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Abstract
The weighted essentially non-oscillatory (WENO) methods are popular and effective 
spatial discretization methods for nonlinear hyperbolic partial differential equations. 
Although these methods are formally first-order accurate when a shock is present, 
they still have uniform high-order accuracy right up to the shock location. In this 
paper, we propose a novel third-order numerical method for solving optimal control 
problems subject to scalar nonlinear hyperbolic conservation laws. It is based on 
the first-disretize-then-optimize approach and combines a discrete adjoint WENO 
scheme of third order with the classical strong stability preserving three-stage third-
order Runge–Kutta method SSPRK3. We analyze its approximation properties 
and apply it to optimal control problems of tracking-type with non-smooth target 
states. Comparisons to common first-order methods such as the Lax–Friedrichs and 
Engquist–Osher method show its great potential to achieve a higher accuracy along 
with good resolution around discontinuities.

Keywords  Nonlinear optimal control · Discrete adjoints · Hyperbolic conservation 
laws · WENO schemes · Strong stability preserving Runge–Kutta methods
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1  Introduction

We consider the optimal control problem

 *	 Jens Lang 
	 lang@mathematik.tu-darmstadt.de

	 David Frenzel 
	 frenzel@gsc.tu-darmstadt.de

1	 Department of Mathematics, Technical University of Darmstadt, Dolivostraße 15, 
64293 Darmstadt, Germany

http://orcid.org/0000-0003-4603-6554
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00295-2&domain=pdf


302	 D. Frenzel, J. Lang 

1 3

with the tracking-type functional

where

and y = y(T , x;u0) is the scalar entropy solution at the final time T > 0 of the nonlin-
ear hyperbolic conservation law (later referred to as state equation)

Here, u0 ∈ Uad ⊆ L∞(ℝ) is the control and yd ∈ L2(ℝ) denotes a given target towards 
which we strive to optimize. We assume that the flux function satisfies f ∈ Cm(ℝ) 
with sufficiently large m ∈ ℕ and is convex, the admissible set Uad is non-empty, 
convex and closed, and the region of integration I in (2) is a bounded interval. Weak 
solutions to (4) are in general not unique, which implies that the physically relevant 
solution has to be chosen. As a fact we cite the well-known result from [21], which 
states that for u0 ∈ L∞(ℝ) ∩ BV(ℝ) there exists a unique entropy solution in the 
sense of Krǔzkov in the class C([0, T], L1

loc
(ℝ)) ∩ L∞(ℝ × [0, T]) . Using well-pos-

edness and compactness properties of this solution, the existence of a minimizer umin
0

 
in (1) can be established under some natural additional assumptions on the class of 
admissible data Uad , see e.g. [5, Theorem 2.1] and [16, Proposition A.1]. In general, 
uniqueness is not guaranteed due to the occurrence of discontinuous solutions in (4), 
which can be equal for different initial values. An illustrative example can be found 
in [5]. These statements generalize to the case where a regularization term R(u) is 
added to the objective function [28].

In this work, we focus on the numerical treatment of optimal control problems (1) 
governed by hyperbolic conservation laws, which has been studied amongst others 
in [1, 2, 5, 6, 10–12, 16–18, 22–24, 29–31]. We will follow the first-disretize-then-
optimize approach, i.e., Eq. (4) is first discretized in space and time by applying a 
weighted essentially non-oscillatory (WENO) scheme and a strong stability preserv-
ing Runge-Kutta (SSPRK) method. This leads to a finite dimensional optimal con-
trol problem, for which the first-order discrete optimality system can be derived and 
solved by existing optimization solvers such as nonlinear Newton-type algorithms. 
In spite of the large size of the resulting problems, the flexibility of this approach 
naturally allows the incorporation of additional constraints and bounds. Further 
advantages are the direct use of automatic differentiation techniques and the com-
putation of discrete adjoints, which are consistent with the discrete optimal control 
problem. Symmetric approximations of Hessian matrices can be easily derived and 
result in a computational speedup.

(1)umin
0

= argminu0∈Uad
J(y(T , ⋅;u0), yd)

(2)J(y(T , ⋅;u0), yd) = ∫I

G(y(T , x;u0), yd(x)) dx,

(3)G(y(T , x;u0), yd(x)) =
1

2
|y(T , x;u0) − yd(x)|2

(4)
�ty + �xf (y) = 0, (t, x) ∈ ΩT ∶= (0, T] ×ℝ,

y(0, x) = u0(x), x ∈ ℝ.



303

1 3

A third‑order weighted essentially non‑oscillatory scheme…

The application of common methods from nonlinear optimization requires the 
computation of directional derivatives of the target functional J with respect to the 
control. An efficient computation of the gradient can be effectuated by using the 
so-called adjoint approach, in which the derivative is represented via the adjoint 
state. The crucial issue of hyperbolic conservation laws is the possible formation 
of shocks even for smooth initial data, for which reason the classical adjoint cal-
culus does not apply. To overcome these difficulties, nonstandard variational con-
cepts have been developed in [4, 29, 31], which incorporate the shock sensitivity in 
order to derive rigorous optimality conditions. The resulting non-conservative equa-
tion has been studied in [3, 7, 29]. Their numerical resolution is intricate, since the 
interior boundary condition defined on a set of Lebesgue measure zero—existing 
for the continuous setting—is not present for the discrete counterpart. This inherent 
problem has been addressed in [1, 10–12]. The theory is, however, restricted to dif-
ferentiable monotone schemes which have sufficiently large numerical diffusion and 
are of first order only.

