arXiv:1803.07374v1 [math.OC] 20 Mar 2018

Fastest Rates for Stochastic Mirror Descent Methods*

Filip Hanzely' Peter Richtarik*

March 20, 2018

Abstract

Relative smoothness - a notion introduced in [6] and recently rediscovered in [3, 18] - generalizes
the standard notion of smoothness typically used in the analysis of gradient type methods. In
this work we are taking ideas from well studied field of stochastic convex optimization and using
them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose
and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative
Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth
setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror
descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent
algorithm with linear convergence rate.

1 Introduction

During the last decade or so, first order methods have become the main algorithmic toolbox for prac-
titioners solving optimization problems of large sizes, especially in application domains where low to
medium accuracy is sufficient. These methods are now the state of the art for many problems arising
in areas such as machine learning, statistics, signal processing, computer vision, inverse problems and
data science. Arguably, algorithms for smooth convex optimization form the backbone of this new
development, and the basis for subsequent extensions beyond convexity and smoothness.

In this paper we consider the optimization problem

min f(z) (1)

subject to T € Q,

where Q C R™ is a closed convex set, and f is a convex and differentiable! (objective/loss) function.

Our work is motivated by the need to solve problems of the form (1) in the “big data” regime, that
is, in situations when either the dimensionality of the problem, n, is very large, or when f is of a finite
sum structure,

f@) = 23 fla), @

*All theoretical results of this paper were obtained by June 2017.

TKing Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

¥King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia — University of Edinburgh,
Edinburgh, United Kingdom — Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia

\We assume that f is differentiable on some open set containing Q.



with the number of components, m, being very large. In particular, we are interested in designing
efficient randomized first order methods for (1) without the need to assume for f to have Lipschitz
gradients, thus extending the reach of modern randomized gradient-type methods to new territories.

1.1 Lipschitz continuity of the gradients

It is remarkable that virtually the entire development of first order methods for smooth convex opti-
mization hinges on what turns out to be a very restrictive regularity assumption on the behaviour of the
gradients of f, thus preventing their applicability to domains where this assumption does not hold, or
is unreasonable due to practical considerations. In particular, it is universally assumed for the objective
function f to have Lipschitz continuous gradients [21, 26, 24]. Recall that f is said to be L-smooth on
Q@ (equivalently, we say that the gradient of f is L-Lipschitz on @), if

F#) < f@) (V@) z — o)+ Sle =y, forall myeQ, 3)

where (-,-) is an inner product and ||z|| = (z, z)!/? is the induced norm?.

The archetypal first order method for solving (1), projected gradient descent (GD), is designed to
take advantage of the approximation (3). Given z; € @, the next iterate x4 of GD is obtained by
minimizing the upper quadratic bound on f provided by (3) for y = xy:

1/2

. L
xpp1 = argmin (Vf(xy), z — x) + = ||z — $t||2
TEQ 2

That is, in the design of GD, one employs a majorize-minimize approach [13].

However, there are many differentiable convex functions which are not L-smooth for any finite L.
For instance, consider the function f(z) = 2* on R. If we still wish to apply a gradient type method to
minimize such a function, L-smoothness can sometimes be forced upon f by introducing appropriate
constrains. This is sufficient in principle as the theory for constrained first order methods only requires
the gradients to be L-Lipschitz on the domain of interest. However, such a restriction often leads
to a very large constant L in practice, which leads to a prohibitive slow-down of the methods, unless
line search strategies are used. Indeed, the performance of first order type methods deteriorates as L
grows, typically at a linear or quadratic rate. Moreover, even if the objective is naturally L-smooth, the
constant L is often very large, reflecting poor conditioning of the problem. In all these cases, direct
application of first-order machinery is either impossible or prohibitively inefficient, which leaves these
problems beyond the reach of some of the most efficient algorithms designed for large problems in the
last decade.

1.2 Relative smoothness: beyond Lipschitz continuity

Relative smoothness was first introduced in [6] and later rediscovered independently [3] and [18]

This notion enables to design and analyze a generalized version of GD which we refer to in this
paper as relative gradient descent (relGD). We shall now briefly outline their approach.

Let A : @ — R be a strictly convex and differentiable function. The Bregman distance (divergence)

of h is the function
def

Du(z,y) = h(z) = h(y) = (VA(y),z — y). (4)

2An equivalent characterization of L-smoothness is to require the inequality ||V f(z) — Vf(y)|| < L|j= — y|| to hold for
all z,y € Q.




Clearly, Dy (z,y) > 0 and Dy (z,y) = 0 if and only if x = y. However, D}, is not necessarily symmetric.
In analogy with (3), Bauschke et al [3] and Lu et al [18] say that f is L-smooth relative to h on Q

if
f(@) < fy) +(Vf(y),z —y) + LDp(x,y), forall =z,yeQ. (5)

In analogy with the design of gradient descent, relative gradient descent minimizes the upper bound
on f given by (5) for y = zy:

Typ1] = arg Hgg (Vf(x),z —x¢) + LD(x, x¢) (6)
x
Note that if h(z) = 3|22, then Dp(z,y) = 3|lz — y||?, and L-smoothness relative to h defined in

(5) coincides with standard L-smoothness defined in (3). Likewise, relative gradient descent coincides
with gradient descent.

1.3 Introducing randomness

For problems of truly huge sizes (if, as alluded to earlier, either m or n are very large), randomized
first order methods, such as variants of stochastic gradient descent [34, 20, 36, 35, 37, 14] (in case of
large m) and randomized coordinate descent (in case of large n) [22, 32, 33, 37, 27], have become the
methods of choice, both in theory and in practice.

While a single iteration of a randomized method typically leads to small improvement relative to the
improvement obtained by its deterministic counterpart, stochastic iterations are in general much faster:
for problems of suitable structure, each iteration is typically n (for randomized coordinate descent type
methods) or m (for stochastic gradient descent type methods) times faster than one iteration of gradient
descent. The trade-off is in favour of stochastic methods: the savings obtained by performing faster
iterations outweigh the loss incurred by settling with smaller per-iteration improvements.

1.4 Contributions

In this paper we develop the first stochastic algorithms for minimizing relatively smooth functions. In
so doing, we push the boundary of big data optimization beyond the realm of L-smoothness.
All methods developed in this work are of the form

Tpp1 = argminge, {{gt,x) + Ly Dp(z, x4)} (7)

for suitable set @y C R™, vector g; € R™ and a sequence of stepsizes {L;}. Note that by choosing
gt =V f(x), Ly = L and Q¢ = Q, we obtain method (6), i.e., relative gradient descent [3, 18].

We prove convergence of different success measures, including expected suboptimality in the ob-
jective, Bregman distance to the optimum, and Bregman distance between iterates. Below we briefly
outline some of the results obtained.

Our algorithms belong to two categories:

Relative Randomized Coordinate Descent (relRCD). This arises as a special of the generic method
(7) if we choose g = Vf(x;), pick suitable stepsizes L;, and let Q); correspond to a search space
generated by a random subset of coordinates chose at iteration t. This work can be seen as combining
some of the ideas contained in works on parallel/minibatch coordinate descent [33, 30, 27] and extending
them to the relatively smooth setting.



We first introduce a basic variant, which uses conservative (small) stepsizes L; = L (for Q = R"
thsi would result in stepsize 1/L). We then perform a more detailed analysis by introducing an ESO
(expected separable overapproximation) inequality [33, 30, 28] applicable to relatively smooth functions.
This allows us to choose larger stepsizes Ly < L, leading to better convergence rates. In particular,
under a relative strong convexity assumption (see Equations (8) and (14) for the definition), we obtain

the rate (see Theorem 4.6)
t
— in 2@
(1 Po i:{I}Ql,I}.,n w(i)) )

where pg = 7/n is the probability that we sample any particular coordinate at each iteration, 7 is the
number of coordinates sampled in each iteration, v@ are ESO parameters (we always have v < L),
and w9 are relative strong convexity parameters. This rate is the same as the one in [30] which applies
to standard randomized coordinate descent, i.e., without relative smoothness. On the other hand, if
we choose 7 = n, we recover relative gradient descent, and the above rate recovers the rate obtained
in [3, 18].

As we show through numerical experiments, relRCD can be much faster than relGD.

Relative Stochastic Gradient Descent (relSGD). This is a special case of the generic method
(7) if we choose g; to be an unbiased estimator of Vf(x;), Ly > L, and Q¢ = Q. This method
extends the applicability of stochastic gradient descent to the relatively smooth setting. Convergence
of the algorithm is obtained by using a specific decreasing stepsize rule (see Lemmas 5.6 and 5.7).
With suitable choice of stepsizes, we obtain O(1/t) convergence rate under relative strong convexity,
and O(1/+/t) under relative smoothness alone. The rates we obtain generalized the rates known for
standard stochastic gradient descent [36].

1.5 Related work on relative smooth optimization

Relative smoothness was first introduced in [6] and later rediscovered in [3] and [18] following other
works [5, 9]. In [6], Fisher market equilibrium problem was tacked and it was shown that a known
algorithm to solve it, proportional response dynamics, is a special instance of relative gradient descent
under relative smoothness assumption [40]. In [3] the focus is on minimizing a composite objective,
f(x)+g(x), where f is relatively smooth and convex, and g is convex but not necessarily differentiable.
The first proximal algorithm in the relatively smooth setting is proposed there. In [18], the authors
introduce the notion of relative strong convexity, and propose a dual averaging scheme. In [5], the
authors show that their algorithm converges to a stationary point for nonconvex f; no rates are given.
Finally, in [9], the authors extend the ideas of dual averaging to stochastic dual averaging. However,
this is only done for quadratic f.

We should also menttion that there is a recent extension of minimizing relative continuous functions
[17] where Lipschitzness assumption was generalized analogously as smoothness is extended by relative
smoothness, opening up a new area of algorithms and applications.

1.6 Mirror Descent

Notice that the update rule (6) of relative gradient descent coincides with mirror descent update rule
[21, 4]. Therefore, from practical perspective, relative gradient descent enjoys all advantages of mirror
descent.



Let us now briefly review a recent mirror descent literature. We identify two main streams of work
on mirror descent.

One focuses on accelerating deterministic Mirror descent using Nesterov's idea [23]. A significant
contribution in this are was done in [39], where previous methods were unified, and couple of enw ones
were discovered. A novel approach using the insights from ODE’s can be found in [15]. In both cases,
sublinear O(k~2) rates were obtained and f was assumed to be smooth convex respectively. There is
also a recent work on acceleration using coupling mirror and gradient descent [2], resulting in O(k~2)
rate as well. However, to best of our knowledge, no linear rates for mirror descent are known, except of
ones in the relative smooth setting.

