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1 Introduction

The quadratic assignment problem (QAP) is a classical mathematical model for
location theory, which is used to model the location problem of allocating n fa-
cilities to n locations while minimizing the quadratic objective coming from the
distance between the locations and the flow between the facilities. The standard
form introduced by Koopmans and Beckmann [22] is as following:

min{ Z Aiij(i),rr(j) + Zcm(z) | me Pn} s (1)

1<i,j<n

where A, B and C are given n x n real matrices and P™ is the the group of all
permutations of {1,...,n}. In this paper, we make the standard assumption that
A and B are symmetric.

Nowadays, QAP becomes one of the most important combinatorial optimiza-
tion problems due to its widely applications in many different areas, such as chip
design, manufacturing, computer graphics and vision, and so on (see |12,|14] for
more details). However, it is well known that QAP is NP-hard [34] and still quite
difficult to compute the problems of dimension n > 30 in a reasonable compu-
tational time. Exact solution algorithms for QAP in practice are usually based
on the branch and bound technique which is used to reduce the domain and to
improve the bounds of relaxation problems [3]. Therefore, it is still an important
research topic to improve the lower or upper bounds for QAP efficiently.

Meanwhile, semidefinite programming (SDP) [36] has proven to be very suc-
cessful in this trend by providing tight relaxations for hard combinatorial prob-
lems [37]. To obtain lower bounds for QAP, various SDP relaxations are estab-
lished [24,42]. Although SDP relaxation is numerically successful, it does not sat-
isfy the Slater condition that may make the dual optimal solution unbounded [30].
That is an important reason why some interior-point methods become inefficient
for solving QAPs. To overcome this difficulty, by exploring the geometrical struc-
ture of SDP relaxations, Zhao et al. [42] considered a reduced SDP problem by
projecting the primal problem onto the minimal face of the semidefinite cone, and
constructed some Slater points for such SDP relaxations, which can be solved by
the interior-point method and the bundle method [31] efficiently for n < 30.

In order to improve the quality of the SDP relaxation of QAP, Povh and
Rendl [29] showed that the optimal value of QAP was equal to the optimal value
of the convex completely positive programming (CPP), i.e., a linear program over
the cone of completely positive matrices. In fact, based on |11], many important
binary and nonconvex quadratic programs including QAP can be equivalent re-
formulated as the convex CPPs, under some mild conditions. However, these CPP
reformulations are known to be numerically intractable [27], and an efficient strat-
egy is replacing the completely positive cone with doubly nonnegative (DNN) cone
and solving the relaxation problems by SDP solvers [16}21}38./40,{41}43]. The QAP
and the corresponding CPP relaxation proposed by Povh and Rendl [29] have the
same optimal value, but the optimal solution may be different except that the rank
of the optimal solution is one. Because it is well-known that the rank constrained
matrix optimization problems are computationally intractable and difficult in gen-
eral [13], the rank one constraints are usually dropped in both the CPP and its
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related DNN relaxations of QAP. However, by use of the strategy of the differ-
ence of two convex functions (DC), the rank constraint can be replaced by the
difference of the nuclear norm function and Ky-Fan k-norm function. Based on
this simple observation, a penalty approach are proposed by [17] for calibrating
rank constrained correlation matrix problems, which usually performances very
well in many applications (see also [23]). In fact, based on the DC reformulations
of the rank constraints, we shall reformulate the original QAP as a DC program-
ming [1,/2] and employ the DC algorithm (DCA) to solve the non-convex QAP
relaxation problems.

In this paper, we will propose a new rank constrained DNN model and show
that it is equivalent with the original QAP (in the sense of both optimal values and
optimal solutions). Also, we shall show the same techniques can be applied by other
important non-convex problems such as the standard quadratic programming and
the minimum-cut graph tri-partitioning problem. Although the equivalent rank
constrained DNN model is still numerically intractable, we will propose a semi-
proximal DC algorithm (DCA) framework for finding a feasible stationary point.
Furthermore, for the large-scaled DCA inner subproblems, we will apply an ef-
ficient majorized semismooth Newton-CG augmented Lagrangian method based
on the software package SDPNAL+ [35]. Finally, numerical experiments on the
QAPLIB [19] and ‘dre’ instances |15] demonstrate the proposed approach usually
performs well.

Below are some common notations to be used in this paper. We use S? to denote
the linear subspace of all g x q real symmetric matrices. Let 'Y < S? be the subset
of all ¢ x ¢ nonnegative symmetric matrices in S?. Denote ST /S? (S%,/S?_) the
positive/negative semidefinite (definite) matrix cone in S?. Moreover, let C? be
the set of copositive matrices in S? and (C?)* be the dual cone of C?, i.e., the set
of all completely positive matrices in S?. For a given matrix Z € S? with q=1,
we also use the following block notation for simplicity:

le Zlq

Z9 ... zaa

with Z% € R9%7 for each i, € {1,...,q}. Let e; be the i-th standard unit vector.
We denote the vector and square matrix of all ones by 1, and E4 respectively, and
denote the identity matrix by I,. We will omit the superscript ¢ if the dimension
is clear. For a given Z € 8, we use A\1(Z) = ... = A\¢(Z) to denote the eigenvalues
of Z (all real and counting multiplicity) arranging in non-increasing order.We use
“vec(-)” to denote the vectorization of matrices and use “mat(-)” to denote its
inverse operator, i.e., the corresponding matricization of vectors. If z € R?, then
Diag(z) is a ¢ x g diagonal matrix with z on the main diagonal. Finally, we use
“®” to denote the Kronecker product between matrices.

2 The rank constrained DNN reformulation of the QAP

It is well-known that each permutation 7w € P™ can be represented by a n x n
permutation matrix X, i.e., a square binary matrix which has exactly one entry of
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1 in each row and each column and zeros elsewhere. Therefore, the QAP can
be reformulate as the following trace form:

min {(X, AXB +C) | X e T}, (2)

where (-, -) stands for the standard trace inner product of matrices, i.e., (Y, Z) =
tr(XTY) for X,Y € R™*™, and IT™*" is the set of all n x n permutation matrices.
It is clear that IT™*™ be characterized by the interaction of the set of orthogonal
matrices and the set of nonnegative matrices, i.e.,

H”X”={X6R”X"|XTX=I, X>()}.

