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Abstract
It is well-recognized that in the presence of singular (and in particular nonisolated) 
solutions of unconstrained or constrained smooth nonlinear equations, the existence 
of critical solutions has a crucial impact on the behavior of various Newton-type 
methods. On the one hand, it has been demonstrated that such solutions turn out to 
be attractors for sequences generated by these methods, for wide domains of starting 
points, and with a linear convergence rate estimate. On the other hand, the pattern of 
convergence to such solutions is quite special, and allows for a sharp characteriza-
tion which serves, in particular, as a basis for some known acceleration techniques, 
and for the proof of an asymptotic acceptance of the unit stepsize. The latter is an 
essential property for the success of these techniques when combined with a line-
search strategy for globalization of convergence. This paper aims at extensions of 
these results to piecewise smooth equations, with applications to corresponding 
reformulations of nonlinear complementarity problems.
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1  Introduction

In the recent publications [10, 11, 17], it has been demonstrated that for smooth non-
linear equations with singular (and possibly nonisolated) solutions, the local behav-
ior of various Newton-type methods is strongly affected by the existence of critical 
solutions, as defined in [18].

Specifically, [17] extends the results in [14] from the basic Newton method to 
perturbed versions, establishing their local convergence to a solution satisfying 
a certain 2-regularity property, from wide domains of starting points. This frame-
work covers a large range of Newton-type methods, including those supplied with 
stabilization mechanisms, and developed especially for tackling the case of noniso-
lated solutions, like the Levenberg–Marquardt method [22, 23] (see also [24, Chap-
ter 10.2], and [2, 26, 27] for advanced local convergence theories), the LP-Newton 
method [5], and stabilized sequential quadratic programming for optimization [7, 
16, 19, 25] (see also [20, Chapter 7]). Under the mentioned 2-regularity property, 
the convergence rate of the methods in the framework is linear with a common ratio 
of 1/2, and cannot be any faster, whereas the 2-regularity requirement can only hold 
at those singular solutions that are critical.

The results of [17] were further extended in [10] to the case of constrained 
equations, with applications to complementarity problems through their piecewise 
decompositions.

The special convergence pattern of the basic Newton method established in [14] 
serves as a basis of some techniques for acceleration of its convergence, such as 
extrapolation and overrelaxation [13, 15]. However, when combined with a line-
search strategy for globalization of convergence, these techniques are only useful 
when the basic method asymptotically accepts the unit stepsize. The latter property, 
which is not at all automatic near singular solutions, has been established in [10].

In this paper, we aim at obtaining the results of [10, 11, 17] for a much more gen-
eral setting of (unconstrained and constrained) piecewise smooth equations, which 
further allows to treat complementarity problems directly rather than through their 
piecewise decompositions. We emphasize that we do not propose any new algo-
rithms here, and therefore, do not provide numerical comparisons; we rather ana-
lyze theoretical properties of known (classes of) algorithms under nonstandard cir-
cumstances. The results in this work strongly rely on those in [10, 11, 17], and are 
obtained by combining techniques from these references with specificities of piece-
wise smooth structures. However, these combinations involve some rather subtle 
ingredients, like choosing a direction with appropriate collection of active smooth 
selections associated to it in Theorems 1 and 2, the role of condition (32) for globali-
zation issues, separation of constraints into two parts in Theorem 3, etc. All these 
ingredients are crucial to cover a much wider territory then in [10, 11, 17], which 
is demonstrated by rather nontrivial direct (i.e., not requiring any decompositions) 
applications to complementarity problems in Sect. 4.

The rest of the paper is structured as follows. In Sect. 2, we consider unconstrained 
piecewise smooth equations. Section 2.1 contains the problem setting and the related 
objects and terminology, including the basic piecewise Newton method. We also 
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discuss the requirement of 2-regularity, needed for the subsequent development, and its 
relations to the concept of a critical solution. In Sect. 2.2, we provide an upper estimate 
of the set of active smooth selections at nearby points, playing the key role for the entire 
paper, and discuss the related assumptions. Section 2.3 provides the result on local con-
vergence for a large class of algorithms that can be modeled as a perturbed piecewise 
Newton method. Section 2.4 deals with asymptotic acceptance of the unit stepsize. Sec-
tion 3 is concerned with extensions of the obtained results to the case of constrained 
piecewise smooth equations. Finally, in Sect.  4, we consider the applicability of the 
developed theory to nonlinear complementarity problems reformulated using the min 
complementarity function.

Some words about our notation which is fairly standard. By ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ we denote 
the Euclidean inner product and the corresponding norm, respectively, unless speci-
fied otherwise. For a given index set J, we write uJ for the subvector of a vector u, with 
components uj , j ∈ J . Similarly, MJ stands for a submatrix of a matrix M, with rows 
Mj , j ∈ J . By I  , we denote an identity matrix of a size always clear from the context. 
Furthermore, kerM and imM stand for the null space and the range space of a matrix 
(linear operator) M, respectively. Finally, RU(u) stands for the radial cone to a set U at 
u ∈ U , i.e., the set of directions v ∈ ℝ

p such that u + tv ∈ U for all t > 0 small enough.

2 � Piecewise Newton‑type methods

2.1 � Problem setting and preliminaries

We consider the equation

where � ∶ ℝ
p
→ ℝ

p is a piecewise smooth mapping. By the latter we mean that � is 
continuous, and there exist smooth selection mappings �1, … , �q ∶ ℝ

p
→ ℝ

p with

A mapping is called smooth, if it is continuously differentiable.
For a given u ∈ ℝ

p , let

stand for the set of indices of all selection mappings active at u. By the continu-
ity requirements, the set-valued mapping A(⋅) is evidently outer semicontinuous, 
i.e., A(u) ⊂ A(ū) holds for any ū ∈ ℝ

p and all u ∈ ℝ
p close enough to ū . From [6, 

Lemma  4.6.1] we have that � is directionally differentiable at ū in any direction 
v ∈ ℝ

p , with the directional derivative 𝛷�(ū; v) , and

as v → 0 . Moreover, 𝛷�(ū; ⋅) is everywhere continuous, and

(1)�(u) = 0,

�(u) ∈ {�1(u), … , �q(u)} ∀ u ∈ ℝ
p.

(2)A(u) ∶= {j ∈ {1, … , q} ∣ �(u) = �j(u)}

(3)𝛷(ū + v) = 𝛷(ū) +𝛷�(ū; v) + o(‖v‖)
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Let G ∶ ℝ
p
→ ℝ

p×p be any mapping possessing the following property:

Near a current iterate uk ∈ ℝ
p , piecewise Newton-type methods rely on the follow-

ing approximation of Eq. (1):

Observe that there exists jk ∈ A(uk) such that (6) can be written as

which is the classical Newton method iteration system for the smooth equation

According to the outer semicontinuity property of A(⋅) , for any uk close enough to 
some fixed solution ū of (1), it holds that jk ∈ A(uk) implies jk ∈ A(ū) . If A(ū) is a 
singleton {̂�} , then the piecewise Newton method reduces to the classical one for the 
smooth Eq. (8) with jk = �̂  . In this case, various local results obtained for smooth 
(constrained) equations can be easily extended to the piecewise smooth setting.

The case when A(ū) may be not a singleton is much more interesting and 
involved, as jk can vary with k, no matter how close the iterates are to ū . This case 
will be addressed below, with the main emphasis on the situation when the solution 
ū in question is singular in a well-defined sense implying that (𝛷j)�(ū) is singular for 
some j ∈ A(ū) . Observe that the latter is automatic when ū is a nonisolated solution 
of (1). As explained above, our focus will be on the results on local attraction to 
some special solutions of this kind for various piecewise Newton-type methods, as 
well as on acceptance of the unit stepsize.