The second stream sucuses on stochastic mirror descent with access to noised gradient oracle.
In [20, 10, 19] stochastic subgradient mirror descent was considered with O(k~!) rate for strongly convex
and C’)(k:%) for nonstrongly convex functions. The convergence was obtained using decreasing stepsize
in this case and considering bounded variance. An accelerated stochastic mirror descent dedicated for
ERM problems was proposed in [11], obtaining O(k~2) convergence rate for smooth convex but non
strongly convex functions. There is also a very limited literature on coordinate mirror descent strategies.
In [1], coordinate mirror descent was designed for multiple kernel learning problems. The method was
casted as a special instance of stochastic mirror descent, obtaining O(k~!) convergence rate. Later in
[7], stochastic block mirror descent — where the randomness appears from both coordinate choice and
noised gradient was considered, obtaining O(1/k) rate for strongly convex and O(k:%) for nonstrongly
convex functions. Again, variance of the stochastic gradients was assumed to be bounded here.

To compare with our results, we stress that relative smoothness setting allows mirror map to be
non-strongly convex, in contrast to virtually whole mirror descent literature. On top of that, it allows
to obtain linear rates due to the (relative) strong convexity. In general, relative smooth setting allows
mirror descent to be directly compared to standard gradient descent. In particular, to best of our
knowledge, we develop the first stochastic mirror descent algorithm — relRCD — with linear convergence
rate which outperforms relGD. The setup for relRCD is similar to randomized coordinate descent setup
[30], but different to the coordinate mirror descent strategies mentioned above, as we do not consider
or enforce stochastic gradient estimates, rather we take gradient descent step in batch of coordinates
with stepsize determined from smoothness®. Our other contribution — relSGD — is also an extension
of stochastic gradient descent in standard smooth setting. We obtain very similar rates comparing to
standard mirror descent literature, however the setting we consider is different — we consider (relatively)
smooth problems in contrast to [20, 10, 19], where nonsmooth problems are tackled.

2 Relatively Smooth Functions and Relative Gradient Descent

In this section, we introduce relative strongly convex property and give equivalent conditions on both
relative smoothness and relative strong convexity. We also mention here a minimization algorithm under
the relative smooth assumption - Relative Gradient Descent.

2.1 Relative smoothness and relative strong convexity

We firstly start by defining relative strong convexity, which is together with relative smoothness a key
assumption for determining a convergence rate of algorithms mentioned in this work. Recall that we
defined relative smoothness previously in (5).

®In fact, stepsize is determined from ESO assumption as in [30], which we explain in Section 4



Definition 2.1. (Relative strong convexity [18]) Function f is u—strongly convex relative to h on @
if for any =, y € @ the following inequality holds

fly) = f@)+(Vf(x),y —z)+ puDu(y,z). (8)

As the main goal of this work is to minimize function f, we have freedom of choice of reference
function A - and one would like to choose it so that the convergence rate we obtain is the best possible.
In particular, as mentioned in the introduction, for a specific choice h(z) = 1||z||* we have Dy, (z,y) =
%Hl‘ — y||? and relative strong convexity assumption becomes standard strong convexity.

The following results list some elementary properties of relative smooth functions.

Proposition 2.2 ([3, 18]). The following statements are equivalent:

e fis L—smooth relative to h on @)

e Lh(x) — f(z) is a convex function on @

e Under twice differentiability LV2h(z) = V2f(z) for all z € Q

o (Vf(x)—=Vf(y),r—y) < L(Vh(zx) — Vh(y),x —y) forall z € Q

For completeness, we also list of equivalent conditions to relative strong convexity.
Proposition 2.3 ([3, 18]). The following statements are equivalent:

e f is u—strongly convex relative to h on )

e f(x) — ph(x) is a convex function on @

e Under twice differentiability V2f(z) = uV2h(z) for all x € Q

o (Vf(z) = Vf(y),z—y) = u(Vh(z) — Vh(y),z —y) forallz € Q

The second (convexity) and third (Hessians) conditions appearing in the two propositions above are
typically easier to verify in practice. For proofs of the propositions, more properties of relatively smooth
functions and some examples, we refer the reader to [3, 18].

2.2 Relative gradient descent

Now we are ready to write relative gradient descent (relGD) - baseline algorithm for minimizing relatively
smooth functions.



Algorithm 1 relGD (Relative Gradient Descent) [6, 3, 18]

Input: Initial iterate x; reference function h and constant L > 0 such that f is L—smooth relative to
h

fort=0,1,...,k—1do
L. Set wyy1 < argmingeo {(Vf(2t), z) + LDp(z,21)}

end
return zy

As mentioned in the introduction, if k(z) = 3| z||* and @ = R", we have

. L 1
T4l = argmilycg {<Vf(xt)a$> + §||5U - 96t||2} = T¢t— va(:l:t)a

and relGD coincides with standard gradient descent with stepsize %

Note also that Algorithm 1 is identical to Mirror descent [4]. The difference that we do not as-
sume standard smoothness but relative smoothness with reference function h, thus the analysis and
convergence results are significantly different.

The analysis of the algorithm is similar to the analysis of gradient descent under the smoothness
assumption. The main difference is that one can explicitly compute the decrease in objective which
is guaranteed from the standard smoothness property. This is not the case for the relative smooth
optimization as we do not have a general closed expression for the next iterate. In order to overcome
this issue, we are using so called three point property [16]. This is not a novel approach, it was used in
[3, 18]. As we need to bound the guaranteed decrease in objective, the analysis becomes slightly looser,
which is a price for the generality. However, as we show later, one can still obtain the same convergence
result on the “O" notation comparing to the standard smooth setting.

Lemma 2.4 (Three point property). Let ¢, h be differentiable convex functions both defined on some
convex set ). Let Dy (-,-) be a Bregman distance. For a given z € ) denote

def .
oo & argminq é(e) + Di(a, 2).

Then
gf)(l‘)—f—Dh(SU,Z) 2 ¢(z+)+Dh(z+,z)+Dh(:c,z+), Vz € Q. (9)

Proof of the three point property can be found in the appendix. The following theorem states a
convergence result of relative gradient descent.

Theorem 2.5 (Lu, Freund and Nesterov [18]). Consider Algorithm 1. If f is L-smooth and p—strongly
convex relative to h for some L > 0 and pu > 0, then for all k > 1 the following inequality holds:

fen) = flo) < HPn@am) o Lopp

(1+ﬁ)k—1 k

In the case when p = 0, the middle expression is defined in the limit as p — 0.




In the case when p > 0, Relative Gradient Descent enjoys linear convergence rate, which is asymp-

totically driven by
—k —k
TR T SRV S (1 _ ﬁ)’“
L—pu L—pu L)~

On the other hand if i = 0, Theorem 2.5 yields O(1/k) convergence rate. Thus, relative gradient descent
is, up to the constant term, matching rate of standard Gradient descent under standard smoothness
assumption.

3 Relative Randomized Coordinate Descent with Short Stepsizes

In this section, we propose and analyze a naive coordinate descent algorithm for minimizing relative
smooth functions. The key idea is to choose a subset of coordinates each iteration and make a step
from relGD in the corresponding subspace.

We give two slightly different ways to analyze the convergence. However, neither of them provides
a speedup comparing to Algorithm 1. We mention this for educational purposes, to illustrate our
techniques. This issue will be adressed later in Section 4, providing us a potential speedup comparing
to Algorithm 1.

The key assumption of this section - separability is defined in the following way: h(z) = >, R (a:(i)) ,
where h(") takes only i-th coordinate of 2. On top of that, we assume that @ is block separable:
Q=1 Q% where QU is closed interval for all i. In other words z € Q if and only if for all i we
have z(V) € Q).

Throughout this section, we assume that f is L—smooth and p—strongly convex relative to some
separable function h.

3.1 Algorithm

We introduce here Algorithm 2 — Relative Randomized Coordinate descent with short stepsizes. From
now, let us denote 1° to be i—th column of n x n identity matrix. The update is given by (7) with

Q= {x ‘ T =x+ Z Span(li)}.
i€ My

Subset of coordinates M; is chosen randomly such that P(i € M) = P(j € M;) for all i, < n
and | M| =T.



Algorithm 2 relRCDs (Relative Randomized Coordinate Descent with Short Stepsizes)

Input: Initial iterate xg, separable reference function h and L such that f is L—smooth relative to h.
fort=0,1,....k—1do

1. Choose M; C {1,2,...,n} such that P(i € M;) =P(j € M) forall i,j <n and |[My| =7

2. Set Q + {x |z =21+ ), span (1)}

3. Set 24y < argmin,cq, {(Vf(21), ) + LDy (x,z)}

end
return xg

3.2 Key lemma

It will be useful to introduce

T(141,4) def argmingeo{(Vf(2¢), ) + LDp(x,2¢)}

as we will use this notation in the analysis.
The following lemma describes behavior of Algorithm 2 in each iteration, providing us on the expected
upper bound on the value in the next iterate using the previous iterate.

Lemma 3.1 (lteration decrease for Algorithm 2). Suppose that f is L-smooth and p—strongly convex
relative to separable function h. Then, running Algorithm 2 we obtain for all x € Q:

n—T

E [f(zt+1)]

IN

E[f(z)] + %f@;) + (L - %N) E [Dy(z,2:)] — LE [Dp(, 2e11)] -

n

Proof.

B(f(@ea)le] < fla)+ B (V@) 2o = 20) + LDy(we1.2) ) | i

= fla)+E | <(Vf($t))(i) (@41 — 20) + LDy (xgl’xgi)> ) |t

ig My
+E Z ((Vf(xt))(i) (41 — 2)? + LDy (wﬁf@l,wii)) ) | $t]
1€ My

2 g+ B | Y (V@) (@ — 20 + LDy (22y,27) )| x]

1€ My

-

= fl@e) + = (Vf(@e), Tp1,0) — 7)) + LDy (2(t41,4), 1)
(9) T T T
< flz) + E(Vf(xt),m — ) + ELD}L(SU, x) — ELDh(xv‘T(tH,*))
® n—r1 T T T
< f(xe) + ﬁf(x) + g(L — ) Dp(z, 1) — ELDh(anﬂ?(tH,*))- (10)

9



The equality (%) above holds due to the fact that :cgl = mgi) for i & M;. Note that

n—rT T
E[Dy(z,me41) [ 2] = ——Dn(x,2¢) + - Da(@, Z(s41,4)).