Without loss of generality, we may assume that the data matrices A, B,C in
are nonnegative, i.e., A, B,C € N. Inspired by [4], Povh and Rendl [29] suggested
to consider the following convex completely positive conic relaxation of the QAP

(2):
min (B ® A + Diag(c),Y")

n
st Y YU =1, (I,YY)y=6y, i,jefl,...,n}, (3)
i=1

(B,YY=n2% Ye(@C)*
where ¢ = vec(C) and §;; =1 if i = j and J;; = 0 otherwise for i,5 € {1,...,n}. It
is clear that for any n x n permutation matrix X e IT™*"™,

Y = vee(X)vee(X)", X e " (4)
is a feasible solution of (3). Furthermore, Povh and Rendl [29] shown that the
optimal value of is actually equal the optimal value of QAP . Unfortunately,
the completely positive cone constrain Y € (C"Z)* is computational intractable. A
useful strategy to handle this is to approximate the cone (an)* from the outside,
e.g., the cone of symmetric doublely nonnegative matrices Sﬁz NN n® Thus, we
obtain the following relaxation of the QAP :

min (B ® A + Diag(c),Y")
st. YT =1, (I,YY) =6, i,je{l,....n}, (5)
i=1

(B, YYy=n? YeSYNN".

Clearly, the optimal value of problem only provides a lower bound of the QAP
. In general, the relaxation for the QAP is not tight.

On the other hand, from the equation , we may add the rank constraint
rank(Y) < 1 to and obtain the following rank constrained doubly nonnegative
(DNN) problem:

min (B ® A + Diag(c), Y
st YT =1, (I,YY) =46, i,je{l,...,n}, (6)
i=1

(B,)YY=n?% YeSYNN™, rank(Y)< 1.

The resulting problem @ is non-convex. In fact, we shall show that @ is an exact
reformulation of the original QAP . To this end, we need the following simple
observation on the rank one completely positive matrices.
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Lemma 1 Let ¢ > 1 be a given positive integer. Suppose that Y € S? and
rank(Y) < 1. Then, the following statements are equivalent:

(i) Y e (CT)*;

(ii) Y € 8% N

(iii) there exists x € R such that'Y = zz”.

Proof Since “(i) = (ii)” and “(iiil) = (i)” are obvious, we only need to show
“(il) = (iii)”, i.e., if Y € S (NN, then there exists z € RY such that YV = za”.
Without loss of generality, we may assume rank(Y’) = 1, since otherwise the result
holds trivially. It follows from Y € S and rank(Y’) = 1 that there exists v € RY
such that Y = \uu”. Since Y = 0, we have Yi; = usu; = 0foreachi,je{1,...,q}.
Thus, we can choose z = vVAu € R such that V = zz”. o
It is clear that the objective functions of and @ coincide. The equivalence
between and @ then follows if we show the feasible sets of these two problems
are the same. By employing the similar argument as that of [29, Theorem 3|, we
have the following result on the equivalence of the feasible sets of @ and .

Proposition 1 The matriz Y € 512 is a feasible solution of @ if and only if
there exists a unique X € II™ ™ such that Y = vec(X)vec(X)T. Moreover, since
|[vec(X)|? is the only nonzero eigenvalue of Y, the vector vec(X)/|vec(X)| is the
unit nonnegative eigenvector of Y.

Proof Tt is easy to see that if X € II™*" then Y = vec(X)vec(X)”? belongs the
feasible set of @ Thus, we only need to show the converse direction holds. Suppose
that Y is a feasible set of (@ We know that rank(Y) = 1, since Y # 0. It then
follows from Lemma [l| that there exists y € ’Rf such that Y = yyT. Denote
X = mat(z) € R™™"™. Then, by employing the similar argument as that of |29]
Theorem 3], we are able to show that X € IT™*". Furthermore, it is easy to verify
that for any X, X" € IT"*", if X # X', then Y # Y’ with Y = vec(X)vec(X)T
and Y’ = vec(X')vec(X")T.

Let the nonzero unit vector v € R™ with v = vec(X)/|vec(X)||, Obviously,
v E R’f. From the definition of the characteristic polynomial for matrices, we
know that

vec(X)

vee(X)] [vec(X) |vec(X) = |vec(X)[*v,

Yv = Vec(X)vec(X)T
that is , |vec(X)|? and v is the eigenvalue and eigenvector of Y respectively. The
proof is completed. ]

Remark 1 It follows from Proposition [1| that if Y € S™ is a feasible solution of
@, then we can find the permutation matrix X e II™*"™ by setting X = mat(z)
with x = v - |vec(X)| easily, where v is the unit corresponding eigenvector of Y
with respect to n.

The following result on the equivalence between the rank constrained DNN
problem @ and the QAP follows from Proposition immediately.

Theorem 1 The rank constrained DNN problem @ s equivalent to the QAP .
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Clearly, the non-convex rank constrained DNN representation @ is at least
as hard as the original QAP, which means that finding a global solution of @
is computational intractable. However, it is still possible to design some efficient
algorithms, e.g., the DCA (see Section 7 to find a good feasible point of @ and
obtain a good feasible solution of the original QAP.

3 Extensions

In this section, we shall demonstrate that the results obtained in Section [2| can
be applied to other important non-convex problems, which have the similar rank
constrained DNN representations.

Standard quadratic programming. The standard quadratic problem (StQP)
consists of finding an optimal of a quadratic form over the standard simplex, i.e.,

min{<m,Qas>| ixi=1, mZO}, (7)
i=1

where @ is an arbitrary n x n symmetric matrix. The StQP includes many im-
portant combinatorial optimization problems as special cases, e.g., the maximum
clique problem [26]. It is clear that the StQP can be rewritten as the following
matrix form:

min (Q, Y

st. (B, YY=1, Y =az¥, z>0.

Thus, by employing Lemma [I} we obtain the following result on the rank con-
strained DNN representation of the StQP @, immediately.

Theorem 2 The standard quadratic problem is equivalent to the following
rank constrained DNN problem.:

min (Q, Y .
st. (B, Yy=1, YeSINN", rank(Y)<1l. ®

The minimum-cut graph tri-partitioning problem. The minimum-cut
graph tri-partitioning problem [28] is to find a tri-partitioning the vertices of a
graph into sets S1, S2 and S3 of specified cardinalities, such that the total weight
of edges between S1 and S2 is minimal.