In order to explain which singular solutions of Eq. (1) we are interested in, let 
us recall the concept of 2-regularity, in one of its equivalent forms, convenient for 
our purposes. Assuming that a selection mapping �j ∶ ℝ

p
→ ℝ

p is twice differenti-
able at ū ∈ ℝ

p , �j is said to be 2-regular at ū in a direction v̄ ∈ ℝ
p if there exists no 

v ∈ ker(𝛷j)�(ū) , v ≠ 0 , such that

Observe that this property is stable subject to small perturbations of v̄ , the fact that 
will be used in the discussion preceding Theorem  1. The key assumption in that 
theorem and other main results presented below is the existence of v̄ ∈ ker(𝛷j)�(ū) , 
v̄ ≠ 0, such that �j is 2-regular at ū in the direction v̄ . According to [17, Proposi-
tion 1], if this assumption holds for j ∈ A(ū) , then ū is necessarily a critical solution 
of the equation

(4)𝛷�(ū; v) ∈ {(𝛷j)�(ū)v ∣ j ∈ A(ū)} ∀ v ∈ ℝ
p.

(5)G(u) ∈ {(�j)�(u) ∣ j ∈ A(u)} ∀ u ∈ ℝ
p.

(6)�(uk) + G(uk)(u − uk) = 0.

(7)�jk (uk) + (�jk )�(uk)(u − uk) = 0,

(8)�jk (u) = 0.

(𝛷j)��(ū)[v̄, v] ∈ im(𝛷j)�(ū).

(9)�j(u) = 0,
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in a sense of [18, Definition 1]. That is why we are talking about the behavior of 
Newton-type methods near critical solutions.

2.2 � Key construction

For any ū ∈ ℝ
p and v ∈ ℝ

p , define the index set

Further assuming that ‖v‖ = 1 , for any 𝜀 > 0 and 𝛿 > 0 , define the set

Proposition 1  Let � ∶ ℝ
p
→ ℝ

p be piecewise smooth, with smooth selection map-
pings �1, … , �q ∶ ℝ

p
→ ℝ

p . For a given solution ū of (1), let v̄ ∈ ℝ
p be such that 

‖v̄‖ = 1 and

Then there exist 𝜀 > 0 and 𝛿 > 0 such that

Proof  We argue by contradiction: suppose that there exist sequences {�k} → 0+ , 
{�k} → 0+ , and {uk} ⊂ ℝ

p such that, for all k, it holds that uk ∈ K𝜀k , 𝛿k
(ū, v̄) , and 

there exists jk ∈ A(uk) ⧵A(ū, v̄) . Passing to subsequences, if necessary, we may 
suppose that jk = j is the same for all k. Outer semicontinuity of A(⋅) at ū yields that 
j ∈ A(ū) . Thus, since j ∉ A(ū, v̄) , (10) implies that v̄ ∉ ker(𝛷j)�(ū) . Hence, there 
exists 𝛾 > 0 such that

for all k large enough. On the other hand, from (11) we have that

as k → ∞ , and therefore, according to (3), (12), and continuity of 𝛷�(ū; ⋅),

contradicting (14). 	�  ◻

The following corollary of Proposition 1 is evident.

(10)A(ū, v) ∶= {j ∈ A(ū) ∣ v ∈ ker(𝛷j)�(ū)}.

(11)K𝜀, 𝛿(ū, v) ∶=

�
u ∈ ℝ

p
���� 0 < ‖u − ū‖ ≤ 𝜀,

����
u − ū

‖u − ū‖ − v
���� ≤ 𝛿

�
.

(12)𝛷�(ū; v̄) = 0.

(13)A(u) ⊂ A(ū, v̄) ∀ u ∈ K𝜀, 𝛿(ū, v̄).

(14)‖𝛷(uk)‖ = ‖𝛷j(uk)‖ = ‖(𝛷j)�(ū)(uk − ū)‖ + o(‖uk − ū‖) ≥ 𝛾‖uk − ū‖

����
uk − ū

‖uk − ū‖ − v̄
���� ≤ 𝛿k → 0

𝛷(uk) = ‖uk − ū‖𝛷�

�
ū;

uk − ū

‖uk − ū‖
�
+ o(‖uk − ū‖) = o(‖uk − ū‖),
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Corollary 1  Under the assumptions of Proposition 1, let A(ū, v̄) consist of a single 
index �̂ .

Then there exist 𝜀 > 0 and 𝛿 > 0 such that

The next example shows that, in general, assumption (12) cannot be dropped in 
Corollary 1, and hence, in Proposition 1.

Example 1  Let p = 1 , �(u) = min{u, u2} . Then � is piecewise smooth, with 
smooth selection functions �1(u) = u and �2(u) = u2 , both active at the solution 
ū = 0 of (1). For v̄ = −1 , we have that A(ū, v̄) = {�𝚥} with �̂ = 2 , as (�2)�(0) = 0 and 
(𝛷1)�(0)v̄ = −1 . At the same time, for all u < 0 , we have |�(u)| = −u , and hence, 
𝛷�(0; v̄) = −1 , so that (12) does not hold, and (15) (and hence, (13)) do not hold as 
well, since A(tv̄) = {1} for all t > 0.

Remark 1  Assumption (12) in Proposition 1 is implied by the following condition 
related to some further restrictions on the kind of piecewise smoothness, which will 
play an important role for constrained equations (cf. (32)), and especially for con-
strained reformulations of complementary problems in Sect. 4 below:

with some 𝜀 > 0 and 𝛿 > 0 . Indeed, by the same reasoning as in the proof of Propo-
sition 1, from (3), (10), and (16), we obtain that

for u ∈ K𝜀, 𝛿(ū, v̄) as � → 0+ , � → 0+ , yielding (12).

The converse implication is valid assuming that A(ū, v̄) consists of a single 
index �̂  . In this case, the inequality in (16) with j = �̂  holds as equality for 𝜀 > 0 
and 𝛿 > 0 small enough. This is an immediate consequence of Corollary 1. The 
next example demonstrates that when A(ū, v̄) is not a singleton, condition (12) 
may hold when (16) does not.

Example 2  Let p = 1 , �(u) = min{−u2, −u2 + �(u)} , where � ∶ ℝ → ℝ is given by

(15)A(u) = {�𝚥} ∀ u ∈ K𝜀, 𝛿(ū, v̄).

(16)∃ j ∈ A(ū, v̄) such that ‖𝛷(u)‖ ≤ ‖𝛷j(u)‖ ∀ u ∈ K𝜀, 𝛿(ū, v̄),

‖𝛷�(ū; v̄)‖ =‖u − ū‖𝛷�

�
ū;

u − ū

‖u − ū‖
�
+ o(‖u − ū‖)

=‖𝛷(u)‖ + o(‖u − ū‖)
≤‖𝛷j(u)‖ + o(‖u − ū‖)
=‖u − ū‖����(𝛷

j)�(ū)
u − ū

‖u − ū‖
���� + o(‖u − ū‖)

=o(‖u − ū‖)
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Then � is piecewise smooth, with smooth selection functions �1(u) = −u2 and 
�2(u) = −u2 + �(u) , both active at the solution ū = 0 of (1), and

For any v̄ ≠ 0 , we have that A(ū, v̄) = {1, 2} , as (�1)�(0) = (�2)�(0) = 0 , imply-
ing further that �(u) = O(u2) , thus (12) is satisfied. At the same time, take 
any sequence {uk} → 0+ such that for all k it holds that sin(1∕uk) > 0 . Then 
�(uk) = �1(uk) = −(uk)2 , and hence,

where we have taken into account that �(u) = O(|u|5) = o(u2) . On the other hand, 
by a similar reasoning, if sin(1∕uk) < 0 , then �(uk) = �2(uk) = −(uk)2 + �(uk) , and 
hence,

Therefore, (16) does not hold.
Figure 1 shows the graphs of the smooth selections �1 (dashed line) and �2 (solid 

line), and a typical run of the method given by (6): white circles show the iterates 
corresponding to �1 , while black circles – to �2.

�(u) ∶=

{
u5 sin(1∕u), if u ≠ 0,

0, if u = 0.

𝛷(u) =

{
𝛷1(u), if 𝜑(u) ≥ 0,

𝛷2(u), if 𝜑(u) < 0.

|𝛷2(uk)| = | − (uk)2 + 𝜑(uk)| < |𝛷(uk)|,

|𝛷1(uk)| = (uk)2 < |𝛷(uk)|.

-0.4 -0.3 -0.2 -0.1  .1 0.2 0.3 0.4

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Fig. 1   Piecewise Newton method for Example 2
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Proposition 1 gives a key for extending the results in [11, 17] to the piecewise 
smooth case.