Plugging it into (10), we get

(10) p—7
E[f(zepn)le] <

f(zy) + %f(a:) + %(L — ) Dp(z,2¢) — LE [Dp(z, x441) |24

n—rT

+ LDp(z,xt))

n—tT

= - f(ze) + %f(a:) + (L — %u) Dy (z,x) — LE [Dp(x, x441)| 2] -

Taking the expectation over the algorithm and using the tower property we obtain the desired
result. O

The lemma above provides us with the expected decrease in the objective every iteration. It holds for
all x € @, particularly for x = z; we obtain that the sequence {f(x;)} is nonincreasing in expectation.

3.3 Strongly convex case: ;> 0

The following theorem uses recursively Lemma 3.1 with x = z,, obtaining a convergence rate of
Algorithm 2.

Theorem 3.2 (Convergence rate for Algorithm 2). Suppose that f is L-smooth and p—strongly
convex relative to separable function h for x> 0. Running Algorithm 2 for k iterations we obtain:

(L — 1) Dn(@x, o) + “55 (f (20) — f(24))

S a(Blf(@)] - f(@) <

k—1 2
Lok _E&
=] — & e
K 1 M - B (L—%#)
where ¢ = (e1,...,c) € Ri is a positive vector with entries summing up to 1.

Proof. The proof follows by applying Lemma A.1 on Lemma 3.1 with = = x, for f; = E[f(z)], Dy =

E[Dh(l‘*,$t)], f* = f(.T*), §= %7 Y= L? ¢ = M-
O

Note that the term driving the convergence rate in Theorem 3.2is (L/(L — Zp)) 1=k (1- 1ﬁ)k_1 ,

n L
where k is the number if iterations. In the special case when 7 = n, using simple algebra one can verify

that Theorem 3.2 matches the results from Theorem 2.5.

3.4 Non-strongly convex case: ;=0

The following theorem provides us with the convergence rate of Algorithm 2 when f is convex but not
necessarily relative strongly convex (i.e., u = 0).

10



Theorem 3.3 (Convergence rate for Algorithm 2). Suppose that f is convex and L—-smooth relative
to separable function A. Running Algorithm 2 for k iterations we obtain:

k —
LD n—7 _
3 a(E[f(@)] - flz) < (z,w0) + 25 (f(@0) = f(@1)
= 1+ T(k=1)
t=1 >
where ¢ = (c1, ..., ;) € R¥ is a positive vector proportional to (X, Z, ... I 1).

Proof. For simplicity, denote r; = E[f(z:)] — f(zx). We can follow the proof of Theorem 3.2 using
Lemma A.1 to get the equation (35), which can be rewritten for = 0 as follows:

k—1
LDy(xz,x9) > rk—i-:;tzlrt— n;TT().
The inequality above can be easily rearranged as
n—r k-1
LDp(z,xo) + - T0 1 T
> 7 Tkt =D ]
L+ (k—=1)T 1+ (k—-1)% n

O]

As previously, Theorem 3.3 captures known results of Relative Gradient Descent for 7 = n (Theo-
rem 2.5).

3.5 Improvements using a symmetry measure

For completeness, we provide a different analysis of Algorithm 2 using a different power function which
is a combination of f(x;) — f(z4) and Dp(x., x¢). A similar analysis in the standard smooth setting

was done in [38].
It would be useful to define a symmetry measure of Bregman distance here.

Definition 3.4 (Symmetry measure). Given a reference function h, the symmetry measure of Dy, is

x?y

Note that we clearly have 0 < a(h) < 1. A symmetry measure «, was also used in [3]. In our case,
considering the symmetric measure for Dy, would improve the result from the next theorem. However
our results does not rely on it and hold even if there is no symmetry present, i.e. a(h) = 0.

Theorem 3.5 (Convergence rate for Algorithm 2). Suppose that f is L-smooth and u—strongly convex

relative to separable function h. Denote Z} £ LDp(zx,z¢) + f(zt) — f(xx). Running Algorithm 2

for k iterations we obtain:
b
0

Blf@) ~f@)] S 7

11



when p =0 and
k
B[z} < (1_T/~L_T<1_u>/w<h>L> 7k

when p > 0.
Proof. From Lemma 3.1 we have
L L T
E|[Z4] < E[Z/] - ~E [Z}']. (12)
If =0, we can easily telescope the above and get the following inequality
T
E[f(oy) = flz)] < Zy = —kE[f(z) = f(2.)],

which leads to

E[f(zx) — f(z.)] <

Let us look at the case when p # 0. Firstly note that from relative strong convexity of f combining
with definition of the symmetric measure a(h) we have

flxe) = f(ze) = pDp(zp, ) = palh)Dp(a, o). (13)

Therefore, (12) can be rewritten as

(12)
E[zL,] < E[Zﬂ—%E[Zt”]

= B[] -1EB(ZH) - I (1- ) (@) - f@)

n L L
— B[z~ IrRlz] - D1 h) e (e - f)

T v L
.7x1_zhgﬁﬁzfuu»—f@a>

< B[z~ Tip (2] - T(1-4) 2O () - fr)

;( Z)Wua(h)Dh(a:*,wt)

~ B[Z]-Ielz] - T(1-5) et e )

THoT py  pa(h) L
1—————(1——)7 E|Z|.
( nL n L uoz(h)—l—L) (2]
Using recursively the inequality above, we get

siet) = (1-35-50- D) 4

12



Note that as soon as a(h) = 0, rate from the theorem above is up to the constant same as rate from

Theorem 3.2 since (L/(L — %g))_l = 1— T %, However both theorems are measuring a convergence
rate for a different quantity. On the other hand, in the best case if a(h) =1 we have

2
S R R i L1 B gty
nL n L/pu+L nL nL nlL

thus the convergence rate we obtained might be up to 2 times faster comparing to rate from Theorem 3.2.
Thus the convergence rate is also up to 2 times faster comparing to Theorem 2.5 for the case 7 = n

if «(h) < 0. On the other hand, Theorem 3.5 provides us with convergence rate of E [Dy(x,, zy)], as
the following inequality trivially holds:

L
E[Dh(x*,a:k)} < E [Zk] .
L
Suppose that we have a fixed budget on the total work of the algorithm, i.e. we can make only k/7
iterations. It is a simple exercise to notice that the bound on the suboptimality for Theorems 3.2, 3.3
and 3.5 after k/7 iterations is not getting better when minibatch size 7 is decreasing. We address next
section in order to solve this issue.

4 Relative Randomized Coordinate Descent with Large Stepsizes

This section addresses the issue of the previous section - allowing a better usage of randomness in order
to obtain a faster convergence rate comparing to the deterministic setting. Theorem 4.6 later in this
section is one of two key results (together with the analysis of Relative Stochastic Gradient Descent) of
this work.

As previously, we assume that h is separable function, i.e., h(z) = >, R ($(i)) and Q is block
separable Q = [[, Q. For notational simplicity, let us define weighted Bregman distance and
weighted inner product:

def N 0 (1@ (40 — 10 (40 _on@ (@ . (0 _ )
Dy (z,9) ;v (h (:r) h (y) Vh (y ) (=) —y )),

n
def
(a,b), = E Diaib;,
i=1

where v,p € R™ are some positive vectors.

It would be also useful to introduce the separable version of relative strong convexity, as a gener-
alization of Relative Strong Convexity with respect to a separable function h, allowing different strong
convexity parameters for each coordiante.

Definition 4.1 (Relative strong convexity, separable version). Suppose that w € R’}. Function f
is w-strongly convex relative to separable function h on @ if for any z, y € int(Q) the following
inequality holds

fy) = fl@)+(VFi@),y—2) + Dy, 2)w. (14)

Throughout this section, we will assume the separable version of relative strong convexity, as it
captures relative u—strong convexity as a special case for w = u1 and might potentially bring a better
convergence result.
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4.1 Expected separable overapproximation

In our analysis, we use h—ESO assumption defined below instead of relative smoothness assumption. In
the standard smoothness setting, it was firstly introduced in [31].

A~

Definition 4.2 (h—ESO). Let h be some separable function and p = p(S) be a probability vector of
the sampling S ie. p® = P(i e S’) Function f admits Expected Separable Overapproximation with
respect to function i (h—ESQ), parameters S (probability sampling) and v (vector) if the following
inequality holds for all z, ¢ € R™:

E|f x‘i‘zq(i)li < f(@)+(VF(@),q)p + Dn(z + ¢, T)pov- (15)
€S
For simplicity, we write (f,S) ~ ESOy,(v).

Above, “0"” denotes Hadamard product, i.e. element-wise product of two vectors. Note that if f is
L—smooth relative to the separable function h, then we have

E|f x—i—Zq(i)li

ieS

IN

E | f(z)+ <Vf(m), > q<i>1i> + LDy |z 4> V1
icS icS
= f(@)+(Vf(2),q)p + Dn(z + ¢, 2)pL
and thus (f,S) ~ ESO(L1). In other words, if f is L-smooth relative to separable function h, then
(f,S) ~ ESOy(L1) with any sampling S.

However, when considering a specific sampling strategy, it might be possible to choose smaller ESO
parameters v, allowing us to obtain a faster convergence comparing to the deterministic method using
full gradient in each iteration. As we show later, if ESO parameters are chosen to be smoothness
parameters, we do not obtain any speedup comparing the deterministic method.

There are various examples of functions satisfying h—ESO:

e If h(z) = ||z||?/2, definition of h~ESO matches definition of standard Expected Separable Over-
approximation introduced in [28], [31]. Under the assumption that f is AT A smooth, i.e. Vz,y:

) S F@ @y -2+ -0 AT A - 2),
one can prove that (f,S) ~ ESOp(v) if
P(S)o(ATA) =< Diag <p(§) o v) ,

where P(g) and p(g) are respectively probability matrix and probability vector of sampling S.

Note that AT A smoothness is equivalent to relative smoothness for L = 1, h(z) = 2" AT Az
and arises naturally if the objective f is in the form

flz) & Z¢(i) (M),
=1

14



where function () is () smooth. In this case, f is AT A % S ﬂy(i)M(I)M(i) smooth. As an
example, for uniform sampling (when every iteration is only one coordinate sampled uniformly at
random), v can be chosen as Diag (ATA). In contrast, the tightest smoothness parameter that
can be chosen here is the maximal eigenvalue of (ATA), which is in general even greater than
maximal diagonal element of (ATA).

