
Vol.:(0123456789)

Computational Optimization and Applications
https://doi.org/10.1007/s10589-021-00285-4

1 3

An effective logarithmic formulation for piecewise
linearization requiring no inequality constraint

F. J. Hwang1 · Yao‑Huei Huang2 

Received: 22 August 2020 / Accepted: 19 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
One of the commonly used techniques for tackling the nonconvex optimization
problems in which all the nonlinear terms are univariate is the piecewise linear
approximation by which the nonlinear terms are reformulated. The performance of
the linearization technique primarily depends on the quantities of variables and con-
straints required in the formulation of a piecewise linear function. The state-of-the-
art linearization method introduces 2⌈log2 m⌉ inequality constraints, where m is the
number of line segments in the constructed piecewise linear function. This study
proposes an effective alternative logarithmic scheme by which no inequality con-
straint is incurred. The price that more continuous variables are needed in the pro-
posed scheme than in the state-of-the-art method is less than offset by the simultane-
ous inclusion of a system of equality constraints satisfying the canonical form and
the absence of any inequality constraint. Our numerical experiments demonstrate
that the developed scheme has the computational superiority, the degree of which
increases with m.

Keywords  Nonlinear programming · Nonconvex optimization · Piecewise
linearization · Logarithmic method · Inequality constraint

 *	 Yao‑Huei Huang
	 yaohuei.huang@gmail.com

	 F. J. Hwang
	 feng-jang.hwang@uts.edu.au

1	 School of Mathematical and Physical Sciences, Transport Research Centre, University
of Technology Sydney, Ultimo 2007, Australia

2	 Department of Information Management, Fu Jen Catholic University, New Taipei City 24205,
Taiwan

http://orcid.org/0000-0003-0562-5117
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00285-4&domain=pdf

	 F. J. Hwang, Y.-H. Huang

1 3

1  Introduction

The piecewise linear approximation has been widely applied in various noncon-
vex optimization problems such as the supply chain management problems [40],
network flow problems [1, 2, 7–9, 11], network loading problems [6, 13, 15, 33],
facility location problems [10, 17, 18], packing and assortment problems [20, 24,
25, 41, 42], electronic circuit design problems [14], and engineering optimization
problems [30, 31]. The nonconvex optimization problems considered herein are
the nonlinear programming (NLP) problems in which all the nonlinear terms are
univariate. Numerous piecewise linearization techniques for the nonconvex NLP
problems have been proposed to yield an approximate global optimal solution [3,
12, 16, 23, 28, 29, 32, 34, 38, 44]. One popular category of the methodologies
is to utilize the convex combination reformulation by introducing extra continu-
ous variables, binary variables, and linear constraints. The key to the develop-
ment of piecewise linearization using the convex combination formulation is
the design of variables composing special ordered sets of type 2 (SOS2), where
(1) at most two variables can be nonzero, and (2) if two variables are nonzero,
they must be adjacent in the ordering [4]. Different convex combination formula-
tions having distinct SOS2 designs would bring about different quantities of extra
variables as well as constraints in the derived mixed integer linear programming
(MILP) model, and thus retain dissimilar computational capabilities. Comparing
the competing formulation approaches to univariate piecewise linearization, this
study aims at an effective alternative convex combination formulation attaining
enhanced computational efficiency in the solving of the formulated MILP model.

Regarding the convex combination formulation of piecewise linear functions,
the conventional approach [12] in the seminal mathematical programming text-
books [3, 16] constructs the SOS2 variables by introducing extra m binary vari-
ables and m inequality constraints, where m is the number of line segments in
the constructed piecewise linear function. Although the conventional formulation
is straightforward and effective, considerable numbers of extra inequality con-
straints and binary variables could impose a heavy computational burden on the
formulated MILP solving. To improve the computational performance, several
reformulation methods such as the multiple-choice formulation [21] and disag-
gregated formulation [36] had been presented. Readers are referred to Sridhar
et al. [37] and Rebennack [38] for reviews on the popular models, including the
incremental formulation [34, 35], which does not belong to the convex combina-
tion category, and this paper concerns the logarithmic-type convex combination
formulation, which is one of the most recent research focuses. Li et al. [28] devel-
oped a logarithmic procedure which reduces the required numbers of binary vari-
ables and constraints to the numbers logarithmic in m. Then Vielma et al. [43]
showed that the piecewise linearization modeling of Li et al. [28] could yield a
poor MILP formulation, which is even computationally inferior to that using the
conventional method. Vielma and Nemhauser [44] later proposed an advanced
logarithmic procedure which introduces far fewer variables and constraints than
the conventional formulation or the method of Li et al. [28]. The state-of-the-art

1 3

An effective logarithmic formulation for piecewise…

logarithmic method of Vielma and Nemhauser [44] (hereafter referred to as the
logarithmic method for brevity), though outperformed by the incremental for-
mulation in some instances [38], was shown to have generally the computational
advantage over other existing models. Hence, it would be well worth investigating
the possibility that the required number of extra variables or constraints can be
further reduced.

This study, which is derived from our unpublished research work [19], attempts
to develop an alternative reformulation technique that involves fewer extra inequality
constraints than and is computationally superior to the reference methods, includ-
ing the conventional formulation, incremental formulation, and logarithmic method.
The advantages of the proposed technique are listed as follows.

1.	 The proposed formulation, in contrast to existing models, incurs no inequality
constraint in piecewise linearization, and the binary variables required are as few
as those in the logarithmic method.

2.	 Although more continuous variables are introduced in the proposed scheme than
in the logarithmic method, the price is less than offset by the simultaneous inclu-
sion of a system of equality constraints satisfying the canonical form, where each
equality constraint has an isolated variable, and the absence of any inequality
constraint.

3.	 Demonstrated by the numerical experiments, the developed scheme has the com-
putational superiority, the degree of which increases with m.

The remainder of the paper is organized as follows. In Sect. 2, the three foregoing
reference piecewise linearization models are described. The proposed linearization
technique is introduced in Sect. 3. Numerical experiments are presented in Sect. 4,
and Sect. 5 provides the concluding remarks.

2 � Reference models

This section introduces three reference models, including the conventional for-
mulation, incremental formulation, and logarithmic method for approximating
a univariate nonconvex function using a piecewise linear function. Being consid-
ered as a reference model, the conventional formulation is used as a baseline for
the theoretical and computational comparison. Furthermore, the incremental for-
mulation is included to demonstrate the difference between the linearization in the
convex combination category and that of incremental type. Consider a nonconvex
function f(x) of a single variable x ∈

[
x, x

]
⊂ ℝ . Assume that the domain

[
x, x

]
 is

divided into m intervals by setting m + 1 argument values, i.e. breaking points,
�l, ∀l ∈ {0, 1,… ,m} such that 𝛼0 = x < 𝛼1 < ⋯ < 𝛼m = x . Denote by L(f(x)) a
piecewise linear function obtained from linearizing f(x).

(a)	 Conventional formulation [3, 12, 16]

	 F. J. Hwang, Y.-H. Huang

1 3

The variable x and function L(f(x)) are expressed respectively as

where continuous variables ul ≥ 0, ∀l ∈ {0, 1,… ,m} satisfy

and auxiliary binary variables as well as linear constraints to make variables
ul, ∀l ∈ {0, 1,… ,m} constitute SOS2 are required.