2.3 � Attraction to critical solutions

We first present a result on local attraction of the perturbed piecewise Newton 
method to a solution which is critical with respect to some smooth selection map-
pings active at this solution. The essence of this result is as follows: Proposition 1 
allows to show that the perturbed piecewise Newton method fits the algorithmic 
framework of [17, Theorem  1] when this framework is applied to the smooth 
equations corresponding to an appropriate collection of active smooth selections.

For given ū ∈ ℝ
p and v̄ ∈ ℝ

p , assuming that N = ker(𝛷j)�(ū) is the same for all 
j ∈ A(ū, v̄) , we will use the uniquely defined decomposition of every u ∈ ℝ

p into 
the sum u = u1 + u2 , with u1 ∈ N

⊥ and u2 ∈ N  . Let Π be the orthogonal projector 
onto N  in ℝp.

The assumption that the null spaces of (𝛷j)�(ū) coincide for all j ∈ A(ū, v̄) may 
seem restrictive, while in fact it is not, in the following sense. Suppose that for a 
given v̄ , there exist j1, j2 ∈ A(ū, v̄) such that ker(𝛷j1 )�(ū) ≠ ker(𝛷j2 )�(ū) . There-
fore, there must exist v̂ ∈ ℝ

p such that it belongs, say, to the first of these null 
spaces but not to the second. Then, for any real t close enough to 0, it holds that 
v̄ + t�v ∈ ker(𝛷j1 )�(ū) , v̄ + t�v ∉ ker(𝛷j2 )�(ū) , while the evident outer semicontinuity 
of A(ū, ⋅) implies that A(ū, v̄ + t�v) ⊂ A(ū, v̄) . By (4), we then have that, in par-
ticular, A(ū, v̄ + t�v) cannot contain both indices j1 and j2 simultaneously. Con-
tinuing this procedure with v̄ replaced by v̄ + t�v , we end up with v̄ such that either 
A(ū, v̄) is a singleton, or the null spaces of (𝛷j)�(ū) coincide for all j ∈ A(ū, v̄) . 
Moreover, this v̄ can be taken arbitrarily close to the original one, and therefore, 
the 2-regularity properties in the original direction will be preserved for this v̄.

Theorem  1  Let � ∶ ℝ
p
→ ℝ

p be piecewise smooth, with smooth selection map-
pings �1, … , �q ∶ ℝ

p
→ ℝ

p . For a given solution ū of (1), let v̄ ∈ ℝ
p with ‖v̄‖ = 1 

be satisfying the following requirements: 

1.	 For every j ∈ A(ū, v̄) , the selection mapping �j is twice differentiable near ū , 
with its second derivative being Lipschitz-continuous with respect to ū , that is, 

as u → ū , ker(𝛷j)�(ū) = N  , where the linear subspace N  does not depend on j, 
and �j is 2-regular at ū in direction v̄.

2.	 Condition (12) holds.

Then, for any G ∶ ℝ
p
→ ℝ

p×p satisfying (5), any � ∶ ℝ
p
→ ℝ

p×p and � ∶ ℝ
p
→ ℝ

p 
satisfying

(17)(𝛷j)��(u) − (𝛷j)��(ū) = O(‖u − ū‖)
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as u → ū , and any �𝜀 > 0 and �𝛿 > 0 , there exist 𝜀 > 0 and 𝛿 > 0 such that for every 
starting point u0 ∈ K𝜀, 𝛿(ū, v̄) , there exists the unique sequence {uk} ⊂ ℝ

p such that 
for each k, the iterate uk+1 solves

and for this sequence, and for each k, it holds that uk
2
≠ ū2 , uk ∈ K�𝜀, �𝛿(ū, v̄) , {u

k} con-
verges to ū , {‖uk − ū‖} converges to zero monotonically,

as k → ∞ , and

Proof  According to Proposition 1, if �𝜀 > 0 and �𝛿 > 0 are small enough, then for all 
uk ∈ K�𝜀, �𝛿(ū, v̄) , Eq. (21) coincides with

for some j ∈ A(ū, v̄) , defining a perturbed Newton method step for the smooth 
Eq. (9). The proof in [17, Theorem 1] does not depend on the index j of this equa-
tion. Rather, it relies on the existence of the perturbed Newton method step vk for 
this equation at uk ∈ K�𝜀, �𝛿(ū, v̄) with sufficiently small �𝜀 > 0 and �𝛿 > 0 , and on the 
description of vk in the form of the estimates on vk

1
 and vk

2
 , i.e., the properties estab-

lished in [17, Lemma 1]. Note that u = uk + vk solves Eq. (24). It remains to observe 
that, under the stated assumptions, this lemma is applicable to Eq. (9) and the cor-
responding iteration Eq. (24) for every j ∈ A(ū, v̄) , and since this index set is finite, 
the needed estimates on vk

1
 and vk

2
 can be considered the same for all j ∈ A(ū, v̄) . 

Then the assertion in [17, Theorem 1] gives the desired conclusions. 	�  ◻

Remark 2  According to [17, Lemma 1], the iterates in Theorem 1 also satisfy

as uk → ū , an estimate that will be needed below.

Similarly to Proposition  1, assumption (12) cannot be dropped in Theorem  1, 
even when �(⋅) ≡ 0 and �(⋅) ≡ 0 so that (21) transforms into (6).

(18)𝛺(u) = O(‖u − ū‖), 𝜔(u) = O(‖u − ū‖2),

(19)Π𝛺(u) = O(‖u1 − ū1‖) + O(‖u − ū‖2),

(20)Π𝜔(u) = O(‖u − ū‖‖u1 − ū1‖) + O(‖u − ū‖3)

(21)�(uk) + (G(uk) +�(uk))(u − uk) = �(uk),

(22)
‖uk+1

1
− ū1‖

‖uk+1
2

− ū2‖
= O(‖uk − ū‖)

(23)lim
k→∞

‖uk+1
2

− ū2‖
‖uk

2
− ū2‖

=
1

2
.

(24)�j(uk) + ((�j)�(uk) +�(uk))(u − uk) = �(uk)

(25)uk+1 − uk = O(‖uk − ū‖)
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Example 1  (continued) In that example, �2 is 2-regular at 0 in the direction v̄ = −1 
(as (𝛷2)��(0)[v̄] = −2 ). Therefore, all assumptions of Theorem 1 are satisfied with 
this v̄ , except for (12).

For any u0 < 0 , no matter how close to 0, we have that �(u0) = u0 , A(u0) = {1} , 
and according to (5), G(u0) = 1 . Then the next iterate generated by solving (6) is 
u1 = 0 , disagreeing with the assertion of Theorem 1.

Example 2  (continued) This example demonstrates the situation when Theorem 1 is 
applicable with A(ū, v̄) not being a singleton. Indeed, one can easily see that, say, for 
v̄ = 1 , requirement 1 of Theorem 1 is satisfied (with N = ℝ ), while (12) in require-
ment 2 has already been demonstrated above.

Numerical experiments show that switching between different smooth selections 
is typical for iterates generated by solving (6).

As explained in [17], the perturbation terms � and � serve to cover various 
specific Newton-type methods within the general framework (21). We next men-
tion several such methods available for the piecewise smooth setting. To begin 
with, as already mentioned above, taking �(⋅) ≡ 0 and �(⋅) ≡ 0 yields the basic 
piecewise Newton method (6).

Subproblem (6) can be replaced by the following unconstrained convex optimi-
zation problem:

which is always solvable (unlike (6)), though the solution set can be a non-singleton 
affine manifold. The family of algorithms employing this subproblem (e.g., with 
specific rules for choosing a solution of (26) when it is not unique, like picking up 
the solution minimizing ‖u − uk‖ ) can be referred to as the piecewise Gauss–Newton 
method.

