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Abstract

We define the notion of infimum of a set of points with respect to the second order
cone. This problem can be showed to be equivalent to the minimum ball containing a
set of balls problem and to the maximum intersecting ball problem, as well as others.
We present a dual algorithm which can be viewed as an extension of the simplex
method to solve this problem.

Keywords: Smallest enclosing ball, simplex-type methods, second order cone pro-
gramming, computational geometry

1 Introduction

Let Q denote the second-order cone, Q := {x := (x0; x) ∈ R
n : ‖x‖2 ≤ x0}. Given a set

of points P = {p1, ..., pm} ⊂ R
n, we consider the problem defined as follows

InfQ(P) := max
x

〈e1, x〉
s.t. x �Q pi, i = 1, ...,m

(P)

with e1 = (1, 0, ..., 0). We define this problem as the infimum of P with respect to Q

(given its resemblance with the problem of finding the minimum number of a set of
numbers with a linear program). Throughout the article we shall refer to this problem
as InfQ(P), or simply (P).

Denote by x∗ the optimal solution to (P). One possible geometric interpretation
of the problem in question is to find x∗ as “high” as possible (when height is defined
as the value of x0) such that x∗ + Q covers all points of set P, in the sense that they
either fall inside or on the boundary of x∗ + Q (Figure 1). But more interestingly,
it is possible to prove that (P) is in fact equivalent to several relevant problems in
computational geometry, such as the smallest enclosing ball of balls or the largest
intersecting ball.
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Figure 1: Geometric interpretation of the infimum of with respect to Q.

Problem (P) is a Second-Order Cone Program (SOCP) and so it can be solved in
polynomial time using interior point methods, such as the primal-dual path following
algorithms [20, 21].These algorithms generate interior-points for the primal and dual
problems that follow the so-called central path, which converges to a primal-dual op-
timal solution in the limit. Each iteration, in terms of computational work, basically
consists on the solution of a linear system to compute the search direction resulting
from the application of Newton’s method to the KKT conditions of a modified (P)
with a logarithmic barrier function. The matrix in question is positive definite (see
e.g. [1]), and usually its Cholesky factorization is used. In terms of our problem,
the matrix has size n × n (note that the standard form cone LP is the dual), and
would take O(mn2) basic arithmetic operations to be computed [25] resulting in a
iteration with O(mn2 + n3) computational complexity. Therefore, computing a solu-
tion with an error ǫ with an interior-point method would have an overall complexity
of O((m+ n)n2

√
m log 1

ǫ
)), though in practice it has been observed that the number

of iterations is often very small and independent on m. Interior point methods have
been used to solve (P) in particular in [14, 25]. Specifically, in [25] an algorithm that
computes a (1+ ǫ)-approximation in O(mn

ǫ
+ 1

ǫ4.5 log 1
ǫ
) time is presented.

In this paper we introduce a dual algorithm for (P) that mechanically is analogous
to the Simplex method for Linear Programming. Each (major) iteration of our algo-
rithm starts with a primal solution corresponding to a dual feasible basic solution, but
then, instead of a line search, our algorithm will perform a sequence of exact curve
searches until it arrives to a new dual feasible basic solution with a better objective
function value. We will define the notion of basis as well as dual feasible basic solution
applied to our problem, which we will rename as support set and dual feasible S-pair,
respectively. Mechanically speaking, our algorithm shares similarities with the dual
active set algorithm for strictly convex QPs by Goldfarb and Idnani in [10], and with
the work of Dearing and Zeck who proposed a dual simplex method for the minimum
enclosing ball of points in [5].

Besides providing an exact solution, one advantage that a dual simplex algorithm
has over interior point methods is that, after solving the problem, if it suffers small
changes (e.g. adding an extra constraint), the dual simplex method will usually require
a small number of iterations to calculate the new solution when it starts with the
original solution. Another advantage of simplex-type algorithms in general is that
they generate basic solutions. For instance in the case of the minimum enclosing ball
of balls (and in particular of points too), that will be able to tell us which input balls
(points) determine the smallest enclosing ball. On the other hand, we do not have
any overall polynomial complexity guarantees for the algorithm.

The paper is organized as follows. In section 2 we show that problem (P) is
equivalent to relevant problems in computational geometry involving hyperspheres.
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Section 3 presents important theoretical background to the algorithm, such as duality
results and the definition of support set. The dual simplex algorithm for (P) is then
introduced in section 4. We then briefly explain the implementation details in section
5 and show some computational results in section 6.

2 Equivalent geometric problems

We now show that problem (P) is equivalent to several relevant problems in computa-
tional geometry such as the smallest enclosing ball of balls. For what follows, denote
by B(c, r) a ball with the Euclidean norm with center at c ∈ R

n−1 and radius r ≥ 0.

The smallest enclosing ball problem. The classical and well studied problem
of enclosing a set of Euclidean balls with an Euclidean ball of smallest radius can
be reduced to (P) as a consequence of the fact that B(c1, r1) ∩ B(c2, r2) 6= ∅ if and
only if ‖c2 − c1‖ ≤ r2 + r1. Thus, the problem of enclosing a set B of balls B(ci, ri),
i = 1, ...,m with a ball B(c, r) of minimum radius can be solved by (P) considering
P = {(−ri; ci), i = 1, ...,m}. The optimal ball will then be given by the center c = x∗

and radius r = −x∗0. When ri = 0 for all i, the problem reduces to the smallest
enclosing ball of points. Figure 2 illustrates this equivalence: the minimum enclosing
ball of set B is the intersection of the cone x∗ + Q with the plane x0 = 0.

The smallest enclosing ball of balls, and in particular of points, is a classical prob-
lem in computational geometry. This problem has been extensively studied, specially
from a combinatorial point of view, in particular in the LP-type framework, see e.g.
[6, 8, 16, 17, 23]. In particular, the minimum enclosing ball of points can easily be
converted in a Quadratic Program (QP) and solved using off-the-shelf QP solvers.
Gärtner and Schönherr [9] developed a generalization of the simplex method for QP
with the goal of targeting geometric QPs, with one of the main applications being
the MB problem, while later, Fischer and Gärtner [8] proposed an algorithm with a
pivoting scheme resembling the simplex method for LP based on previous ideas from
[12]. Using related ideas, Dearing and Zeck [5] developed a dual algorithm for the MB
problem. This algorithm was further improved in [4]. Several approximation algo-
rithms have also been developed focusing on finding an ǫ-core set, [3], that is a subset
of S ⊂ P that has the property that the smallest ball containing S once expanded by
1+ ǫ covers P. A surprising fact is the existence of an ǫ-core set of size at most ⌈ 1

ǫ
⌉,

independent of the dimension n, for any point set P ⊂ R
n, [14, 2]. Several algorithms

focused on finding ǫ-core sets have been proposed [2, 3, 14, 15, 22, 24].

