee that the quantity ϕi,k(z

k, wki)
is positive. In the next section, we give some intuition as to why (11)-(13) nevertheless leads
to convergence to S.

2.2 A Connection with the Forward-Backward Method

In the projective splitting literature preceeding [21], the pairs (xki , y
k
i) are solutions of

xki + ρiy
k
i = Giz

k + ρiw
k
i : yki ∈ Tixki (14)

for some ρi > 0, which — again following (4) — is a resolvent calculation. It can be shown
that the resulting (xki , y

k
i) ∈ graTi are such that ϕi,k(z

k, wki) is positive and sufficiently large
to guarantee overall convergence to a solution of (3). Since the stepsize ρi in (14) can be
any positive number, let us replace ρi with ρi/αi for some αi ∈ (0, 1) and rewrite (14) as

xki +
ρi
αi
yki = Giz

k +
ρi
αi
wki : yki ∈ Tixki . (15)

The reason for this reparameterization will become apparent below.
In this paper, Ti = Ai +Bi, with Bi being cocoercive and Ai maximal monotone. For Ti

in this form, computing the resolvent as in (14) exactly may be impossible, even when the
resolvent of Ai is available. With this structure, xki in (15) satisfies:

0 =
ρi
αi
yki + xki −

(
Giz

k +
ρi
αi
wki

)
=⇒ 0 ∈ ρi

αi
Aix

k
i +

ρi
αi
Bix

k
i + xki −

(
Giz

k +
ρi
αi
wki

)
which can be rearranged to 0 ∈ Aixki + B̃ix

k
i , where

B̃iv = Biv +
αi
ρi

(
v −Giz

k − ρi
αi
wki

)
.

Since Bi is L−1i -cocoercive, B̃i is (Li + αi/ρi)
−1-cocoercive [4, Prop. 4.12]. Consider the

generic monotone inclusion problem 0 ∈ Aix + B̃ix: Ai is maximal and B̃i is cocoercive,
and thus one may solve the problem with the forward-backward (FB) method [4, Theorem

10

26.14]. If one applies a single iteration of FB initialized at xk−1i , with stepsize ρi, to the
inclusion 0 ∈ Aix+ B̃ix, one obtains the calculation:

xki = JρiAi

(
xk−1i − ρiB̃ix

k−1
i

)
= JρiAi

(
xk−1i − ρi

(
Bix

k−1
i +

αi
ρi

(
xk−1i −Giz

k − ρi
αi
wki

)))
= JρiAi

(
(1− αi)xk−1i + αiGiz

k − ρi(Bix
k−1
i − wki)

)
,

which is precisely the update (11). So, our proposed calculation is equivalent to one iteration
of FB initialized at the previous point xk−1i , applied to the subproblem of computing the
resolvent in (15). Prior versions of projective splitting require computing this resolvent
either exactly or to within a certain relative error criterion, which may be time consuming.
Here, we simply make a single FB step toward computing the resolvent, which we will prove
is sufficient for the projective splitting method to converge to S. However, our stepsize
restriction on ρi will be slightly stronger than the natural stepsize limit that would arise
when applying FB to 0 ∈ Aix+ B̃ix.

3 The Algorithm

3.1 Main Problem Assumptions and Preliminary Results

Assumption 1. Problem (2) conforms to the following:

1. H0 = Hn and H1, . . . ,Hn−1 are real Hilbert spaces.

2. For i = 1, . . . , n, the operators Ai : Hi → 2Hi and Bi : Hi → Hi are monotone.
Additionally each Ai is maximal.

3. Each operator Bi is either L−1i -cocoercive for some Li > 0 (and thus single-valued) and
domBi = Hi, or Li = 0 and Bix = vi for all x ∈ Hi and some vi ∈ Hi (that is, Bi is
a constant function).

4. Each Gi : H0 → Hi for i = 1, . . . , n− 1 is linear and bounded.

5. Problem (2) has a solution, so the set S defined in (5) is nonempty.

Problem (1) will be equivalent to an instance of Problem (2) satisfying Assumption 1 if
each fi and hi is closed, convex, and proper, each hi has Li-Lipschitz continuous gradients,
and a special case of the constraint qualification in [9, Prop. 5.3] holds.

In order to apply a separator-projector algorithm, the target set must be closed and
convex. Establishing this for S is very similar to in our previous work [21], which in turn
follows many earlier results.

Lemma 2. Suppose Assumption 1 holds. The set S defined in (5) is closed and convex.

Proof. By [4, Cor. 20.28] each Bi is maximal. Furthermore, since dom(Bi) = Hi, Ti = Ai+Bi

is maximal monotone by [4, Cor. 25.5(i)]. The rest of the proof is identical to [21, Lemma
3].

11

Throughout, we will use p = (z,w) = (z, w1, . . . , wn−1) for a generic point in H, the
collective primal-dual space. For H, we adopt the following (standard) norm and inner
product:

‖(z,w)‖2 , ‖z‖2 +
n−1∑
i=1

‖wi‖2
〈
(z1,w1), (z2,w2)

〉
, 〈z1, z2〉+

n−1∑
i=1

〈w1
i , w

2
i 〉. (16)

Lemma 3. [21, Lemma 4] Let ϕk be defined as in (6). Then:

1. ϕk is affine on H.

2. With respect to inner product 〈·, ·〉 on H, the gradient of ϕk is

∇ϕk =

(
n−1∑
i=1

G∗i y
k
i + ykn, x

k
1 −G1x

k
n, x

k
2 −G2x

k
n, . . . , x

k
n−1 −Gn−1x

k
n

)
.

3.2 Abstract One-Forward-Step Update

We sharpen the notation for the one-forward-step update introduced in (11)–(13) as follows:

Definition 1. Suppose H and H′ are real Hilbert spaces, A : H → 2H is maximal-monotone
with nonempty domain, B : H → H is L−1-cocoercive, and G : H′ → H is bounded and
linear. For α ∈ [0, 1] and ρ > 0, define the mapping Fα,ρ(z, x, w;A,B,G) : H′ ×H2 → H2,
with additional parameters A,B, and G, as

Fα,ρ

(
z, x, w;

A,B,G

)
: = (x+, y+) :


t , (1− α)x+ αGz − ρ(Bx− w)

x+ = JρA (t)

y+ = ρ−1(t− x+) +Bx+.

(17)

To simplify the presentation, we will also use the notation

F i(z, x, w) , Fαi,ρi (z, x, w;Ai, Bi, Gi) . (18)

With this notation, (11)–(13) may be written as (xki , y
k
i) = F i(zk, xk−1i , wki).

3.3 Algorithm Definition

Algorithms 1–3 define the main method proposed in this work. They produce a sequence
of primal-dual iterates pk = (zk, wk1 , . . . , w

k
n−1) ∈ H and, implicitly, wkn , −

∑n−1
i=1 G

∗
iw

k
i .

Algorithm 1 gives the basic outline of our method; for each operator, it invokes either our
new one-forward-step update with a user-defined stepsize (through line 6) or its backtracking
variant given in Algorithm 2 (through line 4). Together, algorithms 1–2 specify how to update
the points (xki , y

k
i) used to define the separating affine function ϕk in (6). Algorithm 3,

called from line 7 of Algorithm 1, defines the projectToHplane function that performs the
projection step to obtain the next iterate.

Taken together, algorithms 1–3 are essentially the same as Algorithm 2 of [21], except
that the update of (xki , y

k
i) uses the new procedure given in (11)–(13). For simplicity, the

12

Algorithm 1: One-Forward-Step Projective Splitting with Backtracking

Input: (z1,w1) ∈H, B ⊆ {1, . . . , n} (the operators requiring backtracking), γ > 0,
δ ∈ (0, 1), and ρ̂. For i = 1, . . . , n: x0i ∈ Hi and 0 < αi ≤ 1. For i ∈ B: ρ0i > 0
θ̂i ∈ dom(Ai), ŵi ∈ Aiθ̂i +Biθ̂i, and y0i ∈ Aix0i +Bix

0
i . For i /∈ B: ρi > 0.

1 For i ∈ B set η0i = 0
2 for k = 1, 2, . . . do
3 for i ∈ B do
4 (xki , y

k
i , ρ

k
i , η

k
i) = backTrack(zk, xk−1i , wki , yk−1i , ρk−1i , ηk−1i ; i)

/* backTrack defined in Algorithm 2 */

5 for i /∈ B do
6 (xki , y

k
i) = F i(zk, xk−1i , wki) /* F i defined in (17)-(18) */

7 (πk, z
k+1,wk+1) = projectToHplane(zk, wk, {xki , yki }ni=1)

/* projectToHplane defined in Algorithm 3 */

8 if πk = 0 then
9 return zk+1

Algorithm 2: Backtracking procedure

Global Variables for Function: Gi, Ai, Bi, αi, θ̂i, and ŵi for i ∈ B, δ and ρ̂.
1 Function backTrack(z, x, w, y, ρ, η; i):

2 A = Ai, B = Bi, G = Gi, α = αi, θ̂ = θ̂i, ŵ = ŵi
3 ϕ = 〈Gz − x, y − w〉
4 ρ = min{(1 + αη)ρ, ρ̂}
5 Choose ρ̃1 ∈ [ρ, ρ]
6 for j = 1, 2, . . . do
7 (x̃j, ỹj) = Fα,ρ̃j(z, x, w;A,B,G) /* F defined in (17) */

8 ŷj = ρ̃−1j ((1− α)x+ αGz − x̃j) + w

9 ϕ+
j = 〈Gz − x̃j, ỹj − w〉

10 if ‖x̃j − θ̂‖ ≤ (1− α)‖x− θ̂‖+ α‖Gz − θ̂‖+ ρ̃j‖w − ŵ‖
11 and ϕ+

j ≥
ρ̃j
2α

(‖ỹj − w‖2 + α‖ŷj − w‖2) + (1− α)
(
ϕ− ρ̃j

2α
‖y − w‖2

)
then

12 η = ‖ŷj − w‖2/‖ỹj − w‖2
13 return (x̃j, ỹj, ρ̃j, η)

14 ρ̃j+1 = δρ̃j

algorithm also lacks the block-iterative and asynchronous features of [10, 17, 21], which we
plan to combine with algorithms 1–3 in a follow-up paper.

The computations in projectToHplane are all straightforward and of relatively low com-
plexity. They consist of matrix multiplies by Gi, inner products, norms, and sums of scalars.
In particular, there are no potentially difficult minimization problems involved. If Gi = I
and Hi = Rd for i = 1, . . . , n, then the computational complexity of projectToHplane is

13

Algorithm 3: Projection Update

Global Variables for Function: Gi for i = 1, . . . , n− 1, and γ.
1 Function projectToHplane(z,w, {xi, yi}ni=1):
2 ui = xi −Gixn, i = 1, . . . , n− 1,

3 v =
∑n−1

i=1 G
∗
i yi + yn

4 π = ‖u‖2 + γ−1‖v‖2
5 if π > 0 then

6 ϕ(p) = 〈z, v〉+
∑n−1

i=1 〈wi, ui〉 −
∑n

i=1〈xi, yi〉
7 τ = 1

π
·max {0, ϕ(p)}

8 else
9 return (0, xn, y1, . . . , yn−1)

10 z+ = z − γ−1τv
11 w+

i = wi − τui, i = 1, . . . , n− 1,

12 w+
n = −

∑n−1
i=1 G

∗
iw

+
i

13 return (π, z+,w+)

O(nd).