Denote M = {1, 2,… ,m} . By introducing a set of m binary variables
wl ∈ {0, 1}, ∀l ∈ M , the conventional formulation to govern the SOS2 construction
for variables ul, ∀l ∈ M ∪ {0} is shown as follows:

(b)	 Incremental formulation [34, 35]

Employing m continuous variables ul satisfying 0 ≤ ul ≤ �l − �l−1, ∀l ∈ M and
m − 1 binary variables wl ∈ {0, 1}, ∀l ∈ M⧵{m} , the incremental formulation con-
structs the piecewise linearization as follows:

(c)	 Logarithmic method [44]

Define an injective function �∶M → {0, 1}⌈log2 m⌉ , where the vectors �(l) and
�(l + 1) differ in exactly one element for all l ∈ M⧵{m} . Denote also
G = {1, 2,… , ⌈log2 m⌉} . Let �(l) = (�l

1
, �l

2
,… , �l

⌈log2 m⌉
) , where

(1)x =

m∑

l=0

�lul,

(2)L(f (x)) =

m∑

l=0

f (�l)ul,

(3)
m∑

l=0

ul = 1,

ul−1 + ul ≥ wl, ∀l ∈ M,

m∑

l=1

wl = 1.

x = �0 +

m∑

l=1

ul,

L(f (x)) = f (�0) +

m∑

l=1

f (�l) − f (�l−1)

�l − �l−1
ul,

ul ≥ (�l − �l−1)wl, ∀l ∈ M⧵{m},

ul+1 ≤ (�l+1 − �l)wl, ∀l ∈ M⧵{m}.

1 3

An effective logarithmic formulation for piecewise…

�l
k
∈ {0, 1}, ∀k ∈ G, ∀l ∈ M ∪ {0} and �(0) = �(1) . Then the two sets S+(k) and

S−(k) are defined as follows:

1.	 S+(k) =
{
l∶ l ∈ M⧵{m} and �l

k
= �l+1

k
= 1

}
∪
{
l∶ l ∈ {0,m} and �l

k
= 1

}
;

2.	 S−(k) =
{
l∶ l ∈ M⧵{m} and �l

k
= �l+1

k
= 0

}
∪
{
l∶ l ∈ {0,m} and �l

k
= 0

}
.

Utilizing a set of ⌈log2 m⌉ binary variables �k ∈ {0, 1}, ∀k ∈ G , the logarithmic
method formulates SOS2 for variables ul, ∀l ∈ M ∪ {0} in Eqs. (1)–(3) by virtue of
the following linear inequalities:

Then Eqs. (1)–(5) together form the piecewise linearization with the logarithmic
method.

We note that the conventional formulation and incremental model use extra m
binary variables coupled with m inequality constraints and extra m − 1 binary vari-
ables coupled with 2(m − 1) inequality constraints, respectively, while the logarith-
mic method utilizes extra ⌈log2m⌉ binary variables coupled with 2⌈log2m⌉ inequality
constraints only. More detailed comparisons will be provided in the next section.

3 � Proposed linearization method

In this section, we present an alternative reformulation technique requiring no extra
inequality constraint for achieving the SOS2 construction in the piecewise lineariza-
tion. Our method is inspired by the following design proposed by Li et al. [27] for
yielding the SOS1 construction.

Remark 1  (Analog of Theorem 1 in Li et al. [27]) Assume that binary numbers
blk ∈ {0, 1} , ∀l ∈ M , ∀k ∈ G satisfy

An m-dimensional nonnegative vector � = (u1, u2,… , um) satisfying

is a binary vector if there exists a ⌈log2 m⌉-dimensional binary vector
� = (�1, �2,… , �⌈log2 m⌉) ∈ {0, 1}⌈log2 m⌉ satisfying

(4)
∑

l∈S+(k)

ul ≤ �k, ∀k ∈ G,

(5)
∑

l∈S−(k)

ul ≤ 1 − �k, ∀k ∈ G.

(6)
⌈log2 m⌉�

k=1

2k−1blk = l − 1, ∀l ∈ M.

m∑

l=1

ul = 1

	 F. J. Hwang, Y.-H. Huang

1 3

The proof follows Theorem 1 in Li et al. [27].

Example 1  Given m = 5 (and thus ⌈log2 m⌉ = 3 ), we have (b1,1, b1,2, b1,3) = (0, 0, 0) ,
(b2,1, b2,2, b2,3) = (1, 0, 0) , (b3,1, b3,2, b3,3) = (0, 1, 0) , (b4,1, b4,2, b4,3) = (1, 1, 0) , and
(b5,1, b5,2, b5,3) = (0, 0, 1) as per Eq. (6). According to Remark 1, we consider a non-
negative vector � = (u1, u2, u3, u4, u5) satisfying

and a binary vector � = (�1, �2, �3) ∈ {0, 1}3 satisfying

It is thus obvious that all the five feasible states for � , viz. (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, 0), and (0, 0, 1), yield the five states (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(0, 0, 0, 1, 0), and (0, 0, 0, 0, 1), respectively, for �.

Then the following proposition can be derived from Remark 1.

Proposition 1  Assume that binary numbers blk ∈ {0, 1} , ∀l ∈ M , ∀k ∈ G satisfy Eq. (6).
Consider two m-dimensional nonnegative vectors �(h) = (u

(h)

1
, u

(h)

2
,… , u(h)

m
) , h = 1, 2 ,

and a ⌈log2 m⌉-dimensional binary vector � = (�1, �2,… , �⌈log2 m⌉) ∈ {0, 1}⌈log2 m⌉ . If the
following system of linear equations:

is satisfied, then

1.	 there exists exactly one index l� ∈ M such that
∑2

h=1
u
(h)

l�
= 1 , i.e. the vector

�
(1) + �

(2) is a binary unit vector;
2.	 each of the m states of vector �(1) + �

(2) corresponds to a unique state of vector �.

m∑

l=1

ulblk = �k, ∀k ∈ G.

u1 + u2 + u3 + u4 + u5 = 1,

u2 + u4 = �1,

u3 + u4 = �2, and

u5 = �3.

(7)
m∑

l=1

2∑

h=1

u
(h)

l
= 1,

(8)
m∑

l=1

(

blk

2∑

h=1

u
(h)

l

)

= �k, ∀k ∈ G,

1 3

An effective logarithmic formulation for piecewise…

Proof  Denote by � =
�
blk

�

m×⌈log2 m⌉
 the constant binary matrix constructed with blk ,

and by �l = (bl,1, bl,2,… , bl,⌈log2 m⌉), ∀l ∈ M , the lth row of matrix � . Then Eq. (8)
indicates

1.	 Given an arbitrary vector for � , say � = �
� , satisfying Eq. (8), we have the follow-

ing two possible cases:

1.	 �
� = (0,… , 0)

	  Since �1 = (0,… , 0) and �l ≠ (0,… , 0), ∀l ∈ M⧵{1} , Eq. (7) implies
∑2

h=1
u
(h)

1
= 1.