Let G = (V, E) be an undirected graph on n vertices, given by its (weighted)
symmetric nonnegative adjacency matrix A € N, the minimum-cut graph tri-
partitioning problem [28] can be described as: for given integers m1, m2 and ms
summing to n, find subsets S1, S2 and S3 of V(G) with cardinalities m1, m2 and
ms, respectively, such that the total weight of edges between S1 and S2 is minimal.
By presenting partitions Si, S2 and S3 by n x 3 matrices X, the minimum-cut
graph tri-partitioning problem can be written as follows

min %(X, AXB)
st. XTX =M, X13=1,, 9)
X =0,
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010
where M := Diag(m1, m2,m3) and B = [1 0 0] , the vector of all ones is 1), € RF.
000

By introducing Y = zz” with = vec(X), Povh and Rendl [28] reformulate the
minimum-cut graph tri-partitioning problem @D as follows:

min %(B@A,Y}

st. (LY ®I1,Y)=m;d;5, 1<i<j<3,
(Bs®@J"Yy=1, 1<i<
Vi@W]Yy=m; 1
(LY Q@ Ep,Y) =mimj, 1

Y = zzT, e R3",

’ , (10)
<

where V; = e;15 € R¥*® for i = 1,2,3, W; = e;1, € R™™ for j = 1,...,n,
JY = eief e R™"™ and LY = %(eiejr +ejel) e R¥3 for i,j = 1,2,3. Again,
similar with Section 2] by employing Lemmall] we are able to obtain the following

rank constrained DNN representation of the minimum-cut graph tri-partitioning
problem @

Theorem 3 The minimum-cut graph tri-partitioning problem @ is equivalent to
the following rank constrained DNN problem:

min %(B@A,Y)
st (ALY9QLYY=md;;, 1<i<j<S3,
<

(B3@J%Y)=1, 1<i<n, (11)
Vi@W],Yy=m;, 1<i<3,1<j<n

(L9 @ Fn, Yy =mym;, 1<i<j<3,

Y e SS"NN3™,  rank(Y) < 1.

4 The DCA for the rank constrained DNN problem

In this section, we shall propose a DCA based algorithm for the rank constrained
DNN relaxations established in the previous section. For simplicity in notation,
all proposed rank constrained DNN representations @, and can be cast
in the following abstract form:

min f(Y) :=(C,Y)

st. Ye2NR, (12)
where the subsets 2, R = S§? are defined by
Q= {Yesiﬂ/\/q |AY) :b} (13)
and
R :={Y e 87 |rank(Y) < 1}, (14)

CeS% A:87 - R™ is a given linear operator, and b € R™ is a given data.
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It is worth to note that for the rank constrained DNN relaxations proposed in
Section [2| the subsets {2 with respect to @, and ([11) are satisfy the following
assumption.

Assumption 1 The subset 2 € S? defined by is nonempty and bounded.

Let p > 0 be a given penalty parameter. The rank constrained DNN problem
is closed related to the following rank penalized problem:

min f(Y) + prank(Y’)

15
s.t. Y e (15)

In fact, we shall verify that under Assumption (I} the rank penalized problem
is an exact penalty version of the rank constrained DNN problem in the sense
that there exists a constant p > 0 such that the global optimal solution of
associated to any p > p coincides with that of .

Theorem 4 Suppose Assumption (1| holds. There exists a constant p > 0 such
that for any p = p, the global optimal solution set of associated to any p > p
coincides with the global optimal solution set of .

Proof Let Y* be a global optimal solution of . Since {2 is assumed nonempty
and compact, we may assume that Y € (2 is an optimal solution of the convex
problem min {f(Y) | Y € £2}. It is clear that f(Y*) > f(Y).Let p > f(Y*)—f(Y) =
0 be fixed. Suppose that p > p. Let Y, be a global optimal solution of chosen
arbitrarily with respect to p. We have

F(Yy) + prank(Y,) < f(Y™) + prank(Y™) < f(Y™) + p. (16)
By noting that rank(Y,) > 1 (since Y, # 0), we obtain from (16 that
F(Y,) < F(Y*). (17)
Since Y, € £2, we have f(lN/) < f(Y,). Thus, we have
p(rank(Y,) — 1) < f(Y*) = f(Y). (18)
We claim that rank(Y,) < 1. In fact, if rank(Y,) > 2, then it follows from that
p<fY*) = f(V),

which contradicts with the fact that p > p > f(Y*) — f(f/) Thus, we know
that Y, € 2R, i.e., Y, is indeed a feasible solution of . Therefore, we have
f(Y,) = f(Y*) since Y* is a global solution of (12)). This, together with (17),
implies that f(Y,) = f(Y™), which implies that Y, is a global solution of ((12))
On the other hand, by noting that Y, # 0 and rank(Y,) < 1, we conclude that
rank(Y,) = 1, which implies that

F(Yp) + prank(Yy) = f(Yp) + p = f(Y™) + prank(Y™)

It then follows from that f(Y,) + prank(Y,) = f(Y*) + prank(Y™). Thus,
we know that Y* is also a global solution of (L5)). Since Y* and Y, are chosen
arbitrarily, we know that the global solution sets of and coincide. o
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Consider the following penalized problem:
min f,(Y) :=(C,Y) + p(|Y s — [Y]2) (19)
s.t. Y e

Let X and Z be two finite dimensional Euclidean space. Recall a set-valued
mapping ¥ : X 3 Z is called calm at & for z € ¥(Z) if there exist a constant o > 0
and neighborhood U € & of Z and neighborhood V € Z of Zz such that

U(x)nVC¥(z)+oallr—z|Bxr Vzel,
where B~ is the unit ball in X.
Proposition 2 Suppose that the set-valued mapping I' : ® =3 S? defined by

Fw):={Y eS| Ye |V[«—|Y]|2=w}, weR,

is calm at O for each Y € I'(0). Then, there exists a constant p > 0 such that
for any p > p, Y* is an optimal of if and only if Y™ is an optimal of the
penalized problem .
Proof First, we shall show that there exists p > 0 if Y™* is an optimal of ,
then it is also an optimal solution of the penalized problem for p > p. By [6,
Theorem 2.1], we know from the calmness of I" that there exists 7 > 0 such that
dist(Y, 2N R) < 7dist(Y,R) = 7(|Y]l+ — |Y|2)- Let L :=||C| > 0. Suppose that
p > p := max{L7, L} be arbitrarily given. Suppose there exists Y € {2 and £ > 0
such that o o B -

CY)+p(|Y |5 = [Y]2) < (C,Y™) = pe.
Let Z € 2R be such that

|1Z -Y| < dist(Y,2[R) +e.
Since dist(Y, 2N R) < 7dist(Y,R) = 7(|Y |+ — |V |2). we have
|1Z =Y | <7(]Y s = [Y]2) + .