3.4 Algorithm Parameters

The method allows two ways to select the stepsizes ρi. One may either choose them manually
or invoke the backTrack procedure. If one decides to select the stepsizes manually, the upper
bound condition ρi ≤ 2(1−αi)/Li is required whenever Li > 0. However, it may be difficult
to ensure that this condition is satisfied when the cocoercivity constant is hard to estimate.
The global cocoercivity constant Li may also be conservative in parts of the domain of
Bi, leading to unnecessarily small stepsizes in some cases. We developed the backtracking
linesearch technique for these reasons. The set B holds the indices of operators for which
backtracking is to be used.

For a trial stepsize ρ̃j, Algorithm 2 generates candidate points (x̃j, ỹj) using the single-
forward-step procedure of (17). For these candidates, Algorithm 2 checks two conditions
on lines 10–11. If both of these inequalities are satisfied, then backtracking terminates and
returns the successful candidate points. If either condition is not satisfied, the stepsize is
reduced by the factor δ ∈ (0, 1) and the process is repeated. These two conditions arise in
the analysis in Section 5.

The parameter ρ̂ is a global upper bound on the stepsizes (both backtracked and fixed)
and must be chosen to satisfy Assumption 2. In backTrack, one must choose an initial trial
stepsize within a specified interval (line 5 of Algorithm 2). This interval arises in the analysis
(see lemmas 16 and 17). Written in terms of the parameters passed into backTrack in the
call on line 4 of Algorithm 1, and assuming the global upper bound ρ̂ is sufficiently large to
not be active on line 5, the interval is[

ρki ,

(
1 + αi

‖ŷki − wki ‖
‖yki − wki ‖

)
ρki

]
.

14

An obvious choice is to set the initial stepsize to be at the upper limit of the interval. In
practice we have observed that ‖yki − wki ‖ and ‖ŷki − wki ‖ tend to be approximately equal,
so this allows for an increase in the trial stepsize by up to a factor of approximately 1 + αi
over the previous stepsize.

Note that backTrack returns the chosen stepsize ρ̃j as well as the quantity η which are
needed to compute the available interval in the call to backTrack during the next iteration.

In the analysis it will be convenient to let ρ̃(i,k) be the initial trial stepsize chosen during
iteration k of Algorithm 1, when backTrack has been called through line 4 for some i ∈ B.

We call the stepsize returned by backTrack ρki . Assuming that backTrack always termi-
nates finitely (which we will show to be the case), we may write for i ∈ B

(xki , y
k
i) = Fαi, ρki

(zk, xk−1i , wki ;Ai, Bi, Gi)

The only difference between the update for i ∈ B on line 6 and this update for i /∈ B is that
in the former, the stepsize ρki is discovered by backtracking, while in the latter it is directly
user-supplied.

The backTrack procedure computes several auxiliary quantities used to check the two
backtracking termination conditions. The point ŷj is calculated to be the same as ŷ given in
Definition 2. The quantity ϕ+

j = 〈Gz−x̃j, ỹj−w〉 is the value of ϕi,k(z
k, wki) corresponding to

the candidate points (x̃j, ỹj). The quantity ϕ computed on line 3 is equal to ϕi,k−1(z
k, wki) =

〈Giz
k−xk−1i , yk−1i −wki 〉. Typically, we want ϕ+

j to be as large as possible to get a bigger cut
with the separating hyperplane, but the condition checked on line 11 will ultimately suffice
to prove convergence.

Algorithm 1 has several additional parameters.

(θ̂i, ŵi) these are used in the backtracking procedure for i ∈ B. An obvious choice which
we used in our numerical experiments was (θ̂i, ŵi) = (x0i , y

0
i), i.e. the initial point.

γ > 0: allows for the projection to be performed using a slightly more general primal-dual
metric than (16). In effect, this parameter changes the relative size of the primal and
dual updates in lines 10–11 of Algorithm 3. As γ increases, a smaller step is taken in
the primal and a larger step in the dual. As γ decreases, a smaller step is taken in
the dual update and a larger step is taken in the primal. See [19, Sec. 5.1] and [18,
Sec. 4.1] for more details.

In Algorithm 1, the averaging parameters αi and user-selected stepsizes ρi are fixed across
all iterations. In the preprint version of this paper [24], we instead allow these parameters to
vary by iteration, subject to certain restrictions. Doing so complicates the notation and the
analysis, so for relative simplicity we consider only fixed values of these parameter here. This
simplification also accords with the parameter choices in our computational tests below. For
the full, more complicated analysis, please refer to [24].

As written, Algorithm 1 is not as efficient as it could be. On the surface, it seems that
we need to recompute Bix

k−1
i in order to evaluate F on line 6. However, Bix

k−1
i was already

computed in the previous iteration and can obviously be reused, so only one evaluation of
Bi is needed per iteration. Similarly, within backTrack, each invocation of F on line 7 may
reuse the quantity Bx = Bix

k−1
i which was computed in the previous iteration of Algorithm

15

1. Thus, each iteration of the loop within backTrack requires one new evaluation of B, to
compute Bx̃j within F .

We now precisely state our stepsize assumption for the manually chosen stepsizes, as well
as the stepsize upper bound ρ̂.

Assumption 2. For i /∈ B: If Li > 0, then 0 < ρi ≤ 2(1 − αi)/Li, otherwise ρi > 0. The
parameter ρ̂ must satisfy

ρ̂ ≥ max

{
max
i∈B

ρ0i ,max
i/∈B

ρi

}
. (19)

Note that if Li > 0, Assumption 2 effectively limits αi to be strictly less than 1, otherwise
the stepsize ρi would be forced to 0, which is prohibited. In this case αi must be chosen in
(0, 1). On the other hand, if Li = 0, there is no constraint on ρi other than that it is positive
and nonzero, and in this case αi may be chosen in (0, 1].

3.5 Separator-Projector Properties

Lemma 4 details the key results for Algorithm 1 that stem from it being a seperator-projector
algorithm. While these properties alone do not guarantee convergence, they are important
to all of the arguments that follow.

Lemma 4. Suppose that Assumption 1 holds. Then for Algorithm 1

1. The sequence {pk} = {(zk, wk1 , . . . , wkn−1)} is bounded.

2. If the algorithm never terminates via line 9, pk−pk+1 → 0. Furthermore zk−zk−1 → 0
and wki − wk−1i → 0 for i = 1, . . . n.

3. If the algorithm never terminates via line 9 and ‖∇ϕk‖ remains bounded for all k ≥ 1,
then lim supk→∞ ϕk(p

k) ≤ 0.

Proof. Parts 1–2 are proved in lemmas 2 and 6 of [21]. Part 3 can be found in Part 1 of
the proof of Theorem 1 in [21]. The analysis in [21] uses a different procedure to construct
the pairs (xki , y

k
i), but the result is generic and not dependent on that particular procedure.

Note also that [21] establishes the results in a more general setting allowing asynchrony and
block-iterativeness, which we do not analyze here.

4 The Special Case n = 1

Before starting the analysis, we consider the important special case n = 1. In this case, we
have by assumption that G1 = I, wk1 = 0, and we are solving the problem 0 ∈ Az+Bz, where
both operators are maximal monotone and B is L−1-cocoercive. In this case, Algorithm 1
reduces to a method which is similar to FB. Let xk , xk1, yk , yk1 , α , α1, and ρ , ρ1.

16

Assuming for simplicity that B = {∅}, meaning backtracking is not being used, then the
updates carried out by the algorithm are

xk = JρA
(
(1− α)xk−1 + αzk − ρBxk−1

)
(20)

yk = Bxk +
1

ρ

(
(1− α)xk−1 + αzk − ρBxk−1 − xk

)
zk+1 = zk − τ kyk, where τ k =

max{〈zk − xk, yk〉, 0}
‖yk‖2

.

If α = 0, then for all k ≥ 2, the iterates computed in (20) reduce simply to

xk = JρA
(
xk−1 − ρBxk−1

)
which is exactly FB. However, α = 0 is not allowed in our analysis. Thus, FB is a forbidden
boundary case which may be approached by setting α arbitrarily close to 0. As α approaches
0, the stepsize constraint ρ ≤ 2(1−α)/L approaches the classical stepsize constraint for FB:
ρ ≤ 2/L − ε for some arbitrarily small constant ε > 0. A potential benefit of Algorithm 1
over FB in the n = 1 case is that it does allow for backtracking when L is unknown or only
a conservative estimate is available.

5 Main Proof

The core of the proof strategy will be to establish (21) below. If this can be done, then weak
convergence to a solution follows from part 3 of Theorem 1 in [21].

Lemma 5. Suppose Assumption 1 holds and Algorithm 1 produces an infinite sequence of
iterations without terminating via Line 9. If

(∀i = 1, . . . , n) : yki − wki → 0 and Giz
k − xki → 0, (21)

then there exists (z,w) ∈ S such that (zk,wk) ⇀ (z,w). Furthermore, we also have xki ⇀
Giz̄ and yki ⇀ wi for all i = 1, . . . , n− 1, xkn ⇀ z̄, and ykn ⇀ −

∑n−1
i=1 G

∗
iwi.

Proof. Equivalent to part 3 of the proof of Theorem 1 in [21].

Lemma 5 can be intuitively understood as follows. If we define, for all k ≥ 1,

εk = max
i=1,...,n

{
max

{
‖yki − wki ‖, ‖Giz

k − xki ‖
}}

,

then (21) is equivalent to saying that εk → 0. For all k ≥ 1, we have (xki , y
k
i) ∈ graTi. If

εk = 0, then wki = yki ∈ Tixki = TiGiz
k and since

∑n
i=1G

∗
iw

k
i = 0, it follows that (zk,wk) ∈ S

and zk solves (3). Thus εk can be thought of as the “residual” of the algorithm which
measures how far it is from finding a point in S and a solution to (3). In finite dimension,
it is straightforward to show that if εk → 0, (zk,wk) must converge to some element of S.
This can be done using Fejér monotonicity [4, Theorem 5.5] combined with the fact that
the graph of a maximal-monotone operator in a finite-dimensional Hilbert space is closed [4,

17

Proposition 20.38]. However in the general Hilbert space setting the proof is more delicate,
since the graph of a maximal-monotone operator is not in-general closed in the weak-to-
weak topology [4, Example 20.39]. Nevertheless the overall result was established in the
general Hilbert space setting in part 3 of Theorem 1 of [21], which is itself an instance of [1,
Proposition 2.4] (see also [4, Proposition 26.5]). An arguably more transparent proof can be
found in [16] (this proof is only for the case n = 2, but it can be extended).