For more details about how to choose v for arbitrary sampling S or proofs of the statements
above, see [23].

e D-optimal design problem.

min  f(x) def log det (H Diag(az)HT>
T
subjectto  (1L,z) =1
r e RY,

where matrix H € R™*™ has rank n, n > m + 1. In this case f is 1 relative smooth with respect

to h(x) & o log ({L‘(i)) [18]. Thus, function (f,S) ~ ESO(1) for any sampling S.

e Poisson linear inverse problem. The task here is to find vector x € R’} to minimize KL(Ax||b) for
matrix A € R"*" and vector b € RY}..

Thus optimization problem here is the following:

. def “ i i i i
min -~ f(2) = Y f9() Z(b( log 1 +(Aa:)()—b()>
i=1 i=1

subject to r e RY.

Again, in this case f is 31", b(¥—smooth relative to h(x) & — 3" [ log(z™) [3]. Thus, as
before, (f,5) ~ ESO(1 S b@) for any sampling S.
Considering regularized Poisson linear inverse problem:

min  f(x) def KL(Az||b) + pr(x)

with logarithmic regularizer r(x) = — 31" log(2()). Then we have

(f,S) ~ ESOy, ((Zbl)—l-,u) )

The following lemma gives an example on function f which is h—-ESO where & is not %||z[|> with
parameters v potentially n times smaller than relative smoothness constant L.

for any sampling S,

Lemma 4.3. Suppose that
def

flz) € fil@)+ fo(z),

where fi is L; smooth relative to h; and f, is AT A smooth (1-smooth relative to ha(z)
12T AT Az). Let us consider S to be uniform sampling which samples a single coordiante (uniformly)

def

15



each iteration. Then,

(f,S) ~ ESOy (max (Lll,diag(ATA))>

for ]
def
hz) = hiz)+ 5||£EH2-

Proof. From ESO theory in standard smooth setting we have that (fg,S’) ~ ESOp, (diag (ATA)) for
ha(z) % llz||?. Clearly, (f1,5) ~ ESOy, (L11). Summing ESO inequality for fi and f> we get

E|f[e+> ¢ )| = B{f[e+D 1) +fa+d @1
ieS icS =
S fl(x)+<vfl(x)aq>p+Dh1($+Q7x)poL1l

o) + (Vo) ahy + el
< @)+ (V)b + Dul + 0, pon,

which concludes the proof.
O

Note that in the lemma above f is L-smooth relative to h where L % max (L1, Amax (AT A)), and
in general one cannot find tighter constant L. Clearly, v < L for all i and in the case when 4 = 1 and
L1 < 1 we have Apay (AT A) = n and thus L = n, in contrast to v = 1, thus L might be n times larger
than ESO parameters v. We also note without the proof that it is possible to design ESO parameters
for block coordinate descent as well analogously.

4.2 Algorithm

Let us now proceed with the algorithm. We introduce here Relative Randomized Coordinate Descent
(relRCD) - algorithm for minimizing functions satisfying Relative ESO assumption. The main idea is
very simple - each iteration sample a subset of coordinates with respect to sampling S and update them
according to Relative ESO assumption. We only consider sampling strategies such that all coordinates
have equal chance to be sampled.

16



Algorithm 3 relRCD (Relative Randomized Coordinate Descent)

Input: Initial iterate xg, separable reference function h, positive vector v and sampling S (f, S) ~
ESOp(v) and P(i € S) =P(j € §) for all i, 5 < n.

fort=0,1,....k—1do

1. Choose randomly M; € {1,2,...m} according to the sampling S

2. Set Q¢ + {w ) T =T+ ) ey, SDAN (1’)}

3. Set wyy1 < argmingcq, (V f(21), 2) + Dp(z, 7)o

end
return zy

4.3 Analysis

First of all, we introduce the variant of three point property, which we will use later in the analysis. For
simplicity we denote probability vector of sampling S as p throughout this section. Since all coordinates
have the same probability to be sampled, we can write p = pg1 for some scalar pg such that 0 < pg < 1.

Lemma 4.4 (Three point property for ESO). Let ¢, v, p € R™ and Dj(+,-) be a Bregman distance
for separable function h(z) = "1, h)(z), both defined on some arbitrary set Q. For a given z € Q
denote

def .
Z+ = argming o {<Cv x>P + Dh(x7 Z)PO’U} )

where Dp (2, 2)pov = > g D) (m(i), z(i)) p@Dv@ Then for all z € Q we have
(¢,x)p+ Dr(@, 2)pov = (¢, 24)p + Dal2+; 2)pov + Dr(®, 24 ) pov- (16)
Proof. Define ¢’ = cop and W(z) = 31, pDo@h() (2()). Thus we have

zy = argmingo{(c,z) + Dy (z,2)}.

It remains to apply the three point property (Lemma 2.4).
O

The next lemma provides us with the expected decrease in objective for each iteration of Algorithm 3
and has the same role as Lemma 3.1 in the analysis if Algorithm 2.
For notational simplicity, denote throughout this section

def .
T(t41,%) = argming e (Vf(zt) ) + Dn(x, 2¢)0- (17)
Lemma 4.5 (lteration decrease for Algorithm 3). Suppose that f is w—Relative Strongly Convex with

respect to h and (f,S) ~ ESOy,(v) for p(S) = p = pol. Denote A = mini’((;). Then, one iteration
of relRCD satisfies

E[f(zi11)] < (1=po)E[f(2)] +pof(zs) + (1 — poA)E [Di (x4, 2t)o] — E [Da(@x, Ti11)0] -
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Proof. Let us write h—ESO for x = x4+, ¢ = x(;41,+) — 2+ and sampling S. We get

A
ING
)

E[f(zt41) | 24 f(@e) + (Vf(21), 2 (041,0) — T)p + DalT (141,005 Tt)pov

A
AR=
)

f(xt) + <Vf(.%'t), T — $t>p + Dh(.f, xt)pov - Dh(IIJ, x(t—s—l,*))pov

~

(1 —=po)f(xt) +pof(x) = Du(@, 24)pow + D (2, Tt)pov — Di(, x(t—s—l,*))pov
(1 - pO)f(xt) —|—p()f($) + (1 - A)Dh(xa xt)pov - Dh($a x(t+1,*))pov- (18)

A INE

In the last inequality above we used the definition of A. Since
E[Dp(2,2e41)0 [ 2] = (1= po)Dn(@, 2t)v + poDr(T, T(141,4))vs

we have
Dy(x, 441,40 )pov =  E[Du(z,2441)0 | 2] — (1 = po) Dp(, 2¢)o.

Plugging it back to (18) we obtain

E[f(ze1) [z] < (1—po)f(z) +pof(x) + (1 — A)Dp(z, 2t)pov — B [Dp (@, 2041) | 24
+(1 = po) Dn(z, 2t )w
= (I —=po)f(zt) +pof(x) + (1 —polA)Dy(z, 2)y — E[Dp(2, Tr41)0 | 4] -
(19)

Taking the expectation over the algorithm and using the tower property we obtain the desired result. [

Now, we are ready to introduce first of the two main results of this work - Theorems 4.6 and 4.7,
providing with a convergence rate of relRCD under ESO assumption.

4.3.1 Strongly convex case w € R"} |

Theorem 4.6 (Convergence rate for Algorithm 3). Suppose that f is w—strongly convex relative to
h for w € R’ and that (f, S) ~ ESO(v) for p(S) = p = ppl. Denote A = mini‘)’((;). Then, iterates
of Algorithm 3 satisfy:

(1 = poA)Dp (2, 20)v + (1 — po) (f(w0) — f(24))

Y a(Ef (@) - flz) < =1 7 (20)
= 1- A1+ A1 (Lx)
where ¢ € R¥ is a positive vector with entries summing up to 1. On top of that, we have
E [Dp(zs,21)s] < (1= poA) Dy(2, 20)o, (21)
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and
k

1
= Zl E [Dh(:ct, $(t+17*))”]
t=

f(xo) — fl=)
kpo '

IA

(22)

Proof. The proof of (20) follows by applying Lemma A.1 together with Lemma 4.5 for f; = E[f(x¢)], Dy =

E[Dh(x*vxt)’u] ) f* = f(m*)v 0 = Do, ¥ = 1, ¢ = A.
Inequality (21) follows recursively from

E [Dp(zs,241)0] < (1= poA)E [Dp(@s, 24)0]

which holds due to Lemma 4.5 as E [f(z)] is an nonincreasing sequence.
Finally, to prove inequality (22) let us set x = z; in (19) to obtain

E[f(zt41) | 2] < f(xt) — E[Dp(xe, meg1)o | 4] -

Taking the full expectation, averaging over iterations and using E [f(zx)] < f(x.) we get

k
1 o) — flx
I
It remains to notice that E[D(zy, z111) | 7] = poD (x4, T(141,4))- O

Convergence rates from (20) and (21) are both asymptotically driven by the term

()

k
(1—pA)F = [(1—pomin—~] .
7 w(l)

Therefore, no speedup is obtained comparing to relGD (Theorem 2.5), for ESO parameters set as
v = L1 and strong convexity parameters set as w = pl. However, if one set ESO parameters v more
tightly, taking into the consideration the specific probability sampling, one can outperform Algorithm 1.
There is a broad theory about how to compute ESO parameters v for various different sampling strategies
in case of h(z) = 3||z||% see [28]. We gave the example of one class of functions in Lemma 4.3.

Note also that (20) provides an asymptotically same convergence result as Randomized Coordi-
nate Descent in the standard smooth settingfor uniform sampling [30], therefore we obtained a good
generalization in this case.

To conclude this section, notice that (22) provides us with a convergence of E [Dy(x¢, 441)0]-
Quantity Dp(x¢, x141), depends on x4, h and f and goes to 0 when V f(z;) goes to 0 (this can be
easily seen from (17)). Thus Dy (¢, x¢+1)» can be considered as a “norm” of V f(z;) which depends
on z; and h. In the standard setting when h(z) = ||z||?/2 and v = L1 we have

2

1 1
Dy(zt,xe41)y = LDp(z4,041) = LHLVf(xk) = ZHVf(wk)”27

and thus we obtain the convergence of the norm of gradient in this case.
Remark 1. According to Theorem 4.6, one needs

(1 — poA)Dp (2, 20)w + (1 — po) (f (o) — f(24)) LAl 1)

€

A log(A) log ( (23)

DPo
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iterations for Algorithm 3 to converge to e-optimality in functional values and
A Dp(zs,
— log (h(x xO)U) (24)
Po €

iterations to get to e-neighborhood to the optimum in (Bregman) distance. For a comparison, random-
ized coordinate descent in standard smooth setting requires

5 g (Hlr 515

iterations to reach to e-optimality, which is essentially same as both (23) and (24).