To avoid unwanted smearing of the solution by large numerical diffusion and 
to overcome the lower order restriction of monotone schemes, we propose a novel 
approach based on WENO schemes introduced in [20, 25, 26]. These schemes have 
proven to approximate hyperbolic equations comprising both shocks and complex 
smooth solution structure with higher accuracy and adequate stability along with 
good resolution around discontinuities. Although these methods are formally first-
order accurate when a shock is present, they still have uniform high-order accuracy 
right up to the shock location. WENO schemes are extensions of the ENO proce-
dure, i.e., they perform essentially non-oscillatory, but overcome shortcomings of 
the ENO approximation, see [27] for a detailed discussion. By employing a global 
flux-splitting, the numerical flux function becomes classically differentiable and 
therefore allows to develop discrete adjoint WENO methods of higher order. Since 
the third-order WENO method is often applied in applications, we consider this 
method in the context of optimal control in more detail. We prove that the discrete 
adjoint WENO3 method is third-order consistent in space for smooth solutions. A 
fully discrete method is derived by applying a third-order SSPRK method. We pre-
sent numerical results and study the approximation behaviour of the adjoint WENO3 
scheme. Finally, we solve an optimal control problem with discontinuous target and 
compare the performance of our novel scheme to common first-order schemes such 
as the modified Lax–Friedrichs and the Engquist–Osher scheme. Further examples 
can be found in [9].

2 � Adjoint equation and reversible solutions

In this section, we briefly recall some theoretical basics in order to set up appro-
priate adjoint equations for hyperbolic conservation laws. As pointed out in 
[4, Example  1], the solution operator St ∶ u0 ↦ y(t, ⋅;u0) is generically not dif-
ferentiable in L1

loc
(ℝ) , for which reason the classical adjoint calculus does not 

apply. However, in [29] it has been shown that entropy solutions to hyperbolic 
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conservation laws admit a generalized differentiable structure called shift-differ-
entiability. Under suitable assumptions, a generalized Taylor expansion in L1

loc
 of 

the form

exists for all �u0 ∈ L∞(ℝ) , where Tu ∶ �u ∈ L∞(ℝ) ↦ (�yT , �x1,… , �xN) ∈ Lr(I) ×ℝ
N , 

r ∈ (1,∞] , is a bounded linear operator and S(xi)y  is the shift variation defined by

where Ωi = [min(xi, xi + �xi), max(xi, xi + �xi)] and x1,… , xN denote the locations of 
the down-jumps of the entropy solution. The important advantage of shift-variations 
is that this framework allows to develop an adjoint calculus for hyperbolic conserva-
tion laws by using an averaged sensitivity equation which avoids the linearization of 
(4) in the usual way, see [31] for further details. The directional derivative of J in (2) 
in the direction of �u0 can then be represented by

where p is the solution of the adjoint equation

Here, pT (x) is given by

where Xs is the set of locations where y(T , ⋅) possesses a shock and 
[w(x)] ∶= w(x−) − w(x+) , which naturally incorporates the shock sensitivity.

Equation (8) is a linear transport equation with, in general, discontinuous coef-
ficients. It admits multiple solutions, which requires the selection of the correct 
adjoint state. This is achieved by so-called reversible solutions that are defined 
along generalized characteristics [8]. An illustrative demonstration is given in 
Example 2.1. Under suitable technical assumptions and for appropriate end data 
pT it can be shown that there exists a unique reversible solution to (8) that is 
bounded, L∞-stable, and TV-stable [29, Theorem  4.2.10 and Corollary 4.2.11]. 
In what follows, we will work with formulation (8) to derive a discrete adjoint 
WENO3 method.

(5)y(t, ⋅;u0 + �u0) = y(t, ⋅;u0) + S(xi)
y

(Tu0 (�u0))(⋅) + o(‖�u0‖L∞(ℝ))

(6)S(xi)
y

(�yT , �x1,… , �xN)(x) = �yT (x) +

N∑
i=1

(y(T , xi−) − y(T , xi+)) sign(�xi)1Ωi
,

(7)�u0J(y(T , ⋅;u0), yd) �u0(⋅) = ∫I

p(0, x) �u0(x) dx,

(8)
�tp + f �(y)�xp = 0, (t, x) ∈ ΩT ,

p(T , x) = pT (x), x ∈ ℝ.

(9)pT (x) =

⎧
⎪⎨⎪⎩

[G(y(T , x), yd(x))]

[y(T , x)]
, x ∈ Xs,

�yG(y(T , x), yd(x)), otherwise,
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Example 2.1  Let f (y) = 1

2
y2 , u0(x) = −sign(x) , T = 0.5 , and yd(x) = 0 with x ∈ ℝ . 

It is well-known that the unique entropy solution is given by y(t, x) = −sign(x) , 
t ∈ [0, T] , and hence we have

The area that is not occupied by the classical characteristics is called shock funnel. It 
is represented by the grey-coloured triangle in Fig. 1. In this region, p takes the con-
stant value zero. The adjoint remains constant along the classical backwards charac-
teristics outside this region. Hence, the reversible solution p is given by

3 � Discrete adjoint WENO3 method

In order to discretize (4) in space, we now consider solutions with compact support 
[a, b] for the entire time interval [0, T] and take y(a) = y(b) = 0 as boundary condi-
tions. Thus, using as many stencil points outside as needed and the compactness of 
the solution, the implementation of the zero boundary condition does not bear any 
difficulty. The interval [a, b] is partitioned into subintervals [xj−1∕2, xj+1∕2] of the same 
size Δx and with midpoints xj for j = 1,… ,N . Setting u0 ∶= (u0(x1),… , u0(xN))

� 
and defining spatial approximations y(t) ∶= (y1(t),… ., yN(t))

� with yj(t) ≈ y(t, xj) , a 
spatial semi-discretization of (4) reads

(10)pT (x) =

{
0, x = 0,

−sign(x), x ≠ 0.