In order to establish (21), we start by establishing certain contractive and “ascent” prop-
erties for the mapping F , and also show that the backtracking procedure terminates finitely.
Then, we prove the boundedness of xki and yki , in turn yielding the boundedness of the gradi-
ents ∇ϕk and hence the result that lim supk→∞{ϕk(pk)} ≤ 0 by Lemma 4. Next we establish
a “Lyapunov-like” recursion for ϕi,k(z

k, wki), relating ϕi,k(z
k, wki) to ϕi,k−1(z

k−1, wk−1i). Even-
tually this result will allow us to establish that lim infk ϕk(p

k) ≥ 0 and hence that ϕk(p
k)→ 0,

which will in turn allow an argument that yki − wki → 0. The proof that Giz
k − xki → 0 will

then follow fairly elementary arguments.
The primary innovations of the upcoming proof are the ascent lemma and the way that

it is used in Lemma 18 to establish ϕk(p
k) → 0 and yki − wki → 0. This technique is a

significant deviation from previous analyses in the projective splitting family. In previous
work, the strategy was to show that ϕi,k(z

k, wki) ≥ C max{‖Giz
k − xki ‖2, ‖yki − wki ‖2} for a

constant C > 0, which may be combined with lim supϕk(p
k) ≤ 0 to imply (21). In contrast,

in the algorithm of this paper we cannot establish such a result and in fact ϕi,k(z
k, wki) may

be negative. Instead, we relate ϕk(p
k) to ϕk−1(p

k−1) to show that the separation improves
at each iteration in a way which still leads to overall convergence.

5.1 Some Basic Results

We begin by stating three elementary results on sequences, which may be found in [36], and
a basic, well known nonexpansivity property for forward steps with cocoercive operators.

Lemma 6. [36, Lemma 1, Ch. 2] Suppose that ak ≥ 0 for all k ≥ 1, b ≥ 0, 0 ≤ τ < 1, and
ak+1 ≤ τak + b for all k ≥ 1. Then {ak} is a bounded sequence.

Lemma 7. [36, Lemma 3, Ch. 2] Suppose that ak ≥ 0, bk ≥ 0 for all k ≥ 1, bk → 0, and
there is some 0 ≤ τ < 1 such that ak+1 ≤ τak + bk for all k ≥ 1. Then ak → 0.

Lemma 8. Suppose that 0 ≤ τ < 1 and {rk}, {bk} are sequences in R with the properties
bk → 0 and rk+1 ≥ τrk + bk for all k ≥ 1. Then lim infk→∞{rk} ≥ 0.

Proof. Negating the assumed inequality yields −rk+1 ≤ τ(−rk)− bk. Applying [36, Lemma
3, Ch. 2] then yields lim sup{−rk} ≤ 0.

Lemma 9. Suppose B is L−1-cocoercive and 0 ≤ ρ ≤ 2/L. Then for all x, y ∈ dom(B)

‖x− y − ρ(Bx−By)‖ ≤ ‖x− y‖. (22)

Proof. Squaring the left hand side of (22) yields

‖x− y − ρ(Bx−By)‖2 = ‖x− y‖2 − 2ρ〈x− y,Bx−By〉+ ρ2‖Bx−By‖2

≤ ‖x− y‖2 − 2ρ

L
‖Bx−By‖2 + ρ2‖Bx−By‖2

≤ ‖x− y‖2.

18

5.2 A Contractive Result

We begin the main proof with a result on the one-forward-step mapping: F from Definition
1. The following lemma will ultimately be used to show that the iterates remain bounded.

Lemma 10. Suppose (x+, y+) = Fα,ρ(z, x, w;A,B,G), where Fα,ρ is given in Definition 1.
Recall that B is L−1-cocoercive. If L = 0 or ρ ≤ 2(1− α)/L, then

‖x+ − θ̂‖ ≤ (1− α)‖x− θ̂‖+ α‖Gz − θ̂‖+ ρ ‖w − ŵ‖ (23)

for any θ̂ ∈ dom(A) and ŵ ∈ Aθ̂ +Bθ̂.

Proof. Select any θ̂ ∈ dom(A) and ŵ ∈ Aθ̂ + Bθ̂. Let â = ŵ − Bθ̂ ∈ Aθ̂. It follows
immediately from (4) that

θ̂ = JρA(θ̂ + ρâ). (24)

Therefore, (17) and (24) yield

‖x+ − θ̂‖ =
∥∥∥JρA((1− α)x+ αGz − ρ(Bx− w)

)
− JρA(θ̂ + ρâ)

∥∥∥
(a)

≤
∥∥∥(1− α)x+ αGz − ρ(Bx− w)− θ̂ − ρâ

∥∥∥
(b)
=

∥∥∥∥(1− α)

(
x− θ̂ − ρ

1− α

(
Bx−Bθ̂

))
+ α(Gz − θ̂) + ρ

(
w − â−Bθ̂

)∥∥∥∥
(c)

≤ (1− α)

∥∥∥∥x− θ̂ − ρ

1− α

(
Bx−Bθ̂

)∥∥∥∥+ α‖Gz − θ̂‖+ ρ
∥∥∥w − (â+Bθ̂)

∥∥∥ (25)

(d)

≤ (1− α)‖x− θ̂‖+ α‖Gz − θ̂‖+ ρ ‖w − ŵ‖ .

To obtain (a), one uses the nonexpansivity of the resolvent [4, Prop. 23.8(ii)]. To obtain (b),
one regroups terms and adds and subtracts Bθ̂. Then (c) follows from the triangle inequality.
Finally we consider (d): If L > 0, apply Lemma 9 to the first term on the right-hand side of
(25) with the stepsize ρ/(1− α) which by assumption satisfies

ρ

1− α
≤ 2

L

by Assumption 2. Alternatively, if L = 0, implying that B is a constant-valued operator,
then Bx = Bθ̂ and (d) is just an equality.

We now prove the key “ascent lemma”. It shows that, while the one-forward-step update
is not guaranteed to find a separating hyperplane at each iteration, it does make a certain
kind of progress toward separation.

19

Lemma 11. Suppose (x+, y+) = Fα,ρ(z, x, w;A,B,G), where Fα,ρ is given in Definition 1.
Recall B is L−1-cocoercive. Let y ∈ Ax + Bx and define ϕ , 〈Gz − x, y − w〉. Further,
define ϕ+ , 〈Gz − x+, y+ − w〉, t as in (17), and ŷ , ρ−1(t − x+) + Bx. If α ∈ (0, 1] and
ρ ≤ 2(1− α)/L whenever L > 0, then

ϕ+ ≥ ρ

2α

(
‖y+ − w‖2 + α‖ŷ − w‖2

)
+ (1− α)

(
ϕ− ρ

2α
‖y − w‖2

)
. (26)

Proof. Since y ∈ Ax+Bx, there exists a ∈ Ax such that y = a+Bx. Let a+ , ρ−1(t−x+).
Note by (4) that a+ ∈ Ax+. With this notation, ŷ = a+ +Bx.

We may write the x+-update in (17) as

x+ + ρa+ = (1− α)x+ αGz − ρ(Bx− w)

which rearranges to

x+ = (1− α)x+ αGz − ρ(ŷ − w) =⇒ −x+ = −αGz − (1− α)x+ ρ(ŷ − w).

Adding Gz to both sides yields

Gz − x+ = (1− α)(Gz − x) + ρ(ŷ − w). (27)

Substituting this equation into the definition of ϕ+ yields

ϕ+ = 〈Gz − x+, y+ − w〉
=
〈
(1− α)(Gz − x) + ρ(ŷ − w), y+ − w

〉
= (1− α)〈Gz − x, y+ − w〉+ ρ〈ŷ − w, y+ − w〉
= (1− α)〈Gz − x, y − w〉+ (1− α)〈Gz − x, y+ − y〉+ ρ〈ŷ − w, y+ − w〉
= (1− α)ϕ+ (1− α)〈Gz − x, y+ − y〉+ ρ〈ŷ − w, y+ − w〉. (28)

We now focus on the second term in (28). Assume for now that L > 0 (we will deal with
the L = 0 case below). We write

〈Gz − x, y+ − y〉 = 〈x+ − x, y+ − y〉+ 〈Gz − x+, y+ − y〉
= 〈x+ − x, a+ − a〉+ 〈x+ − x,Bx+ −Bx〉+ 〈Gz − x+, y+ − y〉 (29)

≥ L−1‖Bx+ −Bx‖2 + 〈Gz − x+, y+ − y〉
= L−1‖Bx+ −Bx‖2 + 〈Gz − x+, y+ − w〉+ 〈Gz − x+, w − y〉
= L−1‖Bx+ −Bx‖2 + ϕ+ + 〈Gz − x+, w − y〉. (30)

To derive (29) we substituted (y+, y) = (a+ +Bx+, a+Bx) and for the following inequality
we used the monotonicity of A and L−1-cocoercivity of B (recall that a ∈ Ax and a+ ∈ Ax+).
Substituting the resulting inequality back into (28) yields

ϕ+ = (1− α)ϕ+ (1− α)〈Gz − x, y+ − y〉+ ρ〈ŷ − w, y+ − w〉
≥ (1− α)ϕ+ (1− α)

(
L−1‖Bx+ −Bx‖2 + ϕ+ + 〈Gz − x+, w − y〉

)
+ ρ〈ŷ − w, y+ − w〉.

20

Subtracting (1− α)ϕ+ from both sides of the above inequality produces

αϕ+ ≥ (1− α)
(
ϕ+ L−1‖Bx+ −Bx‖2 + 〈Gz − x+, w − y〉

)
+ ρ〈ŷ − w, y+ − w〉. (31)

Using (27) once again, this time to the third term on the right-hand side of (31), we write

〈Gz − x+, w − y〉 =
〈
(1− α)(Gz − x) + ρ(ŷ − w), w − y

〉
= (1− α)〈Gz − x,w − y〉+ ρ〈ŷ − w,w − y〉
= (α− 1)ϕ− ρ〈ŷ − w, y − w〉. (32)

Substituting this equation back into (31) yields

αϕ+ ≥ (1− α)
(
αϕ+ L−1‖Bx+ −Bx‖2 − ρ〈ŷ − w, y − w〉

)
+ ρ〈ŷ − w, y+ − w〉. (33)

We next use the identity 〈x1, x2〉 = 1
2
‖x1‖2 + 1

2
‖x2‖2 − 1

2
‖x1 − x2‖2 on both inner products

in (33), as follows:

〈ŷ − w, y − w〉 =
1

2

(
‖ŷ − w‖2 + ‖y − w‖2 − ‖ŷ − y‖2

)
=

1

2

(
‖ŷ − w‖2 + ‖y − w‖2 − ‖a+ − a‖2

)
(34)

and

〈ŷ − w, y+ − w〉 =
1

2

(
‖ŷ − w‖2 + ‖y+ − w‖2 − ‖ŷ − y+‖2

)
=

1

2

(
‖ŷ − w‖2 + ‖y+ − w‖2 − ‖Bx+ −Bx‖2

)
. (35)

Here we have used the identities

ŷ − y = a+ +Bx− (a+Bx) = a+ − a
ŷ − y+ = a+ +Bx− (a+ +Bx+) = Bx−Bx+.