A stabilized version of both the piecewise Newton method and the piecewise 
Gauss–Newton method is the piecewise Levenberg–Marquardt method [4, 8]. It 
generates the next iterate as the solution of the subproblem

where � ∶ ℝ
p
→ ℝ+ defines the regularization parameter. If 𝜌(uk) > 0 , the objec-

tive function of this subproblem is strongly convex quadratic, and in particular, the 
subproblem has a unique solution. A typical choice is �(u) ∶= ‖�(u)‖� with some 
𝜏 > 0 . For our purposes here, we require that � ≥ 2 . Since ‖ ⋅ ‖ denotes the Euclid-
ean norm, solving (27) is the same as solving the linear equation

A different stabilizing construction is the piecewise LP-Newton method [5]. In our 
setting, its subproblem has the form

(26)min
1

2
‖�(uk) + G(uk)(u − uk)‖2,

(27)min
1

2
‖�(uk) + G(uk)(u − uk)‖2 + 1

2
�(uk)‖u − uk‖2,

(28)G(uk)⊤𝛷(uk) + (G(uk)⊤G(uk) + 𝜌(uk)I)(u − uk) = 0.
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with variables (u, �) ∈ ℝ
p ×ℝ . If ‖ ⋅ ‖ denotes the l∞-norm, then this is a linear pro-

gram (hence the name of the method). It can be easily seen that (29) is always solv-
able, unless uk is a solution of (1), but a solution of (29) need not be unique, and it is 
assumed that an arbitrary solution can be picked up.

By considerations similar to those in [17], it follows that under the assumptions 
of Theorem 1, all these methods can be interpreted through the perturbed piecewise 
Newton method framework (21). Specifically, if uk ∈ K�𝜀, �𝛿(ū, v̄) with sufficiently 
small �𝜀 > 0 and �𝛿 > 0 , then uk+1 produced by these methods satisfies (21) with 
appropriate choices of � and � (sometimes not defined explicitly). This implies that 
the conclusions of Theorem 1 are valid for all these methods.

2.4 � Acceptance of the unit stepsize

Our next result is concerned with acceptance of the unit stepsize by the piecewise 
Newton method supplied with a natural linesearch procedure, near a solution which 
is critical with respect to some active smooth selection mappings. Again, the key 
tool is Proposition  1 allowing to show that this method fits [11, Proposition  3] 
applied to proper active smooth selections. To that end, we state the following model 
algorithm.

Algorithm 1  Choose u0 ∈ ℝ
p , � ∈ (0, 1) , � ∈ (0, 1) , and set k = 0 . 

1.	 If �(uk) = 0 , stop.
2.	 Compute ũk+1 as a solution of (6), and set vk = ũk+1 − uk.
3.	 Set � = 1 . If the inequality 

 is satisfied, set �k = � . Otherwise, replace � by �� , check the inequality (30) 
again, etc., until (30) becomes valid.

4.	 Set uk+1 = uk + �kv
k.

5.	 Increase k by 1 and go to Step 1.

Theorem 2  Under the assumptions of Theorem 1, for any G ∶ ℝ
p
→ ℝ

p×p satisfy-
ing (5), any �𝜀 > 0 , �𝛿 > 0 , and any � ∈ (0, 3∕4) and � ∈ (0, 1) , there exist 𝜀 > 0 and 
𝛿 > 0 such that for every starting point u0 ∈ K𝜀, 𝛿(ū, v̄) , Algorithm 1 uniquely defines 
the sequence {uk} , uk ∈ K�𝜀, �𝛿(ū, v̄) for all k, and (30) holds with � = 1 for all k large 
enough.

Proof  The reasoning is essentially the same as for Theorem  1, but with [17, 
Lemma 1] replaced by [11, Lemma 1], and with [17, Theorem 1] replaced by [11, 
Proposition  3]. One should also note that since A(ū, v̄) is finite, all the constants 

(29)
min �
s.t. ‖�(uk) + G(uk)(u − uk)‖ ≤ �‖�(uk)‖2,

‖u − uk‖ ≤ �‖�(uk)‖,

(30)‖�(uk + �vk)‖ ≤ (1 − ��)‖�(uk)‖
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arising along the way of proving [11, Proposition 3] can be chosen the same for all 
j ∈ A(ū, v̄) . 	�  ◻

Apart from playing a key role in establishing that Algorithm 1 can be expected to 
inherit the linear convergence rate of the piecewise Newton method, Theorem 2 is 
essential in this context for justification of known techniques for acceleration of con-
vergence, such as extrapolation and overrelaxation; see [13, 15] and [11, 12].

3 � Constrained case

3.1 � Problem setting

We now consider the constrained version of Eq. (1), namely,

where U ⊂ ℝ
p is a closed convex set. Such constraints can be exogenous by nature 

(e.g., when solutions of the unconstrained equation make physical sense only if 
they satisfy these constraints, like nonnegativity restrictions on the components of 
u representing quantities), or be intrinsic ingredients of the problem setting (e.g., in 
some reformulations of complementarity conditions). On the other hand, artificially 
imposing relevant constraints can be essential for justification of strong local conver-
gence properties of Newton-type methods [5, 8], as well as for globalization of their 
convergence.

Even though Theorem 2 is valid and characterizes an important local feature of 
Algorithm 1, the linesearch procedure in this algorithm does not make much sense, 
in general, as the direction vk of the piecewise Newton method does not need to be a 
direction of descent for ‖�(⋅)‖ at uk . However, suppose that there exists U ⊂ ℝ

p with 
the following property:

(cf. (16)). This important kind of piecewise smoothness has already been considered 
in [9, (4.8)]. Since there exists jk ∈ A(uk) such that uk + vk solves (7), and assuming 
that ‖�jk (uk)‖ = ‖�(uk)‖ ≠ 0 , we obtain in a standard way that vk is a direction of 
descent for ‖�jk (⋅)‖ at uk , where this function is smooth with its gradient at uk equal 
to ((𝛷jk )�(uk))⊤𝛷jk (uk)∕‖𝛷jk (uk)‖ . Assuming now that uk ∈ U , and vk is a feasible 
direction for U at uk (which is of course not automatic, and has to be ensured by 
appropriate modifications of Algorithm 1; see below), from (32) we have that

for all 𝛼 > 0 small enough.
Employing Proposition 1, one can readily extend Theorems 1 and 2 to the con-

strained case, along the lines of [10]. Specifically, under the additional assumption 
v̄ ∈ intRU(ū) , one can claim that in these theorems 𝜀 > 0 and 𝛿 > 0 can be taken 
small enough so that the sequence {uk} in question entirely belongs to U.

(31)�(u) = 0, u ∈ U,

(32)‖�(u)‖ ≤ ‖�j(u)‖ ∀ j ∈ {1, … , q}, ∀ u ∈ U

‖𝛷(uk + 𝛼vk)‖ ≤ ‖𝛷jk (uk + 𝛼vk)‖ < ‖𝛷jk (uk)‖ = ‖𝛷(uk)‖
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However, as will be demonstrated in Sect. 4, such results cannot be applied directly 
to, say, constrained reformulations of complementarity problems, because the require-
ment v̄ ∈ intRU(ū) appears too restrictive for the choices of U relevant in that context, 
in the absence of strict complementarity. To that end, in the next Sect.  3.2, we will 
assume that the interiority assumption on v̄ holds only for a part of constrains, while the 
other constraints are observed by the iteration of the piecewise Newton method itself. 
Afterwards, we will show how this framework, being combined with the unconstrained 
Theorem 1, allows to cover various implementable Newton-type methods intended for 
solving the constrained problem (31). In Sect. 4, all the developed machinery will be 
applied to complementarity problems.

3.2 � Main result for the constrained case

Combining Theorem  1 with [10, Lemma  3.1], we obtain the following constrained 
counterpart of that theorem, but concerned with the basic piecewise Newton method 
only. Later in this section, we demonstrate how this result, combined with Theorem 1 
for the unconstrained case, allows to cover various Newton-type methods for solving 
the constrained Eq. (31).

Theorem  3  Let � ∶ ℝ
p
→ ℝ

p be piecewise smooth, with smooth selection map-
pings �1, … , �q ∶ ℝ

p
→ ℝ

p . For a given solution ū of (31), let v̄ ∈ ℝ
p with 

‖v̄‖ = 1 , a convex set P = P(v̄) ⊂ ℝ
p , and a set Q = Q(v̄) ⊂ ℝ

p , with U = P ∩ Q , be 
satisfying the following requirements: 

1.	 For every j ∈ A(ū, v̄) , the selection mapping �j is twice differentiable near ū , 
(17) holds as u ∈ U tends to ū , ker(𝛷j)�(ū) = N  , where the linear subspace N  
does not depend on j, and � is 2-regular at ū in a direction v̄.