2.	 �
� ≠ (0,… , 0)

	  Assume that in this case the set of the subscript indexes of the nonzero com-
ponents in the binary vector �′ is H ⊆ G , where |H| ≥ 1 , i.e. ��

k
= 1,∀k ∈ H ,

and ��
k
= 0,∀k ∈ G⧵H . Thus we have

for �′ as per Eq. (8). Suppose that vector �(1) + �
(2) has more than

one nonzero component and the set of the sequential indexes of
the nonzero components in �

(1) + �
(2) is J ⊆ M , where |J| > 1 , i.e.

∑2

h=1
u
(h)

l
> 0, ∀l ∈ J . Then Eq. (7) implies

∑
l∈J

∑2

h=1
u
(h)

l
= 1 , and we have

∑2

h=1
u
(h)

l
= 0, ∀l ∈ M⧵J . To keep Eqs. (10) and (11) satisfied, we must

have respectively blk = 1, ∀l ∈ J, ∀k ∈ H and blk = 0, ∀l ∈ J, ∀k ∈ G⧵H ,
which together imply the |J| identical rows in matrix � , viz. �l, ∀l ∈ J , and
contradict the definition of matrix �.

	  Thus, the inference that �(1) + �
(2) must have no more than one nonzero

component, together with Eq. (7), implies that �(1) + �
(2) must have exactly

one nonzero component, the value of which is one. Since
∑2

h=1
u
(h)

1
= 1 does

not satisfy �� ≠ (0,… , 0) , we can conclude that there exists exactly one index
l� ∈ M⧵{1} such that

∑2

h=1
u
(h)

l�
= 1.

2.	 Since �(1) + �
(2) is a binary unit vector, Eq. (9) shows that the vector �(1) + �

(2)
whose lth component equals 1 corresponds to the vector � = �l , where l ∈ M.

	� ◻

(9)(�(1) + �
(2))� = �.

(10)
m∑

l=1

(

blk

2∑

h=1

u
(h)

l

)

= 1, ∀k ∈ H,

(11)
m∑

l=1

(

blk

2∑

h=1

u
(h)

l

)

= 0, ∀k ∈ G⧵H,

	 F. J. Hwang, Y.-H. Huang

1 3

Example 2  Considering m = 5 , we have two nonnegative vectors
�
(h) = (u

(h)

1
, u

(h)

2
, u

(h)

3
, u

(h)

4
, u

(h)

5
) , h = 1, 2 , a binary vector � = (�1, �2, �3) ∈ {0, 1}3 ,

and the following linear equations:

in Proposition 1. Then it can be observed that the five states of � satisfying the above
four equations are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), and (0, 0, 1) which yield the
five states (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and (0, 0, 0, 0, 1),
respectively, for vector �(1) + �

(2).

Proposition 1 leads to the following theorem.

Theorem 1  Given two m-dimensional nonnegative vectors �(h) = (u
(h)

1
, u

(h)

2
,… , u(h)

m
) ,

h = 1, 2 , and a ⌈log2 m⌉-dimensional binary vector � = (�1, �2,… , �⌈log2 m⌉) ∈ {0, 1}⌈log2 m⌉
satisfying Eqs. (7) and (8), the variable x and function L(f(x)) can be formulated as follows:

Proof  Since Proposition 1 indicates that the vector �(1) + �
(2) is a binary unit vector

and each of the its m states can be yielded with a unique state of vector � , the valid
SOS2 construction for formulating a piecewise linear function is achieved. 	� ◻

The numbers of variables and constraints required by the four linearization
schemes, viz. the conventional formulation, the incremental formulation, the loga-
rithmic method, and the proposed method, are listed in Table 1.

The comparisons are summarized as follows:

1.	 Among the compared models, the proposed method, as well as the logarith-
mic formulation, introduces the fewest binary variables, the quantity of which is
⌈log2 m⌉.

2∑

h=1

u
(h)

1
+

2∑

h=1

u
(h)

2
+

2∑

h=1

u
(h)

3
+

2∑

h=1

u
(h)

4
+

2∑

h=1

u
(h)

5
= 1

2∑

h=1

u
(h)

2
+

2∑

h=1

u
(h)

4
= �1

2∑

h=1

u
(h)

3
+

2∑

h=1

u
(h)

4
= �2

2∑

h=1

u
(h)

5
= �3

x =

m∑

l=1

(
�l−1u

(1)

l
+ �lu

(2)

l

)
,

L(f (x)) =

m∑

l=1

(
f (�l−1)u

(1)

l
+ f (�l)u

(2)

l

)
.

1 3

An effective logarithmic formulation for piecewise…

2.	 No inequality constraint is necessary in the proposed method, while 2⌈log2 m⌉ or
more inequality constraints are required by the logarithmic method or the other
two formulations.

3.	 Although the proposed method incurs m − 1 continuous variables more than the
logarithmic method, it simultaneously introduces a system of ⌈log2 m⌉ equalities
satisfying the canonical form. Since each equation in the canonical form reduces
the number of dimensions of the linear programming (LP) solution space by
one, the LP relaxation solution space constructed by the proposed method has
m − ⌈log2 m⌉ − 1 dimensions higher than that using the logarithmic method.

It is argued that the difficulty of the MILP solving would be mainly deter-
mined by the quantities of binary variables as well as inequality constraints and
the number of continuous variables plays a relatively minor role in general [5,
26, 39]. Kettani and Oral [22] indicate that the inequality constraints may dete-
riorate the solving of integer programs due to being inactive. Our preliminary
studies also imply that it is relatively computationally efficient for the general
MILP solvers, e.g. CPLEX and Gurobi, to cope with a model with relatively few
inequality constraints even if the number of continuous variables is increased.
It is thus reasonable to expect that the proposed method has a higher computa-
tional efficiency than the reference models. This claim will be validated with the
computational experiments in Sect. 4.

4 � Numerical experiments

The numerical experiments comprising three sets of test instances were con-
ducted to compare the performances of each reference model and the proposed
method. The MILP models formulated by the four compared linearization
schemes were solved using the Gurobi MILP solver, and all the experiments
were run on a PC equipped with the Intel Core i5-4210 CPU, 8 GB RAM, and
Windows 10 64-bit operating system. The CPU time limit for each experiment
was set to be 7200 s while all the other default settings in Gurobi were kept.

Table 1   Quantities of variables and constraints required by the four linearization schemes

Items of different types Conventional
formulation

Incremental
formulation

Logarithmic method Proposed method

Variables
Continuous m + 1 m m + 1 2m
Binary m m − 1 ⌈log2 m⌉ ⌈log2 m⌉

Constraints
Equality 4 2 3 ⌈log2 m⌉ + 3

Inequality m 2(m − 1) 2⌈log2 m⌉ 0

	 F. J. Hwang, Y.-H. Huang

1 3

4.1 � Experiment instances

The considered experiment instances were set by referring to the NLP models in
the literature.