Using (34)–(35) in (33) yields

αϕ+ ≥ (1− α)
(
αϕ+ L−1‖Bx+ −Bx‖2 − ρ〈ŷ − w, y − w〉

)
+ ρ〈ŷ − w, y+ − w〉

= (1− α)
(
αϕ+ L−1‖Bx+ −Bx‖2

)
− ρ(1− α)

2

(
‖ŷ − w‖2 + ‖y − w‖2 − ‖a+ − a‖2

)
+
ρ

2

(
‖ŷ − w‖2 + ‖y+ − w‖2 − ‖Bx+ −Bx‖2

)
= (1− α)

(
αϕ− ρ

2
‖y − w‖2 +

ρ

2
‖a+ − a‖2

)
+

(
1− α
L
− ρ

2

)
‖Bx+ −Bx‖2

+
ρ

2

(
‖y+ − w‖2 + α‖ŷ − w‖2

)
.

Consider this last expression: since α ≤ 1, the coefficient (1− α)ρ/2 multiplying ‖a+ − a‖2
is nonnegative. Furthermore, since ρ ≤ 2(1−α)/L, the coefficient multiplying ‖Bx+−Bx‖2

21

is positive. Therefore we may drop these two terms from the above inequality and divide by
α to obtain (26).

Finally, we deal with the case in which L = 0, which implies that Bx = v for some v ∈ H
for all x ∈ H. The main difference is that the ‖Bx+ − Bx‖2 terms are no longer present
since Bx+ = Bx. The analysis is the same up to (28). In this case Bx+ = v so instead of
(30) we may deduce from (29) that

〈Gz − x, y+ − y〉 ≥ ϕ+ + 〈Gz − x+, w − y〉.

Since Bx+ = Bx = v is constant we also have that

ŷ = a+ +Bx = a+ + v = a+ +Bx+ = y+

Thus, instead of (31) in this case we have the simpler inequality

αϕ+ ≥ (1− α)
(
ϕ+ 〈Gz − x+, w − y〉

)
+ ρ‖y+ − w‖2. (36)

The term 〈Gz−x+, w− y〉 in (36) is dealt with just as in (31), by substitution of (27). This
step now leads via (32) to

αϕ+ ≥ α(1− α)ϕ− ρ(1− α)〈y+ − w, y − w〉+ ρ‖y+ − w‖2.

Once again using 〈x1, x2〉 = 1
2
‖x1‖2 + 1

2
‖x2‖2 − 1

2
‖x1 − x2‖2 on the second term on the

r.h.s. above yields

αϕ+ ≥ α(1− α)ϕ+ ρ‖y+ − w‖2 − ρ(1− α)

2

(
‖y+ − w‖2 + ‖y − w‖2 − ‖y+ − y‖2

)
.

We can lower-bound the ‖y+ − y‖2 term by 0. Dividing through by α and rearranging, we
obtain

ϕ+ ≥ ρ(1 + α)

2α
‖y+ − w‖2 + (1− α)

(
ϕ− ρ

2α
‖y − w‖2

)
.

Since y+ = ŷ in the L = 0 case, this is equivalent to (26).

5.3 Finite Termination of Backtracking

In all the following lemmas in sections 5.3 and 5.4 regarding algorithms 1–3, assumptions 1
and 2 are in effect and will not be explicitly stated in each lemma. We start by proving that
backTrack terminates in a finite number of iterations, and that the stepsizes it returns are
bounded away from 0.

Lemma 12. For i ∈ B, Algorithm 2 terminates in a finite number of iterations for all
k ≥ 1. There exists ρ

i
> 0 such that ρki ≥ ρ

i
for all k ≥ 1, where ρki is the stepsize returned

by Algorithm 2 on line 4. Furthermore ρki ≤ ρ̂ for all k ≥ 1.

22

Proof. Assume we are at iteration k ≥ 1 in Algorithm 1 and backTrack has been called
through line 4 for some i ∈ B. The internal variables within backTrack are defined in terms
of the variables passed from Algorithm 1 as follows: z = zk, x = xk−1i , w = wki , y = yk−1i ,

ρ = ρk−1i and η = ηk−1i . Furthermore α = αi, θ̂ = θ̂i, ŵ = ŵi, A = Ai, B = Bi, and
G = Gi. The calculation on line 3 of Algorithm 2 yields ϕ = ϕi,k−1(z

k, wki). In the following
argument, we mostly refer to the internal name of the variables within backTrack without
explicitly making the above substitutions. With that in mind, let L = Li be the cocoercivity
constant of B = Bi.

Recall that ρ̃(i,k) is the initial trial stepsize ρ̃1 chosen on line 5 of backTrack. We must
establish that the interval on line 5 is always nonempty and so a valid initial stepsize can be
chosen. Since ηα ≥ 0, this will be true if ρ̂ ≥ ρ = ρk−1i , which we will prove by induction.
Note that by Assumption 2, ρ̂ ≥ ρ0i for all i ∈ B. Therefore for k = 1, ρ̂ ≥ ρ = ρ0i . We will
prove the induction step below.

Observe that backtracking terminates via line 13 if two conditions are met. The first
condition,

‖x̃j − θ̂‖ ≤ (1− α)‖x− θ̂‖+ α‖Gz − θ̂‖+ ρ̃j‖w − ŵ‖, (37)

is identical to (23) of Lemma 10, with x̃j and ρ̃j respectively in place of x+ and ρ. The

initialization step of Algorithm 2 provides us with ŵ ∈ Aθ̂ + Bθ̂ for some θ̂ ∈ dom(A).
Furthermore, since

(x̃j, ỹj) = Fα,ρ̃j(z, x, w;A,B,G),

the findings of Lemma 10 may be applied. In particular, if L > 0 and ρ̃j ≤ 2(1−α)/L, then
(37) will be met. Alternatively, if L = 0, (37) will hold for any value of the stepsize ρ̃j > 0.

Next, consider the second termination condition,

ϕ+
j ≥

ρ̃j
2α

(
‖ỹj − w‖2 + α‖ŷj − w‖2

)
+ (1− α)

(
ϕ− ρ̃j

2α
‖y − w‖2

)
. (38)

This relation is identical to (26) of Lemma 11, with (ỹj, ŷj, ρ̃j) in place of (y+, ŷ, ρ). However,
to apply the lemma we must show that y = yk−1i ∈ Axk−1i +Bxk−1i = Ax+Bx. We will also
prove this by induction.

For k = 1, y = yk−1i ∈ Axk−1i + Bxk−1i = Ax + Bx holds by the initialization step of
Algorithm 1. Now assume that at iteration k ≥ 2 it holds that y = yk−1i ∈ Axk−1i +Bxk−1i =
Ax + Bx and furthermore that ρ̂ ≥ ρ = ρk−1i , therefore the interval on line 5 is nonempty.
We may then apply the findings of Lemma 11 to conclude that if L > 0 and ρ̃j ≤ 2(1−α)/L,
then condition (38) is satisfied. Or, if L = 0, condition (38) is satisfied for any ρ̃j > 0.

Combining the above observations, we conclude that if L > 0 and ρ̃j ≤ 2(1 − α)/L,
backtracking will terminate for that iteration j of backTrack via line 13. Or, if L = 0, it
will terminate in the first iteration of backTrack. The stepsize decrement condition on line
14 of the backtracking procedure implies that ρ̃j ≤ 2(1− α)/L will eventually hold for large
enough j, and hence that the two backtracking termination conditions must eventually hold.

Let j∗ ≥ 1 be the iteration at which backtracking terminates when called for operator
i at iteration k of Algorithm 1. For the pair (xki , y

k
i) returned by backTrack on line 4 of

23

Algorithm 1, we may write

(xki , y
k
i) = (x̃j∗ , ỹj∗) = Fα,ρ̃j∗ (z, x, w;A,B,G) = Fαk

i ,ρ
k
i
(zk, xk−1i , wki ;Ai, Bi, Gi).

Thus, by the definition of F in (17), yki ∈ Aixki +Bix
k
i . Therefore, induction establishes that

yki ∈ Aixki +Bix
k
i holds for all k ≥ 1.

Now the returned stepsize must satisfy ρki = ρ̃j∗ ≤ ρ̃(i,k) ≤ ρ̂. In the next iteration,
ρ = ρki ≤ ρ̂. Thus we have also established by induction that ρ̂ ≥ ρ = ρki and therefore that
the interval on line 5 is nonempty for all iterations k ≥ 1. Finally, we now also infer by
induction that backTrack terminates in a finite number of iterations for all k ≥ 1 and i ∈ B.

Now ρ̃(i,k) must be chosen in the range

ρ̃(i,k) ∈
[
ρk−1i ,min

{
(1 + αiη

k−1
i)ρk−1i , ρ̂

}]
.

Since we have established that this interval remains nonempty, it holds trivially that ρ̃(i,k) ≥
ρk−1i . For all k ≥ 1 and i ∈ B, the returned stepsize ρki = ρ̃j∗ must satisfy

(∀ i : Li > 0) : ρki ≥ min

{
ρ̃(i,k),

2δ(1− αi)
Li

}
(39)

(∀ i : Li = 0) : ρki = ρ̃(i,k).

Therefore for all k ≥ 1 and all i ∈ B such that Li > 0, one has

ρki ≥ min

{
ρk−1i ,

2δ(1− αi)
Li

}
≥ min

{
ρ1i ,

2δ(1− αi)
Li

}
≥ min

{
ρ0i ,

2δ(1− αi)
Li

}
, ρ

i
> 0,

where the first inequality uses (39) and ρ̃(i,k) ≥ ρk−1i , the second inequality recurses, and the
final inequality is just (39) for k = 1. If Li = 0, the argument is simply

ρki = ρ̃(i,k) ≥ ρk−1i = ρ̃(i,k−1) ≥ . . . ≥ ρ1i = ρ̃(i,1) = ρ0i , ρ
i
> 0.

5.4 Boundedness Results and their Direct Consequences

Lemma 13. For all i = 1, . . . , n, the sequences {xki } and {yki } are bounded.