(11)p(0, x) =

⎧
⎪⎨⎪⎩

1 , x < −
1

2
,

0 ,−
1

2
≤ x ≤ 1

2
,

−1 ,
1

2
< x.

Fig. 1   Construction of the reversible solution p(t, x) from the end data pT (x) at T = 0.5 . The shock funnel 
region is accentuated as grey-colored triangle
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where the nonlinear operator FΔx ∶ ℝ
N
→ ℝ

N represents the discretization of �xf (y) . 
We choose a conservative finite difference

where f̂j+1∕2 ∶ ℝ
m
→ ℝ denotes the numerical flux at xj+1∕2 , which is (at least) a 

Lipschitz continuous function of m neighboring values yi(t) . In order to avoid the 
convergence of the scheme towards entropy violating solutions, we apply a global 
flux splitting

Using the simple Lax–Friedrichs splitting f ±(y) = (f (y) ± �y)∕2 with 
� ∶= maxu |f �(u)| yields the desired properties (f +)�(y) ≥ 0 and (f −)�(y) ≤ 0 . Then, 
the numerical flux functions of the WENO3 method [26] are defined by

where the weights are

The smoothness indicators are given by

and the linear weights are set to �+
1
=�−

2
=1∕3, �−

1
=�+

2
=2∕3 . Note that 0 < 𝜀 ≪ 1 

is chosen in order to avoid the denominator becoming zero. It is set to �=10−6 in 
our numerical calculations. We would like to emphasize the observation that by con-
struction the numerical fluxes f̂ ± have the same smoothness dependency on its argu-
ments as that of the physical flux function f(y).

Next we will derive the associated adjoint WENO3 scheme. Let f ∈ C2(ℝ) , i.e., 
there exists the Fréchet derivative of FΔx defined in (13). The continuous optimal 
control problem is approximated by

(12)y
�(t) = −FΔx(y(t)), y(0) = u0 ∈ ℝ

N ,

(13)(FΔx(y(t)))j =
1

Δx

(
f̂
j+

1

2

− f̂
j−

1

2

)
,

(14)f̂
j+

1

2

= f̂ +
j+

1

2

+ f̂ −
j+

1

2

.

(15)

f̂ +
j+

1

2

(yj−1, yj, yj+1) ∶= 𝜔+
1

(
−
1

2
f +(yj−1) +

3

2
f +(yj)

)
+ 𝜔+

2

(
1

2
f +(yj) +

1

2
f +(yj+1)

)
,

(16)

f̂ −
j−

1

2

(yj−1, yj, yj+1) ∶= 𝜔−
2

(
−
1

2
f −(yj+1) +

3

2
f −(yj)

)
+ 𝜔−

1

(
1

2
f −(yj) +

1

2
f −(yj−1)

)
,

(17)𝜔±
m
=

𝜔̃±
m∑

i=1,2 𝜔̃
±
i

, 𝜔̃±
m
=

𝛾±
m

(𝜀 + 𝛽±m)
2
, m = 1, 2.

(18)�±
1
= (f ±(yj) − f ±(yj−1))

2, �±
2
= (f ±(yj+1) − f ±(yj))

2

(19)u
min
0

= argmin
u0∈Uad

N∑
j=1

G(yj(T), yd(xj)),
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where Uad = {u ∈ ℝN ∶ TV(u) ≤ C} is the discrete admissible set. Then, applying 
the common Lagrangian approach in ℝN with multipliers p(t) = (p1(t),… , pN(t))

� , 
the adjoint equation to (12) reads

where ∇
y
FΔx is the Fréchet derivative of FΔx and gradients are treated as row vec-

tors. The initial condition (the adjoint equation works backwards in time) is the 
discrete counterpart to (9). Observe that the interior boundary condition does not 
appear here. A short calculation yields the componentwise description

with the coefficients

The indices of the numerical flux functions are directly related to their arguments, 
e.g. f̂ +

j+3∕2
(yj, yj+1, yj+2) due to (15). For later use, we note that 

∑
i=−2,…,2 Li,j(y) = 0.

We will now study the consistency order of the adjoint WENO3 scheme, i.e., 
how accurately does the semi-discretization (20) approximate the continuous adjoint 
equation (8) in the case of smooth solutions. Inserting exact solution values p(t, xj) 
and y(t, xj) (still denoted by yj to simplify notation) in the semi-discrete scheme (21) 
gives the residual-type local spatial errors

Taylor expansion around xj yields

where we have already used that the sum of the Li,j disappears. The method is said 
to have adjoint consistency order q if rj(t) = O(Δxq) . In what follows, we will show 
that the adjoint WENO3 scheme satisfies all conditions for order q = 3.