Then,
<CY)+L|Z-Y| <@, Yy+ L(r(|[V]« — [Y]2) +¢)
< @Yy +p(|Y |5 = [Y]2 + ) <(C,Y™).
This contradicts with the fact that Y* is an optimal of .

For the converse direction, it is sufficient to show that if Y* is an optimal of
the penalized problem (19), then Y* € 2R, i.e., Y* is a feasible solution of

. In fact, if Y € 2[R is an optimal of , then since Y* is an optimal of
the problem , we know from the first part that

@Y+ p|Y ¥l = [Y¥[2) = (C,Y)

(C,Zy

and
— 1 _ o~
C,Y* + St PYIY " s = [Y*]2) = (C,Y),

which implies that

1, _
5P = PYIY* [l = [Y*[2) = 0.
Since p > p and |[Y*|s« — [Y*||l2 = 0, we know that |[Y*|x — [Y*|2 = 0, i.e.,

rank(Y*) < 1. Thus, we have Y* € 2(\R. This completes the proof. o
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The objective function of can be rewritten as
oY) =CY) +p|Y]s —pp(Y), Y eS?
where p(Y) := |Y||2. Therefore, the non-convex objective function of the penalized

problem is a DC (difference of convex) function. Thus, we introduce a DC
based algorithm to solve , which has the following template:

Algorithm 1 [Proximal DC Algorithm (ProxDCA)]

1: Let Y9 € 2 be an initial point and o > 0. Set k = 0.
2: Choose W* € dp(Y'*). Compute

YF*! = argmin {fp,U(Y) |Y e Q} , (20)
where
Foo (V) := (O, Y )+ p[Y [ — p(p(Y*) + (WE Y —YF)) + il\Y —YFI2 o (21)

and the subset 2 € S9 is defined by .
3: If Ykt = Y* stop; otherwise set k = k 4+ 1 and go to Step.2.

Under Assumption (1}, the strongly convex problem has a unique solution
and can be solved efficiently by considering its dual problem, i.e.,

O |— k % kz
max—<b,y>—§”C+p(I+W)+A y+S+Z—oY H (22)
st. SeS%, Ze-NY.

Moreover, if (y*T1, kT Zk+Tly ¢ R™ x 8§89 x N7 is an optimal solution of the
above dual problem , Y**! can be found as follows

yEL _yk _ g (A*yk“ + ST ZE T L O 4 p(I — Wk)) . (23)

It is clear that the dual problem coincides with the inner problem [40, (8)]
involved in the augmented Lagrangian method of the dual problem of the semidef-
inite programming with an additional polyhedral cone constraint (SDP+) intro-
duced by [40]. Therefore, we can employ the majorized semismooth Newton-CG
method [40, Algorithm MSNCG| to solve , directly. Furthermore, in order for
the dual problem to have a bounded solution set, we introduce the following
general Slater condition for the constraint set {2 defined in .

Assumption 2 There ezists Y € S? such that
A(Taa(Y)) =R™ and VeS8, nint (NY),

where int (N'?) and Tare (Y) denote the interior of N and the tangent cone of N9
at 'Y, respectively.
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Under Assumption the convergence of Algorithm MSNCG is established in |40}
Theorem 2.5]. For simplicity, we omit details here.

Next, we shall study the convergence of the proposed DC based algorithm for
the rank constrained DNN problem . A feasible point Y € {2 is said to be a
stationary point of the penalized problem if

(C + pI + Na(V))(\(pop(Y)) # &,

where N (Y) is the normal cone of the convex set {2 at Y in the sense of con-
vex analysis (cf. e.g., [32]). We have the following results on the convergence of
the proposed DC based algorithm (Algorithm 1) for the rank constrained DNN
problem . Note that the proof of the following proposition is similar with that
of [18} Theorem 3.4]. However, we include the proof here for completion.

Proposition 3 Suppose that Assum tion holds. Let p > 0 be given. Let {Y*} be
the sequence generated by Algorithm |1l Then {fp(Yk)} 18 a monotonically decreas-
ing sequence. If Y**1 = Y* for some integer k = 0, then Y*™1 is a stationary point
of the penalized problem . Otherwise, the infinite sequence {fp(Yk)} satisfies

SIS VR < 0 < 0, k=0, (24)
Moreover, any accumulation point of the bounded sequence {Y*} is a stationary
point of problem .
Proof Since the function p is convex and W¥* € 0 p(Y'*), we know that
(YY) = p(Y®) + Wk, YL vk
Therefore, we have for each k > 0,

FoF ) = O Y 4 pY M — pp(YET)
< @Y 4 plY e = p(p(Yh) + W YRR v E))
1 ~
o IV =Y < oo (YF) = £V,
where the last inequality due to Y* € 2 and Y**! is the optimal solution of .
Thus, we know that the sequence {f,(Y ")} is a monotonically decreasing sequence.
Assume that there exists some k > 0 such that Y**! = Y* We shall show

that Y**1 is a stationary point of . Since Y**1 is the optimal solution of the
strongly convex problem , we know that

0e é(yk“ YR £ 0 — pWE 4 pI + Np(YHH). (25)

It then follows from Y**! = Y* that
oW e C+ pI + No(Y™ ),
which implies that

(C+ pI + No(Y*™)) (N pop(Y*™h) = &,
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i.e. YF*1 is a stationary point of .
Next, suppose that for all k > 0, Y**! = Y*. It then follows from , there
exists DFT1 e NQ(Yk+1) such that

0— %(Y’““ YR 4 T — p(W* — 1) + DFF, (26)

Thus, since Y* € 2 and D**! e NQ(Yk+1) for each k = 0, by , we have

FoV5 ) = £ (V") < fp o (VFHY) = oY)

= VR YRR YR (YR + VR YR vy i)
~(CYF) = p(IYF )2 =<1, Y™

L L o e R LA R G

1 _
_ %HYk-H YRR (@ — p(WF — 1), YR YRy
_ QL”YkH YRR <_l(yk+1 _yk)y pRHL y kL yky
o o
1
_ 727”Yk+1 _YE|2 —(DEFL YRt _yRy <)
g
which implies that
1
o IV =Y < fo(Yh) = f (v

Thus, the infinite sequence {f,(Y*)} satisfies the inequality .
Moreover, suppose that Y is an accumulation point of {Y*}. Let {Y*/} be a
subsequence of {Y*} such that

lim YR =Y.
Jj—+00
Then, by , we obtain that
N L k+1 Ey2 _qe - 0 i+1 0
Jim 5y 3V YR <m0 = ) < 0 < v

k+1

which implies that klim Y — YkH = 0. Therefore, we obtain that
— 00

lim Y™ = lim Y® =¥V and  lim (Y® 1T —y™) = 0.