(a) Cone view (b) View from above at the

cross-section at x0 = 0

Figure 2: The smallest enclosing ball of a set of balls.
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The smallest intersecting ball and the largest enclosed ball problems. Con-
sider now the smallest intersecting ball problem of finding the Euclidean ball with
smallest radius that intersects all balls B(ci, ri), i = 1, ...,m. This problem also re-
duces to (P) given that B(c1, r1) ∩ B(c2, r2) 6= ∅ if and only if ‖c2 − c1‖ ≤ r2 + r1.
Thus, considering P = {(ri; ci), i = 1, ...,m} in (P), the smallest ball that intersects all
balls has center c = x∗ and radius r = −x∗0. Figure 3 illustrates the equivalence. Balls
B(ci, ri), i = 1, ...,m, may all intersect, and so the smallest intersecting ball could be
considered any point in the intersection. In such case, the smallest intersecting ball
problem then looses its interest. In fact, when all balls intersect, the solution is such
that x∗0 > 0. This solution however is not meaningless, in fact, it is not difficult to
see that, when

⋂

B(ci, ri) 6= ∅, ball B(x, x∗0) is the largest radius ball that is enclosed
in the intersection of the balls. We shall refer to this problem as the largest enclosed
ball problem (see Figure 4). For previous work on this problem see [18, 19] and the
references therein.

(a) Cone view (b) View from above at the

cross-section at x0 = 0

Figure 3: The smallest intersecting ball of a set of balls.

(a) Cone view (b) View from below at the

cross-section at x0 = 0

Figure 4: The largest enclosed ball in a set of balls.

The smallest intersecting and enclosed ball problem. From the previous two
sections, we conclude that the problem of finding a ball with smallest radius that
simultaneously encloses balls B(ci, ri), i = 1, ...,m1, and intersects balls B(cj, rj),
j = 1, ...,m2, can be solved by considering P = {(−ri; ci), i = 1, ...,m1} ∪ {(rj; cj), j =
1, ...,m2}. The optimal ball will then have center x∗ and radius −x∗0.
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3 Preliminaries

Before we proceed, let us introduce/review some notation.

P {p1, ..., pm}

pi = (pi0;pi) a point from P

P set {p1, ..., pm}

x = (x0; x) primal variables
yi = (yi0;yi) dual variables, i = 1, ...,m

3.1 Duality and optimality conditions

It is easy to see that the solution to (P) always exists and that it is unique. Moreover,
it is possible to prove the following:

Lemma 1. The solution to InfQ(P) is pk ∈ P, for some k = 1, ...,m, if and only if
pk �Q pi for all i = 1, ...,m and pk0 = min{pi0, i = 1, ...,m}.

The dual problem of InfQ(P) is

min
y

m∑

i=1

〈pi, yi〉

s.t.

m∑

i=1

yi0 = 1

m∑

i=1

yi = 0

yi �Q 0, i = 1, ...,m.

(D)

The solution to (D) may not be unique.

Lemma 2. Both primal problem (P) and dual problem (D) are strictly feasible; i.e.
there exists a primal-feasible vector x such that x ≺Q pi for all i = 1, ...,m, and there
exist dual-feasible y1, ..., ym such that yi ≻Q 0 for all i = 1, ...,m.

Since both primal and dual problems are strictly feasible, the duality gap is zero, that
is, strong duality holds and the Karush-Kuhn-Tucker conditions are also sufficient [1,
p. 25], as Thoerem 3 states.

Theorem 3 (Optimality conditions). Let x∗ and y∗
i , i = 1, ...,m be any points in R

n.
The pair (x∗, {y∗

i }i=1,...,m) is primal-dual optimal if and only if

• primal feasibility: x∗ �Q pi, i = 1, ...,m;

• dual feasibility:
∑m

i=1 y
∗
i = e1 and y∗

i �Q 0, i = 1, ...,m;

• complementary slackness: 〈pi − x∗, y∗
i 〉 = 0, i = 1, ...,m.

The complementary slackness conditions imply

• if y∗
i ≻Q 0 then x∗ = pi (which can happen for a single i, and in that case

y∗
i = e1 and y∗

j = 0 for all j 6= i);

• if x∗ ≻Q pi then y∗
i = 0;
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• if pi − x∗ ∈ ∂Q and y∗
i ∈ ∂Q then

y∗
i =

y∗
i0

pi0 − x∗0
(x∗ − pi) = y∗

i0

x∗ − pi

‖pi − x∗‖ . (1)

A consequence of Theorem 3 is the following characterization of optimality:

Theorem 4. x∗ is the optimal solution to problem (P) if and only if x∗ �Q pi for all
i = 1, ...,m, and

x∗ ∈ conv ({pi : ‖pi − x∗‖ = pi0 − x∗0}) . (2)

Proof. The theorem follows trivially from the optimality conditions in the case when
x∗ = pk for some pk ∈ P. Consider then, that is not the case.

First, consider x∗ is optimal. Let I = {i : ‖pi − x∗‖ = pi0−x∗0}, and y∗
i , i = 1, ...,m

be an optimal dual solution. From complementary slackness and dual feasibility we
conclude

0 =
∑

i∈I

y∗
i =
∑

i∈I

y∗
i0

pi0 − x∗0
(x∗ − pi)

since y∗
i = 0 for i 6∈ I. From the previous equation we have

x∗ =
∑

i∈I

αipi with αi =
y∗
i0/pi0 − x∗0∑

i∈I
y∗
i0/pi0 − x∗0

.

Since
∑

i y
∗
i0 = 1 there must be at least one αi 6= 0, and y∗

i �Q 0 implies αi ≥ 0 for
all i. Because

∑m
i=1 αi = 1 we conclude that (2) holds.

Conversely, suppose we have x∗ that is primal feasible and such that x∗ satisfies
(2). Then

x∗ =
∑

i∈I

αipi, with αi ≥ 0, i ∈ I, and
∑

i∈I

αi = 1.