First, we have to calculate �yjLi,j , i.e., particularly the derivatives of the numerical 
flux functions defined in (15), (16). Since �±

1
+ �±

2
= 1 for all y(t) , we deduce 

�yk�
±
1
= −�yk�

±
2
 . Introducing the notation

(20)p
�(t) = ∇

y
FΔx(y(t))

�
p(t), p(T) =

(
�yG(yj(T), yd(xj))

)
j=1,…,N

,

(21)p�
j
(t) =

1

Δx

2∑
i=−2

�yjLi,j(y(t)) pj+i(t), j = 1,… ,N,

(22)

L−2,j(y) = f̂ −
j−3∕2

,

L−1,j(y) = f̂ +
j−1∕2

+ f̂ −
j−1∕2

− f̂ −
j−3∕2

,

L0,j(y) = f̂ +
j+1∕2

+ f̂ −
j+1∕2

− f̂ +
j−1∕2

− f̂ −
j−1∕2

,

L1,j(y) = f̂ +
j+3∕2

− f̂ +
j+1∕2

− f̂ −
j+1∕2

,

L2,j(y) = − f̂ +
j+3∕2

.

(23)rj(t) = �tp(t, xj) −
1

Δx

2∑
i=−2

�yjLi,j(y(t)) p(t, xj+i).

(24)rj(t) = �tp(t, xj) −
∑
k≥0

Δxk
1

(k + 1)!

2∑
i=−2

ik+1 �yjLi,j(y(t)) �
k+1
x

p(t, xj),
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we find

and

We have the following three lemmata.

Lemma 3.1  Suppose f (y), y(t, ⋅) ∈ C2(ℝ) . Then

Proof  Taylor expansion gives f̄ ±
j
= O(Δx2) . It remains to show that �yk�

±
1
= O(Δx) . 

Indeed, we have

Since �±
i
= O(Δx2) for smooth flux functions f(y), the two quotients are bounded by 

(𝜔̃±
i
)−1 = O(𝜀2) , i = 2, 1 , respectively, for Δx → 0 . Taylor expansions of the deriva-

tives 𝜕yk 𝜔̃
±
i
= −2𝛾±

i
(𝜀 + 𝛽±

i
)−3𝜕yk𝛽

±
i

 , i = 1, 2 , show O(Δx) for these terms and there-
fore also for �yk�

±
1
 . 	�  ◻

Lemma 3.2  Let {xj−1, xj, xj+1} and {xj, xj+1, xj+2} be two neighboring stencils and 
w±
i,j

 , w±
i,j+1

 , i = 1, 2, the corresponding weights. Suppose f (y), y(t, ⋅) ∈ C3(ℝ). Then

Proof  We consider the weights w+
1,j

 and w+
1,j+1

 . Analogous calculations can be done 
for the other cases. We set h(x) ∶= f +(y(x)) and define hj ∶= f +(y(xj)) . Then

(25)f̄ ±
j
(yj−1, yj, yj+1) ∶= ∓

1

2
f +(yj−1) ± f +(yj) ∓

1

2
f +(yj+1),

(26)

𝜕yj−1 f̂
+
j+1∕2

= 𝜕yj−1𝜔
+
1
f̄ +
j
−

1

2
(f +)�(yj−1)w

+
1
,

𝜕yj f̂
+
j+1∕2

= 𝜕yj𝜔
+
1
f̄ +
j
+ (f +)�(yj)

(
3

2
w+
1
+

1

2
w+
2

)
,

𝜕yj+1 f̂
+
j+1∕2

= 𝜕yj+1𝜔
+
1
f̄ +
j
+

1

2
(f +)�(yj+1)w

+
2
,

(27)

𝜕yj−1 f̂
−
j−1∕2

= 𝜕yj−1𝜔
−
1
f̄ −
j
+

1

2
(f −)�(yj−1)w

−
1
,

𝜕yj f̂
−
j−1∕2

= 𝜕yj𝜔
−
1
f̄ −
j
+ (f −)�(yj)

(
1

2
w−
1
+

3

2
w−
2

)
,

𝜕yj+1 f̂
−
j−1∕2

= 𝜕yj+1𝜔
−
1
f̄ −
j
−

1

2
(f −)�(yj+1)w

−
2
.

(28)𝜕yk𝜔
±
1
f̄ ±
j
(yj−1, yj, yj+1) = O

(
Δx3

)
, k = j − 1, j, j + 1.

(29)𝜕yk𝜔
±
1
=

𝜔̃±
2

(𝜔̃±
1
+ 𝜔̃±

2
)2

𝜕yk 𝜔̃
±
1
−

𝜔̃±
1

(𝜔̃±
1
+ 𝜔̃±

2
)2

𝜕yk 𝜔̃
±
2
.

(30)w±
i,j+1

− w±
i,j
= O

(
Δx4

)
, i = 1, 2.
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Due to the strict positivity of the weights, it remains to study the asymptotic behav-
iour of the numerator. Using the definitions (17) and (18), we have

with the smoothness indicators

Taylor expansion at xj yields in (32)

which shows the assertion. 	�  ◻

Lemma 3.3  Suppose f (y), y(t, ⋅) ∈ C2(ℝ) . Then

Proof  We first consider �+
1
− �+

1
 . The difference can be expressed by

The denominator is bounded from below by (𝛾+
1
+ 𝛾+

2
)𝜀−2 = 𝜀−2 > 0 . Further, we 

deduce for the numerator

Let h(x) ∶= f +(y(x)) and define hj ∶= f +(y(xj)) . Inserting the smoothness indicators 
�+
1
= (hj − hj−1)

2 and �+
2
= (hj+1 − hj)

2 , Taylor expansion at xj yields

(31)

w+
1,j+1

− w+
1,j

=
𝜔̃+
1,j+1

𝜔̃+
1,j+1

+ 𝜔̃+
2,j+1

−
𝜔̃+
1,j

𝜔̃+
1,j
+ 𝜔̃+

2,j

=

𝜔̃+
2,j

𝜔̃+
1,j

−
𝜔̃+
2,j+1

𝜔̃+
1,j+1(

1 +
𝜔̃+
2,j

𝜔̃+
1,j

)(
1 +

𝜔̃+
2,j+1

𝜔̃+
1,j+1

) .