(a)	 Instance 1

The following NLP problem from Li et al. [28] was employed as Instance 1:

where 1 ≤ x ≤ 7.4 and 1 ≤ y ≤ 7.4 . Recall that m is the number of intervals
obtained from dividing the domain of the function to be linearized. The setting that
the domain is evenly split was considered. Since both variables x and y share the
bounds, the breaking points for either of them were given as

For each of the distinct nonlinear terms in the objective function (12) and con-
straints (13)–(14), i.e. x0.4 , y2 , and x0.8 , an individual linearized function was con-
structed for formulating an MILP model.

(b)	 Instance 2

The NLP model [28] shown below was used as Instance 2:

where 1 ≤ xi ≤ 7.4, ∀i ∈ {1, 2,… , 5} . The break points for each variable
xi, ∀i ∈ {1, 2,… , 5} were again given as Eq. (15). Note that 12 linearized functions
were constructed in the MILP formulation since there are 12 distinct nonlinear terms
in the objective function and constraints.

(12)Min x0.4 − y2

(13)s.t. x0.8 − 6x + y2 ≤ −7,

(14)x + y ≤ 8,

(15)�l = 1 + 6.4
l

m
, ∀l ∈ M ∪ {0}.

Min x3
1
− 1.8x2.8

1
+ 0.8x2.2

2
− x2.1

2
+ x0.5

3
− 3.5x0.8

4
− 0.3x1.1

5

s.t. x1.2
1

+ x0.8
2

≤ 8,

x1.2
1

− x1.7
3

≤ 2,

x2.1
2

− x1.7
4

≥ 4.5,

x0.8
4

− x0.96
5

≥ −3,

x2.2
2

− x1.1
5

≥ −0.1,

1 3

An effective logarithmic formulation for piecewise…

(c)	 Instance set 3

Instance set 3 was derived from a two-dimensional rectangular packing prob-
lem [42]. The considered NLP model comprises a nonconvex objective function and a
system of linear constraints as shown below:

where x
i
, y

i
≥ 0, s

i
∈ {0, 1}, ∀i ∈ {1, 2,… , n} , and 𝜆

ij
,𝜇

ij
∈ {0, 1}, ∀i, j ∈ {1, 2,… , n}, i < j .

Note that n, x , x̄ , y , ȳ , and pi, qi, ∀i ∈ {1, 2,… , n} are all the given parameters,
whose values are listed in Table 2 for five instances.

To develop the piecewise linearization for the two nonlinear terms ln(x) and ln(y) in
the objective function (16), we generated two sets of breaking points respectively for
variables x and y, the domains of which are respectively given by constraints (23) and
(24), as follows:

The MILP model formulated by our proposed method is shown as follows:

(16)Min ln(x) + ln(y)

(17)
s.t. xi + pisi + qi(1 − si) ≤ xj + x̄(1 − 𝜆ij + 𝜇ij), ∀i, j ∈ {1, 2,… , n}, i < j,

(18)xj + pjsj + qj(1 − sj) ≤ xi + x̄(𝜆ij + 𝜇ij), ∀i, j ∈ {1, 2,… , n}, i < j,

(19)yi + qisi + pi(1 − si) ≤ yj + ȳ(2 − 𝜆ij − 𝜇ij), ∀i, j ∈ {1, 2,… , n}, i < j,

(20)yj + qjsj + pj(1 − sj) ≤ yi + ȳ(1 + 𝜆ij − 𝜇ij), ∀i, j ∈ {1, 2,… , n}, i < j,

(21)xi + pisi + qi(1 − si) ≤ x, ∀i ∈ {1, 2,… , n},

(22)yi + qisi + pi(1 − si) ≤ y, ∀i ∈ {1, 2,… , n},

(23)x ≤ x ≤ x̄,

(24)y ≤ y ≤ ȳ,

(25)𝛼l = x + (x̄ − x)
l

m
, ∀l ∈ M ∪ {0},

(26)𝛽l = y + (ȳ − y)
l

m
, ∀l ∈ M ∪ {0}.

	 F. J. Hwang, Y.-H. Huang

1 3

Ta
bl

e 
2  

G
iv

en
 p

ar
am

et
er

s f
or

 th
e

fiv
e

in
st

an
ce

s i
n

In
st

an
ce

 se
t 3

In
st

an
ce

n
(x
,
x̄
)

(y
,
ȳ
)

(p
i
,
q
i
)

3A
6

(5
0,

 1
00

)
(3

5,
 1

00
)

(5
0,

 3
5)

, (
22

, 1
3)

, (
31

, 1
7)

, (
15

, 1
0)

, (
11

, 9
),

(2
0,

 6
)

3B
7

(4
5,

 1
00

)
(1

9,
 1

00
)

(4
5,

 1
9)

, (
20

, 1
6)

, (
30

, 1
7)

, (
25

, 1
0)

, (
21

, 5
),

(2
0,

 8
),

(1
3,

 1
3)

3C
8

(4
0,

 1
00

)
(1

2,
 1

00
)

(4
0,

 1
2)

, (
20

, 1
0)

, (
20

, 5
),

(1
0,

 6
),

(1
5,

 7
),

(1
0,

 9
),

(9
, 8

),
(3

7,
 5

)
3D

9
(5

0,
 1

00
)

(1
0,

 1
00

)
(1

0,
 3

),
(1

5,
 7

),
(1

5,
 1

0)
, (

20
, 8

),
(2

0,
 6

),
(5

0,
 7

),
(5

0,
 1

1)
, (

20
, 1

0)
, (

30
, 5

)
3E

10
(6

0,
 1

00
)

(2
0,

 1
00

)
(5

, 3
),

(1
0,

 7
),

(1
0,

 8
),

(1
5,

 1
0)

, (
20

, 1
5)

, (
25

, 1
0)

, (
60

, 1
0)

, (
50

, 2
0)

, (
30

, 5
),

(3
0,

 1
0)

1 3

An effective logarithmic formulation for piecewise…

where (25), (26), u(h)
l
, û

(h)

l
≥ 0, ∀l ∈ M, ∀h ∈ {1, 2} , and 𝜈k, 𝜈̂k ∈ {0, 1},∀k ∈ G.

4.2 � Experiment results

For each of the foregoing test instances, the five cases m = 50, 100, 500, 1000, and
2000 were considered in the computational experiments.

4.2.1 � Experiment 1

In Experiment 1, the solving of the MILP models formulated by the four com-
pared linearization schemes for Instance 1, which can be regarded as a small-sized
numerical instance, was conducted. In each of the five cases, all the four formulated
MILP models yielded the same solution and thus objective value, which are shown
in Table 10. The computational results, including the number of Simplex iterations
(abbreviated as #ITER) and CPU time, of the MILP solving for all the five cases
are shown in Table 3. The numbers of continuous variables (i.e. #CVAR), binary
variables (i.e. #BVAR), equality constraints (i.e. #ECONS), and inequality con-
straints (i.e. #ICONS) in the formulated MILP models are also listed. Notice that
for each of the five cases the two inequality constraints existing in the MILP model
formulated by the proposed method exactly stem from constraints (13) and (14). It
is shown that the solving of the MILP model built by the proposed method required
the fewest iterations and shortest CPU time for the cases 1–3 (i.e. m = 500 ), 1–4
(i.e. m = 1000 ), and 1–5 (i.e. m = 2000 ) while all the four models needed less than
0.2 s for the cases 1–1 (i.e. m = 50 ) and 1–2 (i.e. m = 100 ). The comparisons of
CPU times required by the proposed method and each reference formulation are
illustrated in Fig. 1.