2.	 Condition (12) holds.
3.	 It holds that v̄ ∈ intP.
4.	 There exist �𝜀 > 0 and �𝛿 > 0 such that for every j ∈ A(ū, v̄) , and for any 

uk ∈ K�𝜀 �𝛿(ū, v̄) ∩ U , any solution of the equation

belongs to Q.
Then, for any G ∶ ℝ

p
→ ℝ

p×p be satisfying (5), and any �𝜀 > 0 and �𝛿 > 0 , there exist 
𝜀 > 0 and 𝛿 > 0 such that for every starting point u0 ∈ K𝜀, 𝛿(ū, v̄) ∩ U , there exists the 
unique sequence {uk} ⊂ ℝ

p such that for each k, the iterate uk+1 solves (6), and for this 
sequence, and for each k, it holds that uk

2
≠ ū2 , uk ∈ K�𝜀, �𝛿(ū, v̄) ∩ U , {uk} converges to 

ū , {‖uk − ū‖} converges to zero monotonically, and estimates (22) and (23) hold.
Similarly to Remark 1, one can see that requirement 2 in Theorem 3 is automatically 

satisfied if

with some 𝜀 > 0 and 𝛿 > 0 . Observe that (33) holds if (32) is valid.

�j(uk) + (�j)�(uk)(u − uk) = 0

(33)∃�𝚥 ∈ A(ū, v̄) such that ‖𝛷(u)‖ ≤ ‖𝛷�𝚥(u)‖ ∀ u ∈ K𝜀, 𝛿(ū, v̄) ∩ U,
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Under the assumptions of Theorem 3, one can also apply Theorem 2 in order to 
establish asymptotic acceptance of the unit stepsize; there is no need to state this 
result separately in the constrained case.

We now consider some implementable Newton-type methods for problem (31).
Given a current iterate uk ∈ U , the next iterate uk+1 of the constrained piecewise 

Gauss–Newton method is defined by solving the subproblem

The objective function of this subproblem is convex quadratic, and if U is polyhe-
dral, (34) always has a solution due to the Frank–Wolfe theorem [3, Theorem 2.8.1], 
but a solution of this subproblem needs not be unique, in general. However, under 
the assumptions of Theorem 3, we evidently obtain that, when initialized appropri-
ately, the piecewise Gauss–Newton method uniquely defines the iterative sequence 
coinciding with the sequence of the unconstrained piecewise Newton method, and 
hence, inherits all the properties of the latter, specified in Theorem 1.

An alternative possibility is to solve the unconstrained piecewise Newton itera-
tion system (6) for uk

N
 , or the unconstrained piecewise Gauss–Newton subproblem 

(26) for uk
GN

 , and then define uk+1 as the projection of uk
N

 or uk
GN

 onto U. This yields 
the projected piecewise Newton method and the projected piecewise Gauss–Newton 
method, respectively. Recall that neither existence nor uniqueness of solutions of (6) 
can be guaranteed without further assumptions, while (26) is always solvable, but its 
solution set can be a non-singleton affine manifold. Yet again, under the assumptions 
of Theorem  3, we readily get the same conclusions as for the constrained piece-
wise Gauss–Newton method: all the three methods behave identically to the uncon-
strained piecewise Newton method, when initialized appropriately.

The stabilized version of the constrained piecewise Gauss–Newton method is the 
constrained piecewise Levenberg–Marquardt method [21] with the following con-
strained counterpart of subproblem (27):

Assuming that 𝜌(uk) > 0 (which holds automatically for typical choices of �(⋅) dis-
cussed above, provided the current iterate uk ∈ U is not a solution of (31)), this sub-
problem has the unique solution uk+1 . According to Theorem 3, if �𝜀 > 0 and �𝛿 > 0 
are small enough, then the inclusion uk ∈ K�𝜀, �𝛿(ū, v̄) implies the existence of the 
unique uk

N
 solving (6), and this uk

N
 belongs to U. In particular, it is feasible in (35), 

and therefore,

implying that

(34)min
1

2
‖�(uk) + G(uk)(u − uk)‖2 s.t. u ∈ U.

(35)min
1

2
‖�(uk) + G(uk)(u − uk)‖2 + 1

2
�(uk)‖u − uk‖2 s.t. u ∈ U.

‖�(uk) + G(uk)(uk+1 − uk)‖2 + �(uk)‖uk+1 − uk‖2 ≤ �(uk)‖uk
N
− uk‖2,

‖�(uk) + G(uk)(uk+1 − uk)‖ ≤
√
�(uk)‖uk

N
− uk‖.
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Moreover, according to estimate (25) in Remark 2 applied with � ≡ 0 and � ≡ 0 , we 
have that uk

N
− uk = O(‖uk − ū‖) as uk → ū . Therefore, if �(⋅) = ‖�(⋅)‖� with � ≥ 2 , 

then uk+1 solves (21) with � ≡ 0 and some �(⋅) satisfying 𝜔(u) = O(‖u − ū‖‖𝛷(u)‖) 
as u → ū . As demonstrated in [17], these perturbation mappings � and � satisfy 
(18)–(20). This allows to apply Theorem 1, with the corresponding conclusions for 
the constrained piecewise Levenberg–Marquardt method.

The constrained piecewise LP-Newton method is a natural extension of (29) to 
the constrained setting, and in fact, the method was originally introduced in [5] pre-
cisely for the constrained setting, with the subproblem

with variables (u, �) ∈ ℝ
p ×ℝ . For uk

N
 defined as above, we then have that 

(uk
N
, ‖uk

N
− uk‖∕‖�(uk)‖) is feasible in (36), and hence, the optimal value �(uk) of 

this problem satisfies �(uk) ≤ ‖uk
N
− uk‖∕‖�(uk)‖ . Similarly to (29), subproblem 

(36) is always solvable, and for any solution uk+1 it holds that

This leads to the same conclusions for the constrained piecewise LP-Newton method 
as those derived above for the constrained piecewise Levenberg–Marquardt method.

4 � Applications to complementarity problems

Consider now the nonlinear complementarity problem (NCP)

with a smooth mapping F ∶ ℝ
n
→ ℝ

n.

4.1 � Unconstrained reformulation

Setting u ∶= x (and p ∶= n ), problem (37) is equivalent to Eq. (1) with the mapping 
� ∶ ℝ

n
→ ℝ

n defined by

where the min-operation is applied componentwise.
Let q ∶= 2n , and fix any one-to-one mapping j ↦ I(j) from {1, … , q} to the set 

of all different subsets of {1, … , n} (including ∅ and the entire {1, … , n} ). Then 
the mapping � defined in (38) is piecewise smooth, and the corresponding smooth 
selection mappings �j ∶ ℝ

n
→ ℝ

n have the components

(36)

min �
s.t. ‖�(uk) + G(uk)(u − uk)‖ ≤ �‖�(uk)‖2,

‖u − uk‖ ≤ �‖�(uk)‖,
u ∈ U,

‖�(uk) + G(uk)(uk+1 − uk)‖ ≤ �(uk)‖�(uk)‖2 ≤ ‖uk
N
− uk‖‖�(uk)‖.

(37)x ≥ 0, F(x) ≥ 0, ⟨x, F(x)⟩ = 0,

(38)�(u) ∶= min{u, F(u)},
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Therefore, for a given u ∈ ℝ
n , the set of indices of active selection mappings defined 

according to (2) takes the form

where

is a natural partitioning of the index set {1, … , n} . Hence, the requirement (5) on 
the choice of a mapping G ∶ ℝ

n
→ ℝ

n×n can be written for the rows Gi(u) of G(u) as 
follows:

where ei = (0, … , 0, 1, 0, … , 0) , with 1 at the i-th place, i = 1, … , n.
With these objects defined, in order to solve NCP (37), one can apply the 

methods discussed in Sect. 2.3 to Eq. (1) with � defined in (38).
We proceed with deriving conditions allowing to apply Theorem 1 in this con-

text. Observe that if x̄ is a solution of (37), then

For brevity, we will use the notation ⧵J ∶= I= ⧵ J.
The following is [20, Proposition  3.21]; we state it here for convenience of 

references below.