4.3.2 Non-strongly convex case: minw; = 0

The following theorem provides us with the convergence rate of Algorithm 3 when f is convex but not
necessarily relative strongly convex (i.e., min w; = 0).

Theorem 4.7 (Convergence rate for Algorithm 3). Suppose that f is convex and (f, S) ~ ESOy,(v)

~

for p(.S) = p = pp1 and separable convex function h. Running Algorithm 3 for k iterations we obtain:

Dy (x,20)v + (1 = po) (f(z0) — f(z4))
1+ po(k—1) 7

S a(B[f(ae)] - f(z) <

t=1
where ¢ = (cy,...,cx) € R¥ is a positive vector proportional to (pg, po - ., po, 1).

Proof. For simplicity, denote r;, = E [f(x)] — f(z+). We can follow the proof of Theorem 3.2 using
Lemma A.1 to get the equation (35), which can be rewritten for ;1 = 0 as follows:

k-1
Dy(z,20)y > 7r+po e — (1= po)ro,
=1

which can be easily rearranged as

k—1
Di(,m0)y + (1 — po)ro 1 ( )
> Tk:+pog T | .

t=1

1+(k‘—1)p0 1+(l€—1)p0
]

As previously, Theorem 3.3 captures known results of Relative Gradient Descent for pg = 1 (Theo-
rem 2.5).
5 Relative Stochastic Gradient Descent

In this section, we assume that every iteration we have an access to the stochastic oracle providing us g;
— an unbiased estimator of V f(x;). The next iterate of the algorithm is obtained using the stochastic
gradient instead of the true gradient. The analogous algorithm in the standard smooth setting is
Stochastic Gradient Descent which is in fact a special case of Relative Stochastic Gradient Descent.
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5.1 Algorithm

The iterates of standard stochastic gradient descent with stepsize sequence {7;}72 are the following

Tig1 Tt — Ve (25)

It is known that unlike gradient descent, scheme (25) does not necessarily guarantee the convergence
to the optimum, as the variance of gradient estimator g; might not converge to zero, resulting in the
convergence to the neighborhood of the optimum. This is where the importance of decreasing stepsize
sequence {7 }72, takes a place; thus taking more conservative steps as progressing with the algorithm.
However, in particular special cases, such as empirical risk minimization, a different tricks tricks guarantee
vanishing variance of gradient estimator as one approach optimum [35, 8, 12, 37, 25].

In this work, we attain the convergence of Relative Stochastic Gradient Descent by making the
algorithm conservative over time. We leave the variance reduction for relatively smooth ERM problems
as an open research question.

Algorithm 4 relSGD (Relative Stochastic Gradient Descent)

Input: Initial iterate x(, separable reference function h, positive scalar L such that f is L-relative
smooth with respect to h, stepsize determining sequence {L;}7°, with Ly = L.
fort=0,1,....k—1do

1. Get g; such that E[g¢] = Vf(x)

2. Set wyy1 < argmingeq {(gr, ) + LiDp(w, 24) }

end
return g

Recall that for the special choice Dy (z,y) = %Hx — y||?, Stochastic Gradient Descent with nonin-
creasing stepsize vy = L% is recovered. Define the new iterate using the true gradient as

def .
L(t+1,%) = argmilycq {<vf($t)a l‘> + Lch(l‘a .’L’t)} )

which will be used only in Assumption 5.1, and will never be evaluated in the actual run of the algorithm.

Throughout this section, we will make the following assumption, which is in fact closely related to
boundedness of variance of the gradient estimator, as Remark 2 shows. Notice that boundedness of
variance of gradient estimator is very common in SGD literature.

Assumption 5.1. There exist o # 0 such that for all ¢ we have

LtE [<Vf($t) - gt’xt+1 - $(t+1’*)> | ﬂft] S 0'2. (26)

Remark 2. Consider Assumption 5.1. If we additionally assume that A is pp-strongly convex function,
we obtain
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IA

LiE [va(iﬂt) - §t|| : H%H - ﬂf(t+1,*)H ‘ SUt}

1

£~ V(e

LiE [(Vf(2¢) = Gt Tea1 — T(s1,0) | T

A
[N

:

LiE [va(aft) - @H : ,ulh

_ ;EMVﬂm—@W\ﬂ~

Inequality (x) holds due to uj—strong convexity of h, since

1
[2t+1 — Za1ll < EHV}L(mH-l)_Vh(x(tJrl,*))” = —

2

Thus, if h is p,—strongly convex, o can be chosen so that o2y, correspond to the global upper

bound on variance of gradient estimator.

5.2 Key Lemma

The following lemma is key for this section and provides us with a bound on expected suboptimality in
iteration t.

Lemma 5.2 (Iteration decrease for Algorithm 4). Suppose that f is L-smooth and u—strongly convex
relative to function h. Performing one iteration of Algorithm 4 we obtain for all z € @

E[f(ztr1) | 2] — f(x) < (Lt — p)Du(w,2¢) — LiE [Dp(2, 2411) | 24]
2

+%t — (Lt — L)E [Dp(w41, @) | 24) - (27)
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Proof.

E[f(zer1) 2] < f@) + E(V (@), 241 — 21) + LDp (@041, 21) | 24
= f(@) + E{Vf(21), 2e11 — 1) + L D@11, 7t)]
—(Li — L)E [Dp (2141, 2¢) | 24]
= f(x) +E[Vf(@e), 2041 — 1) + LeDp(e41, 20) | 4]
—(Li = L)E [Dp(2i41, 21) | 24]
= f(@) + E[(ge: Te41 — 1) + LeDp(e11, 30) | 24
+E [V f(@t), 2e11 — 2t) — (Gt Te1 — 3t) | 4]
—(Lt — L)E [Dp(@t41, 1) | 4]

< flze) +E[(gt,x — x¢) + Ly Dp(x, 2) — L Dp (2, Tp41) | 24
+E[(Vf(2t) — grsxe1 — 1) | 2] — (Le — L)E [Dp(2e41, 20) | 4]

= flz) +(Vf(2e), 2 — ) + LiDp (2, v0) — LiE [Dp(z, 241) | 24]
+E[(Vf(21) = grsxee1 — 21) | @] — (Le — L)E [Dp(zi41, 21) | 4]

< f(@)+ (Lt — p)Dp(z,21) — LiE [Dp(2, 2e41) | 2¢]
+E[(Vf(2t) = gt xe01 — 1) | 2] — (Lt — L)E [Dp(41, 24) | 4]

Y @) + (L — ) Di(,20) — LiE [Dy(, 3041) | 2]

E [(Vf(2t) = G Try1 — Ta1,0) | @] = (Lt = D)E[Dp (@41, 21) | 2]
(26) o2
< f(@)+ (Lt — p)Dn(x, 20) — LiE[Dp(z, 2041) | 24] +

Ly
—(Lt = L)E [Dp(@41, ) | 24] -
Equality (*) follows from fact that g; is unbiased and thus we have
E[(Vf(z) = Gez) 2] = BE[Vf(2:) = Gp2@erim) 2] = 0.

O

Note that Lemma 5.2 is very similar to Lemma 3.1 for 7 = n. There are only two additional terms
2 . . . .
n (27) - 7. appears due to the noise in the gradient estimator and (Ly — L)E [Dp(x¢41, x)| 2] appears
due to the varying stepsize rule. We now derive the convergence rate of relSGD for various stepsize
rules.

5.3 Constant stepsize rule

The following theorem provides a convergence result of SGD with constant stepsize rule using recursively
Lemma 5.2 — it shows that Relative Stochastic Gradient Descent converges linearly to a particular
neighborhood of the optimum. We mention it for completeness, to illustrate that relSGD in our fully
general relative smooth setting behaves very similar to standard (smooth) SGD.
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Theorem 5.3 (Constant stepsize rule for Algorithm 4). Suppose that f is L-smooth and p—strongly
convex relative to h. Iterates of Algorithm 4 with stepsize rule L; = L satisfy:

k 2
g -Dh :1:*71;0 /"L
Sa(BU@l-(re)+%)) s Delmmlt (28)
t=1 (ﬁ) —1
where c is positive vector proportional to (1, 8, #2,..., B*~!) summing up to 1 for
def L

Proof. Let us set = x, in (27), take the expectation of over the algorithm and use the tower property.
We obtain

0_2
E[f(xe:)] - (f(x*) + L) < (L - wE[Di(es, 1) — LE [Dy(as 2011)]

The proof now follows directly by applying Lemma A.1 the inequality above for f; = E[f(x¢)], Dy =
2
E[Dh(.’L'*,.’L't)»U], f* = f(l'*) +%7 5: 17 QOZL, ¢:M
O

Inequality (28) shows that the sequence of iterates {x;} converges linearly to the set {z : f(x)

flzy) + %2} and the convergence rate is driven by the term (1 — %)k

IN

5.4 Decreasing stepsize rule

The following theorem is one of two key results of this work, together with Theorem 4.6. It provides us
with a convergence result of Algorithm 4 for a general stepsize rule.

Theorem 5.4 (General convergence for Algorithm 4). Suppose that f is L-smooth and p—strongly
convex relative to h. Define cg = 1 and ¢ = LL =1 Ct—1 fort > 1 and C), = Zt 1Ct—1. Then,
Algorithm 4 satisfies:

k k—
S AR ey - fa)] & LTMDEnm) | a3 (29)
t=0

=1 K Ck Ccht

Proof. Let us set © = x; in (27), take the expectation of over the algorithm and use tower property.
Ignoring the last term we get

0.2

Elf(zen) = fl@)] < (L= p) Dals, 2) = LB [Dn(@s, 2] + 7

Multiplying the above by by ¢; and summing for t = 0 to £k — 1 we obtain
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k k—1

> e aB[f(z) = f(x)] < (Lo — 1) Dp(@s, 20) — ko1 LiE [Dp (s, )] + 07> ztt
t=1 - ) t=0
< (Lo — ) Dp(s,30) + 0 ) ftt
t=0
Dividing by Cj we get the desired result. O

Theorem 5.4 itself does not provide insight about the convergence rate of Algorithm 4, as it strongly
depends on the choice of stepsize parameters {L;}. We study a suitable choice of stepsize rule in the
next subsection.