Min

m∑

l=1

(
ln(𝛼l−1)u

(1)

l
+ ln(𝛼l)u

(2)

l

)
+

m∑

l=1

(
ln(𝛽l−1)û

(1)

l
+ ln(𝛽l)û

(2)

l

)

s.t. (17)–(22),

x =

m∑

l=1

(
𝛼l−1u

(1)

l
+ 𝛼lu

(2)

l

)
,

y =

m∑

l=1

(
𝛽l−1û

(1)

l
+ 𝛽lû

(2)

l

)
,

(7), (8),

m∑

l=1

2∑

h=1

û
(h)

l
= 1,

m∑

l=1

(

blk

2∑

h=1

û
(h)

l

)

= 𝜈̂k, ∀k ∈ G,

	 F. J. Hwang, Y.-H. Huang

1 3

Table 3   Computational results of experiment 1

Case (m) MILP items Conventional
formulation

Incremental
formulation

Logarithmic
method

Proposed method

#CVAR 104 102 104 202
#BVAR 100 98 12 12

1–1 #ECONS 8 4 6 18
(50) #ICONS 102 198 26 2

#ITER 469 133 248 215
CPU time (s) 0.17 0.03 0.19 0.13
#CVAR 204 202 204 402
#BVAR 200 198 14 14

1–2 #ECONS 8 4 6 20
(100) #ICONS 202 398 30 2

#ITER 6826 260 376 319
CPU time (s) 0.18 0.04 0.19 0.13
#CVAR 1004 1002 1004 2002
#BVAR 1000 998 18 18

1–3 #ECONS 8 4 6 24
(500) #ICONS 1002 1598 38 2

#ITER 34,200 1327 982 816
CPU time (s) 1.75 1.21 0.29 0.27
#CVAR 2004 2002 2004 4002
#BVAR 2000 1998 20 20

1–4 #ECONS 8 4 6 26
(1000) #ICONS 2002 3998 42 2

#ITER 88,415 2617 1269 1202
CPU time (s) 12.90 4.23 0.46 0.36
#CVAR 4004 4002 4004 8002
#BVAR 4000 3998 22 22

1–5 #ECONS 8 4 6 28
(2000) #ICONS 4002 7998 46 2

#ITER 1,444,551 8163 1280 1035
CPU time (s) 68.21 13.30 0.80 0.68

1 3

An effective logarithmic formulation for piecewise…

4.2.2 � Experiment 2

The MILP solving for Instance 2, which can be considered as a medium-sized
instance, was conducted in Experiment 2. All the four compared methods pro-
duced the identical solution for the cases 2–1, 2–2, and 2–3, as shown in Table 11,
while the recorded solutions for the cases 2–4 and 2–5 were obtained from the
methods other than the conventional formulation. The computational results for
all the five cases are shown in Table 4. The proposed method outperformed all
the reference methods by demonstrating the fewest iterations and shortest CPU
time for each case. More than 25% of Simplex iterations and 16% of CPU time on
average were saved by utilizing the proposed scheme instead of the logarithmic
method. The CPU-time comparison between the proposed method and each refer-
ence formulation can be found in Fig. 2.

4.2.3 � Experiment 3

Experiment 3 was designed to perform the MILP solving for Instance set 3, includ-
ing Instances 3A–3E. As Experiments 1 and 2, the compared methods, if the for-
mulated MILP was solved to optimality within the CPU time limit, generated the
identical solution, which is recorded for each case in Tables 12, 13, 14, 15 and 16.

Fig. 1   Trends in the required CPU time in Experiment 1

	 F. J. Hwang, Y.-H. Huang

1 3

Table 4   Computational results of Experiment 2

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conventional
formulation

Incremental
formulation

Logarithmic
method

Proposed method

#CVAR 260 255 260 505
#BVAR 250 245 30 30

2–1 #ECONS 20 10 15 45
(50) #ICONS 255 495 65 5

#ITER 27,912 2854 2514 2047
CPU time (s) 0.60 0.23 0.37 0.17
#CVAR 510 505 510 1005
#BVAR 500 495 35 35

2–2 #ECONS 20 10 15 50
(100) #ICONS 505 995 75 5

#ITER 89,797 2834 2840 2469
CPU time (s) 1.34 0.33 0.37 0.15
#CVAR 2510 2505 2510 5005
#BVAR 2500 2495 45 45

2-3 #ECONS 20 10 15 60
(500) #ICONS 2505 4995 95 5

#ITER 10,417,072 14,368 9955 8447
CPU time (s) 398.66 3.67 2.09 1.76
#CVAR 5010 5005 5010 10,005
#BVAR 5000 4995 50 50

2–4 #ECONS 20 10 15 65
(1000) #ICONS 5005 9995 105 5

#ITER – 25,221 15,729 12,336
CPU time (s) – 17.32 3.19 2.40
#CVAR 10,010 10,005 10,010 20,005
#BVAR 10,000 9995 55 55

2–5 #ECONS 20 10 15 70
(2000) #ICONS 10,005 19,995 115 5

#ITER – 30,810 25,709 17,214
CPU time (s) – 44.27 5.2 4.91

1 3

An effective logarithmic formulation for piecewise…

(a)	 Experiment 3A

The computational results of Instance 3A for the five cases are provided in
Table 5. The proposed scheme was again the most advantageous in computation
among the compared methods for all the cases. More than 26% of Simplex iterations
and 30% of CPU time on average were reduced by employing the proposed method
instead of the logarithmic formulation. The CPU-time comparison between the pro-
posed method and each reference formulation is illustrated in Fig. 3.

Fig. 2   Trends in the required CPU time in Experiment 2

	 F. J. Hwang, Y.-H. Huang

1 3

Table 5   Computational results of Experiment 3A

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conventional
formulation

Incremental
formulation

Logarithmic
method

Proposed method

#CVAR 116 114 116 214
#BVAR 136 134 48 48

3A-1 #ECONS 8 4 6 18
(50) #ICONS 172 268 96 72

#ITER 71,739 63,620 30,275 29,397
CPU time (s) 1.89 1.17 0.48 0.41
#CVAR 216 214 216 414
#BVAR 236 234 50 50

3A-2 #ECONS 8 4 6 20
(100) #ICONS 272 468 100 72

#ITER 205,038 48,781 66,227 40,918
CPU time (s) 1.97 0.53 0.58 0.42
#CVAR 1016 1014 1016 2014
#BVAR 1036 1034 54 54

3A-3 #ECONS 8 4 6 24
(500) #ICONS 1072 2068 108 72

#ITER 2,152,703 105,804 62,817 57,573
CPU time (s) 46.59 7.29 1.94 1.07
#CVAR 2016 2014 2016 4014
#BVAR 2036 2034 56 56

3A-4 #ECONS 8 4 6 26
(1000) #ICONS 2072 4068 112 72

#ITER 9,411,212 149,225 60,890 46,442
CPU time (s) 477.64 12.46 2.50 1.90
#CVAR 4016 4014 4016 8014
#BVAR 4036 4034 58 58

3A-5 #ECONS 8 4 6 28
(2000) #ICONS 4072 8068 116 72

#ITER – 428,472 79,746 46,234
CPU time (s) – 187.33 5.84 4.03

1 3

An effective logarithmic formulation for piecewise…

(b)	 Experiment 3B

Table 6 demonstrates the computational results of Instance 3B. The proposed
scheme again outperformed the reference methods for all the cases. The trends in
the required CPU time in Experiment 3B are shown in Fig. 4. It is illustrated that the
computational superiority of the proposed scheme becomes obvious as the value of
m increases.