Lemma 1  Let x̄ be a solution of (37) with F ∶ ℝ
n
→ ℝ

n being differentiable at x̄ , 
and consider any 𝜉 ∈ ℝ

n , 𝜉 ≠ 0.
Then condition (12) is satisfied for � defined in (38), ū ∶= x̄ , v̄ ∶= 𝜉∕‖𝜉‖ , if and 

only if 𝜉 is a solution of the linear complementarity system

Proposition 2  Let x̄ be a solution of (37) with F ∶ ℝ
n
→ ℝ

n being twice differenti-
able near x̄ , with its second derivative being Lipschitz-continuous with respect to 
x̄ . Assume that for some collection of index sets Jr ⊂ I= , r = 1, … , s , and for some 
𝜉 ∈ ℝ

n , 𝜉 ≠ 0 , the following properties are satisfied: 

1.	 It holds that

(39)�
j

i
(u) ∶=

{
ui, if i ∈ I(j),

Fi(u) otherwise ,
i = 1, … , n, j = 1, … , q.

(40)A(u) = {j ∈ {1, … , q} ∣ I(j) = J ∪ I<(u), J ⊂ I=(u)},

I>(u) ∶= {i ∈ {1, … , n} ∣ ui > Fi(u)},

I=(u) ∶= {i ∈ {1, … , n} ∣ ui = Fi(u)},

I<(u) ∶= {i ∈ {1, … , n} ∣ ui < Fi(u)}

(41)for some J ⊂ I=(u), Gi(u) =

{
ei, if i ∈ J ∪ I<(u),

F�
i
(u) otherwise ,

i = 1, … , n,

I> ∶= I>(x̄) = {i ∈ {1, … , n} ∣ x̄i > Fi(x̄) = 0},

I= ∶= I=(x̄) = {i ∈ {1, … , n} ∣ x̄i = 0 = Fi(x̄)},

I< ∶= I<(x̄) = {i ∈ {1, … , n} ∣ 0 = x̄i < Fi(x̄)}.

(42)𝜉I< = 0, F�
I>
(x̄)𝜉 = 0, 𝜉I= ≥ 0, F�

I=
(x̄)𝜉 ≥ 0, ⟨𝜉I= , F�

I=
(x̄)𝜉⟩ = 0.
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2.	 For every r ∈ {1, … , s} , 

where the linear subspace N  does not depend on r.
3.	 For every r ∈ {1, … , s} , there exists no � ∈ ℝ

n with 𝜉⧵Jr∪I> ≠ 0 , satisfying

4.	 It holds that

and

where

Then the assumptions of Theorem  1 are satisfied for � defined in (38), ū ∶= x̄ , 
v̄ ∶= 𝜉∕‖𝜉‖ , and with A(ū, v̄) = {j ∈ {1, … , 2n} ∣ ∃ r ∈ {1, … , s} ∶ I(j) = Jr ∪ I<}.

It is easy to see that using the definitions in (48), the set N  in (44) can be written 
as

Indeed, 𝜉Jr∪I< = 0 holds for all r = 1, … , s if and only if 𝜉J∪∪I< = 0 , and taking into 
account these equalities,

for all r = 1, … , s . It remains to observe that, according to (48),

(43)𝜉J ≠ 0 or
𝜕F⧵J∪I>

𝜕x⧵J∪I>
(x̄)𝜉⧵J∪I> ≠ 0 ∀ J ⊂ I= ∶ J ≠ Jr ∀ r = 1, … , s.

(44)

{
𝜉 ∈ ℝ

n
|||||
𝜉Jr∪I< = 0,

𝜕F⧵Jr∪I>

𝜕x⧵Jr∪I>
(x̄)𝜉⧵Jr∪I> = 0

}
= N,

(45)𝜉 ∈ N,
𝜕2F⧵Jr∪I>

𝜕x2
⧵Jr∪I>

(x̄)
[
𝜉⧵Jr∪I> , 𝜉⧵Jr∪I>

]
∈ im

𝜕F⧵Jr∪I>

𝜕x⧵Jr∪I>
(x̄).

(46)𝜉 ∈ N

(47)𝜉⧵J∪ ≥ 0,
𝜕FJ∩

𝜕x⧵J∪∪I>
(x̄)𝜉⧵J∪∪I> ≥ 0,

(48)J∪ ∶=

s⋃
r=1

Jr, J∩ ∶=

s⋂
r=1

Jr.

(49)N =

{
𝜉 ∈ ℝ

n
|||||
𝜉J∪∪I< = 0,

𝜕F⧵J∩∪I>

𝜕x⧵J∪∪I>
(x̄)𝜉⧵J∪∪I> = 0

}
.

𝜕F⧵J∩∪I>

𝜕x⧵J∪∪I>
(x̄)𝜉⧵J∪∪I> = F�

⧵J∩∪I>
(x̄)𝜉 =

𝜕F⧵J∩∪I>

𝜕x⧵Jr∪I>
(x̄)𝜉⧵Jr∪I>

⧵J∩ = ⧵

s⋂
r=1

Jr =

s⋃
r=1

⧵Jr.
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Proof  According to (39) and (40), for any J ⊂ I= and the associated j ∈ A(x̄) with 
I(j) = J ∪ I< , we have that (after the appropriate re-ordering of rows and columns)

Then

In particular, (44) and (46) imply that ker(𝛷j)�(x̄) = N  and 𝜉 ∈ ker(𝛷j)�(x̄) for all 
j ∈ A , where

Furthermore, (44), (46), and (51), imply that the condition

can be written as (43). Summarizing these considerations, we conclude that A(ū, v̄) 
defined according to (10) coincides with A in (52), and ker(𝛷j)�(ū) = N  for all 
j ∈ A(ū, v̄).

We next deal with the 2-regularity condition completing requirement 1 of Theo-
rem 1. Take any j ∈ A(ū, v̄) and the associated r ∈ {1, … , s} with I(j) = Jr ∪ I< . 
Observe that according to (50),

and according to (39), (44), and (46),

Then, for any 𝜉 ∈ ker(𝛷j)�(x̄) , from (51) we have

Combining this with (53), we conclude that violation of (45) for any � ∈ ℝ
n with 

𝜉⧵Jr∪I> ≠ 0 precisely means that �j is 2-regular at ū in the direction v̄.

(50)(𝛷j)�(x̄) =

⎛
⎜⎜⎝

IJ∪I<
0

𝜕F⧵J∪I>

𝜕xJ∪I<
(x̄)

𝜕F⧵J∪I>

𝜕x⧵J∪I>
(x̄)

⎞
⎟⎟⎠
.

(51)ker(𝛷j)�(x̄) =

{
𝜉 ∈ ℝ

n
|||||
𝜉J∪I< = 0,

𝜕F⧵J∪I>

𝜕x⧵J∪I>
(ū)𝜉⧵J∪I> = 0

}
.

(52)A ∶= {j ∈ {1, … , 2n} ∣ ∃ r ∈ {1, … , s} ∶ I(j) = Jr ∪ I<} ⊂ A(x̄).

𝜉 ∉ ker(𝛷j)�(x̄) ∀ j ∈ A(x̄) ⧵A

(53)im(𝛷j)�(x̄) =

{
y ∈ ℝ

n
|||||
y⧵Jr∪I> −

𝜕F⧵Jr∪I>

𝜕xJr∪I<
(x̄)yJr∪I< ∈ im

𝜕F⧵Jr∪I>

𝜕x⧵Jr∪I>
(x̄)

}
,

(𝛷j)��(x̄)[𝜉] =

⎛⎜⎜⎜⎝

0 0

𝜕2F⧵Jr∪I>

𝜕xJr∪I<𝜕x⧵Jr∪I>
(x̄)

�
𝜉⧵Jr∪I>

� 𝜕2F⧵Jr∪I>

𝜕x2
⧵Jr∪I>

(x̄)
�
𝜉⧵Jr∪I>

�
⎞⎟⎟⎟⎠
.