(32)

Dw̃ ∶=
𝜔̃+
2,j

𝜔̃+
1,j

−
𝜔̃+
2,j+1

𝜔̃+
1,j+1

=
𝛾+
2

𝛾+
1

(𝜀 + 𝛽+
1,j
)2(𝜀 + 𝛽+

2,j+1
)2 − (𝜀 + 𝛽+

1,j+1
)2(𝜀 + 𝛽+

2,j
)2

(𝜀 + 𝛽+
2,j
)2(𝜀 + 𝛽+

2,j+1
)2

(33)
�+
1,j

= (hj − hj−1)
2, �+

2,j
= (hj+1 − hj)

2 ,

�+
1,j+1

= (hj+1 − hj)
2, �+

2,j+1
= (hj+2 − hj+1)

2 .

(34)Dw̃ =
𝛾+
2

𝜀4𝛾+
1

(
4𝜀3Δx4

(
(h��

j
)2 + h�

j
h���
j

)
+O(𝜀3Δx5)

)
,

(35)�±
1
− �±

1
= O

(
Δx3

)
.

(36)𝜔+
1
− 𝛾+

1
=

𝜔̃+
1
− 𝛾+

1
(𝜔̃+

1
+ 𝜔̃+

2
)

𝜔̃+
1
+ 𝜔̃+

2

.

(37)N𝜔̃ ∶= 𝜔̃+
1
− 𝛾+

1
(𝜔̃+

1
+ 𝜔̃+

2
) = 𝛾+

1
𝛾+
2

(𝜀 + 𝛽+
2
)2 − (𝜀 + 𝛽+

1
)2

(𝜀 + 𝛽+
1
)2 (𝜀 + 𝛽+

2
)2

.
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Putting this together with the bound for the denominator stated above gives 
�+
1
− �+

1
= O(Δx3∕�) , from which we can conclude the proof. The same arguments 

apply to the second difference �−
1
− �−

1
 . 	�  ◻

We are now ready to state the main result of this section.

Theorem  3.1  Let f (y), y(t, ⋅) ∈ C3(ℝ) and p(t, ⋅) ∈ C4(ℝ) . Then the adjoint 
WENO3 scheme (20) is adjoint consistent of order three, i.e., rj(t) = O(Δx3) in (24).

Proof  Let us define dk ∶=
∑

i=−2,…,2 i
k+1�yjLi,j(y(t)) , k = 0, 1, 2, and denote by w±

i,m
 

the weights that correspond to the stencils {xm−1, xm, xm+1} , m = j − 1, j, j + 1 . From 
(22), we calculate

which gives by using (26), (27) for different stencils and Lemma 3.1 for all terms 
𝜕yj𝜔

±
1
f̄ ±
m

 with m = j − 1, j, j + 1,

Eventually, Lemma 3.2 and the property w±
1,j
+ w±

2,j
= 1 yields

Analogously, we derive

and

Lemma  3.2 directly shows that d1 = O(Δx3) . Using w±
1
+ w±

2
= 1 and again 

Lemma  3.2, the linear combinations of the weights in d2 can be simplified to 

(38)N𝜔̃ =
𝛾+
1
𝛾+
2

𝜀4

(
4𝜀Δx3h�

j
h��
j
+O

(
Δx5

))
.

(39)
d0 = −𝜕yj

(
2L−2,j(y(t)) + L−1,j(y(t)) − L1,j(y(t)) − 2L2,j(y(t))

)

= −𝜕yj

(
f̂ −
j−3∕2

+ f̂ +
j−1∕2

+ f̂ −
j−1∕2

+ f̂ +
j+1∕2

+ f̂ −
j+1∕2

+ f̂ +
j+3∕2

)
,

(40)
d0 = −

(
1

2
w−
1,j
+

1

2
w−
1,j+1

−
1

2
w−
2,j−1

+
3

2
w−
2,j

)
(f −)�(yj)

−
(
3

2
w+
1,j
−

1

2
w+
1,j+1

+
1

2
w+
2,j−1

+
1

2
w+
2,j

)
(f +)�(yj) +O(Δx3).

(41)d0 = −
(
(f −)�(yj) + (f +)�(yj)

)
+O(Δx3) = −f �(yj) +O(Δx3).

(42)
d1 =

(
1

2
w−
1,j
−

1

2
w−
1,j+1

−
3

2
w−
2,j−1

+
3

2
w−
2,j

)
(f −)�(yj)

+
(
−
3

2
w+
1,j
+

3

2
w+
1,j+1

+
1

2
w+
2,j−1

−
1

2
w+
2,j

)
(f +)�(yj) +O(Δx3)

(43)
d2 =

(
−
1

2
w−
1,j
−

1

2
w−
1,j+1

+
7

2
w−
2,j−1

−
3

2
w−
2,j

)
(f −)�(yj)

+
(
−
3

2
w+
1,j
+

7

2
w+
1,j+1

−
1

2
w+
2,j−1

−
1

2
w+
2,j

)
(f +)�(yj) +O(Δx3) .
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2 − 3w−
1,j

 and 3w+
1,j
− 1 up to order O(Δx4) , respectively. Applying now Lemma 3.3 

with �+
1
= 1∕3 and �−

1
= 2∕3 to these expressions gives d2 = O(Δx3).