Furthermore, since {Y*7} is bounded, it follows from [32, Theorem 24.7] that {W*#}

is also bounded. By taking a subsequenciif necessary, we may assume that there
exists W e dp(Y) such that lim Wk = W. Therefore, we obtain from that

J—®0

D= lim DM = lim (2™ _yR) LT p(Wh — 1)) = T — pI + oW,

Jj—00 Jj—00 o
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Now in order to show that Yisa stationary point of problem , we only need
to show that D € No(Y). Suppose that D ¢ No(Y), i.e., there exists Y € £2 such
that (D,Y —Y) > 0. Since for each k;, D* ™! € No(Y* 1), we have

(DML y YRty <o,

It follows from the convergence of the two subsequences {DFi*1} and {Y*i 1}
thus

(D,Y -Y)<0.
This is a contradiction. The proof is completed. O

In order to show the infinity sequence {Y*} generated by the proposed Al-
gorithm [I| actually converge, we recall the following definition of the Kurdyka-
ojaziewicz (KL) property of the lower semi-continuous function (see [5/9,|10] for
more details). Let ¢ > 0 and ¥, be the class of functions ¢ : [0,¢) — R4 that
satisfy the following conditions:

(a) ¥(0) = 0;
(b) % is positive, concave and continuous;
(c) 1 is continuously differentiable on (0,t) with 9’(x) > 0 for any = € (0, ¢).

Let g : R™ — (—o0,00] be a given proper lower semicontinuous function. Sup-
pose that x € domg := {x € R | g(z) < oo}. The Fréchet subdifferential of g at x
is defined as

T
dg(x) := {he R™ | limsup 9) —g(@) —h (y — 2) =0
TFY—T Hy - .TH

and the limiting subdifferential, or simply the subdifferential of g at x, is defined
by

og(z) := {h eR™ |3 {ack} — x and {hk} — h satisfying h* e 5g(xk) Vk}.
Definition 1 (KL property) The given proper lower semicontinuous function

g:R"™ — (—o0, o] is said to have the KL property at Z € dom g if there exist ¢ > 0,
a neighborhood U of T and a concave function i € ¥, such that

w/(g(x) — g(Z))dist(0,0g(z)) =21 Vzel and g(Z) < g(x) < g(T) + ¢,

where dist(z, Z) = Iniél |y — z| is the distance from a point = to a nonempty closed
zZE

set Z. The function g is said to be a KL function if it has the KL property at each
point of dom g.

One most frequently used functions which have the KL property are the semi-
algebraic functions.

Definition 2 (Semialgebraic sets and functions) A set in R" is semialgebraic
if it is a finite union of sets of the form

{zeR"|pi(z) >0, gj(x) =0, i=1,...,a, j=1,...,b},

where p; : R" > R,i=1,...,aand ¢g; : R" > R, j =1,...,b are polynomials. A
mapping is semialgebraic if its graph is semialgebraic.
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For this class of function, we have the following useful result (cf. |7,[8]).

Proposition 4 Suppose a proper lower semicontinuous function g : R™ — (—o0, 0]
is semialgebraic, then g is a KL function.

Now, we are ready to establish the global convergence of Algorithm [I| by em-
ploying a refined global convergence result for the proximal DCA solving the DC
programming with the nonsmooth DC function, which is recently developed by
Liu et al. [25].

Theorem 5 Suppose that Assumption holds. Let p > 0 be given and o < 1/|C +
pI|. Suppose that {Y*} is the infinite sequence generated by Algorithm . Then
{Yk} converges to a stationary point of problem .

Proof Tt is easy to verify that the set 2 € S? defined in is semialgebraic.
Moreover, since the conjugate function p*(Y) := sup {{Y,Z) — |Z|2} coincides
ZeSa

with the indicator function of the unit ball of the nuclear norm |- |, i.e., {Y € 8™ |
[Y[% < 1} (cf. |32, Theorems 13.5 & 13.2]), we know that for the given o > 0 the
corresponding auxiliary major function E(Y, Z,W) := (C,Y) + oI, Y )+ 6o(Y) —
Y, Zy+p*(Z)+ =Y - W2, Y, Z,W e S"™ defined in 25| (7)] is semialgebraic. It
then follows from Proposition 4] that F is a KL function. Thus, the desired result
follows from [25, Theorem 3.1] directly. o

Finally, we will show that if the parameter p > 0 is large enough, then the
sequence {Y*} obtained by Algorithm [1| will satisfy the the rank constraint of
when k sufficiently large.

Proposition 5 Suppose that Assumptz'ons and hold. For each k, choose W* =
Uf(U{C)T € 6p(Yk), where UF € R? is the orthonormal etgenvector with respect
to the largest eigenvalue )q(Yk) of Y*. Let {Yk} be the sequence generated by
Algorithm[1l Then, there exists p > 0 such that for any p > p and each k sufficiently
large,

rank(YkH) <1,

which implies that Y**1 is a feasible solution of .

Proof For each k, since problem is convex, we know that Y**! is the optimal
solution of if and only if there exists (y**1, S¥F1 ZF+1) e R™ x 89 x 87 such
that (Y*TL oFF1 gk+L Zk+1y gatisfies the following KKT system:

CapI-Wr 4 Ay +S+Z+ 1y —v™—o,

o
A(Y) =b, (27)
S1sY 1SeS, NIsY LZe-NA.

By the first equation of , we know that for each k,
SR (1 — W) + MFH
where MFFL .= —C — A*yFFt _ Zk+1 _ %(Yk+1 — Yk). By Weyl’s eigenvalue
inequality (see [39] or [20, Theorem 4.3.7]), we have for each k,
A (SEHY) < Na(=p(T = W) + M (MM = —p + A (MM, (28)
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where the equality holds due to the fact that the eigenvalues A\(—p(I — W¥)) =
(0,—p,...,—p) € RY. Moreover, since for each k, Y* € 2 is bounded, we know
that there exists a constant ¢ > 0 such that for each k, |[Y*|2 < ¢. It follows from
Assumption [2| that the level set of the dual problem is a closed and bounded
convex set (cf. |33, Theorems 17 & 18]). Thus, we know that there exists a finite
constant 7 such that for k sufficiently large, A1 (—C — A*y* Tt — ZF ) < . we
have there exists a constant ¢ > 0 such that for k sufficiently large,