We will now build a dual solution that is feasible and together with x∗ satisfy com-
plementary slackness. Consider yi0, i = 1, ...,m, such that

αi =
yi0/pi0 − x∗0∑
j yi0/pi0 − x∗0

, (3)

Equations (3) together with
∑

i yi0 = 1 give the following linear systems of equations






α1(z1 + . . .+ zm) = z1
...
αm(z1 + . . .+ zm) = zm
σ1z1 + . . .+ σmzm = 1

with zi = yi0/(pi0 − x∗0) and σj = pi0 − x∗0. The last equation implies

σ1α1(z1 + . . . + zm) + . . .+ σmαm(z1 + . . . + zm) = 1

(z1 + . . . + zm) =
1

σ1α1 + . . .+ σmαm

.
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Therefore
zi =

αi

σ1α1 + . . .+ σmαm

,

that is,

yi0 =
αi(pi0 − x∗0)∑
j αj(pj0 − x∗0)

.

We have that yi0 ≥ 0 for i ∈ I. Setting yi0 = 0 for i 6∈ I, and considering

yi =
yi0

pi0 − x∗0
(x − pi) ,

for all i = 1, ...,m, we have that (yi0; yi) is feasible for the dual problem (D). Since
x∗ is primal feasible and ‖pi − x∗‖ = pi0 − x∗0 for i ∈ I, we have that, together with
yi, complementary slackness is satisfied, thus x∗ is optimal for (P).

We now present two insightful conclusions from the proof of Theorem 4.

Observation 5. The optimal solution x∗ to (P) is such that

x = ri conv({pi : y
∗
i0 > 0}). (4)

Note that y∗
i0 > 0 cannot be replaced by y∗

i ∈ ∂Q (when x∗ = pk we have y∗
k = e1 6∈

∂Q).

Another conclusion from Theorem 4, which will be at the core of our algorithm, is the
following corollary.

Corollary 6. Consider x, not necessarily primal feasible, that satisfies

x ∈ aff({pi : i ∈ I}), for I = {i : ‖pi − x‖ = pi0 − x0}. (5)

Let α1, ..., αm be the coefficients of the affine combination. There exists a dual solution
given by

yi = 0, for i 6∈ I,

yi0 =
αi(pi0 − x0)∑
j αj(pj0 − x0)

and yi =
yi0

pi0 − x0
(x− pi) , for i ∈ I,

that satisfies the dual constraint
∑m

i=1 yi = e1, and, together with x, the complemen-
tary slackness conditions.

Note that, unless {pi : i ∈ I} is affinely independent, the coefficients of the affine
combination are not unique and therefore x may correspond to more than one such
dual solution. If, additionally, x ∈ conv({pi : i ∈ I}), then yi0 ≥ 0 for all i, and so x

corresponds to a dual feasible solution.

Finally, we can use the result from Theorem 4 to easily calculate algebraically the
solution to InfQ(P) when P only has two points.

Theorem 7. The solution to InfQ({p1, p2}) is given by

x∗0 = min

(

p10, p20,
p10 + p20 − ‖p1 − p2‖

2

)

, x∗ =
(p10 − x∗0)p2 + (p20 − x∗0)p1

(p10 − x∗0) + (p20 − x∗0)
.

(6)
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3.2 The definition of support set and S-pair

We now define support set for the InfQ(P) problem the same way a basis is defined
for an LP-type problem [7].

Definition 8 (Support set). A subset S is called a support set if no proper subset S ′

of S is such that InfQ(S
′) = InfQ(S). A subset S ⊆ P is said to be an optimal support

set if S is a support set and InfQ(S) = InfQ(P).

Note that an optimal support set may not be unique.

Definition 9 (Dual feasible S-pair). Let S ⊆ P and x a vector. We say (S, x) is a dual
feasible S-pair if

(a) the points of S lie on the boundary of x + Q, that is,

‖pi − x‖ = pi0 − x0, ∀pi ∈ S;

(b) x ∈ ri conv(S);

(c) S is affinely independent.

Comparing with LP, support set is analogous to the definition of basis, and dual
feasible S-pair to the definition of dual basic feasible solution.

Using Theorem 4, it is now possible to prove the following equivalence.

Theorem 10. (S, x) is a dual feasible S-pair iff S is a support set and x is the solution
to InfQ(S).

As a consequence of the previous theorem, a support set has at least 1 point and
at most n points. This is, in fact, a well known result: the minimum enclosing ball of
balls in R

n−1 is defined by at most n balls. Another consequence, is the fact that if
(S, x) is a dual feasible S-pair and x is primal feasible, then x solves InfQ(P).

Finally, Theorem 11 is a direct consequence of the definition of support set.

Theorem 11. Let S be a support set. If a point p∗ is infeasible to InfQ(S), then p∗

belongs to an optimal support set for problem InfQ(S ∪ {p∗}).

4 Algorithm description

We now outline the basic framework of the algorithm:

Initialization: Suppose a dual feasible S-pair (S0, x0), S0 ⊆ P, is given.

Loop: For j = 0, 1, 2, ..., do:

(a) If xj is primal feasible, stop - xj is the optimal solution of (P).

(b) Else, get a p∗ ∈ P corresponding to a chosen violated constraint.

(c) Obtain a new dual feasible S-pair (Ŝ ∪ {p∗}, x̂), for Ŝ ⊆ Sj and x̂0 < xj0;

Set (Sj+1, xj+1)← (Ŝ ∪ {p∗}, x̂).

Note that, as an initial solution, one can simply pick any point p ∈ P, and consider
the dual feasible S-pair ({p}, p).

The core of the algorithm is step (c) which will consist on a sequence of curve

searches that keep dual feasibility. Assume, for now, that S
j ∪ {p∗} is affinely indepen-

dent. Since, at each iteration j, we start with a dual feasible S-pair (Sj, xj), the set of
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constraints associated with Sj are active at xj. As we shall see, the set of points x that
correspond to dual feasible solutions and that keep those constraints active define a
curve (see section 4.1). A curve search basically consists on the following problem:
starting at xj, we “move” on the curve in the direction of decrease of x0 until either
dual feasibility is lost or p∗ becomes feasible, whichever happens first. As we will
see, we will be able to calculate exactly the points where dual feasibility is lost and
where p∗ becomes feasible, so the curve search will be exact. This then boils down to
calculating what we will define as the partial step and the full step:

Partial step : the maximum step on the curve without violating dual feasibility. The
point corresponding to that step, which we will denote by xpartial, is the first point
on the curve where one of the dual variables, which vary non-linearly as we move on
the curve, becomes zero.

Full step : the minimum step on the curve such that the constraint corresponding to
p∗ is feasible, that is, when it becomes active. When it exists, we denote that point
by xfull.