In a last step, we use the asymptotic expressions for di , i = 0, 1, 2, to calculate the 
residual-type local spatial error

This concludes the proof. 	�  ◻

4 � Numerical experiments

In this section, we will present some numerical examples for Burgers equation, i.e., 
we study problems with the nonlinear flux function f (y) = 1

2
y2 in (4). The first exam-

ple with smooth initial data and solution is chosen in order to check to third-order 
convergence of the discrete adjoint WENO3 method as stated in Theorem 3.1. In the 
second example, the approximation property of the discrete adjoint in the case of a 
shock in the initial solution is investigated and compared to approximations com-
puted by means of the first-order modified Lax–Friedrichs (LF) and Engquist–Osher 
(EO) schemes. These schemes read

with yn
j
≈ y(nΔt, xj) , nT Δt = T  , and numerical fluxes given by

Applying a standard Lagrangian approach and discrete adjoint calculus, the discrete 
adjoint schemes can be derived from [16, Prep. 3.1] as

with the coefficients

(44)
rj(t) = �tp(t, xj) −

2∑
k=0

Δxk
1

(k + 1)!
dk �

k+1
x

p(t, xj) +O
(
Δx3

)

= �tp(t, xj) + f �(y(t, xj)) �xp(t, xj) +O
(
Δx3

)
= O

(
Δx3

)
.

(45)
y0
j
= u0(xj) ,

yn+1
j

= yn
j
−

Δx

Δt

(
f̂ (yn

j
, yn

j+1
) − f̂ (yn

j−1
, yn

j
)
)
, n = 0,… , nT − 1,

(46)
f̂LF(a, b) =

1

2
(f (b) + f (a)) −

𝛾

2

Δx

Δt
(b − a), 𝛾 ∈ (0, 1) ,

f̂EO(a, b) = f (0) + ∫
a

0

max(0, f �(s)) ds + ∫
b

0

min(0, f �(s)) ds .

(47)
p
nT
j

= �yG(y
nT
j
, yd(xj)) ,

pn
j
= cj−1p

n+1
j−1

+ cjp
n+1
j

+ cj+1p
n+1
j+1

, n = nT − 1,… , 0,

(48)cj−1 =
�

2
−

Δt

2Δx
f �(yn+1

j
), cj = 1 − � , cj+1 =

�

2
+

Δt

2Δx
f �(yn+1

j
),
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for the LF scheme and

for the EO scheme. Convergence of these schemes has been intensively studied in 
[1, 10–12, 29]. The choice �=1 leads to the classical LF method. Stability require-
ments for the adjoint LF and EO schemes yield the optimal value 𝛾⋆=0.5 together 
with the CFL-condition Δt ≤ 𝛾⋆Δx∕ sup |f �(y)| , see e.g. [16]. Then, both schemes 
converge for Lipschitz continuous end data pT (x) in (8). The stronger condition 
Δt ≤ 𝛾⋆(Δx)2−q∕ sup |f �(y)| , 0 < q < 1 , ensures the convergence of the modified LF 
scheme for discontinuous end data, too [11, 12]. Convergence for slightly modified 
end data and less numerical viscosity has been recently studied in [1].

In order to get a fully discrete scheme for WENO3, the differential equation 
(12) is numerically solved by the three-stage third-order strong-stability-preserving 
Runge-Kutta method SSPRK3, which offers good stability properties [13, 14, 16, 
19]. In the Shu-Osher representation, it reads

The corresponding adjoint time discretization has the form (see e.g. [16])

We note that the adjoint scheme has only order two, which is the upper barrier for 
three-stage third-order SSPRK methods [16].

In the final experiment, we solve an optimal control problem with a discontinu-
ous target, proposed in [16]. The discrete adjoint p0 provides gradient information, 
which can be directly used to set up the following algorithm: 

0.	 Given a control u0 ∶= u
(j) at iteration j.

1.	 Compute the discrete adjoint p0(u(j)) and update u(j+1) = u
(j) − �jp

0(u(j)) with �j 
such that Armijo’s condition 

(49)
cj−1 =

Δt

2Δx

(
|f �(yn+1

j
)| − f �(yn+1

j
)
)
, cj = 1 −

Δt

Δx
|f �(yn+1

j
)|,

cj+1 =
Δt

2Δx

(
|f �(yn+1

j
)| + f �(yn+1

j
)
)
,

(50)

y
n
0
= y

n ,

y
n
1
= y

n
0
− ΔtFΔx(y

n
0
) ,

y
n
2
=

3

4
y
n
0
+

1

4
y
n
1
−

1

4
ΔtFΔx(y

n
1
) ,

y
n+1 =

1

4
y
n
0
+

2

3
y
n
2
−

2

3
ΔtFΔx(y

n
2
) , n = 0,… , nT − 1.

(51)

p
n
0
= p

n+1 ,

p
n
1
=

2

3
p
n
0
−

2

3
Δt∇

y
FΔx(y

n
2
)T pn

0
,

p
n
2
=

1

4
p
n
1
−

1

4
Δt∇

y
FΔx(y

n
1
)T pn

1
,

p
n =

1

3
p
n
0
+

3

4
p
n
1
+ p

n
2
− Δt∇

y
FΔx(y

n
0
)T pn

2
, n = nT − 1,… , 0.
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 is fulfilled. If it is not satisfied, choose �j ∶= 0.95 �j and check the condition 
again.