(𝛷j)��(x̄)[𝜉, 𝜉] =

⎛⎜⎜⎜⎝

0

𝜕2F⧵Jr∪I>

𝜕x2
⧵Jr∪I>

(x̄)
�
𝜉⧵Jr∪I> , 𝜉⧵Jr∪I>

�
⎞⎟⎟⎟⎠
.
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It remains to observe that relations (46)–(47) and (49) imply that 𝜉 is a solution 
of the complementarity system (42). Therefore, according to Lemma 1, (12) is also 
satisfied. 	�  ◻

Example 3  Let n = 2 , F(x) = (x2
1
+ �1(x), x2 + �2(x)) , where � ∶ ℝ

2
→ ℝ

2 is a suf-
ficiently smooth function with �(0) = 0 , ��(0) = 0 . Then NCP (37) has a solution 
x̄ = 0 , with I> = I< = �.

Take s = 2 , and consider the index sets J1 = {2} , J2 = � . Then, for both r = 1 and 
r = 2 , the set in the left-hand side of (44) has the form N = ℝ × {0} , also agreeing 
with (49). Therefore, 𝜉 = (±1, 0) satisfies (46). Furthermore, any set J ⊂ {1, 2} dis-
tinct from J1 and J2 must contain the index 1, and hence, the first inequality in (43) 
is satisfied.

For both r = 1 and r = 2 , (45) takes the form

which may only hold with � = 0 if we assume that �
2�1

�x2
1

(0) ≠ −2.
Finally, the index sets in (48) take the form J∪ = {2} , J∩ = � , and condition (47) 

transforms into 𝜉1 ≥ 0 , and hence, all the assumptions of Proposition 2 are satisfied 
with 𝜉 = (1, 0) [but not with (−1, 0)].

Figure  2 demonstrates some iterative sequences generated by the piecewise 
Newton method, for �(x) = (x1x2, x

2

1
− x2

2
) , and with (41) used with J = I=(u) . In 

Fig. 2a–f, sequences are initialized within any of six domains such that only one of 
smooth selections active at x̄ = 0 remains active on the interior of a given domain, 
and thick black lines show the boundaries of these domains. Figure 2a demonstrates 
the convergence pattern specified in Theorem 1, from the convergence domain asso-
ciated with v̄ = (1, 0) , with iterative sequences converging linearly, with the com-
mon contingent direction v̄ at x̄ . In Fig.  2c–e, the convergence patterns are quite 
different, with superlinear convergence rate in Fig. 2c and e, and with one-step ter-
mination at Fig. 2d. Finally, in Fig. 2b and f, the first step changes the active selec-
tion, and then inherits the convergence pattern of a new one.

The statement of Proposition 2 can be somehow simplified by assuming that 
s = 1 , i.e., the corresponding A(ū, v̄) is a singleton.

Corollary 2  Let x̄ be a solution of (37) with F ∶ ℝ
n
→ ℝ

n being twice differenti-
able near x̄ , with its second derivative being Lipschitz-continuous with respect to x̄ . 
Assume that for some �J ⊂ I= , and for some 𝜉 ∈ ℝ

n , 𝜉 ≠ 0 , it holds that

�2 = 0,

(
2 +

�2�1

�x2
1

(0)

)
�1 = 0,

(54)𝜉�J∪I<
= 0,

𝜕F
⧵�J∪I>

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

= 0,
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and there exists no � ∈ ℝ
n , with 𝜉

⧵�J∪I>
≠ 0 , satisfying

(55)𝜉
⧵�J > 0,

𝜕F�J

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

> 0,
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Fig. 2   Piecewise Newton method for Example 3
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Then the assumptions of Theorem  1 are satisfied for � defined in (38), ū ∶= x̄ , 
v̄ ∶= 𝜉∕‖𝜉‖ , and with A(ū, v̄) = {�𝚥} , where �̂  is defined by the equality I(�𝚥) = �J ∪ I<.

Proof  Evidently, in the setting of this corollary, the index sets J∪ and J∩ defined in 
(48) coincide with Ĵ  ; (54) corresponds to (44), (46); (55) implies (47); (56)–(57) 
correspond to (45). Therefore, it remains to show that the condition

corresponding to (43), is automatically satisfied under the assumptions of this 
corollary.

Indeed, consider any J ⊂ I= . If i ∈ J ⧵ Ĵ  , then the first inequality in (55) implies 
𝜉i > 0 , and hence, 𝜉J ≠ 0 , and (58) holds. Suppose now that 𝜉J = 0 , and let i ∈ Ĵ ⧵ J . 
Then by the first equality in (54), and by the second inequality in (55), it holds that

and (58) holds again. 	�  ◻

As demonstrated in the proof above, under (54), condition (55) is sufficient for 
(58). However, one cannot just replace (55) in Corollary 2 by a weaker assumption 
(58), as one will have to additionally assume that

in order to ensure (47) in Proposition 2. Moreover, under (54) and (60), it can be 
verified that the converse implication is valid as well, i.e., (55) and (58) are actually 
equivalent, and therefore, any improvement in the statement of Corollary 2 cannot 
be achieved this way.

Example 1  (continued) Observe that the mapping � in this example agrees with (38) 
for the NCP (37) with F(x) = x2 . We have I> = I< = � , and one must take Ĵ = � 
(corresponding to �̂ = 2 ) in order to satisfy (54) with some 𝜉 ≠ 0 . Then (58) holds 
trivially with any 𝜉 ≠ 0 , but (60), and hence (55), are violated for 𝜉 < 0 . Observe 

(56)𝜉�J∪I<
= 0,

𝜕F
⧵�J∪I>

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

= 0,

(57)
𝜕2F

⧵�J∪I>

𝜕x2
⧵�J∪I>

(x̄)
[
𝜉
⧵�J∪I>

, 𝜉
⧵�J∪I>

]
∈ im

𝜕F
⧵�J∪I>

𝜕x
⧵�J∪I>

(x̄).

(58)𝜉J ≠ 0 or
𝜕F⧵J∪I>

𝜕x⧵J∪I>
(x̄)𝜉⧵J∪I> ≠ 0 ∀ J ⊂ I= ∶ J ≠ �J,

(59)

�
𝜕Fi

𝜕x⧵J∪I>
(x̄), 𝜉⧵J∪I>

�
= ⟨F�

i
(x̄), 𝜉⟩ =

�
𝜕Fi

𝜕x
⧵�J∪I>

(x̄), 𝜉
⧵�J∪I>

�
> 0,

(60)𝜉
⧵�J ≥ 0,

𝜕F�J

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

≥ 0,
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further that all the other assumptions of Proposition 2 are satisfied, but as demon-
strated above, its assertion is not valid with such 𝜉.

Proposition 2 combined with Theorems 1 and 2 ensure that all the properties of 
the algorithms discussed in Sects. 2.3 and 2.4 remain valid when these algorithms 
are applied with � defined by (38), with any G ∶ ℝ

n
→ ℝ

n×n satisfying (41), and for 
appropriate choices of v̄.

Example 1  (continued) This example also demonstrates that in the context of Corol-
lary 2, the claim above is not valid with assumption (55) replaced by (58).

Example 4  ([1, Example  3.3]) Let n = 2 , F(x) = ((x1 − 1)x2, (x1 − 1)2) . Then the 
solution set of NCP (37) has the form ({1} ×ℝ+) ∪ (ℝ+ × {0}) , and the two solu-
tions violating strict complementarity are (0, 0) and (1, 0).

Consider x̄ = (1, 0) . Then I> = {1} , I= = {2} , I< = � , F�(x̄) = 0 , and we now 
consider the two possible choices of �J ⊂ I=:

–	 For Ĵ = {2} , we have that (54) holds with any 𝜉 ∈ ℝ
2 satisfying 𝜉2 = 0 , but the 

second inequality in (55) cannot hold for any 𝜉 . Therefore, Proposition 2 is not 
applicable with this choice of Ĵ .

–	 For Ĵ = � , we have that (54) holds trivially with any 𝜉 ∈ ℝ
2 , (55) reduces to the 

requirement 𝜉2 > 0 , and 

 implying that (56)–(57) cannot hold with any nonzero � ∈ ℝ
2 provided 𝜉1 ≠ 0 . 