If the full step happens before the partial step, then xfull corresponds to a dual feasible
variable and so it is the optimal solution to the subproblem InfQ(S

j∪{p∗}). In this case,
a major iteration is complete, and we go back to Step (a) after setting (Sj+1, xj+1)←
(Sj∪ {p∗}, xfull). Otherwise, if the partial step happens first, then the point (say pk ∈
Sj) corresponding to the dual variable that was about to become infeasible is dropped
from Sj. A new curve search starting at xpartial is then performed. Eventually, after
at most |Sj| curve searches where the value of x0 either decreases or stays the same, the
optimal solution of InfQ(S

′ ∪ {p∗}), for some Ŝ ⊆ Sj, with a strictly smaller objective
function is found.

A curve search is only performed whenever S
j ∪ {p∗} affinely independent. When

that is not the case, a point is immediately dropped from Sj before a curve search is
done (this step can actually be seen as a partial step with zero length). Section 4.1
defines the curve and section 4.2 explains the details of the curve search.

4.1 The curve

Consider iteration j. Consider

• (Sj, xj), a dual feasible S-pair for InfQ(S
j), with Sj ⊆ P;

• p∗ ∈ P corresponding to an infeasible constraint at xj;

• S
j
:= {p : p ∈ Sj} and s = |Sj|.

The algorithm restricts the search for the next iterate to the set of primal solutions
x where dual feasibility and complementary slackness are maintained, that is

∥

∥

∥pij
− x
∥

∥

∥ = pji0 − x0, ∀pij ∈ Sj, (7)

x ∈ conv(S
j ∪ {p∗}). (8)

while it decreases the objective function value x0.
In this section we shall see that in general the set of points that satisfy (7) and

x ∈ aff(S
j ∪ {p∗}) (9)

constitute a manifold of dimension 1, that is, a curve.

By squaring equations (7) it is easy to prove the following Lemma:

9



Lemma 12. If |Sj| > 1, define

M =
[

pj2
− pj1

pj3
− pj1

... pjs − pj1

]

,

c =







pj20 − pj10

...
pjs0 − pj10






, and b =

1

2









∥

∥pj2

∥

∥

2
− p2

j20
−
∥

∥pj1

∥

∥

2
+ p2

j10

...
∥

∥pjs

∥

∥

2
− p2

js0
−
∥

∥pj1

∥

∥

2
+ p2

j10









.

Otherwise, when |Sj| = 1, M = [ ], b = [ ], and c = [ ].
Conditions (7) are equivalent to the following conditions

MTx = b + x0c, (10a)
∥

∥pj1
− x
∥

∥

2
= (pj10 − x0)

2
, (10b)

x0 ≤ min
pji

∈Sj
{pji0}. (10c)

For the general case of |Sj| > 1, let us now define the following matrix and vectors

M+ = (MTM)−1MT ,

u = (MTM)−1(b −MTpj1
),

v = (MTM)−1c,

w = −M+(p∗ − pj1
),

z = (I−MM+)(p∗ − pj1
).

Matrix M+ is the Moore-Penrose inverse, or pseudo-inverse, of M. Since M is full
column rank, M+ is a left-inverse (M+M = I). When |Sj| = 1, simply consider

u = v = w = [ ] and z = p∗ − pj1

Theorem 13. Conditions (7) and (9) define points (x0; x) such that

x = M(u+ x0v) + α∗z + pj1
, (11)

for x0 ≤ minpji
∈Sj {pji0}, α

∗ ∈ R, and x0 and α∗ such that

(α∗)2 ‖z‖2 + ‖M(u+ x0v)‖2 − (p10 − x0)
2 = 0. (12)

Proof. From (9) we know that there exist α1, . . . , αs, α
∗ such that

x =

s∑

i=1

αipji
+ α∗p∗ and

s∑

i=1

αi + α∗ = 1,

that is,
x = Mα2:s + α∗(p∗ − pj1

) + pj1
(13)

with α2:s the vector with α2, . . . , αs. Substituting in (10a), we have

MTMα2:s + α∗MT (p∗ − pj1
) +MTpj1

= b+ x0c,

which yields
α2:s = u+ x0v+ α∗w, (14)

with u, v, and w as defined above. Combining (13) and (14) we obtain (11). Finally,
by plugging (11) in (10b) we obtain (12).

10



The curve: the affinely independent case

When S
j ∪ {p∗} is affinely independent then we always have z 6= 0, thus the quadratic

equation (12) can be solved for α∗, the coefficient of the affine combination associated
with p∗, obtaining

α∗(x0) = ± 1

‖z‖

√

(p10 − x0)2 − ‖M(u+ x0v)‖2. (15)

We then get the points that satisfy (7,9) as a function of a single variable x0 ∈
[−∞,minpji

∈Sj{pji0}], thus defining a curve Γ . This is shown by Corollary 14.

Corollary 14. Consider S
j ∪ {p∗} affinely independent. Then, conditions (7,9) define

a curve parameterized by

x0 ∈
[

−∞, min
pji

∈Sj
{pji0}

]

,

such that

x = Γ(x0) := M(u+ x0v)±
z

‖z‖

√

(p10 − x0)2 − ‖M(u+ x0v)‖2 + pj1
.

Geometrically, the curve is either a hyperbola (Figure 5a) or a degenerate hyperbola,
see Figure 5b). The curve is also symmetric with respect to a reflection through

the hyperplane {(x0; x) : x ∈ aff(S
j ∪ {p∗}), x0 ∈ R} and intersects the boundary of

conv(S
j ∪ {p∗}) at two points (one of them in conv(S

j
)).

(a) Case when |Sj| = 2. (b) Case when |Sj| = 1.

Figure 5: Illustration of the curve in R
3.

When we are interested in the part of the curve that corresponds to a dual fea-
sible solution, we need all coefficients of the affine combination to be non-negative.
Therefore the portion of the curve we are interested on corresponds to α∗(x0) ≥ 0,
that is

x = Γ+(x0) := M(u+ x0v) +
z

‖z‖

√

(p10 − x0)2 − ‖M(u+ x0v)‖2 + pj1
.

Corollary 15 is a direct consequence of Theorem 13.

11



Corollary 15. Consider S
j∪{p∗} affinely independent. The points x that satisfy (7,9)

and for which α∗(x0) ≥ 0 can be written as an affine combination

x =

s∑

i=1

αi(x0)pji
+ α∗+(x0)p

∗, (16)

for x0 ∈ [−∞,minpji
∈Sj {pji0}], such that

α∗+(x0) =
1

‖z‖

√

(p10 − x0)2 − ‖M(u+ x0v)‖2, (17a)

α1(x0) = 1− 1Ts−1(u+ x0v) − α∗+(x0)
(

1Ts−1w+ 1
)

, (17b)

α2:s(x0) = u+ x0v+ α∗+(x0)
w

‖z‖ , (17c)

with 1s−1 a (s − 1)−vector with entries all 1, and α2:s the vector with α2, . . . , αs.