2.	 Stop if   |J(ynT (u(j+1)), yd) − J(ynT (u(j)), yd)| ≤ tol . Otherwise set j ∶= j + 1 and 
proceed with step 1.

In general, taking the adjoint as a decent direction may increase the complexity of 
the optimization process due to the production of additional discontinuities [5, 23, 
24]. A careful choice of the initial guess u0 can remedy this serious problem. We 
follow the approach proposed in [17] and first solve the conservation law

where yd is the target given in (1). The initial guess is then chosen as u0 = z(T ,−x) . 
Formally, as pointed out in [17], (52) is obtained by reverting t and x in (4) and tak-
ing yd as initial condition. The advantage of this approach is that it delivers a control 
whose entropy solution is close to the target and the location of the discontinuities 
almost coincide. Hence, the production of additional discontinuities within each 
iteration step is avoided, which improves the performance of the algorithm drasti-
cally. We will exemplify the influence of the choice of the initial guess in our opti-
mal control problem.

4.1 � Order test for the discrete adjoint for smooth data

This section is devoted to numerically verify the third-order convergence of the 
adjoint WENO3 scheme. For this purpose, we choose the computational domain 
ΩT = (0, 0.5] × [−1.5, 1.5] and the objective functional

with the smooth initial data

The exact solution y(t, x) can be directly computed from the method of character-
istics, i.e., y(t, x) = u0(x0(x(t), t)) with x0(x(t), t) being the solution of the nonlinear 
equation x(t) = x0 + u0(x0) t . A reference solution yT ≈ y(0.5, x) at the final time is 
computed by Newton’s method with a high tolerance 10−14.

Since shocks are not present, we find pT (x) = y(0.5, x) in (8). We also note that 
the characteristics curves of the adjoint problem coincide with the characteristic 

J(ynT (u(j+1)), yd) ≤ J(ynT (u(j)), yd) −
1

2
�j‖p0(u(j))‖2L2(I)

(52)
�tz + �xf (z) = 0, (t, x) ∈ ΩT ,

z(0, x) = yd(−x),

(53)J(y(0.5, ⋅;u0), 0) =
1

2 ∫
3

2

−
3

2

y(0.5, x;u0)
2 dx

(54)u0(x) =

{
e
−

1

1−x2 , |x| < 1,

0 , |x| ≥ 1.
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curves of the forward problem. Thus, the corresponding reversible solution p(0, x) at 
time t=0 is given by u0(x) , which serves as reference solution for the adjoint.

We use a sequence of spatial meshes with a number of grid points 
N = 150 ⋅ 2i, i = 0,… , 6, and set Δt = 0.5Δx . In order to keep the temporal error 
below O((Δx)3) , we apply the classical fourth-order four-stage explicit Runge-Kutta 
method (ERK4). Its adjoint time discretization has also order four [15] for smooth solu-
tions and therefore the overall scheme is suitable to check the order three of the adjoint 
WENO3 method. We also present results for the forward WENO3 method to docu-
ment the error of the approximated starting value pnT = y

nT . The L∞-errors collected 
in Table 1 clearly show asymptotic order three of the spatial WENO3 discretization for 
both forward and adjoint numerical solution.

4.2 � Approximation of the discrete adjoint in the case of shocks

We now consider discontinuous solutions with shocks. Our test case is taken from 
Example 2.1 with computational domain ΩT = (0, 0.5] × [−1, 1] . The reversible solu-
tion p(0, x) at t=0 is given by (11). We apply the above described forward and adjoint 
LF, EO, and WENO3 schemes with Δx = 0.01, 0.002 , and Δt = 0.25Δx . The corre-
sponding numerical approximations p0 are shown in Fig. 2.

The first-order LF and EO schemes smear out the discontinuities, but deliver L∞-sta-
ble approximations and thus respect the analytical property of the adjoint. In the spirit 
of WENO schemes, the adjoint WENO3 delivers a quite sharp resolution of the shocks 
at the price of bounded over- and undershoots of around 5% . In Table 2, we plot the L∞
-error in the shock funnel for x ∈ [−0.3, 0.3] . All schemes converge quite rapidly. Note 
that convergence in the shock funnel is not always achieved since the interior boundary 
condition at shock positions as given in (9) does not appear on the discrete level, see the 
discussions in [1, 11, 12].

4.3 � Optimal control problem with discontinuous target

We consider the optimal control problem (1) with the objective functional [16]

Table 1   Burgers problem 
with smooth initial data 
and smooth solution: L∞
-error of the forward solution 
‖yT − y

nT ‖∞ at the final time 
T = 0.5 and adjoint solution 
‖u0 − p

0‖∞ at time t = 0 for a 
sequence of spatial meshes with 
N = 150, 300,… , 9600 grid 
points

The convergence rates are computed from ln(EN∕E2N )∕ ln(2) , where 
EN stands for the corresponding error

N ‖yT − y
nT ‖∞ Rate ‖u0 − p

0‖∞ Rate

150 2.00e−3 7.39e−3

300 3.25e−4 2.63 9.37e−4 2.98
600 2.64e−5 3.62 7.14e−5 3.71
1200 2.16e−6 3.62 4.30e−6 4.05
2400 2.76e−7 2.97 5.49e−7 2.97
4800 3.46e−8 2.99 6.92e−8 2.99
9600 4.33e−9 3.00 8.66e−9 3.00
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and the discontinuous target yd defined by

The optimal control u⋆
0
 , which serves as a reference solution, is

We will present results for two mesh sizes Δx = 0.005, 0.002 , and time steps 
Δt = 0.25Δx . The initial guess for the control is computed from (52) with the 

(55)J(y(0.5, ⋅;u0), yd(x)) =
1

2 ∫
1

−1

|y(0.5, x;u0) − yd(x)|2 dx

(56)yd(x) =

{
2x −

1

2
,
1

4
≤ x ≤ 3

4
,

0 , otherwise.