5.5 Choice of stepsizes for Theorem 5.4

The goal of this section is to study a choice of stepsize parameters in Theorem 5.4. We will analyze
separately two cases — =0 and p > 0.

Firstly we start with non-strongly convex case ;1 = 0. The following lemma provides us with the
choice of stepsizes minimizing right hand side of (29) - stepsizes giving us the best possible convergence
rate for Theorem 5.4.

Corollary 5.5 (Nonstrongly convex rate for Algorithm 4). Suppose that 1 = 0, i.e. f is convex but
not necessarily relative strongly convex. Suppose that we intend to run k iterations of Algorithm 4.
Then, constant stepsize controlling parameters L; given by

o?L(k —1) 1

L = =0k 2
T o2y Vot +o2AL(k - 1) (k72)

minimize LHS of (29), obtaining

ZE[f(xt)k—f(I*)] < O®k3).

t=1

Note that Stochastic Gradient Descent in the standard smooth setting given by (25) with constant
stepsize rule depending on the number of iterations enjoys O(1/Vk) rate as well [36].

Let us now proceed with the case ;1 > 0. Note that the average of iterates of Stochastic Gradient
Descent in the standard smooth setting given by (25) with stepsize 7; = + enjoys O(log(k)/k) rate

ut
[36]. Employing tail averaging technique one can obtain O(1/k) rate [29].

Lemma 5.6 (Choice of stepsizes for Algorithm 4). Suppose that sequence {L;} is nondecreasing and
that sequence {c;} is monotonic for t > T. In order to attain O(1/e€) rate for stochastic gradient
descent we must have L; = O(t).

Lemma 5.6 provides us with an insight on how stepsizes in Theorem 5.4 should be chosen in order

to attain O(1/k) convergence rate - sequence of stepsize controlling parameters {L;} should be upper
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and lower bounded by linear function in ¢. A faster or slower rate of increase of {L;} would not result
in O(1/k) convergence rate as k — oc.

The following lemma provides us a bound on convergence rate of Randomized Stochastic Gradient
Descent, when sequence {L;} increases linearly with Lo = L i.e. Ly = L + at for some a > 0.

Lemma 5.7 (Linearly increasing stepsize parameters for Algorithm 4). Consider the convergence rate
given by Theorem 5.4 and stepsize parameters given by L; = L + at for some a > (. Define

o e max (a, 0 — ). (30)
If we choose o > i then
(L—p+(k+D)a)s = (L—p+a)e
Cr > (L—p)' = & ° e
i
k—1 E_q 21
1 Lo —(L—p+ka)e
G o f+%L—u+af%( 1) (L — p+ka) 7
L; L oa— U
t=0
if &« = p then
Cr = k,
e log (L + kp) —log (L) 1
- < + =,
i=o L K L

and finally if @ < p, then

Lo (L= p+a) (L—my+ (k=1)a)s — (L —my)=
Ck; 2 ].+ )
Fa (L) 1%
— < 1, La(l-pta) (L+ka)a—'— L&t
L. - L T (L) P )
t=0
for function T', defined by (38). In the special case where o = & we obtain
k 2 H
Ct— (L — p)(L = §)pDp(@x, 20) + (1 — 37 + k)
YR —f@)] < A et
— Ck (L+(k—=2)5)2-(L-5)2+(L-5u
where o
L+&(@t-1 —
(& ‘[12(”), Ck = Ct.
2 t=0

Lemma 5.7 provides us with an useful insight on the linearly increasing choice of stepsize controlling
parameters in Theorem 5.4. We consider the following 3 cases:
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o > p: since Cj = Q(kH/) and Zf;ol 7= = O(1), the convergence rate of the weighted sum of errors

in functional values is O(1/k*/®). This is worse than the rate of stochastic gradient descent in
standard smooth setting. However, weights from left hand side of the Theorem 5.4 are decreasing
in this case.

a = u: Since C, = Q(k) and Zf 01 7+ = O(log(k)), the convergence rate of the weighted sum of errors
in functional values is O(log(k)/k). Note that weighted sum of errors in objective from left hand
side of (29) is an average in this case. The average of iterates of Stochastic Gradient Descent
with stepsize parameters L; = put under standard strong convexity assumption enjoys O(log(k)/k)
rate as well [36].

o < p: Since Cj, = Q(k**) and Zk ! = O(kM/*=1) the convergence rate of the weighted sum of
errors in functional values is O(l/kz). This is as good as the performance of Stochastic Gradient
Descent in the standard smooth setting with tail averaging technique [29]. Note that weights
from left hand side of the Theorem 5.4 are increasing, thus we put more value to latter iterates
which has a similar effect to the convergence rate as tail averaging in the standard smooth setting.
Recall that we use stepsize parameters given by L; = L + at for a < p in contrast of L; = ut
used in [29] (rewritten to our notation).

The desired O(1/k) convergence rate is obtained for o < p. In practice, the condition o < p is not
trivial to be satisfied, as the relative strong convexity parameter ;1 might be unknown and eventually
very small. However, this issue can be overcame when strongly convex regularization is used - as we are
aware of strongly convex parameter in this case.

5.6 Minibatch relSGD

As mentioned previously, if h is u,—strongly convex, o2 from the Assumption 5.1 can be chosen so that
uno? is a global upper bound on the variance of g;.

Suppose that for i = 1,2, ..., 7 random variables §i are independent unbiased estimators of V f(z;)
coming from the same distribution.

Clearly, %2;1 gi is an unbiased estimator of Vf(z¢), thus we can set it in the update rule in
Algorithm 4. Note that %Z;l g; has 7 times smaller variance comparing to g; for all i < 7. Thus, if
we choose o2 such that o2y, is an upper bound on the variance, we can allow it to be 7 times smaller
when using minibatch of size 7.

Corollary 5.8 (Convergence of Minibatch relSGD). Suppose that f is L smooth and u strongly

convex relative to uyp strongly convex function h. Define ¢y = 1 and ¢; = LL;:Lct,l for t > 2 and

Cr = Zle ci—1. Assume that variance unbiased gradient estimator i of V f(x;) is upper bounded
by o?uy, for all i < 7 and ¢ < k and also that g} are independent and identically distributed random
variables. Then, iterates of Algorithm 4 with gradient estimator %2;1 gi satisfy:

C-lp (Lo — p)Dp(z4,20) 02 . ct
Z —fl@)] < Ck * 7 2:: CyL;

t=1

Let us consider a stepsize rule which yields O(1/k) convergence rate as obtained from Lemma 5.7.
In this case, T—minibatching does not bring linear speedup in terms of the total number of iteration
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to attain desired accuracy, and thus in terms of the actual work done by the algorithm, it is the best
to choose smallest possible minibatch 7 = 1. However, minibatching can be particularly useful in the
parallel setup - when one can obtain the a multiple gradient estimator by different processors at the
same time.

6 Experiments

In this short section we numerically test the convergence of relGD, relRCD and relSGD on two artificial
examples, in order to illustrate their potential.

6.1 An experiment with relRCD

In this example we compare standard gradient descent to relGD an relRCD. Recall that relRCD is
always at most as fast relCD, once it can be applied. Our first experiment illustrates the need of relative
smoothness assumption - as gradient descent with fixed stepsize applied on the considered function is
extremely slow.

Let us consider a function

w1 1 Lo " 4
e LT - i
flx) = 2:13 Mx—l—m;(:p ) ,
where 2z € R100 apd -
M = A A .
Amax(ATA)

Above, A € R™ "™ is a random matrix with entries from normal distribution with zero mean and variance
1.
We will use the following reference function

100

re) & Sl 55 S (#0)

=1

4

From Lemma 4.3 we know that f is 1-smooth relative to s. On top of that, (f, S) ~ ESO,(v) with
v such that () = max (75, (AT A);;) and uniform sampling S such that P(i € S) = 1/100 for all i.
In order to compare relGD and relRCD to gradient descent, we need to find a (standard) smoothness

parameter L. For this purpose, we will restrict the domain as {z | ||z[|%, < 2202 }. Clearly, 12" Mz

: : : : 1 N~100 (o () e 12,02
is 1-smooth and maximal eigenvalue of hessian of 15> .=} (x( )) is 15 llz |5, We set xq to be random

vector with independent zero mean entries with variance 10%. Thus, L is in the order of 10° in contrast
to relative smoothness parameter, which is 1. The plot below illustrates a convergence result of gradient
descent, relGD and relRCD for the artificial setting that we just described.
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Figure 1: Comparison of Gradient descent to relGD and relRCD

Figure 1 show that the algorithms behave as we expected from the theory - Gradient descent has a
faster start first few epochs, which is due to the fact that smoothness parameter L is huge but still tight
in the region far from the optimum. However, with increasing number of iterations, Gradient descent
is significantly outperformed by the other two algorithms. Notice that relRCD enjoys here the best
convergence rate, which is expected from the theory since ESO parameters v are smaller than relative
smoothness parameter. In this specific case maximal element of v is 0.36.

6.2 An experiment with relSGD

In this experiment we compare relGD to relSGD for various choice of stepsize parameters L;.
Let us consider Poisson linear inverse problem, where one minimizes Kullback-Liebler divergence
between b and Ax:

. def N o(i) + def o= [ (s b i i
min  f(2) €Y fO@) €Y (b< >1ogW + (Az)® — >)
=1 i—1 r
subject to 0 <z, Vi,

where b € R, and matrix A € R"™" have nonzero rows. In [3], it was shown that f is L & S b0-

smooth with respect to Burg's entropy h(x) def S log(x®).

We consider here mV £ (z) for randomly chosen i to be an unbiased gradient estimator. Notice
that the access to stochastic oracle is it is m times cheaper comparing to the cost of the full gradient
due to ERM structure.
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Figure 2: Comparison of relGD and relSGD for A = |A|, b = |V/|, xg = |z{,| where A", b/, x(, are vectors
(or matrix) with entries randomly generated from normal distribution with zero mean and variance 1.

Figure 2 illustrates O(1/k) convergence rate (sublinear) of relGD. We can clearly see that relSGD
performs much faster first few passes through data, however for smaller constant L, it oscillates and
seems not converge to the optimum, as expected from theory. Larger constant L, yields a very slightly
slower decrease at the beginning but it is as expected less noisy and give us a better approximation after
more passes through data. On the other hand, linearly increasing parameters L; seems to be too fast,
as the convergence significantly slows with the increased number of iterations. We obtained the best
behaviour for L; = 1%\/% which is expected since Corollary 5.5 claims that optimal stepsize controlling
parameters are O(1/v/k) for non-strongly convex case, i.e. p = 0.