A (MEFY) < A (—T — AFyFHL = ZR+) | l/\1 (Yk+1 _ Yk)
o
< M(—C — AFyFTY gkl 1 Hykﬂ _ Y}cHQ <n+ <
o o

Therefore, we know from that if p > p := max{n,0} + g > 0, then for k
sufficiently large,

A2(SF) < —p 4 MM < —pan+ & <0, (29)
g

Finally, since 8 > YR+l | §Ftl e 8% by ([29), we obtain that for k sufficiently
large,
rank(Sk+1) >q—1 and rank(Yk+1) + rank(Sk+1) <gq,

which implies that rank(Y**1) < ¢ — rank(S*™!) < 1. o

5 Numerical results

In this section, we present numerical results for the relaxation problem @ solving
by Algorithm 1} All the data from QAPLIB [19] and ‘dre’ instances [15] are tested
on a Window 10 workstation (6 core, Intel Xeon E5-2650 v3 @ 2.30 GHZ, 128 GB
RAM). The size of most QAPs ranges from 12 to 60. During our experiments,
SDPNAL+ version 1.0 [35] is used as doubly nonnegative solver for solving the
subproblems . Algorithm |1 is implemented in the MATLAB 2015a platform.
We measure the performance of Algorithm (1| by

PDCA —
gap := PDCA — opt x 100%,
opt

where ‘opt’ denotes the optimal value (or best-known feasible solution) of the
instance from QAPLIB, ‘PDCA’ denotes the optimal value of the subproblem

[20).

5.1 Penalty parameter

The penalty parameter p is an important factor for the whole procedure of Algo-
rithm |1} Figure [1] shows the effect of the paramenter p on the gaps and the ranks
of the sequences generated by Algorithm [I] for chr18a, els19, had20 and lipa30a.
In each subfigure, x-axis is the range of the parameter p, the left and right y-axis
denote the ranks of the generated solutions and the gaps of the optimality for the
different p respectively. As shown in Fig.|l| (a) and (b), if p increases from 0, chrl8
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Fig. 1: Effects of paramenters p on gaps and ranks of solutions

and els19 problems can obtain the optimal solutions of the problem since the
gaps are zeroes.

Although larger p can help the solutions satisfying the rank-one constraint in
the problem (Proposition, the parameter p should not be too large. In fact,
as demonstrated by (c¢) had20 and (d) lipa30a in Fig. [I} when p increases larger
than certain value, the gaps of these two problems oscillate up and down which
imply the penalty problem may move away from the target problem ((12). In
our implementation, a bisection strategy is used for finding a suitable parameter
p for Algorithm

5.2 Numerical performance

Table [1] summarizes the quality of the solutions obtained by our proposed DCA
approach for solving the problems from QAPLIB and ‘dre’ instances (107
instances). It can be seen from Table |1| that for 69 instances we are able to solve
the problems exactly; for 32 instances we are able to obtain a feasible solution
whose gap is less than or equal 4%; for 6 instances we obtain a feasible solution
whose gap is larger than 4%.
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Table 1: Summary of numerical performance of Algorithm

Problem set (No.) 0T < i%p =7 Problem
drexxx(6) 6 0 0 drel5, drel8, dre2l,
dre24, dre30, dre42
bur26x(8) 0 8 0 bur26a-h
chrxxx(14) 14 0 0 chr12x, chr15x, chr18x,
chr20x, chr22x, chr25a
els19(1) 1 0 0 els19
escxxx(14) 11 1 2 esclba-j, esc32a-g
hadxx(5) 5 0 0 had12, had14-had20
kra32x(3) 1 2 0 kra30a-b, kra32
lipaxxx(10) 10 0 0 lipa20x, lipa30x, lipad0x,
lipab0x, lipa60x
nugxx(13) 8 5 0 nugl?2, nugl4-nug?22,
nug25, nug27, nug28
rouxx(3) 3 0 0 roul2, roulb, rou20
scrxx(3) 3 0 0 scrl2, scrlb, scr20
skoxx(5) 0 2 3 skod?2, skob6, sko64,
sko72, sko81
ste36x(3) 0 3 0 ste36a-c
taixxx(17) 7 9 1 tail2x, tail5x, tail7x, tai20x,
tai2bx, tai30x, tai3bx,
taid0x, taib0a, tai60b
thoxx(2) 0 2 0 tho30, tho40
[ Total(107) [69] 32 [ 6 ] ]

The detail numerical results of Algorithm [I] for solving the ‘dre’ instances
from [15] and QAPLIB [19] are reported in Tables [2[ and 3| In the these tables,
‘time’ column (in hours:minutes:seconds) reports the CPU time of Algorithm
and ‘permutaion/bound’ column reports the feasible solution generated by solving
the relaxation problem of the rank-1 constrained DNN problem .

The ‘dre’ problem instances [15] are based on a rectangular grid where all
nonadjacent nodes have zero weight, making the value of the objective function
increase steeply with just a slight change from the optimal permutation. The ‘dre’
instances are difficult to solve, especially for many metaheuristic-based methods,
since they are ill-conditioned and hard to break out the ‘basin’ of the local mini-
mal. The best known solutions for the ‘dre’ problems have been found by branch
and bound in [15]. Notably, by employing our proposed DCA based approach
Algorithm [T} we are able to obtain the global optimal solutions of the ‘dre’ prob-
lems quite efficiently. For instance, we are able to solve the instance ‘dre42’ by
Algorithm [T] exactly in 13 minutes.

Table 2: Numerical performance of the ‘dre’ problem instances [15]

Problem | opt PDCA gap (%) | time permutation/bound

drelb 306 306 0 11 1 1134679115121411510238

drel8 332 332 0 16 | 414189101221573586 111317
116

dre2l 356 356 0 33 | 581718121311139164620719
1410 15 2 21

Continued on next page
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Table 2 — continued from previous page

Problem | opt PDCA  gap(%) time permutation/bound

dre24 396 396 0 15 | 32314212210169758181342 17
119121115246 20

dre30 508 508 0 1:22 | 2821176311 21 19 22 24 8 26 20 23 13
4291825103016 15141275279

dred2 764 764 0 | 13:00 | 33641 28 30 14 34 32 423733102712359
7215291811838242152261 1319
40 23 25 39 31 16 17 26 4 20

In Table [3] the upper bounds generated by Algorithm [I| are compared with the
state of the art optimal values (or the best known upper bounds) in QAPLIB.
Except burzxz and skoxz cases, we find that most instances can either be solved
exactly or achieve an upper bound which is accurate up to a relative error of
5% through the penalized DC relaxation. Because the subproblems of the corre-
sponding penalized DC problems are failed to achieve the stopping criteria 10~°
of SDPNAL+, Algorithm [I] only provides the feasible solutions for burzzz cases.
We note that the QAPLIB bounds were typically achieved using a rather large
collection of different algorithms, which generally involve a branch and bound
procedure requiring multiple convex relaxations, while our results are achieved by
using a single relaxation.