Using the formulas from Corollary 6, it is now possible to write explicitly the dual
variables as functions of x0 corresponding to each point (x0; Γ

+(x0)) on the curve.

Case when S
j ∪ {p∗} is affinely dependent

When S
j ∪ {p∗} is affinely dependent, the linear system (10a) together with condition

(9) define an affine space of dimension 1, that is, a line, which intersects the manifold
defined by (10b-10c), on a single point, xj. That is because xj satisfies both (7) and

xj ∈ conv(S
j
) = conv(S

j ∪ {p∗}) if and only if xj is the solution to InfQ(S
j), which is

unique.

Theorem 16. If S
j ∪ {p∗} is affinely dependent then conditions (7,9) have as solution

the single point xj that corresponds to a dual feasible solution.

When S
j ∪ {p∗} is affinely dependent, Theorem 13 still holds with z = 0. In particular

(13) also still holds. But in this case αi, i = 1, ..., s, and α∗ cannot be written as
functions of x0 as in Corollary 15, but they can be written instead in terms of α∗.
Since, in this case, x0(α

∗) = x
j
0 for any value of α∗, from (14) we have

α2:s(α
∗) = u+ x

j
0v+ α∗w. (18a)

α1(α
∗) = 1− α∗ − 1T (u+ x

j
0v+ α∗w), (18b)

4.2 The curve search

At the beginning of a curve search step, let Sj be the support set and xj the current
iterate. If we are starting a major iteration (we come from step (b)) then (Sj, xj) is
a dual feasible S-pair, otherwise, if we come from a previous curve search, it is not.
Regardless of the case, at the beginning of a curve search we always have the following

• S
j ∪ {p∗} is affinely independent;

• x ∈ conv(S
j ∪ {p∗}).

This fact will be proved in section 4.4.

The curve search consists on, starting at xj, moving on the curve defined by Γ+(x0)

in the direction of decrease of x0, until either dual feasibility is lost or the violated

12



constraint becomes feasible. Using the conclusions from the previous section, that
corresponds to solving the following problem

min x0
s.t. ‖p∗ − x‖ ≥ p∗

0 − x0,
αi(x0) ≥ 0, i = 1, ..., s,

α∗(x0) ≥ 0,
x0 ≤ minpji

∈Sj {pji0}.

Note that since xj ∈ conv(S
j ∪ {p∗}) we know that αi(x

j
0) ≥ 0, for all i = 1, ..., s, and

α∗(xj0) ≥ 0.

Therefore, the solution to the problem above, is always smaller or equal to xj0
which always satisfies the last inequality.

Unless stated otherwise, for the remainder of this section, we shall consider |Sj| > 1

and S
j ∪ {p∗} affinely independent.

The partial step

The partial step consists on finding the point corresponding to the maximum step

on the curve that can be made without losing dual feasibility. When S
j ∪ {p∗} is

affinely independent, Corollary 15 describes the dual variables as we move on the
curve. Therefore, the point where dual feasibility is lost corresponds to the value of
x0 that solves

min x0
s.t. αi(x0) ≥ 0, i = 1, ..., s,

α∗(x0) ≥ 0,

x0 ≤ x
j
0.

(19)

Note that, if we consider the definitions of αi, i = 1, ...,m given by (17), the constraint
α∗(x0) ≥ 0 is already implied. The solution to (19) is then found by simply solving

the s equations (17b-17c) subject to the inequality x0 ≤ x
j
0 and picking the largest of

the solutions. These are radical equations that can be easily solved by isolating the
square root term in one side, squaring both sides, solving the squared equation, and
finally discarding any extraneous solutions. Note that, for some i the corresponding
equation may not have a solution, since the curve may not intersect the supporting

hyperplane of the corresponding facet of conv(S
j ∪ {p∗}).

The partial step procedure is summarized in Algorithm 1. Note that this procedure
will only be done when |Sj| > 1, as we shall see ahead.

The full step

The full step procedure finds the point corresponding to the minimum step on the
curve for which p∗ is feasible, that is, the first point on the curve where the primal
constraint corresponding to p∗ is feasible is active:

‖p− x‖ = p∗
0 − x0. (20)

The system of equations (10a,10b,20) is equivalent to the system of equations (10a,10b,21),
with (21) being

(p∗ − pj1
)Tx = b∗ + x0c

∗, (21)

13



Algorithm 1 Partial step procedure

Input: Matrix M, vectors u, v,w, z, point xj and set Sj.
Output: x

partial
0 and index k.

1: for i = 1, ..., s do
2: Define αi(x0) as in (17);
3: Âi ← solutions to αi(x0) = 0;

4: Ai ←
{
δ ∈ Âi : δ is real ∧ δ ≤ x

j
0

}
;

5: end for
6: x

partial
0 ← max {∪i=1,...,s Ai};

7: k← i s.t. xpartial0 ∈ Ai.

such that

c∗ = p∗
0 − pj10 and b∗ =

1

2

(

‖p∗‖2 − (p∗
0)

2 −
∥

∥pj1

∥

∥

2
+ p2

j10

)

,

and for x0 satisfying (10c) and x0 ≤ p∗
0. Therefore, the full step consists on solving

max x0
s.t. x = Γ+(x0)

(p∗ − pj1
)Tx = b∗ + x0c

∗

x0 ≤ p∗
0

x0 ≤ x
j
0.

(22)

Note that the solution to (22) to may not exist. It is easy to see that equations (7,9)
together with (20) seek the position of the vertex of a second-order cone that has

points S
j ∪ {p∗} on its boundary, which is not guaranteed to exist. Additionally, such

point may not be unique.
To solve (22), we could plug x = Γ+(x0) in (20), and solve for x0. However we

realized this approach would result in rather intricate calculations involving square
roots. So, instead, we go back to the results of Lemma 12 and Theorem 13 and
proceed as we explain next. We start by plugging (11) in (21), and solve for α∗. We
then obtain α∗ in terms of x0:

α∗(x0) =
1

(p∗ − pj1
)Tz

(b∗ + x0c
∗ − (p∗ − pj1

)T (M(u+ x0v) + pj1
)), (23)

Now, we could solve (12) for x0. However, the following is easier: we plug (23) back
in (11), which now allows x to be written solely as a linear function of x0 simply as

x(x0) = q+ x0r + pj1
,

with

q = Mu+
b∗ − (p∗ − pj1

)T (Mu+ pj1
)

(p∗ − pj1
)Tz

and r = Mv+
c∗ − (p∗ − pj1

)T (Mv)

(p∗ − pj1
)Tz

,

and we solve (10b). This results in a much simpler quadratic equation on x0:

‖q+ x0r‖2 = (pj10 − x0)
2. (24)
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Note that, in this process, we never imposed that α∗(x0) ≥ 0. If the solution(s) to
(24) are real, we only keep the one(s) that satisfy both

α∗(x0) ≥ 0 and x0 ≤ min
{
xj0, p

∗
0

}
,

for α∗(x0) given by (23). If there are more than one such solution, we pick the one
with the maximum value of x0 (the one that “occurs first” as we move the curve),
which will become xfull

0 , the solution of (22). If we are left with no solutions or the
solutions were not real, then, as explained previously, that means that such point does
not exist. In this case, we shall consider xfull

0 = −∞. The details of this procedure
are summarized in Algorithm 2.