7 Conclusions and Extensions

In this work, we presented first stochastic primal algorithms for minimizing Relatively smooth functions.
We bridge the well developed area of stochastic smooth optimization with fresh area of relative smooth
optimization. This way, we also contribute to better understanding of mirror descent, obtaining the first
stochastic mirror descent type algorithm with linear convergence rate. However, there is still a plenty
of space to extend on the results of our work. We give here few examples.

e Arbitrary Sampling for relRCD. In this work we showed the convergence of Randomized Coordinate
Descent under ESO assumption for uniform sampling strategies. However, Randomized Coordinate
Descent under standard smoothness allows arbitrary sampling strategy [30], which can potentially
be extended to relative smooth setting as well, and therefore to gain additional speedup from
importance sampling.

e Variance reduced relSGD for empirical risk minimization. RelSGD converges since the sequence
of stepsize controlling parameters {L;} goes to infinity. However, for Empirical Risk Minimization
problem in standard smooth setting, one can attain a linear convergence using variance reduction
techniques [35, 8, 12, 37, 25], as we mentioned earlier.

30



e Application. In this work we provide only theoretical results on the algorithm and convergence
rates. We did not give any application of our algorithms to a particular problem, however we
believe that this work might help to solve a various optimization challenges in practice, especially
since it brings a different insights on under which conditions can stochastic mirror descent perform
extremely fast.
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A Key technical lemmas

For completeness, we firstly give proof of Three point property.

A.1 Proof of the three point property

Note that ¢(z) + Dp(x, z) is differentiable and convex in z. Using the definition of z; we have
(Vé(24) + Vh(zy) = Vh(z),z —24) >0 , VxeQ.
Using definition of Dy, (-, -) we can see that
(Vh(z4) = Vh(z),2 —2z4+) = Dp(z,2) — Dp(2+,2) — Dp(x, 24).
Putting the above together, we see that

0 < (Vo(zy) + Vh(zy) — (Z) T —24)

= Dh($,2) Dh(z+72) (ZB ) <v¢(2+),$ - Z+>
< Dn(z,z) = Du(z4, 2) = Dp(x, 24) + ¢(x) — d(24).
The last inequality is due to convexity of ¢.

A.2 Key lemma for analysis
The following lemma allow us to get a convergence rate for Algorithms

Lemma A.1l. Suppose that for positive sequences {f;},{D;} we have

firn £ (1=0)fe +6fi+ (¢ — 0¢) Dy — D41, (31)
where 9, ¢, 1 € R satisfy 1 > § > 0 and ¢ > 1 > 0. Then, the following inequality holds

)

b —5 — & (fo — £
th 1) < (@ —6¢)Dg + (1 )({(11 f+)
ARG

where ¢; def Cy/ Zle C; for

Proof. Let us multiple the inequality (31) by ( ) for iterates t = 0,1,...,k — 1 and sum them:

k-1 t k—1 :
Z<¢_¢5¢> ferr = Z<¢_¢5¢> (0o + 5.
t=0

t=0

k—1 ¢
14
+Z<¢_5¢> ((@_57!))Dt_<,0Dt+1).



Rearranging the terms, we get

N
—_

2 <<p f5w)t<ft+1 —(1=0)fi - 5f*> (32)
< -an-(E5) e
< (p—6¢) Do. (33)

For simplicity, throughout this proof denote r, = f; — f.. Let us continue with the bound above:

o= (@fawylf”g( 55) (5005
—(1—5)f0—5k§_:1<(p SO(W) [
t=0
(so@w)“f”ki< gpw) .
—(1-0 fo—5z<¢ w) f (34)

8 o k-1 o i—1 0= s e
RN Tk+; P — oY 5*190—1#”_( ~ oo (39)

Equality () is obtained by the fact that the sum of terms corresponding to f(-) is 0 (this can be
easily seen as it is equal to (32)).
Recall that we have

e V7! =y
o (#5) &% 1<t<k-1
t - k

(@_Lw) - t=k.

and ¢ def Cy/ Zle Cy. Since the sum of terms corresponding to f; for some t or f, in (34) is O
(because it is equal to (32)), we have
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t=1 t=
k-1 o '
= (1-9)+96 .
( ) —~ (gp—&/})
k
2 -1
so—éw)
= (1-9)+94 —
p—0y

Y
p—0Y
k
. -1
: <1—6>+<¢—5w>(”"
(G
o o ¢
- 1_¢+¢<s05w> ' (30
Thus, we can rewrite (35) as follows
San 2 (-5 0+ 0-om)
cry < ¢ — o+ (1— 7“0)
t=1 Zf:l Ct
(36) 1

® ((w — 89) Do + (1 — 5)7”0>

B Proofs for Section 5

B.1 Proof of Corollary 5.5

Denote I; = (L;)~! for simplicity. It is easy to see that

k—1 k—1 k—1
Ct:th, Ck:1+Lth, thlt:L"i'L(thQ)

t=1 t=0 t=1

Denote
A = (L — p) Dy (4, 20) + 0*L.

Minimizing RHS of (29) to obtain the best rate is equivalent to minimize
A+o’L (34 3)
1+ LY
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Notice that the expression above is minimized for constant Iy, as if [; # [, setting I; = [; = % leads
to strictly smaller value of the expression. Therefore, it suffices to minimize
A+ oLk —1)I?
1+ L(k—1)I

in [. First order optimality condition yields
20%L(k — 1)I(1 4 L(k — 1)I) = (A4 o*L(k — 1)I*)L(k — 1),

which is equivalent to
o?L(k—1)I? +20%1 — A=0.

The quadratic equation above have a single solution

—0% 4+ /ol + 02 AL(k — 1)

I= o?L(k — 1) ’

which finishes the proof.

B.2 Proof of Lemma 5.6

For simplicity, denote I; = (L;!). Thus, {I;} is nonincreasing sequence. Note that the rate from the
Theorem 5.4 is O(1/k) if and only if both

1 s
—  and =t

are O(1/k).
Let us now consider that {c¢;} is nonincreasing for ¢ > T'. Suppose that
1 > liminf Gt def Te.
Ct—1
Then for all k there is K > k such that
1
1> + 7 > CK ‘
2 CK-1
Thus there is infinitely many ¢ such that
1 147 S i‘
2 Ct—1

Since {¢:} is nonincreasing for ¢ > T, we have that {¢;} — 0 which is a contradiction with the
assumption that c% = O(1/t). Thus we have

1 = liminf —— = lim ——

Ct—1 Ct—1

i

which implies that
lim Lt — Lt—l = M.
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The above means that L; = O(t). We have just proven the lemma for asymptotically nonincreasing

{ed}.
Now, suppose that {¢;} is increasing sequence for ¢t > T. Then we have for all t > T

Li—
Li—p

Thus Ly < Li—1 + p, which implies that L; = O(t) and I = Q(1/t).
On the other hand, looking at Zi‘:ol %ﬁ as the weighted sum of Iz, since [;_1 is the smallest from

{l;} we immediately have ’

> 1.

k—1 el
O(1/k) = —C” > It > i,
t—o 'k

which means that [; = O(1/t). Thus, [; = ©(1/t) and L, = O(t).

B.3 Proof of Lemma 5.7

First, we introduce two technical lemmas.

Lemma B.1. Let us fix @ > 0. There exist a convex continuous function v, (x) on R4 such that for
all x > 0 we have

Yo(z + @) = log(z) + Ya(). (37)

Proof. We will construct function 4, in the following way - Let us set v, (z) =0 for z € [1,1+ «). For
x > 1+ « let us set recursively v, (x + ) = log(x) + 7o (x) and for z < 1 let us set v, (z) = — log(x).
Clearly, equality (37) holds.

We will firstly prove that ~, is continuous on R and differentiable on R;\{1}. Let us start with
intervals [1 + ka, 1 + (k + 1)) for all k.

Clearly, 4 it is continuous and differentiable on [1,1 + «). Suppose now inductively that ~, is
continuous and differentiable on [1+ ka, 1+ (k+ 1)) for some k > 0. Then, forxz € [1+ (k+1)a, 1+
(k+2)a) we have

(@) = log(x — a) + 7a(x - a).

Since both log(x — a) and ~,(z — «) are continuous and differentaible functions on [1 + (k+ 1)a, 1 4+
(k 4+ 2)a), Ya(z) is also continuous and differentaible on [1 + (kK + 1), 1 + (k + 2)«).

Clearly, 74 it is continuous and differentiable on (0, 1).

It remains to show continuity and differentiability in the points {1 + ka} for £ > 1 and continuity
in {1}. It is a simple exercise to see the continuity and differentiability in {1 + a}. For 1 + ka where
k > 2 we can show it inductively — as v, (x — «) and log(xz — «) are continuous and differentiable on
(1+(k—2)a, 1+ (k+3)a), then vo(z) is continuous and differentiable on (1+ (k— 3)a, 1+ (k+ 3)a)
as well and thus it is continuous and differentiable in point {1 + ka}. On top of that, 7, is clearly
continuous in {1}.

We have just proven that 7, is continuous on R, and differentiable on R \{1}.

Now we can proceed with the proof of convexity. We will show that the (sub)derivative of 7, is
nonegative for all z > 0. Clearly, v,(z) > 0 for € (0,1) and subdifferential in {1} is nonegative as
well. Let us write x = 1+ {z}4 + ka, where 0 < {z}, < a and k > —1. Then we have
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’Ya(x + E) - ’ya($)

/ o .
Va(w) - ll_{% €

— lim Zi':ol (log(14+{z}a +ia+e€) —log (1 + {z}a +ia))

o e—0 €

_'_704(1 + {x}a + 5) - 'Ya(l + {$}a)
€
O] lim Zf:_ol (log(14+{z}a +ia+e€) —log (1 + {z}q +ia))
e—0 €
(%)
> 0.

Equality (%) holds since for small enough € we have 1 + {z}, + € < 2« and inequality (**) holds
due to the fact that logarithm is an increasing function.

O
Denote det
€
La(z) = exp(ya(z)) (38)
for v, given from Lemma B.1. Thus, I', is log-convex function satisfying
Fo(z + ) = 2T (2). (39)

Note that when o« = 1, function 7 can be chosen as log Gamma function and thus I'; can be chosen
to be standard Gamma function.