Proof. To prove this, we first establish that for i = 1, . . . , n and k ≥ 1

‖xki − θ̂i‖ ≤ (1− αi)‖xk−1i − θ̂i‖+ αi‖Giz
k − θ̂i‖+ ρ̂

∥∥wki − ŵi∥∥ (40)

For i ∈ B, Lemma 12 establishes that backTrack terminates for finite j ≥ 1 for all k ≥ 1.
For fixed k ≥ 1 and i ∈ B, let j∗ ≥ 1 be the iteration of backTrack that terminates. At
termination, the following condition is satisfied via line 10:

‖x̃j∗ − θ̂‖ ≤ (1− α)‖x− θ̂‖+ α‖Gz − θ̂‖+ ρ̃j∗‖w − ŵ‖.

24

Into this inequality, now substitute in the following variables from Algorithm 1, as passed to
and from backTrack: xki = x̃j∗ , θ̂i = θ̂, αi = α, xk−1i = x, Gi = G, zk = z, ρki = ρ̃j∗ , wki = w,
and ŵi = w. Further noting that ρki ≤ ρ̂, the result is (40).

For i /∈ B, we note that line 6 of Algorithm 1 reads as

(xki , y
k
i) = Fαi,ρi(z

k, xk−1i , wki ;Ai, Bi, Gi)

and since Assumption 2 holds, we may apply Lemma 10. Further noting that by Assumption
2 ρi ≤ ρ̂ we arrive at yield (40).

Since {zk}, and {wki } are bounded by Lemma 4 and ‖Gi‖ is bounded by Assumption 1,
boundedness of {xki } now follows by applying Lemma 6 with τ = 1− αi < 1 to (40).

Next, boundedness of Bix
k
i follows from the continuity of Bi. Since Lemma 12 established

that backTrack terminates in a finite number of iterations we have for any k ≥ 2 that

(xki , y
k
i) = Fαk

i ,ρ
k
i
(zk, xk−1i , wki ;Ai, Bi, Gi)

where for i /∈ B ρki , ρi. Expanding the y+-update in the definition of F in (17), we may
write

yki = (ρki)
−1 ((1− αi)xk−1i + αiGiz

k − ρki (Bix
k−1
i − wki)− xki

)
+Bxki .

Since Gi, z
k, and wki are bounded, for i ∈ B ρki ≤ ρ̂, and ρki ≥ ρ

i
(using Lemma 12 for i ∈ B),

and for i /∈ B ρki = ρi is constant, we conclude that yki remains bounded.

With {xki } and {yki } bounded for all i = 1, . . . , n, the boundedness of ∇ϕk follows imme-
diately:

Lemma 14. The sequence {∇ϕk} is bounded. If Algorithm 1 never terminates via line 9,
lim supk→∞ ϕk(p

k) ≤ 0.

Proof. By Lemma 3, ∇zϕk =
∑n

i=1G
∗
i y
k
i , which is bounded since each Gi is bounded by

assumption and each {yki } is bounded by Lemma 13. Furthermore, ∇wi
ϕk = xki − Gix

k
n is

bounded using the same two lemmas. That lim supk→∞ ϕk(p
k) ≤ 0 then immediately follows

from Lemma 4(3).

Using the boundedness of {xki } and {yki }, we can next derive the following simple bound
relating ϕi,k−1(z

k, wki) to ϕi,k−1(z
k−1, wk−1i):

Lemma 15. There exists M1,M2 ≥ 0 such that for all k ≥ 2 and i = 1, . . . , n,

ϕi,k−1(z
k, wki) ≥ ϕi,k−1(z

k−1, wk−1i)−M1‖wki − wk−1i ‖ −M2‖Gi‖‖zk − zk−1‖.

Proof. For each i ∈ {1, . . . , n}, let M1,i,M2,i ≥ 0 be respective bounds on
{
‖Giz

k−1−xk−1i ‖
}

and
{
‖yk−1i −wki ‖

}
, which must exist by Lemma 4, the boundedness of {xki } and {yki }, and

25

the boundedness of Gi. Let M1 = maxi=1,...,m{M1,i} and M2 = maxi=1,...,m{M2,i}. Then, for
any k ≥ 2 and i ∈ {1, . . . , n}, we may write

ϕi,k−1(z
k, wki) = 〈Giz

k − xk−1i , yk−1i − wki 〉
= 〈Giz

k−1 − xk−1i , yk−1i − wki 〉+ 〈Giz
k −Giz

k−1, yk−1i − wki 〉
= 〈Giz

k−1 − xk−1i , yk−1i − wk−1i 〉+ 〈Giz
k−1 − xk−1i , wk−1i − wki 〉

+ 〈Giz
k −Giz

k−1, yk−1i − wki 〉
≥ ϕi,k−1(z

k−1, wk−1i)−M1‖wki − wk−1i ‖ −M2‖Gi‖‖zk − zk−1‖,

where the last step uses the Cauchy-Schwarz inequality and the definitions of M1 and M2.

5.5 A Lyapunov-Like Recursion for the Hyperplane

We now establish a Lyapunov-like recursion for the hyperplane. For this purpose, we need
two more definitions.

Definition 2. For all k ≥ 1, since Lemma 12 establishes that Algorithm 2 terminates in a
finite number of iterations, we may write for i = 1, . . . , n:

(xki , y
k
i) = Fαi,ρki

(zk, xk−1i , wki ;Ai, Bi, Gi)

where for i /∈ B ρki = ρi are actually fixed. Using (4) and the x+-update in (17), there exists
aki ∈ Aixki such that

xki + ρki a
k
i = (1− αi)xk−1i + αiGiz

k − ρki (Bix
k−1
i − wki).

Define ŷki , aki +Bix
k−1
i .

Definition 3. For i /∈ B we will use ρki , ρi, even though these stepsizes are fixed, so that
we can use the same statements as for i ∈ B. Similarly we will use ρ

i
, ρi for i /∈ B.

Lemma 16. For all k ≥ 1, and i = 1, . . . , n

ρk+1
i

αi
‖yki − wki ‖2 ≤

ρki
αi

(
‖yki − wki ‖2 + αi‖ŷki − wki ‖2

)
. (41)

Proof. For i ∈ B, recall that ρ̃(i,k) is the initial trial stepsize chose on line 5 of backTrack at
iteration k for some i ∈ B. The condition on line 5 of backTrack guarantees that

ρ̃(i,k+1) ≤ ρki

(
1 + αi

‖ŷki − wki ‖2

‖yki − wki ‖2

)
.

Multiplying through by α−1i ‖yki − wki ‖2 and noting that ρk+1
i ≤ ρ̃(i,k+1) proves the lemma.

For i /∈ B the expression holds trivially because ρk+1
i = ρki = ρi.

26

Lemma 17. For all k ≥ 2 and i = 1, . . . , n,

ϕi,k(z
k, wki)−

ρki
2αi

(
‖yki − wki ‖2 + αi‖ŷki − wki ‖2

)
≥ (1− αi)

(
ϕi,k−1(z

k, wki)−
ρki
2αi
‖yk−1i − wki ‖2

)
(42)

and

ϕi,k(z
k, wki)−

ρk+1
i

2αi
‖yki − wki ‖2 ≥ (1− αi)

(
ϕi,k−1(z

k, wki)−
ρki
2αi
‖yk−1i − wki ‖2

)
. (43)

Proof. Take any i ∈ B. Lemma 12 guarantees the finite termination of backTrack. Now
consider the backtracking termination condition

ϕ+
j ≥

ρ̃j
2α

(
‖ỹj − w‖2 + α‖ŷj − w‖2

)
+ (1− α)

(
ϕ− ρ̃j

2α
‖y − w‖2

)
.

Fix some k ≥ 2, and let j∗ ≥ 1 be the iteration at which backTrack terminates. In the
above inequality, make the following substitutions for the internal variables of backTrack by
those passed in/out of the function: ϕi,k(z

k, xki) = ϕ+
j∗ , ρki = ρ̃j∗ , αi = α, yki = ỹj, w

k
i = w,

ϕi,k−1(z
k, wki) = ϕ. Furthermore, ŷki = ŷj∗ where ŷki is defined in Definition 2. Together,

these substitutions yield (42). We can then apply Lemma 16 to get (43).
Now take any i ∈ {1, . . . , n}\B. From line 6 of Algorithm 1, Assumption 2, and Lemma

11, we directly deduce (42). Combining this relation with (41) we obtain (43).

5.6 Finishing the Proof

We now work toward establishing the conditions of Lemma 5. Unless otherwise specified,
we henceforth assume that Algorithm 1 runs indefinitely and does not terminate at line 9.
Termination at line 9 is dealt with in Theorem 1 to come.

Lemma 18. For all i = 1, . . . , n, we have yki − wki → 0 and ϕk(p
k)→ 0.

Proof. Fix any i ∈ {1, . . . , n}. First, note that for all k ≥ 2,

‖yk−1i − wki ‖2 = ‖yk−1i − wk−1i ‖2 + 2〈yk−1i − wk−1i , wk−1i − wki 〉+ ‖wk−1i − wki ‖2

≤ ‖yk−1i − wk−1i ‖2 +M3‖wki − wk−1i ‖+ ‖wki − wk−1i ‖2

= ‖yk−1i − wk−1i ‖2 + dki , (44)

where dki , M3‖wki − wk−1i ‖ + ‖wki − wk−1i ‖2 and M3 ≥ 0 is a bound on 2‖yk−1i − wk−1i ‖,
which must exist because both {yki } and {wki } are bounded by lemmas 4 and 13. Note that
dki → 0 as a consequence of Lemma 4.

Second, recall Lemma 15, which states that there exists M1,M2 ≥ 0 such that for all
k ≥ 2,

ϕi,k−1(z
k, wki) ≥ ϕi,k−1(z

k−1, wk−1i)−M1‖wk−1i − wki ‖ −M2‖Gi‖‖zk − zk−1‖. (45)

27

Now let, for all k ≥ 1,

rki , ϕi,k(z
k, wki)−

ρk+1
i

2αi
‖yki − wki ‖2, (46)

so that

n∑
i=1

rki = ϕk(p
k)−

n∑
i=1

ρk+1
i

2αi
‖yki − wki ‖2. (47)

Using (44) and (45) in (43) yields

(∀k ≥ 2) : rki ≥ (1− αi)rk−1i + eki (48)

where

eki , −(1− αi)
(
ρki
2αi

dki +M1‖wk−1i − wki ‖+M2‖Gi‖‖zk − zk−1‖
)
. (49)

Note that ρki is bounded, 0 < αi ≤ 1, ‖Gi‖ is finite, ‖zk−zk−1‖ → 0 and ‖wki −wk−1i ‖ → 0
by Lemma 4, and dki → 0. Thus eki → 0.

Since 0 < αi ≤ 1, we may apply Lemma 8 to (48) with τ = 1 − αi < 1, which yields
lim infk→∞{rki } ≥ 0. Therefore

lim inf
k→∞

n∑
i=1

rki ≥
n∑
i=1

lim inf
k→∞

rki ≥ 0. (50)

On the other hand, lim supk→∞ ϕk(p
k) ≤ 0 by Lemma 14. Therefore, using (47) and (50),

0 ≤ lim inf
k→∞

n∑
i=1

rki = lim inf
k→∞

{
ϕk(p

k)−
n∑
i=1

ρk+1
i

2αi
‖yki − wki ‖2

}
≤ lim inf

k→∞
ϕk(p

k) ≤ lim sup
k→∞

ϕk(p
k) ≤ 0.