Fig. 3   Trends in the required CPU time in Experiment 3A

	 F. J. Hwang, Y.-H. Huang

1 3

Table 6   Computational results of Experiment 3B

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conven-
tional
formulation

Incremental formula-
tion

Logarithmic method Proposed method

#CVAR 118 116 118 216
#BVAR 149 147 61 61

3B-1 #ECONS 8 4 6 18
(50) #ICONS 198 294 122 98

#ITER 674,585 219,885 238,600 165,924
CPU time (s) 11.44 3.04 3.29 3.02
#CVAR 218 216 218 416
#BVAR 249 247 63 63

3B-2 #ECONS 8 4 6 20
(100) #ICONS 298 494 126 98

#ITER 1,111,838 241,212 387,810 342,042
CPU time (s) 252.93 7.95 4.99 4.17
#CVAR 1018 1016 1018 2016
#BVAR 1049 1047 67 67

3B-3 #ECONS 8 4 6 24
(500) #ICONS 1098 2094 134 98

#ITER – 10,660,858 383,696 308,336
CPU time (s) – 814.10 11.67 9.61
#CVAR 2018 2016 2018 4016
#BVAR 2049 2047 69 69

3B-4 #ECONS 8 4 6 26
(1000) #ICONS 2098 4094 138 98

#ITER – 1,098,779 541,961 462,368
CPU time (s) – 321.30 40.33 37.67
#CVAR 4018 4016 4018 8016
#BVAR 4049 4047 71 71

3B-5 #ECONS 8 4 6 28
(2000) #ICONS 4098 8094 142 98

#ITER – 4,508,429 526,690 479,777
CPU time (s) – 2831.18 49.34 37.92

1 3

An effective logarithmic formulation for piecewise…

(c)	 Experiment 3C

Table 7 shows the numerical results of Instance 3C. The proposed scheme was
still the most efficient in terms of both Simplex iterations and computational time
among all the four formulations. The comparisons of the required CPU times in
Experiment 3C are shown in Fig. 5.

Fig. 4   Trends in the required CPU time in Experiment 3B

	 F. J. Hwang, Y.-H. Huang

1 3

Table 7   Computational results of Experiment 3C

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conven-
tional
formulation

Incremental formula-
tion

Logarithmic method Proposed method

#CVAR 120 118 120 218
#BVAR 164 162 76 76

3C-1 #ECONS 8 4 6 18
(50) #ICONS 228 324 152 128

#ITER 1,396,676 434,945 404,062 340,738
CPU time (s) 22.86 8.05 5.58 4.62
#CVAR 220 218 220 418
#BVAR 264 262 78 78

3C-2 #ECONS 8 4 6 20
(100) #ICONS 328 524 156 128

#ITER 2,727,282 676,868 601,268 582,025
CPU time (s) 61.80 6.94 5.94 4.45
#CVAR 1020 1018 1020 2018
#BVAR 1064 1062 82 82

3C-3 #ECONS 8 4 6 24
(500) #ICONS 1128 2124 164 128

#ITER – 3,562,135 757,785 754,611
CPU time (s) – 125.17 13.53 11.24
#CVAR 2020 2018 2020 4018
#BVAR 2064 2062 84 84

3C-4 #ECONS 8 4 6 26
(1000) #ICONS 2128 4124 168 128

#ITER – 28,546,133 1,336,540 1,259,797
CPU time (s) – 1857.36 40.33 33.53
#CVAR 4020 4018 4020 8018
#BVAR 4064 4062 86 86

3C-5 #ECONS 8 4 6 28
(2000) #ICONS 4128 8124 172 128

#ITER – – 1,252,284 1,067,126
CPU time (s) – – 84.15 74.32

1 3

An effective logarithmic formulation for piecewise…

(d)	 Experiment 3D

 The numerical results of Instance 3D are shown in Table 8, where once again the
proposed method demonstrates the competitiveness. The CPU-time comparisons in
Experiment 3D can be found in Fig. 6.

Fig. 5   Trends in the required CPU time in Experiment 3C

	 F. J. Hwang, Y.-H. Huang

1 3

Table 8   Computational results of Experiment 3D

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conven-
tional
formulation

Incremental formula-
tion

Logarithmic method Proposed method

#CVAR 122 120 122 220
#BVAR 181 179 93 93

3D-1 #ECONS 8 4 6 18
(50) #ICONS 262 358 186 162

#ITER 13,848,625 2,340,763 3,705,627 1,925,302
CPU time (s) 365.53 25.28 18.96 17.34
#CVAR 222 220 222 420
#BVAR 281 279 95 95

3D-2 #ECONS 8 4 6 20
(100) #ICONS 362 558 190 162

#ITER – 2,269,431 1,960,072 1,709,865
CPU time (s) – 38.93 42.08 25.54
#CVAR 1022 1020 1022 2020
#BVAR 1081 1079 99 99

3D-3 #ECONS 8 4 6 24
(500) #ICONS 1162 2158 198 162

#ITER – 21,590,658 1,889,079 1,502,082
CPU time (s) – 791.51 42.62 31.36
#CVAR 2022 2020 2022 4020
#BVAR 2081 2079 101 101

3D-4 #ECONS 8 4 6 26
(1000) #ICONS 2162 4158 202 162

#ITER – 7,928,953 4,869,733 3,014,976
CPU time (s) – 955.60 167.29 126.80
#CVAR 4022 4020 4022 8020
#BVAR 4081 4079 103 103

3D-5 #ECONS 8 4 6 28
(2000) #ICONS 4162 8158 206 162

#ITER – – 5,290,824 5,043,709
CPU time (s) – – 462.17 432.52

1 3

An effective logarithmic formulation for piecewise…

(e)	 Experiment 3E

 The computational results of Instance 3E, which is the large-sized experiment
instance, are reported in Table 9, and the CPU-time comparisons in Experiment 3E
are illustrated in Fig. 7. In Experiment 3E, the growing computational dominance
of the proposed scheme is evident in the widening performance gap between the
proposed scheme and each reference formulation. More than 58% of Simplex itera-
tions and 30% of CPU time on average were saved by adopting the proposed scheme
instead of the logarithmic method.