Algorithm 2 Full step procedure

Input: Matrix M, vectors u, v,w, z, points xj, p∗, and set Sj

Output: xfull0 .

1: Define c∗, b∗, q and r;
2: Get Â∗ the set of solutions to ‖q+ x0r‖2 = (pj10 − x0)

2.
3: A∗ ← {δ ∈ Â∗ : α∗(δ) ≥ 0 ∧ δ ≤ p∗

0 ∧ δ ≤ x0}, for α
∗ as in (23).

4: if A∗ = ∅ then
5: xfull0 ← −∞
6: else
7: xfull0 ← max{A∗}

8: end if

Taking a step

If xpartial
0 < xfull

0 , then the p∗ becomes feasible while all dual variables associated
with Sj are feasible too. That implies that xfull is the solution to InfQ(S

j∪ {p∗}). The
algorithm now starts a new major iteration with a dual feasible S-pair (Sj∪{p∗}, xfull).

On the other hand, if xpartial
0 ≤ xfull

0 , then a dual variable became 0 before p∗

was primal feasible. Geometrically, that means the curve hits a facet of conv(S
j∪ {p∗})

before hitting the translated cone p∗ − Q. The point pk that results from applying
(26) is an opposite point to that hit facet. When this happens, pk is dropped from Sj:
Sj = Sj \ {pk}, and the algorithm then performs a new curve search with the new Sj

starting at xpartial. It may happen that there may be more than one dual variable
that became 0 simultaneously, that is, at line 6 of Algorithm 1, xpartial

0 belongs to
more than one Ai. When that happens, after dropping one of such points at the first
curve search, the next curve search will consist on a partial step with zero length, that
is, the objective function value will be maintained, and a point corresponding to one
of those dual variables that are 0 will be picked to be removed from the support set.
This is done as many times as necessary.

4.2.1 S
j ∪ {p∗} is affinely dependent

When S
j ∪ {p∗} is affinely dependent, we have seen that conditions (7,9) do not define

a curve. That means, a movement in the primal space is not possible. However, it
is possible to move in the dual space to different dual solutions corresponding to the
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same xj. Once one the dual variables becomes 0, we drop that point from Sj, fixing
the issue of the affine dependence. In order to do that, we will solve the following
problem

max α∗

s.t. αi(α
∗) ≥ 0, i = 1, ..., s

α∗ ≥ 0
(25)

for αi(α
∗) defined as in (18). This problem finds an affine combination of xj where

α∗ > 0 and αi = 0 for some i = 1, ..., s. Problem (25) can easily be solved using a
minimum ratio rule, see Algorithm 3.

Algorithm 3 Aff Dep Case procedure

Input: Vectors u, v,w, point xj.
Output: Index k.

1: Define vectors ρ and σ:

ρ =

(

1− 1T (u+ x
j
0v)

u+ x
j
0v

)

and σ =

(

−1− 1Tw

w

)

.

2: Get k such that

−
ρk

σk
:= min

j=1,...,s

{

−
ρj

σj
: σj < 0

}

. (26)

Let pk ∈ Sj be the point resulting from (26). In section 4.4 it will be proved that

S
j
\ {pk}∪ {p∗} is affinely independent, and so, a curve search can then be performed.

4.2.2 The special case when p∗ is the solution and the relation to
the |Sj| = 1 case

Note that the curve search always assumes that the solution to InfQ(S
j ∪ {p∗}) will

satisfy (7) for a subset of Sj. But that is not the case when p∗ happens to be the
solution. In fact, as we show next, this case fails to be identified by the curve search
procedure.

Consider that p∗ is the solution to InfQ(S
j ∪ {p∗}). After a series of partial steps

where a point from Sj is dropped each time, the algorithm finally performs a curve
search with |Sj| = 1, in which, the full step essentially consists on solving the following
system of equations

∥

∥pj1
− x
∥

∥ = pj10 − x0 (27a)

‖p∗ − x‖ = p∗
0 − x0 (27b)

x ∈ aff({pj1
, p∗}). (27c)

When p∗ is the solution to InfQ({pj1 }∪ {p∗}), the solution to equations (27) does not
exist in general (unless it happens that ‖p1 − p∗‖ = p10 − p∗

0), and so from the full
step we would have xfull

0 = −∞. On the other hand, the partial step consists of
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solving α1(x0) = 0 given simply by

α1(x0) = 1−
pj10 − x0
∥

∥p∗ − pj1

∥

∥

= 0,

(note that M = [ ]) for x0 ≤ pj10. This yields

x0 = p10 −
∥

∥p∗ − pj1

∥

∥ and x = p∗. (28)

The partial step in this case does not get the correct value of x0, which would be p∗
0.

That happens because, in the curve search we made the assumption that ‖p1 − x‖ =

p10 − x0. Note that the result of the partial step is independent of whether p∗ is the
solution or not.

So, when p∗ is the solution to InfQ({pj1 }∪ {p∗}), following the partial and full step

procedures as explained before, we would have xpartial
0 < xfull

0 . As a consequence, a
partial step would be taken, point pj10 would correctly be dropped from Sj, but the

next iterate would have the incorrect value of xj0!
This issue conducted us to add an extra step after the Optimality Check where we

check whether p∗ is the solution, that is,

∥

∥

∥pij
− p∗

∥

∥

∥ ≤ pji0 − p∗
0 ∀pij ∈ Sj.

If p∗ is not the solution, then a curve search is performed. This not only avoids issues
with the partial step when Sj has a single point, but it also avoids potentially n curve
search procedures where a point would be removed from the support set in each one,
only then to find out that p∗ is the solution.