Therefore limk→∞
{
ϕk(p

k)
}

= 0. Consider any i ∈ {1, . . . , n}. Combining limk→∞
{
ϕk(p

k)
}

=
0 with lim infk→∞

∑n
i=1 r

k
i ≥ 0, we have

lim sup
k→∞

{
(ρk+1
i /αi)‖yki − wki ‖2

}
≤ 0 ⇒ ρk+1

i ‖yki − wki ‖2 → 0.

Since ρki ≥ ρ
i
> 0 (using Lemma 12 for i ∈ B) we conclude that yki − wki → 0.

We have already proved the first requirement of Lemma 5, that yki − wki → 0 for all
i ∈ {1, . . . , n}. We now work to establish the second requirement, that Giz

k − xki → 0. In
the upcoming lemmas we continue to use the quantity ŷki which is given in Definition 2.

Lemma 19. Recall {ŷki }k∈N from Definition 2. For all i = 1, . . . , n, ŷki − wki → 0.

28

Proof. Fix any k ≥ 1. For all i = 1, . . . , n, repeating (42) from Lemma 17, we have

ϕi,k(z
k, wki) ≥ (1− αi)

(
ϕi,k−1(z

k, wki)−
ρki
2αi
‖yk−1i − wki ‖2

)
+

ρki
2αi

(
‖yki − wki ‖2 + αi‖ŷki − wki ‖2

)
≥ (1− αi)rk−1i +

ρki
2
‖ŷki − wki ‖2 + eki

where we have used rki defined (46) along with (44)–(45) and eki is defined in (49). This is
the same argument used in Lemma 18, but now we apply (44)–(45) to (42), rather than (43),
so that we can upper bound the ‖ŷki − wki ‖2 term. Summing over i = 1, . . . , n, yields

ϕk(p
k) =

n∑
i=1

ϕi,k(z
k, wki) ≥

n∑
i=1

(1− αi)rk−1i +
n∑
i=1

ρki
2
‖ŷki − wki ‖2 +

n∑
i=1

eki .

Since ϕk(p
k) → 0, eki → 0, lim infk→∞{rki } ≥ 0, and ρki ≥ ρ

i
> 0 for all k, the above

inequality implies that ŷki − wki → 0.

Lemma 20. For i = 1 . . . , n, xki − xk−1i → 0.

Proof. Fix i ∈ {1, . . . , n}. Using the definition of aki in Definition 2, we have for k ≥ 1 that

xki + ρki a
k
i = (1− αi)xk−1i + αiGiz

k − ρki (Bix
k−1
i − wki).

Using the definition of ŷki , also in Definition 2, this implies that

(∀k ≥ 1) : xki = (1− αi)xk−1i + αiGiz
k − ρki (ŷki − wki), (51)

(∀k ≥ 2) : xk−1i = (1− αi)xk−2i + αiGiz
k−1 − ρk−1i (ŷk−1i − wk−1i).

Subtracting the second of these equations from the first yields, for all k ≥ 2,

xki − xk−1i = (1− αi)(xk−1i − xk−2i) + αi(Giz
k −Giz

k−1)− ρki (ŷki − wki)
+ ρk−1i (ŷk−1i − wk−1i)

Taking norms and using the triangle inequality yields, for all k ≥ 2, that

‖xki − xk−1i ‖ ≤ (1− αi) ‖xk−1i − xk−2i ‖+ ẽki (52)

where
ẽki = ‖Gi‖ ‖zki − zk−1i ‖+ ρki ‖ŷki − wki ‖+ ρk−1i ‖ŷk−1i − wk−1i ‖

Since ρki is bounded from above, ẽki → 0 using Lemma 19, the finiteness of ‖Gi‖, and
Lemma 4. Furthermore, αi > 0, so we may apply Lemma 7 to (52) to conclude that
xki − xk−1i → 0.

Lemma 21. For i = 1, . . . , n, Giz
k − xki → 0.

29

Proof. Recalling (51), we first write

xki = (1− αi)xk−1i + αiGiz
k − ρki (ŷki − wki)

⇔ αi
(
Giz

k − xki
)

= (1− αi)(xki − xk−1i) + ρki (ŷ
k
i − wki). (53)

Lemma 20 implies that the first term on the right-hand side of (53) converges to zero.
Since {ρki } is bounded, Lemma 19 implies that the second term on the right-hand side also
converges to zero. Since αi > 0, we conclude that ‖Giz

k − xki ‖ → 0.

Finally, we can state our convergence result for Algorithm 1:

Theorem 1. Suppose that assumptions 1-2 hold. If Algorithm 1 terminates by reaching
line 9, then its final iterate is a member of the extended solution set S. Otherwise, the
sequence {(zk,wk)} generated by Algorithm 1 converges weakly to some point (z̄,w) in the
extended solution set S of (2) defined in (5). Furthermore, xki ⇀ Giz̄ and yki ⇀ wi for all
i = 1, . . . , n− 1, xkn ⇀ z̄, and ykn ⇀ −

∑n−1
i=1 G

∗
iwi.

Proof. For the finite termination result we refer to Lemma 5 of [21]. Otherwise, lemmas 18
and 21 imply that the hypotheses of Lemma 5, hold, and the result follows.

6 Numerical Experiments

All our numerical experiments were implemented in Python (using numpy and scipy) on
an Intel Xeon workstation running Linux with 16 cores and 64 GB of RAM. The code is
available via github at https://github.com/projective-splitting/coco. We restricted
our attention to algorithms with comparable features and benefits to our proposed method.
Thus we only considered methods that:

1. Are first-order and “fully split” the problem (that is, separate the linear operators Gi

from the resolvent calculations, and use gradient-type steps for smooth functions),

2. Do not (either approximately or exactly) solve a linear system of equations at each
iteration or before the first iteration,

3. Avoid having to apply “smoothing” to nonsmooth operators,

4. Incorporate a backtracking linesearch in a manner that avoids the need for bounds on
Lipschitz or cocoercivity constants, and

5. Do not use iterative approximation of resolvents.

The last property we include for reasons of simplicity, while the rest contribute to making
algorithms scalable and easy to apply. For a given application, there may of course be
effective algorithms which could have been considered but do not satisfy all of the above
requirements. However, because of the general desirability of properties 1-4 and the relative
simplicity of algorithms with property 5, we only considered methods having all of them.

We compared this paper’s backtracking one-forward-step projective splitting algorithm
given in Algorithm 1 (which we call ps1fbt) with the following methods:

30

https://github.com/projective-splitting/coco

• The two-forward-step projective splitting algorithm with backtracking we developed
in [21] (ps2fbt). This method requires only Lipschitz continuity of single-valued op-
erators, as opposed to cocoercivity.

• The adaptive three-operator splitting algorithm of [34] (ada3op) (where “adaptive” is
used to mean “backtracking linesearch”); this method is a backtracking adaptation of
the fixed-stepsize method proposed in [14]. This method requires Gi = I in problem (2)
and hence can only be readily applied to two of the three test applications described
below.

• The backtracking linesearch variant of the Chambolle-Pock primal-dual splitting method
[30] (cp-bt).

• The algorithm of [12]. This is essentially Tseng’s method applied to a product-space
“monotone + skew” inclusion in the following way: Assume Tn is Lipschitz monotone,
problem (3) is equivalent to finding p , (z, w1, . . . , wn−1) such that wi ∈ TiGiz (which
is equivalent to Giz ∈ T−1i wi) for i = 1, . . . , n − 1, and

∑n−1
i=1 G

∗
iwi = −Tnz. In other

words, we wish to solve 0 ∈ Ãp+ B̃p, where Ã and B̃ are defined by

Ãp = {0} × T−11 w1 × · · · × T−1n−1wn−1 (54)

B̃p =


Tnz

0
...

0

+


0 G∗1 G∗2 . . . G∗n−1
−G1 0 0

...
...

.
...

−Gn−1 0 0




z

w1
...

wn−1

 . (55)

Ã is maximal monotone, while B̃ is the sum of two Lipshitz monotone operators (the
second being skew linear), and therefore also Lipschitz monotone. The algorithm
in [12] is essentially Tseng’s forward-backward-forward method [40] applied to this
inclusion, using resolvent steps for Ã and forward steps for B̃. Thus, we call this
method tseng-pd. In order to achieve good performance with tseng-pd we had to
incorporate a diagonal preconditioner as proposed in [41].

• The recently proposed forward-reflected-backward method [31], applied to this same
primal-dual inclusion 0 ∈ Ãp+ B̃p specified by (54)-(55). We call this method frb-pd.

Recently there have been several stochastic extensions of ada3op and cp-bt [42, 43, 33].
The method of [43] requires estimates of the Lipschitz constants and matrix norms, and so
does not satisfy our experimental requirements. Since one of our problems is not in “finite-
sum” format, and another includes a matrixGi which is not equal to the identity, the methods
of [42, 33] could only be applied to one of our three test problems. Even for this problem,
the number of training examples in the two datasets were 60 and 127, respectively, while
the feature dimensions were 7,705 and 19,806, so finite-sum methods are not particularly
suitable. For these reasons we did not include these methods in our experiments.

31

6.1 Portfolio Selection

Consider the optimization problem:

min
x∈Rd

F (x) , x>Qx s.t. m>x ≥ r,

d∑
i=1

xi = 1, xi ≥ 0, (56)

where Q � 0, r > 0, and m ∈ Rd
+. This model arises in Markowitz portfolio theory. We

chose this particular problem because it features two constraint sets (a general halfspace and
a simplex) onto which it is easy to project individually, but whose intersection poses a more
difficult projection problem. This property makes it difficult to apply first-order methods
such as ISTA/FISTA [5] as they can only perform one projection per iteration and thus can-
not fully split the problem. On the other hand, projective splitting can handle an arbitrary
number of constraint sets so long as one can compute projections onto each of them. We
consider a fairly large instance of this problem so that standard interior point methods (for
example, those in the CVXPY [15] package) are disadvantaged by their high per-iteration
complexity and thus not generally competitive with first-order methods. Furthermore, back-
tracking variants of first-order methods are preferable for large problems as they avoid the
need to estimate the largest eigenvalue of Q.