The following lemma is crucial for our analysis, allowing us to bound the ratio of functions I',(+)
with nearby arguments.

Lemma B.2. Consider a function I', defined above. Then, we have for all 0 < s < o and z > 0:

Lo(z + )

Ta(ars) <F 0

S
zli7e <

Proof. Using convexity of 7, we have

Lo(z +5) < To(2) " aTo(z + a)a (39) 2o o (z + ).

Rearranging the above we obtain

Loz + )
Fa(l’ + S) '
On the other hand, using convexity of v, again we obtain

S
zl7o <

To(z+a) <To(z+8)ola(z+s+a)~a 2 (z + s)' "alo(x + s).
By rearranging the above, we get

s

(x4 a)™a.

IN
)
+
N
T
Qlw
IA
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We can now proceed with the proof of Lemma 5.7 itself.

Proof. Note that

Io(L+ta)
(39) La(L)
T Ta(L+(+Da—p)
Fo(L—p+a)
Fo(L— p+ a) [o(L 4+ ta)

Fo(L) To(L—p+(t+Da)

(41)

Let us firstly consider the case when o > . Choosing © = L — p+ ta and s = p in (40) we get

To(L — p+ (t+1)a)
Fo(L + ta)

The inequality above allows us to get the following bound on ¢;

(L —p+ta) s < <(L—p+(t+1)a) o,

Lo(L —p+a) Fo(L —p+a)
TOTWL) - Tu(L)

Clearly, {c;} is decreasing and thus using the bound above we obtain

E_1

(L—p+ta)a ™t >c¢ > (L—p+ (t+ 1Da)a L.

T
A
E

-1

(42) Lo(L—p+ n_
S
t=0 t=0 @
To(L — p+ ) o=
= e T HTYNNL (4 Da)a
La(L) t=0
) Tol(L—p+a) /k by
> L—p+({t+1)a)e""dt
B FJL—u+a2/Wa u gl
= 5o (L= p+att)a!~dt
_ Fa(L_M+OZ)1|:(L—M+CY+t)Z:|kO‘
N I'o(L) a z t=0
_ Tal—p+a)(L—p+(k+1)a)s — (L—p+a)s
Fa(L) M
(49) w(L—p+(k+Da)s —(L—p+a)e
> (L—,u)l ( H ( ) ) ( K )

(42)

Inequality (*) holds since (L — u + (t + 1)a)*/*~1 is decreasing in t. On the other hand, we have
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—_

k—1 k—
(42 Fo(L—p+ a) E_q
< o PPN — it ta)s
; P ) (L= ptta)e
k—1
Fo(L—p+ ) 1 B
= L — t a
To(L) ;L+ta( potia)
k—1

(%) Fa(L —,u—i—a) L_g
< o THRETYNYL 4tk
Lo 2 )

) To(L —p+a) /k u_y
< e PP (L= p+ta)a2dt
To(l) o )

Fa(L_/j’+a) /ka Iy
= TR (L ptt)a 2 at
Fa(L) 0 ( /Jl+ ) (0%

Fo(L—p+a)l
T.(L) «

7
«

ka
(L—;Ht)i—l]
0
To(L—p+a) (L—p)a" = (L—p+ka)a
Fa(L) a— U
(40) L— a1 (1~ L
€ (L-p+ap-slt=s a[ﬂ“+k® |

Inequality (*) holds due to the fact that (L + ta)™! < (L — p+ ta)™! and inequality (x*) holds
since (L — pu + ta)*/*=2 is decreasing in t. Thus we have

E

-1 BE_q B _q
1 L—p)e ™ —(L— ka)e
—Ct§—+(L—u+a)1*§( Q) (L—ptka)e

¢ L a— U

t

Il
o

and we have just proven the first part of the lemma.
Let us now look at the case when o < p. It will be useful to denote ||, as the largest integer
such that p — |« is positive. Denote also

{nta & 1~ i

Using (39) we obtain

Fo(L + ta) Fo(L+ta)(L+ta+a—p)(L+ta+2a—p)...(L+ta+ ([p]a — Do —p)
Fo(L—p+(t+1)) Fo(L +ta+ |p]ac — 1)
Fo(L+ta)(L+ta+a—p)(L+ta+2a—p)...(L—{pta+ (t—1a)

To(L = {p}a + ta) '

Upper and lower bounding the equality above we get

Fo(L+ta) S Fo(L +ta)

- o) lla—
Fo(L—p+({E+1)a) — Fa(L—{u}a+m)(L o (t+ Da)rie, (43)
To(L + ta) To(L + ta) - e
Tal—pt(+a) = I‘a(L—{M}a+m)(L {1}a + (t = Doyt (44)
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Using (40) we have

{rta Fa(L +ta>
(L+(t—1a) « < To(L — {fi}a + ta)

Now we are ready to get upper and lower bound on ¢;:

< (L +ta) o™, (45)

(41) To(L —p+ ) Lo(L + ta)
To(L) Toll—p+(t+1Da)

(“43) To(L—p+a) To(l+ta)

B La(L) Lo(L —A{p}a + ta)

(45) To(L—p+a)

- La(L)

1) Io(L—p+a) Fo(L + ta)

o (L) Fo(L —p+(t+1)a)

(44 To(L—p+a) Toll+ta)

B La(L) Lo(L —{p}a + ta)

e RO S (47)

Ct

(L — pu+ (t+ 1))t

(L+ (t—1Da) (L — p+ (t+ Da)lla=1, (46)

(L = {p}a + (t = Dyl

Recall that we have m, = max(a, ;t — ). Then, we can get the following bound on C}, :

k—1
Ck—CO = Ct
t=1
(46) K1 )
= Tlal)
(30) ATo(L —p+a) . )
> o T(I/)(L—mu‘FtQ) « (L_mu—i—ta)uﬂa 1
k-1
= Lo(L —p+a) :
N rony (Emette)
t=1
fall — o) kZi(L +ta)at
= —m Ry
Foz(L) P 12
(%) Fa(L—,u—i—oz) /kl -
S N L —my, +ta)atdt
FO‘(L) 0 ( H )
FJL—u+a{/w%m o
RN L- sl
oD J,  (Emmwtegd
| Talb-iba) (Lo my ot e
FQ(L) (6% g =0
_ Tall—pta)@—mut(k=Da)e —(L-my)e (48)
L. (L) p
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Inequality (*) holds since (L — m,, + ta)*/*L is increasing function. Note that in the case when

a = u, all bounds above hold with equality and we have
Cp=k.
To finish the proof of the second and third part of the Lemma, it remains to upper bound Zf:_ol ctLt_l.

Firstly, note that

Ct (4<7) FQ(L—/L—FO&)

{m}

LS Urqn 1) L e+ (- D) (L )
< Fa(LF;(Z;L %) (L +to)a (L + ta)
- i a(g; (L + ta) 2. (49)

Inequality (%) holds due to the fact that L — {u}o + (t — 1)ae < L+ tar. We can continue bounding
as follows

k—1 k-1
¢ (49 To(L — p+ ) 2
A = (L+ta)=
; Lt = Fa(L)
_ Tall-pta)y 1(L+m>“
- Lo(L) &
(%) FQ(L—M+Q) /k B _9
< ta\Z T8 (L + ta)a dt
T (L) 0
La(L —pta) [* £l
_ lallmptra) L+t a*2dt
I'o(L) /0 (L+9) o
(o) w if o = p, (50)
= Mo B
e el <

Inequality (*) holds due to the fact that for u > 2 we have

k—1

k
D (L +ta)a / (L + ta)o—2dt
1

~
—

and for 1 < 2 we have
k—1
SO(L +ta)h 2 < / (L + ta) 524t
0
Equality (x) holds since

log(L + kp) — log(L)
W

ku _11
/0 (407t = flog(L + )] =
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and N
1.1 (L+t)2—1]  (Ltka)a™t—La!
(6] « -
o t=0

ko 23 2 1
L a = —
A (L+1) dt i

for a < p.
To finish the proof, let us now consider the special case when o = § (in other words L; = L +t§).
Note that we have
Fo(L—p+a) Tol—a) 1 1
Lo(L) - To(L) L-a L-%Y

Thus, according to (48) and (50) we have

(48) L— —1))2 (L —my,)? L+ (k—2))2 — (L - &)2
o W L Emk oD om)? (o208 (L 8)
L-& [ (L—=5)u
(L+ (b= 2)8)2 — (L— )+ (L— )y
= - (51)
(L—5)u
k—1 1 1
P G| 1 (L+ES'-L 1 k
= L L L-%§ g L L-%
Combining (51), (52) with Theorem 5.4 we obtain
T+

k
> CAB[f(x) - f(2)] < L —wDn@nzo) _ :
~ Gk t = (L+(k72)%)2*(1f%)ZHL*%)# (L+(k=2)5)?—(L—5)*+(L—5)n
= (L—=5)u H
(L — p)(L = §)puDp (4, 20) + (1 — 47 + k)
(L+ (k=252 - (L-5)2+(L—5u

which concludes the proof.
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C Notation Glossary

Standard
R set of real numbers
R7 set of positive vectors in R™
E Expectation
P Probability
log natural logarithm
(+y ) Euclidean inner product
Il 1l standard Euclidean norm
Dy(z,y) | Bregman distance between x, y (4)
r, generalization of the Gamma function (38)
Global
f objective to be minimized over set ) C R"” (1)
T minimizer of f over Q (1)
Vf(z) | gradient of f at x
h reference function, f is rel-smooth with respect to h (5)
L smoothness parameter (f is L-smooth relative to h) (5)
1 strong convexity parameter (f is u-strongly convex relative to h) | (8)
T(141,4) | next iterate from Algorithm 1
z(® i-th coordinate of z € R"
1 n dimensional vector of ones
1 i—th column of n x n identity matrix
relRCD (Section 3)
T minibatch size
a(h) symmetry measure (11)
S a random subset of {1,2,...,n}
Do scalar such that P(i € 5’) =poforalli=1,2,...,n
v parameter vector for ESO (15)
w parameter vector for strong convexity (14)
A min; w® /() (14)
relSGD (Section 5)
L; stepsize controlling parameter
ct technical tool for analysis
o? global bound on L,E [(V f(x¢) — G, Xe41 — Teg1) | x4 (26)
o increase rate of L; in Lemma 5.7

Table 1: Summary of frequently used notation.
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