This extra step does not fix the fact that, when Sj has a single point, the partial
step will not work correctly. However that will never be an issue once it is known that
p∗ is not the solution, because when that is the case, at the full step we will obtain

xfull
0 =

1

2

(

pj10 + p∗
0 −

∥

∥pj1
− p∗

∥

∥

)

as per Theorem 7. The value of xpartial
0 will be as in (28), and so xfull

0 > xpartial
0 as

a consequence of the fact that

‖p1 − p∗‖ > p10 − p∗
0.

Alternatively, and for the sake of simplicity, whenever |Sj| = 1 one can simply use
the formulas given by Theorem 7 instead of doing a curve search.

4.3 Pseudo-code

We now aggregate the results/discussion of the previous sections on Algorithm 4.
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Algorithm 4 Dual algorithm for the infimum of P with respect to Q

Input: P, dual feasible S-pair (S0, x0).
Output: x, S, the optimal solution and an support set, respectively.

1: for j = 0, 1, .... do

Optimality check:
2: if xj �Q pi for all pi ∈ P then
3: xj is the optimal solution and Sj an optimal support set. Stop.
4: else
5: Get p∗ ∈ P s.t. xj ≻Q p∗.
6: end if

Check if solution of InfQ(S
j ∪ {p∗}) is p∗:

7: if p∗ �Q pij for all pij ∈ Sj then

8: xj+1 ← p∗; Sj+1 ← {p∗}; Go to Optimality check.
9: end if

Special case |Sj| = 1 (optional):
10: if |Sj| = 1 then
11: Set xj+1 as in Theorem 7; Sj+1 ← Sj ∪ {p∗}; Go to Optimality check.
12: end if

S
j ∪ {p∗} affinely dependent:

13: if ‖z‖ = 0 then
14: Get k from Algorithm 3; Sj ← Sj \ {pk}.
15: end if

Curve search:
16: Define matrix M and vectors b, c, u, v,w and z.
17: Get xpartial0 from Algorithm 1; Get xfull0 from Algorithm 2.

18: if x
partial
0 ≥ xfull0 then

19: xj0 ← xpartial0 ; xj ← Γ+(xj0); S
j ← Sj \ {pk}; Go to Curve search.

20: else
21: x

j+1
0 ← xfull0 ; xj+1 ← Γ+(x

j+1
0 ); Sj+1 ← Sj ∪ {p∗}; Go to Optimality check.

22: end if
23: end for
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4.4 Finiteness and correctness of the algorithm

For the proof of the correctness of the algorithm presented in Algorithm 4, we will
follow a similar approach as in [10]. We first introduce the following definition:

Definition 17. The triple (x, S, p) is said to be a (violated) V-triple if the following
four conditions hold:

(a) S ∪ {p} is affinely independent,

(b) ‖p− x‖ ≥ (p0 − x0),

(c) ‖pi − x‖ = (pi0 − x0), for pi ∈ S,

(d) x ∈ conv(S ∪ {p}).

We now prove a series of theorems that will culminate in the correctness of the
algorithm.

Theorem 18. Given a V-triple (xj, Sj, p∗), if the solution given by the full step, xfull,
exists and is dual feasible, then it is the optimal solution to InfQ(S

j ∪ {p∗}). Moreover,

xfull
0 ≤ x

j
0, and, if x

full
0 > x

partial
0 then (Sj ∪ {p∗}, xfull) is a dual feasible S-pair.

Proof. The statement is a direct consequence of the fact that the full step finds a
point xfull such that

∥

∥p∗ − xfull
∥

∥ = p∗
0 − xfull

0 (29)
∥

∥pi − xfull
∥

∥ = pi0 − xfull
0 ∀pi ∈ S, (30)

xfull ∈ aff(S ∪ {p∗}). (31)

whenever the above conditions are feasible. If, additionally, xfull ∈ conv(S
j ∪ {p∗})

then xfull solves InfQ(S
j ∪ {p∗}) as per Corollary 4. The fact that xfull

0 ≤ x
j
0 is a

consequence of the full step definition.
Now assume xfull

0 > xpartial
0 . It is easy to see that (Sj∪{p∗}, xfull) is a dual feasible

S-pair. Clearly S
j ∪ {p∗} is affinely independent. Additionally, xfull ∈ ri conv(S

j
),

because otherwise there would have been a coefficient of the convex combination that
would be 0, implying that xfull

0 = xpartial
0 , which contradicts the assumption.

From Theorem 18 we conclude that, before the “Optimality Check” procedure, we
always have a dual feasible S-pair (Sj, xj). After picking a p∗ corresponding to an

infeasible constraint, if S
j ∪ {p∗} is affinely independent, then we have a V-triple.

Otherwise, Theorem 20, proves that Algorithm 3 returns a V-triple. Either way, the
V-triple at this stage is always such that

∥

∥p∗ − xj
∥

∥ > (p∗
0 − xj0). Combined with

Theorem 19, we conclude that before a curve search we always have a V-triple.

Theorem 19. Suppose x
partial
0 ≥ xfull

0 . Given a V-triple (xj, Sj, p∗), the partial step

returns another V-triple (xpartial, Sj \ {pk}, p
∗) such that xpartial

0 ≤ x
j
0.

Proof. We need to prove properties (a-d) from Definition 17 for (xpartial, Sj \ {pk}, p).

Property (a) follows from the fact that S
j ∪ {p∗} is affinely independent. Properties

(c) and (d) and the fact that x
partial
0 ≤ x

j
0 are a direct consequence of the partial

step definition. Property (b) follows from a continuity argument since
∥

∥p∗ − xj
∥

∥ ≥
(p∗

0 − x
j
0) and the fact that xpartial

0 ≥ xfull
0 , implying that

∥

∥p∗ − xpartial
∥

∥ ≥ (p∗
0 −

x
partial
0 ).
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Theorem 20. When S
j∪ {p∗} is affinely dependent, (xj, Sj \ {pk}, p

∗) for pk satisfying
(26) is a V-triple.

Proof. In order to prove that (xj, Sj \ {pk}, p
∗) we need to prove the four properties

from Definition 17. Properties (b) and (c) are trivial since (S
j
, xj) is an S-pair and

p∗ corresponds to a primal infeasible constraint at xj. Now, in order to prove (a),

suppose, by contradiction, that S
j
\ {pk} ∪ {p∗} is affinely dependent. Then, since

S
j
\ {pk} is affinely independent, there exists βi, i = 1, ..., s and i 6= k s.t.

p∗ =

s∑

i=1, i6=k

βipi with

s∑

i=1, i6=k

βi = 1.

With loss of generality consider k 6= 1. Since z = Mw+ (p − p1) = 0 (a consequence

of the affine dependence of S
j ∪ {p∗}), we have

p∗ =

s∑

i=2

wi(pi − p1) + p1 =

s∑

i=1

δipi

for δ1 = 1−
∑

i wi and δi = wi for i = 2, ..., s. As a consequence

pk =

s∑

i=1, i6=k

βi − δi

δk
pi.