To convert (56) to a monotone inclusion, we set A1 = NC1 where NC1 is the normal
cone of the simplex C1 = {x ∈ Rd :

∑d
i=1 xi = 0, xi ≥ 0}. We set B1 = 2Qx, which is the

gradient of the objective function and is cocoercive (and Lipschitz-continuous). Finally, we
set A2 = NC2 , where C2 = {x : m>x ≥ r}, and let B2 be the zero operator. Note that the
resolvents of NC1 and NC2 (that is, the projections onto C1 and C2) are easily computed in
O(d) operations [32]. With this notation, one may write (56) as the the problem of finding
z ∈ Rd such that

0 ∈ A1z +B1z + A2z,

which is an instance of (2) with n = 2 and G1 = G2 = I.
To terminate each method in our comparisons, we used the following common criterion

incorporating both the objective function and the constraints of (56):

c(x) , max

{
F (x)− F ∗

F ∗
, 0

}
−min{m>x− r, 0}+

∣∣∣∣∣
d∑
i=1

xi − 1

∣∣∣∣∣−max{0,min
i
xi}, (57)

where F ∗ is the optimal value of the problem. Note that c(x) = 0 if and only if x solves
(56). To estimate F ∗, we used the best feasible value returned by any method after 1000
iterations.

We generated random instances of (56) as follows: we set d = 10, 000 to obtain a relatively
large instance of the problem. We then generated a d× d matrix Q0 with each entry drawn
from N (0, 1). The matrix Q is then formed as (1/d) · Q0Q

>
0 , which is guaranteed to be

positive semidefinite. We then generate the vector m ∈ Rd of length d to have entries
uniformly distributed between 0 and 100. The constant r is set to δr

∑d
i=1mi/d for various

values of δr > 0. We solved the problem for δr ∈ {0.5, 0.8, 1, 1.5}.

32

δr

0.5 0.8 1 1.5

ps1fbt (γ) 0.01 0.01 0.5 5

ps2fbt (γ) 0.1 0.1 10 10

cp-bt (β−1) 1 1 2 2

tseng-pd (γpd) 1 1 1 10

frb-pd (γpd) 1 1 10 10

Table 1: Tuning parameters for the portfolio problem (ada3op does not have a tuning pa-
rameter.)

All methods were initialized at the same point [1 1 . . . 1]>/d. For all the backtracking
linesearch procedures except cp-bt , the initial stepsize estimate is the previously discovered
stepsize; at the first iteration, the initial stepsize is 1. For cp-bt we allowed the stepsize
to increase in accordance with [30, Algorithm 4], as performance was poor otherwise. The
backtracking stepsize decrement factor (δ in Algorithm 2) was 0.7 for all algorithms.

For ps1fbt and ps2fbt, ρk1 was discovered via backtracking. We also set the other
stepsize ρk2 equal to ρk1 at each iteration. While this is not necessary, this heuristic performed
well and eliminated ρk2 as a separately tunable parameter. For the averaging parameters in
ps1fbt, we used α1 = 0.1 and α2 = 1 (which is possible because L2 = 0). For ps1fbt we
set θ̂1 = x01 and ŵ1 = 2Qx01.

For tseng-pd and frb-pd, we used the following preconditioner:

U = diag(Id×d, γpdId×d, γpdId×d) (58)

where U is used as in [41, Eq. (3.2)] for tseng-pd (M−1 on [31, p. 7] for frb-pd). In this
case, the “monotone + skew” primal-dual inclusion described in (54)-(55) features two d-
dimensional dual variables in addition to the d-dimensional primal variable. The parameter
γpd changes the relative size of the steps taken in the primal and dual spaces, and plays a
similar role to γ in our algorithm (see Algorithm 3). The parameter β in [30, Algorithm 4]
plays a similar role for cp-bt. For all of these methods, we have found that performance is
highly sensitive to this parameter: the primal and dual stepsizes need to be balanced. The
only method not requiring such tuning is ada3op, which is a purely primal method. With
this setup, all the methods have one tuning parameter except ada3op , which has none. For
each method, we manually tuned the parameter for each δr; Table 1 shows the final choices.

We calculated the criterion c(x) in (57) for xk1 computed by ps1fbt and ps2fbt, xt
computed on Line 3 of [34, Algorithm 1] for ada3op, yk computed in [30, Algorithm 4] for
cp-bt, and the primal iterate for tseng-pd and frb-pd. Table 2 displays the average number
iterations and running time, over 10 random trials, until c(x) falls (and stays) below 10−5

for each method. Examining the table,

• For all four problems, ps1fbt outperforms ps2fbt. This behavior is not suprising, as
ps1fbt only requires one forward step per iteration, rather than two. Since the matrix
Q is large and dense, reducing the number of forward steps should have a sizable
impact.

33

δr

0.5 0.8 1 1.5

ps1fbt 3.6 (102) 4.7 (102) 16.3 (583) 8.5 (255.2)

ps2fbt 5.0 (151.1) 7.9 (155) 24.3 (523.4) 9.2 (222.9)

ada3op 5.3 (180.8) 9.2 (180.8) 6.8 (174.3) 3.4 (89.2)

cp-bt 6.2 (136) 8.3 (134.3) 11.8 (218.4) 5.6 (113.6)

tseng-pd 15.9 (387.1) 21 (387.8) 25.7 (525.3) 11.1 (245.4)

frb-pd 10.5 (559.9) 16.4 (560.4) 22.8 (1074.8) 6.3 (350.8)

Table 2: For the portfolio problem, average running times in seconds and iterations (in
parentheses) for each method until c(x) < 10−5 for all subsequent iterations across 10 trials.
The best time in each column is in bold.

• For δr < 1, ps1fbt is the best-performing method. However, for δr ≥ 1, ada3op is the
quickest.

6.2 Sparse Group Logistic Regression

Consider the following problem:

min
x0∈R
x∈Rd

{
n∑
i=1

log
(

1 + exp
(
− yi(x0 + a>i x)

))
+ λ1‖x‖1 + λ2

∑
g∈G

‖xg‖2

}
, (59)

where ai ∈ Rd and yi ∈ {±1} for i = 1, . . . , n are given data, λ1, λ2 ≥ 0 are regularization
parameters, and G is a set of subsets of {1, . . . , d} such that no element is in more than
one group g ∈ G. This is the non-overlapping group-sparse logistic regression problem,
which has applications in bioinformatics, image processing, and statistics [37]. It is well
understood that the `1 penalty encourages sparsity in the solution vector. On the other
hand the group-sparse penalty encourages group sparsity, meaning that as λ2 increases more
groups in the solution will be set entirely to 0. The group-sparse penalty can be used when
the features/predictors can be put into correlated groups in a meaningful way. As with the
portfolio experiment, this problem features two nonsmooth regularizers and so methods like
FISTA cannot easily be applied.

Problem (59) may be treated as a special case of (1) with n = 2, G1 = G2 = I, and

h1(x0, x) =
n∑
i=1

log
(

1 + exp
(
− yi(x0 + a>i x)

))
h2(x0, x) = 0

f1(x0, x) = λ1‖x‖1 f2(x0, x) = λ2
∑
g∈G

‖xg‖2.

Since the logistic regression loss has a Lipschitz-continuous gradient and the `1-norm and
non-overlapping group-lasso penalties both have computationally simple proximal operators,
all our candidate methods may be applied.

34

We applied (59) to two bioinformatics classification problems with real data. Follow-
ing [37], we use the breast cancer dataset of [27] and the inflammatory bowel disease (IBD)
dataset of [6].2 The breast cancer dataset contains gene expression levels for 60 patients
with estrogen-positive breast cancer. The patients were treated with tamoxifen for 5 years
and classified based on whether the cancer recurred (there were 28 recurrences). The goal
is to use the gene expression values to predict recurrence. The IBD data set contains gene
expression levels for 127 patients, 85 of which have IBD. The IBD data set actually features
three classes: ulcerative colitis (UC), Crohn’s disease (CD), and normal, and so the most
natural goal would be to perform three-way classification. For simplicity, we considered a
two-way classification problem of UC/CD patients versus normal patients.

For both datasets, as in [37], the group structure G was extracted from the C1 dataset [38],
which groups genes based on cytogenetic position data.3 Genes that are in multiple C1 groups
were removed from the dataset.4 We also removed genes that could not be found in the C1
dataset, although doing so was not strictly necessary. After these steps, the breast cancer
data had 7,705 genes in 324 groups, with each group having an average of 23.8 genes. For the
IBD data there were 19,836 genes in 325 groups, with an average of 61.0 genes per group.
Let A be the data matrix with each row is equal to a>i ∈ Rd for i = 1, . . . , n; as a final
preprocessing step, we normalized the columns of A to have unit `2-norm, which tended to
improve the performance of the first-order methods, especially the primal-dual ones.

For simplicity we set the regularization parameters to be equal: λ1 = λ2 , λ. In practice,
one would typically solve (59) for various values of λ and then choose the final model based
on cross-validation performance combined with other criteria such as sparsity. Therefore, to
give an overall sense of the performance of each algorithm, we solved (59) for three values
of λ: large, medium, and small, corresponding to decreasing the amount of regularization
and moving from a relatively sparse solution to a dense solution. For the breast cancer data,
we selected λ ∈ {0.05, 0.5, 0.85} and for IBD we chose λ ∈ {0.1, 0.5, 1}. The corresponding
number of non-zero entries, non-zero groups, and training error of the solution are reported
in Table 3. Since the goal of these experiments is to assess the computational performance
of the optimization solvers, we did not break up the data into training and test sets, instead
treating the entire dataset as training data.

We initialized all the methods to the 0 vector. As in the portfolio problem, all stepsizes
were initially set to 1. Since the logistic regression function does not have uniform curvature,
we allowed the initial trial stepsize in the backtracking linesearch to increase by a factor of 1.1
multiplied by the previously discovered stepsize. The methods ps1fbt, cp-bt, and ada3op

have an upper bound on the trial stepsize at each iteration, so the trial stepsize was taken
to be the minimum of 1.1 multiplied by the previous stepsize and this upper bound.

Otherwise, the setup was the same as the portfolio experiment. tseng-pd and frb-pd

use the same preconditioner as given in (58). For ps1fbt and ps2fbt we set ρk2 to be equal
to the discovered backtracked stepsize ρk1 at each iteration. For ps1fbt we again set θ̂1 = x01,

2The breast cancer dataset is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE1379. The IBD dataset is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE3365.
3The C1 dataset is available at http://software.broadinstitute.org/gsea/index.jsp.
4Overlapping group norms can also be handled with our method, but using a different problem formulation

than (59).

35

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3365
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3365
http://software.broadinstitute.org/gsea/index.jsp

λ (breast cancer) λ (IBD)

0.05 0.5 0.85 0.1 0.5 1.0

Nonzeros 114 50 20 135 40 18

Nonzero groups 16 7 3 13 4 2

Training error 0% 5% 35% 0% 5.5% 26.8%

Table 3: The number of nonzeros and nonzero groups in the solution, along with the training
error, for each value of λ.

λ (breast cancer) λ (IBD)

0.05 0.5 0.85 0.1 0.5 1.0

ps1fbt (γ) 0.05 102 102 0.1 1 1

ps2fbt (γ) 1 102 105 1 1 1

cp-bt (β−1) 10 103 104 104 103 105

tseng-pd (γpd) 103 105 105 104 106 106

frb-pd (γpd) 103 105 105 104 106 106

Table 4: Tuning parameters for sparse group LR (ada3op does not have a tuning parameter).