Fig. 6   Trends in the required CPU time in Experiment 3D

	 F. J. Hwang, Y.-H. Huang

1 3

Table 9   Computational results of Experiment 3E

“–” not applicable due to exceeding the computational time threshold (7200 s)

Case (m) MILP items Conven-
tional
formulation

Incremental formula-
tion

Logarithmic method Proposed method

#CVAR 124 122 124 222
#BVAR 200 198 112 112

3E-1 #ECONS 8 4 6 18
(50) #ICONS 300 396 224 200

#ITER 41,813,539 2,186,162 4,992,450 4,071,559
CPU time (s) 1352.77 76.09 72.73 62.74
#CVAR 224 222 224 422
#BVAR 300 298 114 114

3E-2 #ECONS 8 4 6 20
(100) #ICONS 400 596 228 200

#ITER – 33,076,374 5,923,315 4,685,074
CPU time (s) – 222.21 76.42 65.94
#CVAR 1024 1022 1024 2022
#BVAR 1100 1098 118 118

3E-3 #ECONS 8 4 6 24
(500) #ICONS 1200 2196 236 200

#ITER – 95,092,253 71,210,754 12,289,396
CPU time (s) – 1290.43 608.79 190.45
#CVAR 2024 2022 2024 4022
#BVAR 2100 2098 120 120

3E-4 #ECONS 8 4 6 26
(1000) #ICONS 2200 4196 240 200

#ITER – 167,291,533 23,942,846 15,176,977
CPU time (s) – 1438.23 630.62 487.78
#CVAR 4024 4022 4024 8022
#BVAR 4100 4098 122 122

3E-5 #ECONS 8 4 6 28
(2000) #ICONS 4200 8196 244 200

#ITER – – 26,676,412 19,416,014
CPU time (s) – – 2272.35 1732.12

1 3

An effective logarithmic formulation for piecewise…

Fig. 7   Trends in the required CPU time in Experiment 3E

5 � Concluding remarks

This paper considers the nonconvex optimization problems in which all the non-
linear terms are univariate. An effective and efficient piecewise linear approxima-
tion scheme for these problems has been developed. The performance of the line-
arization technique primarily depends on the numbers of variables and inequality
constraints required in constructing the SOS2 formulation for the piecewise linear
function. While the state-of-the-art logarithmic method requires 2⌈log2 m⌉ ine-
quality constraints, where m is the number of line segments in the constructed
piecewise linear function, none is incurred by our proposed scheme. The price
that more continuous variables are introduced in the proposed scheme than in
the state-of-the-art method is less than offset by the simultaneous inclusion of a
system of equality constraints satisfying the canonical form and the absence of
any inequality constraint. The conducted computational experiments have dem-
onstrated that the presented scheme retains the computational superiority, the
degree of which increases with m.

Further study could be conducted by investigating the possibility of reduc-
ing the number of binary or continuous variables for the proposed linearization
scheme. It is also worth developing another alternative method which requires
fewer binary variables or inequality constraints without incurring more continu-
ous variables than the logarithmic method. Another direction for future research
is to generalize our proposed method to the piecewise linearization formulation
for the multivariate function.

	 F. J. Hwang, Y.-H. Huang

1 3

Appendix

See Tables 10, 11, 12, 13, 14, 15 and 16.

Table 10   Solutions yielded in
Experiment 1

Case (m) Solution (x, y) Objective value

1–1 (50) (4.153624, 3.846376) − 13.030076
1–2 (100) (4.153479, 3.846521) − 13.029238
1–3 (500) (4.153404, 3.846596) − 13.028829
1–4 (1000) (4.153402, 3.846598) − 13.028815
1–5 (2000) (4.153401, 3.846598) − 13.028813

Table 11   Solutions yielded in Experiment 2

Case (m) Solution (x1, x2,… , x5) Objective value

2–1 (50) (3.671195, 4.343845, 1.816988, 5.359112, 7.4) − 35.565041
2–2 (100) (3.671174, 4.343953, 1.817564, 5.359103, 7.4) − 35.562564
2–3 (500) (3.671159, 4.344030, 1.817677, 5.359097, 7.4) − 35.560999
2–4 (1000) (3.671159, 4.344031, 1.817679, 5.359096, 7.4) − 35.560954
2–5 (2000) (3.671159, 4.344032, 1.817679, 5.359096, 7.4) − 35.560937

Table 12   Solutions yielded in
Experiment 3-A

Case (m) Solution (x, y) Objective value

3A-1 (50) (62, 50) 8.039073
3A-2 (100) (62, 50) 8.039143
3A-3 (500) (62, 50) 8.039157
3A-4 (1000) (62, 50) 8.039157
3A-5 (2000) (62, 50) 8.039157

Table 13   Solutions yielded in
Experiment 3-B

Case (m) Solution (x, y) Objective value

3B-1 (50) (62, 40) 7.815945
3B-2 (100) (62, 40) 7.815996
3B-3 (500) (62, 40) 7.816012
3B-4 (1000) (62, 40) 7.816013
3B-5 (2000) (62, 40) 7.816014

1 3

An effective logarithmic formulation for piecewise…

Acknowledgements  The authors would like to thank sincerely the Editor and anonymous reviewers for
their thoughtful and valuable comments which have significantly improved the quality of this paper. F. J.
Hwang was supported by the 2017 University of Technology Sydney Professional Experience Program
grant. Y.-H. Huang was partially supported by the Ministry of Science and Technology of Taiwan under
the Grant MOST 109-2410-H-030-037-MY3.

References

	 1.	 Aghezzaf, E.H., Wolsey, L.A.: Modelling piecewise linear concave costs in a tree partitioning prob-
lem. Discrete Appl. Math. 50(2), 101–109 (1994)

	 2.	 Balakrishnan, A., Graves, S.: A composite algorithm for a concave-cost network flow problem.
Networks 19(2), 175–202 (1989)

	 3.	 Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming Theory and Algorithms,
2nd edn. Wiley, New York (1993)

	 4.	 Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system
for non-convex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of
the Fifth International Conference on Operational Research, pp. 447–454. Tavistock Publica-
tions, London (1970)

Table 14   Solutions yielded in
Experiment 3-C

Case (m) Solution (x,y) Objective value

3C-1 (50) (60, 22) 7.184634
3C-2 (100) (60, 22) 7.185192
3C-3 (500) (60, 22) 7.185382
3C-4 (1000) (60, 22) 7.185385
3C-5 (2000) (60, 22) 7.185387

Table 15   Solutions yielded in
Experiment 3-D

Case (m) Solution (x, y) Objective value

3D-1 (50) (56, 33) 7.521597
3D-2 (100) (56, 33) 7.521767
3D-3 (500) (56, 33) 7.521857
3D-4 (1000) (56, 33) 7.521858
3D-5 (2000) (56, 33) 7.521859

Table 16   Solutions yielded in
Experiment 3-E

Case (m) Solution (x, y) Objective value

3E-1 (50) (98, 30) 7.985894
3E-2 (100) (98, 30) 7.986076
3E-3 (500) (98, 30) 7.986161
3E-4 (1000) (98, 30) 7.986165
3E-5 (2000) (98, 30) 7.98616

	 F. J. Hwang, Y.-H. Huang

1 3

	 5.	 Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific Belmont,
Massachusetts (1997)

	 6.	 Bienstock, D., Günlük, O.: Capacitated network design polyhedral structure and computation.
INFORMS J. Comput. 8(3), 243–259 (1996)