We have that
∑ βi−δi

δk
= 1, and note that δk 6= 0. That is, pk is an affine combination

of S \ {pk}, which contradicts the assumption.
Finally, consider β = ρ − ρk

σk
σ and β∗ = ρk

σk
. It is easy to see that β ≥ 0 and, in

particular, βk = 0. We now prove that xj = Mβ2:s+β∗(p−p1)+p1, that is property
(d), by observing that

Mβ2:s + β∗(p − p1) + p1 = M

(

u+ x0v−
ρk

σk

w

)

−
ρk

σk

(p − p1) + p1 (32)

= M(u+ x0v) + p1 −
ρk

σk

(Mw+ (p− p1)) (33)

= M(u+ x0v) + p1 (34)

= xj (35)

since z = 0.

With the previous theorems, we conclude that, starting from a V-triple (xj, Sj, p∗)

for which
∥

∥p∗ − xj
∥

∥ > (p∗
0− x

j
0), one can obtain a dual feasible S-pair (Ŝ∪ {p}, x̂) such

that Ŝ ⊆ Sj in at most |Sj| − |Ŝ| ≤ n partial steps and a full step. Moreover, x̂0 < x
j
0,

since, even though when taking a partial step or a full step the value of x0 may be
maintained, we know that the value of x0 must decrease either in one of the partial
steps taken or in the full step, because otherwise we would have that x̂ = xj, that
is, InfQ(S

j) = InfQ(Ŝ ∪ {p∗}) contradicting the fact that p∗ is infeasible to InfQ(S
j).

Therefore, since the value of x0 strictly decreases at each major iteration the same
S-pair can never reoccur. Since the number of possible S-pairs is finite we conclude:
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Theorem 21. The proposed dual algorithm solves problem InfQ(P) in a finite number
of iterations.

An observation on degeneracy

It is easy to see that in a primal algorithm cycling would be a possibility. The current
primal feasible solution may correspond to different support sets, that is, different dual
solutions. Thus, it could happen that, after a sequence of adding/dropping points from
the support set, the algorithm did not move in the primal space and ended up in a
support set visited previously. That is a consequence of the lack of freedom of which
point to enter the support set in the primal setting, it has to be one corresponding
to a primal constraint that is active. In the dual algorithm, the equivalent situation,
of when a movement is not possible because a dual variable is zero at the current
iterate, is easily dealt by the algorithm by removing the point corresponding to that

dual variable from Sj (either at a partial step or when S
j ∪ {p∗} is affinely dependent).

This is done as many times as the number of dual variables that are zero, after which
a movement will then be possible in the next iteration. Therefore, as far as degeneracy
is concerned no special procedure is required in our algorithm to prevent cycling.

5 Implementation details

The main computational work that is required in the algorithm happens before each
curve search, when three linear systems need solved in order to get vectors u, v and w.
These linear systems all have the same matrix MTM. Our implementation is based
on the QR factorization of matrix M of size n × (s − 1) such that s − 1 ≤ n, where
s = |Sj|. We have that M = QR, with Q a n×n orthogonal matrix and R a n× (s−1)

upper triangular matrix. Let

Q = [QM | Q⊥] and R =

[

R△

0

]

,

with QM with size n × (s − 1) and Q⊥ with size n× (n − s + 1), and let, and R△ a
(s − 1)× (s − 1) matrix. As a consequence, MTM = RTR.

Using the QR factorization of M allows the following linear systems

(MTM)u = b−MTpj1
and (MTM)v = c,

to be reduced to two triangular linear systems, which can efficiently be computed
using Back Substitution. Moreover, M+ = R−1

△ QT
M, and so

w = −M+(p∗
1 − pj1

)

can be obtained by solving the triangular linear system

R△w = −QT
M(p∗

1 − pj1
).

Matrix M is given by the points of the support set Sj which is updated throughout
the algorithm either by adding a point or removing a point. Next we explain how to
update M in those circumstances.

Adding a point to Sj. Whenever a point, pik is added to Sj, we append column
pik

− pi1
to matrix M.
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Removing a point from Sj. Whenever a point, pik is removed from Sj, there are
two cases. If ik ≥ 1 then we need to remove the (k − 1)-th column from M. When
ik = 1, we need to remove the first column from M, obtaining M̂, and get the new M
by adding the rank-1 matrix (pi1 − pik)

T1n to M̂.

Given the above, every time M needs to be updated, we can use the QR factor-
ization of the old matrix M to calculate efficiently the QR factorization of the new M
[11, §12.5]. This is accomplished by using Givens rotations, which, in the case when
M is n× n, has O(n2) computational complexity.

6 Computational Results

We have implemented our algorithm in MATLAB as explained in Section 5 choosing
the most infeasible point at each iteration. We also compared it with solving both the
primal (P) and dual (D) problems with the interior point method solver of Gurobi [13]
(version 8.0.0) using its MATLAB interface. All Gurobi parameters were kept at their
default values. Our experiments were conducted using MATLAB R2016a (version 9.0)
on a Mac with an Intel Core i5 1.6 GHz processor, with 8GB RAM, running Mac OS X
version 10.11.6. The results are shown in Table 1.

Problems Our dual algorithm Gurobi (dual) Gurobi (primal)
S-pair Time Time Time

n m Iters updates (secs) Iters (secs) Iters (secs)

10 102 6.44 6.68 0.008 9.72 0.008 8.56 0.228
10 103 8.12 8.76 0.010 11.56 0.094 9.16 1.627
10 104 8.12 9.24 0.027 12.44 1.073 out of memory

102 102 15.56 15.56 0.031 9.56 0.127 8.88 7.455
102 103 20.96 21.16 0.145 could not solve† 9.36 87.601
102 104 25.28 25.72 0.375 could not solve† out of memory
102 105 29.24 29.88 3.341 could not solve† out of memory

103 104 77.32 77.44 8.641 could not solve† out of memory
103 105 87.92 88.16 154.613 could not solve† out of memory

Table 1: Computational results with the averages corresponding to 25 datasets with points
randomly sampled from a standard normal distribution. †Matlab stopped responding.

One reason for the good performance of the dual algorithm is that it does not add
many points to the support set that are not in the final support set. This can be
seen by the fact that the number of iterations (number of points added to the support
set) is very close to the number of dual S-pair updates (number of curve searches
performed).

22



References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathemati-
cal Programming, 95 (2003), pp. 3–51.
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