ŵ1 = ∇h1(x01), and αk1 fixed to 0.1. As such, all methods (except ada3op) have one tuning
parameter which was hand-picked for each method; the chosen values are given in Table 4.

Figure 3: Results for (59) applied to bioinformatics classification problems. The top row
shows breast cancer data with left: λ = 0.05; middle: λ = 0.5; right: λ = 0.85. The bottom
row shows IBD data with left: λ = 0.1; middle: λ = 0.5; right: λ = 1.0. The y-axis is relative
objective error:

(
F (x0, x)− F ∗

)
/F ∗ and the x-axis is elapsed running time in seconds.

36

Figure 3 shows the results of the experiments, plotting (F (x0, x)− F ∗)/F ∗ against time
for each algorithm, where F is the objective function in (59) and F ∗ is the estimated optimal
value. To approximate F ∗, we ran each algorithm for 4,000 iterations and took the lowest
value obtained. Overall, ps1fbt and ada3op were much faster than the other methods. For
the highly regularized cases (the right column of the figure), ps1fbt was faster than all other
methods. For middle and low regularization, ps1fbt and ada3op are comparable, and for
λ = 0.05 ada3op is slightly faster for the the breast cancer data. The methods ps1fbt and
ada3op may be succesful because they exploit the cocoercivity of the gradient, while ps2fbt,
tseng-pd,and frb-pd only treat it as Lipschitz continuous. cp-bt also exploits cocoercivity,
but its convergence was slow nonetheless. We discuss the performance of ps1fbt versus
ps2fbt more in Section 6.3.

6.3 Final Comments: ps1fbt versus ps2fbt

On the portfolio problem, ps1fbt and ps2fbt have fairly comparable performance, with
ps1fbt being slightly faster. However, for the group logistic regression problem, ps1fbt

is significantly faster. Given that both methods are based on the same projective splitting
framework but use different forward-step procedures to update (xk1, y

k
1), this difference may

be somewhat surprising. Since ps1fbt only requires one forward step per iteration while
ps2fbt requires two, one might expect ps1fbt to be about twice as fast as ps2fbt. But for
the group logistic regression problem, ps1fbt significantly outpaces this level of performance.

Examining the stepsizes returned by backtracking for both methods reveals that ps1fbt
returns much larger stepsizes for the logistic regression problem, typically 2-3 orders of
magnitude larger; see Figure 4. For the portfolio problem, where the performance of the two
methods is more similar, this is not the case: the ps1fbt stepsizes are typically about twice
as large as the ps2fbt stepsizes, in keeping with their theoretical upper bounds of 1/Li and
2(1− αi)/Li, respectively.

Note that the portfolio problem has a smooth function which is quadratic and hence has
the same curvature everywhere, while group logisitic regression does not. We hypothesize
that the backtracking scheme in ps1fbt does a better job adapting to nonuniform curvature.
A possible reason for this behavior is that the termination criterion for the backtracking
search in ps1fbt may be weaker than for ps2fbt. For example, while ps2fbt requires ϕi,k
to be positive at each iteration k and operator i, ps1fbt does not.

Acknowledgments

This research was supported by the National Science Foundation grant CCF-1617617.

References

[1] Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone in-
clusions by successive Fejér approximations of their Kuhn–Tucker set. SIAM Journal
on Optimization 24(4), 2076–2095 (2014)

37

Figure 4: Discovered backtracking stepsizes for ps1fbt and ps2fbt . Left: portfolio problem
with δr = 0.5. Right: group logistic regression problem applied to the IBD data with λ = 1.

[2] Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés n-
cycliquement monotones. Israel Journal of Mathematics 26(2), 137–150 (1977)

[3] Bauschke, H.H., Combettes, P.L.: The Baillon-Haddad Theorem Revisited. Journal of
Convex Analysis 17(3-4, SI), 781–787 (2010)

[4] Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in
Hilbert spaces, 2nd edn. Springer (2017)

[5] Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. Image Processing, IEEE Transactions on
18(11), 2419–2434 (2009)

[6] Burczynski, M.E., Peterson, R.L., Twine, N.C., Zuberek, K.A., Brodeur, B.J., Casciotti,
L., Maganti, V., Reddy, P.S., Strahs, A., Immermann, F., et al.: Molecular classifica-
tion of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in
peripheral blood mononuclear cells. The Journal of Molecular Diagnostics 8(1), 51–61
(2006)

[7] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145
(2011)

[8] Combettes, P.L.: Fejér monotonicity in convex optimization. In: Encyclopedia of opti-
mization, vol. 2, pp. 106–114. Springer Science & Business Media (2001)

[9] Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and
applications. SIAM Journal on Optimization 23(4), 2420–2447 (2013)

[10] Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition
methods for monotone inclusions. Mathematical Programming 168(1-2), 645–672 (2018)

38

[11] Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In:
Fixed-point algorithms for inverse problems in science and engineering, pp. 185–212.
Springer (2011)

[12] Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions
with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators.
Set-Valued and variational analysis 20(2), 307–330 (2012)

[13] Condat, L.: A primal–dual splitting method for convex optimization involving Lips-
chitzian, proximable and linear composite terms. Journal of Optimization Theory and
Applications 158(2), 460–479 (2013)

[14] Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications.
Set-Valued and Variational Analysis 25(4), 829–858 (2017)

[15] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research 17(83), 1–5 (2016)

[16] Dong, Y.: Weak convergence of an extended splitting method for monotone inclusions.
Optimization Online preprint (2018)

[17] Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous
algorithm resembling the multi-block alternating direction method of multipliers. Jour-
nal of Optimization Theory and Applications 173(1), 155–182 (2017)

[18] Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two
maximal monotone operators. Mathematical Programming 111(1), 173–199 (2008)

[19] Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal
monotone operators. SIAM Journal on Control and Optimization 48(2), 787–811 (2009)

[20] Gabay, D.: Applications of the method of multipliers to variational inequalities. In:
M. Fortin, R. Glowinski (eds.) Augmented Lagrangian Methods: Applications to the
Solution of Boundary Value Problems, chap. IX, pp. 299–340. North-Holland, Amster-
dam (1983)

[21] Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps: Asynchronous
and block-iterative operator splitting. arXiv preprint arXiv:1803.07043 (2018)

[22] Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps only requires
continuity. arXiv preprint arXiv:1809.07180 (2018)

[23] Johnstone, P.R., Eckstein, J.: Convergence rates for projective splitting. SIAM Journal
on Optimization 29(3), 1931–1957 (2019)

[24] Johnstone, P.R., Eckstein, J.: Single-forward-step projective splitting: Exploiting coco-
ercivity. arXiv preprint arXiv:1902.09025 (2019)

[25] Korpelevich, G.: Extragradient method for finding saddle points and other problems.
Matekon 13(4), 35–49 (1977)

39

[26] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis 16(6), 964–979 (1979)

[27] Ma, X.J., Wang, Z., Ryan, P.D., Isakoff, S.J., Barmettler, A., Fuller, A., Muir, B.,
Mohapatra, G., Salunga, R., Tuggle, J.T., et al.: A two-gene expression ratio predicts
clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6),
607–616 (2004)

[28] Machado, M.P.: On the complexity of the projective splitting and Spingarn’s methods
for the sum of two maximal monotone operators. Journal of Optimization Theory and
Applications 178(1), 153–190 (2018)

[29] Machado, M.P.: Projective method of multipliers for linearly constrained convex mini-
mization. Computational Optimization and Applications 73(1), 237–273 (2019)

[30] Malitsky, Y., Pock, T.: A first-order primal-dual algorithm with linesearch. SIAM
Journal on Optimization 28(1), 411–432 (2018)

[31] Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions
without cocoercivity. arXiv preprint arXiv:1808.04162 (2018)

[32] Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical
simplex of Rn. Journal of Optimization Theory and Applications 50(1), 195–200 (1986)

[33] Pedregosa, F., Fatras, K., Casotto, M.: Proximal splitting meets variance reduction.
In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1–10
(2019)

[34] Pedregosa, F., Gidel, G.: Adaptive three-operator splitting. In: Proceedings of the 35th
International Conference on Machine Learning (ICML-18), pp. 4085–4094 (2018)

[35] Pesquet, J.C., Repetti, A.: A class of randomized primal-dual algorithms for distributed
optimization. Journal of Nonlinear and Convex Analysis 16(12), 2453–2490 (2015)

[36] Polyak, B.T.: Introduction to Optimization. Optimization Software Inc. Publications
Division, New York (1987)

[37] Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. Journal of
Computational and Graphical Statistics 22(2), 231–245 (2013)

[38] Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences 102(43), 15,545–15,550 (2005)

[39] Tran-Dinh, Q., Vũ, B.C.: A new splitting method for solving composite monotone
inclusions involving parallel-sum operators. Preprint 1505.07946, arXiv (2015)

[40] Tseng, P.: A modified forward-backward splitting method for maximal monotone map-
pings. SIAM Journal on Control and Optimization 38(2), 431–446 (2000)

40

[41] Vũ, B.C.: A variable metric extension of the forward–backward–forward algorithm for
monotone operators. Numerical Functional Analysis and Optimization 34(9), 1050–1065
(2013)

[42] Yurtsever, A., Vũ, B.C., Cevher, V.: Stochastic three-composite convex minimization.
In: Advances in Neural Information Processing Systems, pp. 4329–4337 (2016)

[43] Zhao, R., Cevher, V.: Stochastic three-composite convex minimization with a linear
operator. In: A. Storkey, F. Perez-Cruz (eds.) Proceedings of the Twenty-First In-
ternational Conference on Artificial Intelligence and Statistics, Proceedings of Machine
Learning Research, vol. 84, pp. 765–774. PMLR press, Playa Blanca, Lanzarote, Canary
Islands (2018)

41

	1 Introduction
	1.1 Problem Statement
	1.2 Background
	1.3 The Optimization Context
	1.4 Notation and a Simplifying Assumption

	2 Projective Splitting
	2.1 The New Procedure
	2.2 A Connection with the Forward-Backward Method

	3 The Algorithm
	3.1 Main Problem Assumptions and Preliminary Results
	3.2 Abstract One-Forward-Step Update
	3.3 Algorithm Definition
	3.4 Algorithm Parameters
	3.5 Separator-Projector Properties

	4 The Special Case n=1
	5 Main Proof
	5.1 Some Basic Results
	5.2 A Contractive Result
	5.3 Finite Termination of Backtracking
	5.4 Boundedness Results and their Direct Consequences
	5.5 A Lyapunov-Like Recursion for the Hyperplane
	5.6 Finishing the Proof

	6 Numerical Experiments
	6.1 Portfolio Selection
	6.2 Sparse Group Logistic Regression
	6.3 Final Comments: ps1fbt versus ps2fbt