(57)u⋆
0
(x) =

{
−2x +

3

2
,
1

4
≤ x ≤ 3

4
,

0 , otherwise.

Fig. 2   Burgers problem with discontinuous initial and final solution taken from Example 2.1. Numerical 
approximations p0 to the reversible solution p0 ∶= p(0, x) given in (11) for the adjoint Lax–Friedrichs 
(LF), Engquist–Osher (EO) and WENO3 scheme applied with Δx = 0.01 (left), Δx = 0.002 (right), and 
Δt = 0.25Δx

Table 2   Burgers problem with 
discontinuous initial and final 
solution taken from Example 2.1

L∞-error of the adjoint solution ‖p0 − p
0‖∞ at time t = 0 in the shock 

funnel x ∈ [−0.3, 0.3] for Δx = 0.01, 0.002

Δx LF EO WENO3

0.01 4.91e−05 2.45e−05 3.92e−05

0.002 2.26e−17 5.79e−20 6.51e−16
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individual method under consideration. For WENO3 and the coarser mesh size, it is 
shown in Fig. 3 together with the corresponding state solution.

In Fig.  4, the results of the gradient based optimization procedure described 
above for tolerances tol1 = 10−5 , tol2 = 10−7 , and mesh size Δx = 0.005 for the 
adjoint WENO3 method are plotted. The value of the objective functional decreases 

Fig. 3   Optimal control problem. Initial control u0 and optimal control u⋆
0
 (left), initial state solution ynT at 

T = 0.5 and target yd (right), computed with the WENO3 scheme and mesh size Δx = 0.005

Fig. 4   Optimal control problem. Optimal control u⋆
0
 and target yd , numerically computed optimal con-

trol u0 and corresponding state solution ynT for tolerances tol1 = 10−5 (left) and tol2 = 10−7 (right) using 
WENO3 with mesh size Δx = 0.005
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from 4.75 ∗ 10−4 for tol1 to 3.18 ∗ 10−4 for tol2 , resulting in a better approximation 
of the target yd . We can conclude that the adjoint WENO3 method allows to recover 
the initial data together with the final state solution adequately. The shock of the 
target is sharply resolved and the rarefaction of the initial data is also recovered. In 

Fig. 5   Optimal control problem. Computed optimal control functions u0 (top) and corresponding state 
solution ynT (above the middle) with a zoom into the shock region (below the middle, bottom) for 50 
iterations of the gradient based optimization algorithm, using LF, EO, and WENO3 scheme with mesh 
size Δx = 0.005 (left) and Δx = 0.002 (right)
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order to compare these results with those obtained from the LF and EO schemes, we 
perform 50 iterations of the optimization algorithm for both mesh sizes. The calcu-
lated optimal controls and their corresponding final state solutions are collected in 
Fig. 5. The adjoint WENO3 method resolves the shock sharply. In contrast, the LF 
method is too diffusive and only provides an unsatisfactory shock resolution. The 
numerical artifacts around the shocks are huge. The optimized final state solution 
obtained by the EO scheme possesses very small numerical artifacts, but the shock 
is less sharply resolved and the spike of the target is slightly smeared out. In Table 3, 
we depict the iteration history for all runs of the optimization. In every case, the 
LF method performs poorer than the others. In terms of a low cost functional, the 
adjoint WENO3 method performs best. We also see the influence of the initial guess 
on the performance of the algorithm. This is due to the fact that the use of u0 = 0 as 
starting control value produces artificial discontinuities within each iteration step.

5 � Summary

We have developed a novel adjoint WENO3 scheme to provide approximations 
of the gradient for optimal control problems governed by hyperbolic conservation 
laws and proved third-order consistency in space for sufficiently smooth solutions. 
The adjoint WENO3 method is able to sharply resolve discontinuities of reversi-
ble solutions. For an exemplary optimal control problem with discontinuous target, 
the method works very well and outperforms common first-order methods as the 
Lax–Friedrichs and Engquist–Osher schemes.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work was supported by 
the Graduate School CE within the Centre for Computational Engineering at Technische Universität 
Darmstadt and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within 
the collaborative research centre TRR154 “Mathematical modeling, simulation and optimisation using 
the example of gas networks” (Project-ID 239904186, TRR154/2-2018, TP B01).

Availability of data and material  The data are available on request.

Table 3   Optimal control 
problem

Logarithmic values of the objective functional (55) at the begin-
ning and after 50 iterations of the optimization algorithm, J0 and J50 , 
respectively. For comparison, values for an initial control u0 = 0 for 
WENO3 are shown, too

LF EO WENO3 WENO3, u0 = 0

Δx = 0.005

   log(J0) −4.68 −5.76 −7.30 −2.48

   log(J50) −6.14 −7.80 −8.01 −6.14

Δx = 0.002

   log(J0) −5.46 −6.47 −8.34 −2.48

   log(J50) −7.02 −8.55 −8.96 −4.89
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