Table 3: Numerical performance of the QAPLIB instances

Problem opt PDCA  gap (%) time permutation/bound

bur26a 5426670 5566175 2.57 2:33 | 1126157413126218195218 14
31920 17 10 25 24 16 23 22

bur26b 3817852 3956961 3.64 1:55 1516 107412223221859121814
32019 25112624176 13

bur26c¢ 5426795 5523812 1.79 7:03 | 13312716 1125101598 19 18 20 4 21
114562224 2232617

bur26d 3821225 3902248 2.12 3:59 222332161117211598 1819 20 12 25
1415132464726 10

bur26e 5386879 5470899 1.56 6:26 22367122611611918192014 138
5152121724 410 25 23

bur26f 3782044 3847551 1.73 6:16 6224312257123152018 19 14 16 10
52192421726 13118

bur26g 10117172 10332466 2.13 7:32 21122231310258121204 7181215
919526166 14 3 24 17

bur26h 7098658 7257159 2.23 4:06 | 2216132614 1021 1815420187 1217
1959211323624 25

chrl2a 9552 9552 0 04 | 751221391110684

chr12b 9742 9742 0 04 571101134296128

chrl2c 11156 11156 0 04 751310486911212

chrlba 9896 9896 0 07 | 510813121114246715319

chr15b 7990 7990 0 07 1 413151925126147310118

chrlbc 9504 9504 0 07 | 132578114643159121110

chri8a 11098 11098 0 13 | 31364181210511187 1714916
15 2

Continued on next page
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Table 3 — continued from previous page
Problem opt PDCA  gap(%) time permutation/bound
chr18b 1534 1534 0 1:52 | 107118129156145134161172
18 3
chr20a 2192 2192 0 27 1 32071891219410111615825
14 16 13 17
chr20b 2298 2298 0 28 [ 203971121668 141045 13172
18 11 19 15
chr20c 14142 14142 0 28 1 126921011341518 713165 14 17
191820
chr22a 6156 6156 0 39 | 15221816171814135176 1134
201992210 12
chr22b 6194 6194 0 28 | 10193120264 781713111521 12
95221418 16
chr25a 3796 3796 0 2:00 | 25125318416 820 10 14 6 23 15 24 19
13121111722279
els19 17212548 17212548 0 31 [ 910719141813176114512816 15
123
esclba 68 68 0 18 | 12157111461084161335921
escl6b 292 292 0 40 | 76814161013215412511193
escl6e 160 160 0 1:00 | 15109211411341381612675
escl6d 16 16 0 81 14671013516241312151189
escl6e 28 30 7.14 15[ 15107144861612215913113
esclbg 26 26 0 13 17121016486 1411321151359
escl6h 996 996 0 18 | 6513712111548316921 10 14
esc16i 14 14 0 19 | 753191012246 11 13 158 14 16
escl6j 8 8 0 11 1 1145814161397110121536 2
esc32a 130 150 15.38 13:11 | 281227194 18 16 21 11 32 14 8 26 10 25 23
6913171522731302429531 202
esc32b 168 168 0 12:18 | 1392511275762841329 1410
30 26 15 31 16 12 32 28 21 19 23 20 18 17 22 24
esc32c 642 646 0.62 2:26:27 | 113014 151724321234218226215
87201929 9313261216 31 25 27 10 28
esc32e 2 2 0 12:36 | 1921793 7123016 10 14 13 31 15 21 18
222842662524112082751 322329
esc32g 6 6 0 12:23 | 2135614 22201516 26288 3223311
11171224 37194302521 102729189
had12 1652 1652 0 41310112125768149
had14 2724 2724 0 51 8131051211214367194
had16 3720 3720 0 81941617861415111210532 13
had18 5358 5358 0 11 | 81516147186 111101253132 17
94
had20 6922 6922 0 42 [ 815114196717161210115202 3
491813
kra30a 88900 88900 0 23:16 | 9132827871030202123192429141
11121816 1722262532564 15
kra30b 91420 92010 0.65 14:45 | 2415226435217 116 11 2526 30 19
1028 292123208129 7132718 14
kra32 88900 89100 0.22 2:11:24 | 810596 14 272324 311216284137
113292226153021122032251819 17
lipa20a 3683 3683 0 18 1 1917715910124 162063 14 11 15
138218
lipa20b 27076 27076 0 19 | 1234567891011121314 15 16
17 18 19 20
lipa30a 13178 13178 0 4:43 | 9132217252329121165 282027144

Continued on next page
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Table 3 — continued from previous page

Problem opt PDCA  gap(%) time permutation/bound
18819302171524263161 102

lipa30b 151426 151426 0 4:51 [ 1234567891011 1213 1415 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30

lipa40a 31538 31538 0 34:01 | 761427193721 21614024 3023528
22 82035322629341136101338917
31 18 33 15 25 34 39 12

lipa40b 476581 476581 0 40:58 | 1234567891011 1213 141516
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40

lipab0a 62093 62093 0 20:30 | 28 32373949231944337 1430155 366
17 26 48 2540 3 4527183129169 1218
4250 21 43 35 24 38 34 46 42 13 20 22 41 47
10 11

lipa50b 1210244 1210244 0 23:04 | 1234567891011 121314 1516
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50

lipa60a 107218 107218 0 2:44:09 | 2548 17450 13 16 41 1 37 22 27 46 34 38 12
9383347 54314340 103523295726
51 56 49 21 30 36 15 39 59 18 52 28 26 44 14 60
32520 11 55 45 53 24 42 7 58 19

lipa60b 2520135 2520135 0 36:07 | 1234567891011 121314 1516
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60

nugl2 578 578 0 12 1397121118421065

nugl4d 1014 1014 0 4:40 | 98132111714341256 10

nuglh 1150 1150 0 5:19 | 1256151011 71434981321

nugl6a 1610 1610 0 32 191421516310128 116571413

nugl6b 1240 1240 0 9:27 | 8113513971122106 164 15 14

nugl? 1732 1732 0 10:17 | 16 152149118121034176 1317
5

nugl8 1930 1936 0.31 29 | 17175611812101341523916
18 14

nug20 2570 2570 0 2:40 | 181410394212 1116 19 15208 13 17
5716

nug21 2438 2442 0.16 17:25 | 4181116136 1514198 711217 20 21
391025

nug22 3596 3642 1.28 4:02 | 204168197109 132117141511 318
22112625

nug25 3744 3750 0.16 35:06 | 1241423132421 7102017166191 11
2589151823225

nug27 5234 5236 0.04 30:21 | 23183 127175137 1512268 19 20 2
2421410914 22256 16 11