	 7.	 Chan, L.M.A., Muriel, A., Shen, Z.J., Simchi-Levi, D.: On the effectiveness of zero-inventory-
ordering policies for the economic lot-sizing model with a class of piecewise linear cost struc-
tures. Oper. Res. 50(6), 1058–1067 (2002)

	 8.	 Chan, L.M.A., Muriel, A., Shen, Z.J., Simchi-Levi, D., Teo, C.P.: Effective zero-inventory-order-
ing policies for the single-warehouse multiretailer problem with piecewise linear cost structures.
Manag. Sci. 48(11), 1446–1460 (2002)

	 9.	 Croxton, K.L.: Modeling and Solving Network Flow Problems with Piecewise Linear Costs, with
Applications in Supply Chain Management, Ph.D. thesis. Operations Research Center, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts (1999)

	10.	 Croxton, K.L., Gendron, B., Magnanti, T.L.: Models and methods for merge-in-transit opera-
tions. Transp. Sci. 37(1), 1–22 (2003)

	11.	 Croxton, K.L., Gendron, B., Magnanti, T.L.: Variable disaggregation in network flow problems
with piecewise linear costs. Oper. Res. 55(1), 146–157 (2007)

	12.	 Dantzig, G.B.: On the significance of solving linear-programming problems with some integer
variables. Econometrica 28(1), 30–44 (1960)

	13.	 Gabrel, V., Knippel, A., Minoux, M.: Exact solution of multicommodity network optimization prob-
lems with general step cost functions. Oper. Res. Lett. 25(1), 15–23 (1999)

	14.	 Graf, T., Van Hentenryck, P., Pradelles-Lasserre, C., Zimmer, L.: Simulation of hybrid circuits in
constraint logic programming. Comput. Math. Appl. 20(9–10), 45–56 (1990)

	15.	 Günlük, O.: A branch-and-cut algorithm for capacitated network design problems. Math. Program.
86(1), 17–39 (1999)

	16.	 Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 6th edn. McGraw-Hill, New
York (1995)

	17.	 Holmberg, K.: Solving the staircase cost facility location problem with decomposition and piece-
wise linearization. Eur. J. Oper. Res. 75(1), 41–61 (1994)

	18.	 Holmberg, K., Ling, J.: A Lagrangean heuristic for the facility location problem with staircase costs.
Eur. J. Oper. Res. 97(1), 63–74 (1997)

	19.	 Huang, Y.H., Li, H.L.: A note on logarithmic method for non-separable function. NCTU Research
Report OPTL-D-10-00325: 1–17 (2010)

	20.	 Huang, Y.H., Hwang, F.J.: Global optimization for the three-dimensional open-dimension rectangu-
lar packing problem. Eng. Optim. 50(10), 1789–1809 (2018)

	21.	 Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. In: Mathematical Programming at
Oberwolfach II: Mathematical Programming Studies, vol. 22. Springer, Berlin (1984)

	22.	 Kettani, O., Oral, M.: Equivalent formulations of nonlinear integer problems for efficient optimiza-
tion. Manag. Sci. 36(1), 115–119 (1990)

	23.	 Li, H.L.: An efficient method for solving linear goal programming problems. J. Optim. Theory
Appl. 90(2), 465–469 (1996)

	24.	 Li, H.L., Chang, C.T.: An approximately global optimization method for assortment problems. Eur.
J. Oper. Res. 105(3), 604–612 (1998)

	25.	 Li, H.L., Chang, C.T., Tsai, J.F.: Approximately global optimization for assortment problems using
piecewise linearization techniques. Eur. J. Oper. Res. 140(3), 584–589 (2002)

	26.	 Li, H.L., Fang, S.C., Huang, Y.H., Nie, T.: An enhanced logarithmic method for signomial program-
ming with discrete variables. Eur. J. Oper. Res. 255(3), 922–934 (2016)

	27.	 Li, H.L., Huang, Y.H., Fang, S.C.: A logarithmic method for reducing binary variables and inequal-
ity constraints in solving task assignment problems. INFORMS J. Comput. 25(4), 643–653 (2013)

	28.	 Li, H.L., Lu, H.C., Huang, C.H., Hu, N.Z.: A superior representation method for piecewise linear
functions. INFORMS J. Comput. 21(2), 314–321 (2009)

	29.	 Li, H.L., Yu, C.S.: Global optimization method for nonconvex separable programming problems.
Eur. J. Oper. Res. 117(2), 275–292 (1999)

	30.	 Lin, M.H., Tsai, J.F.: A deterministic global approach for mixed-discrete structural optimization.
Eng. Optim. 46(7), 863–879 (2014)

	31.	 Lin, M.H., Tsai, J.F., Wang, P.C.: Solving engineering optimization problems by a deterministic
global optimization approach. Appl. Math. Inf. Sci. 6(3), 1101–1107 (2012)

1 3

An effective logarithmic formulation for piecewise…

	32.	 Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in
global optimization. J. Glob. Optim. 43(2), 391–405 (2009)

	33.	 Magnanti, T.L., Mirchandani, P., Vachani, R.: Modeling and solving the two-facility capacitated net-
work loading problem. Oper. Res. 43(1), 142–157 (1995)

	34.	 Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica
25, 84–110 (1957)

	35.	 Padberg, M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper.
Res. Lett. 27(1), 1–5 (2000)

	36.	 Sherali, H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piece-
wise-linear functions. Oper. Res. Lett. 28(4), 155–160 (2001)

	37.	 Sridhar, S., Linderoth, J., Luedtke, J.: Locally ideal formulations for piecewise linear functions with
indicator variables. Oper. Res. Lett. 41(6), 627–632 (2013)

	38.	 Rebennack, S.: Computing tight bounds via piecewise linear functions through the example of circle
cutting problems. Math. Methods Oper. Res. 84(1), 3–57 (2016)

	39.	 Till, J., Engell, S., Panek, S., Stursberg, O.: Applied hybrid system optimization: an empirical inves-
tigation of complexity. Control Eng. Pract. 12(10), 1291–1303 (2004)

	40.	 Tsai, J.F.: An optimization approach for supply chain management models with quantity discount
policy. Eur. J. Oper. Res. 177(2), 982–994 (2007)

	41.	 Tsai, J.F., Li, H.L.: A global optimization method for packing problems. Eng. Optim. 38(6), 687–
700 (2006)

	42.	 Tsai, J.F., Wang, P.C., Lin, M.H.: An efficient deterministic optimization approach for rectangular
packing problems. Optimization 62(7), 989–1002 (2013)

	43.	 Vielma, J.P., Ahmed, S., Nemhauser, G.: A note on “a superior representation method for piecewise
linear functions’’. INFORMS J. Comput. 22(3), 493–497 (2010)

	44.	 Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of
binary variables and constraints. Math. Program. 128(1), 49–72 (2011)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	An effective logarithmic formulation for piecewise linearization requiring no inequality constraint
	Abstract
	1 Introduction
	2 Reference models
	3 Proposed linearization method
	4 Numerical experiments
	4.1 Experiment instances
	4.2 Experiment results
	4.2.1 Experiment 1
	4.2.2 Experiment 2
	4.2.3 Experiment 3

	5 Concluding remarks
	Acknowledgements
	References