nug28 5166 5166 0 35:33 | 1182028191826 16 17 19 10 15 7 14 27
4132562212532422123

roul?2 235528 235528 0 04 | 6511928311274 10

roulb 354210 354210 0 5146 | 1268 1353152719104 14 11

rou20 725522 725582 0 4:54 | 12119177148136101918 5216 3
412015

scrl2 31410 31410 0 04 | 861110295112743

scrlb 51140 51140 0 06 | 121011141139515642873

Continued on next page
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Table 3 — continued from previous page

Problem opt PDCA  gap(%) time permutation/bound

scr20 110030 110030 0 13:42 | 207126483214 11189191516 17
135101

sko42 15812 15952 0.89 3:58:53 | 2316 3036 321 8223937241386 282
14 18 32 40 25 33 4 3526 9 15 29 27 10 19 20
3442111331512 717 41

skob6 34458 36490 5.90 3:18:03 | 2142211 305149325656339 231354
38 24 8 50 32 36 44 10 31 45 53 37 27 12 14 41
43 55 22 5 29 20 52 35 26 46 4 28 34 48 18 40
191516147 177 39

sko64 48498 50948 5.05 3:48:56 | 31 57 56 53 51 3 43 15 2 54 17 52 23 32 11 27
63 26 59 49 13 6 40 46 33 7 44 16 64 39 38 61
10 42 4524 462 3041 353712155528 34
9 25 58 22 19 8 48 12 18 50 14 20 29 47 60 36

sko72 66256 70318 6.13 | 14:42:49 | 4511 51 71 29 14 60 31 12 53 41 50 57 44 28 21
10 64 25 52 68 1 6 13 47 67 35 43 20 16 59 49
72223 27 32 4 63 55 33 46 65 17 30 24 69 66
36 9 38 372343724219 39 61 26 62 56 54
558 15 40 48 70 8 18

sko81 90998 93356 2.59 | 25:47:17 | 47 67 80 65 34 39 69 74 30 40 23 63 38 20 33 26
81 25544793551212143 77247358 32
70 21 78 61 10 19 75 37 18 15 49 42 72 22 43 59
1344 7416287155621 1131536953
29 46 52 27 45 56 17 50 8 60 64 76 16 68 57 48
66

ste36a 9526 9640 1.20 1:12:45 | 3516 11514 28 29 30 31 17 18 10 7 11 20 19
3234284131223222133363956
27 26 25 24

ste36b 15852 15932 0.50 25:14 | 3531302928 1159 1633343219207 10
18 17 26 2523 14 11 13 4 8 2 24 22 21 27 12
65336

ste36c¢ 8239110 8254628 0.19 2:19:21 | 242526271165 3352221231412134
8233321928207 1018 17 34 31 30 29 15
1916 36

tail2a 224416 224416 0 051 816211103597124

tail2b 39464925 39464925 0 41946311712281015

tailba 388214 388870 0.17 31 1 610472911131413155128

tailbb 51765268 51765268 0 151 194681571135214131210

tail7a 491812 491812 0 6:18 | 122674814511316131791 10
15

tai20a 703482 703482 0 14:48 | 1091220193 1461711571516 18 2
48131

tai20b 122455319 122455319 0 48 | 81614 17411319791156 13102
52018 12

tai2ba 1167256 1217842 4.33 31:47 | 2011079134193211158211214
182523 17522246 16

tai25b 344355646 344855160 0.15 16:03 | 4251691356197 17 103 1520 18 2
2223811212414 121

tai30a 1818146 1818146 0 33:33 | 1918424302557122282011139 16
810172112292 153142627236

tai30b 637117113 644555585 1.17 4:52 | 4155821113014 17206 1318723 10
24272991928226122225161 3

tai3ba 2422002 2431214 0.38 37:01 | 35921 72321282026331618242215

Continued on next page
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Table 3 — continued from previous page

Problem

opt

PDCA

gap(%)

time

permutation/bound

30314 11151741013 2729 34 32 25 31
28 6 19

tai3bb

283315445

284614706

0.46

1:14:45

11753011222314109 2018 1219 33
8321327152134357246233128164
29 26 25

tai40a

3139370

3154106

0.47

1:54:41

6141512931920282752731364
37 1329 3538 32 11 122 39 18 30 23 33 25 24
21 810 17 34 16 40 26

taid0b

637250948

640933239

0.46

2:01:44

1912511 37 31 36 15 39 13 22 7 40 27 4 33
1434910 38 23 532351216 3 24 2 21 28
20 17 26 6 30 29 18 8

taib0a

4938796

5086610

2.99

11:54:27

542353436 3747211082548 274111
18 32 6 44 12 33 15 2 29 50 20 3 43 14 46 38
26 40 47 39 19 28 4549 13 30 23 1 16 22 17 31
9 24

tai60b

7205962

7417848

2.94

5:41:01

18 41 38 7 20 26 30 36 16 31 59 57 21 54 19 48
2347 2741014 543 58 3 6 50 12 49 8 44

17 29 15 22 33 46 35 32 25 52 34 39 45 55 60 11
11353 37519 40 28 24 2 42 56

tho30

149936

151156

0.81

26:26

291412 8282225122019 11 24 27 17 26
3010615375416 232113918

tho40

240516

242282

0.73

5:38:41

38 37513 26 27 3531 4289322182925
18 332216 30 6 12 34 39 14 20 151 10 11 17
1924023247 36 3

6 Conclusion

This paper established an exact rank constrained DNN formulation of QAP. Under
the framework of DC programming, we are able to solve the penalized DC problem
efficiently by the semi-proximal augmented Lagrangian method. If the subproblems
can be solved successfully, our algorithm usually reaches the optimal solutions of
QAP exactly. Even if the subproblem is difficult to solve, our proposed algorithm
still can provide a good feasible solution close to the optimal upper bound in
QAPLIB. As a future work, we will investigate the structure of the constraints of
the penalized DC problem and try to reduce the number of constraints for solving
the rank constrained DNN formulation of QAPs more efficiently.
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