Therefore, Corollary 2 is applicable with this choice of Ĵ  , and with any 𝜉 ∈ ℝ
2 

satisfying 𝜉1 ≠ 0 , 𝜉2 > 0.
In Figs.  3, 4 and 5, the horizontal and vertical lines form the solution set. These 
figures show some iterative sequences generated by the piecewise Newton method, 
the piecewise Levenberg–Marquardt method, and the piecewise LP-Newton method, 
and the domains from which convergence to x̄ was detected. We also show the 
curves where the activity of different smooth selections of � changes. The observed 
behavior agrees with considerations above.

Consider now any uk ∈ ℝ
2 close to x̄ , and such that uk

1
≠ 1 , uk

2
> (uk

1
− 1)2 . Then 

A(uk) = {̂�} with �̂  corresponding to Ĵ = � , and hence,

The unique solution of (6) has the form ũk+1 = ((uk
1
+ 1)∕2, uk

2
∕2) , implying that 

ũk+1
1

− 1 = (uk
1
− 1)∕2 . By direct computations,

F��(x̄)[𝜉] =

(
𝜉2 𝜉1
2𝜉1 0

)
,

�(uk) = F(uk) =

(
(uk

1
− 1)uk

2

(uk
1
− 1)2

)
, G(uk) = F�(uk) =

(
uk
2

uk
1
− 1

2(uk
1
− 1) 0

)
.
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Fig. 3   Piecewise Newton method for Example 4
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Fig. 4   Piecewise Levenberg–Marquardt method for Example 4
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Fig. 5   Piecewise LP-Newton method for Example 4
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implying that (30) holds with � = 1 for vk = ũk+1 − uk provided � ≤ 3∕4 . Therefore, 
for such � , Step 3 of Algorithm 1 accepts the unit stepsize, and hence, Step 4 pro-
duces uk+1

1
= ũk+1

1
 . In particular, one can readily check that the requirements uk+1

1
≠ 1 

and uk+1
2

> (uk+1
1

− 1)2 remain valid, as for the previous iterate uk . This implies that 
considerations above apply to all subsequent iterations, and hence, Algorithm 1 ini-
tialized at u0 ∈ ℝ

2 close enough to x̄ , and such that u0
1
≠ 1 , u0

2
> (u0

1
− 1)2 , generates 

the sequence {uk} by full piecewise Newton method steps, and all such sequences 
converge linearly to x̄ . This behavior is illustrated by Figure 3a.

4.2 � Constrained reformulation

In order to introduce a reasonable constrained reformulation of NCP (37), we first 
need to reformulate this problem using slack variable y ∈ ℝ

n:

Observe that x̄ is a solution of NCP (37) if and only if (x̄, F(x̄)) is a solution of (61).
Setting u ∶= (x, y) (and p ∶= 2n ), we will consider a constrained reformulation 

(31) of NCP (37), with � ∶ ℝ
n ×ℝ

n
→ ℝ

n ×ℝ
n defined by

and with U ∶= ℝ
n
+
×ℝ

n
+
 , where Ψ ∶ ℝ

n ×ℝ
n
→ ℝ

n is defined by

The mapping � defined by (62)–(63) is piecewise smooth, and the corresponding 
smooth selection mappings �j ∶ ℝ

n ×ℝ
n
→ ℝ

n ×ℝ
n are given by

where the mappings Ψj ∶ ℝ
n ×ℝ

n
→ ℝ

n have the components

It can be easily verified that for the objects defined above, condition (32) is satisfied. 
At the same time, Example  1 demonstrates that condition (32) with U = ℝ

n ×ℝ
n 

(i.e., in the unconstrained case) is violated for � defined in (38) or (62). This dem-
onstrates one of the roles of constraints in this reformulation, which are redundant 
for the reformulation itself.

‖�(ũk+1)‖ =
1

4
‖�(uk)‖,

(61)F(x) − y = 0, x ≥ 0, y ≥ 0, ⟨x, y⟩ = 0.

(62)�(u) ∶=

(
F(x) − y

Ψ(u)

)
,

(63)Ψ(u) ∶= min{x, y}.

(64)�j(u) ∶=

(
F(x) − y

Ψj(u)

)
, j = 1, … , q,

(65)Ψ
j

i
(u) ∶=

{
xi if i ∈ I(j),

yi otherwise ,
i = 1, … , n, j = 1, … , q.
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For a given u ∈ ℝ
n ×ℝ

n , the set of indices of active selection mappings 
defined according to (2) has the same form (40) as above, but with

Therefore, in order to satisfy (5), the mapping G ∶ ℝ
n ×ℝ

n
→ ℝ

2n×2n must be of the 
form

where the rows of Γ1 ∶ ℝ
n ×ℝ

n
→ ℝ

n×n and Γ2 ∶ ℝ
n ×ℝ

n
→ ℝ

n×n satisfy

Observe that for a given solution x̄ of NCP (37), and for ū = (x̄, F(x̄)) , the index 
sets I> = I>(x̄) , I= = I=(x̄) , and I< = I<(x̄) , defined in Sect. 4.1, coincide with I>(ū) , 
I=(ū) , and I<(ū) , respectively.

Proposition 3  Under the assumptions of Corollary  2, the assumptions of Theo-
rem 3 are satisfied for � defined in (62)–(63) and U ∶= P ∩ Q = ℝ

n
+
×ℝ

n
+
 with

for ū ∶= (x̄, F(x̄)) , v̄ ∶= (𝜉, 𝜂̄)∕‖(𝜉, 𝜂̄)‖ with 𝜂̄ ∈ ℝ
n defined by

and for �𝚥 ∈ A(ū) with I(�𝚥) = �J ∪ I<.

Proof  According to (40), and (64)–(65), for any J ⊂ I= and the associated j ∈ A(ū) 
with I(j) = J ∪ I< , we have that (after the appropriate re-ordering of rows and 
columns)

and in particular

I>(u) ∶= {i ∈ {1, … , n} ∣ xi > yi},

I=(u) ∶= {i ∈ {1, … , n} ∣ xi = yi},

I<(u) ∶= {i ∈ {1, … , n} ∣ xi < yi}.

(66)G(u) =

(
F�(x) − I

Γ1(u) Γ2(u)

)
,

(67)

Γ1

i
(u) =

{
ei if i ∈ J ∪ I<(u),

0 otherwise ,
Γ2

i
(u) =

{
0 if i ∈ J ∪ I<(u),

ei otherwise ,
i = 1, … , n,

for some J ⊂ I=(u).

(68)P ∶= {(x, y) ∈ ℝ
n ×ℝ

n ∣ x
⧵Ĵ

≥ 0, y
Ĵ
≥ 0},

(69)Q ∶= {(x, y) ∈ ℝ
n ×ℝ

n ∣ x�J∪I<∪I>
≥ 0, y

⧵�J∪I<∪I>
≥ 0},

(70)𝜂̄�J∪I<
∶=

𝜕F�J∪I<

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

, 𝜂̄
⧵�J∪I>

∶= 0,

(71)(𝛷j)�(ū) =

⎛⎜⎜⎝

F�(x̄) − I

IJ∪I<
0

0 I⧵J∪I>

⎞⎟⎟⎠
,
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The latter equality implies that

In particular, relations in (54) imply that v̄ = (𝜉, 𝜂̄) ∈ ker(𝛷�𝚥)�(ū) , with 𝜂̄ defined in 
(70).

Furthermore, we show that (55) implies

Indeed, according to (71) we have that (74) can be written as follows:

Consider any J ⊂ I= , and suppose that the first condition in (75) is violated, i.e., 
𝜉J = 0 . Then, employing the first equality in (54), we obtain the chain of equalities 
in (59) for all i = 1, … , n . Employing this chain and (54), (70), it can be directly 
verified that (75) is in fact equivalent to (58). Then the corresponding argument in 
the proof of Corollary 2 yields that (55) implies (75), and hence, (74).

We next establish 2-regularity of ��̂  at ū in the direction v̄ . According to (72), we 
have

with

and according to (54) and (64),

follows. Then, for any v = (𝜉, 𝜂) ∈ ker(𝛷�𝚥)�(ū) , from (73) we have

(72)(𝛷�𝚥)�(ū) =

⎛⎜⎜⎝

F�(x̄) − I

I�J∪I<
0

0 I
⧵�J∪I>

⎞⎟⎟⎠
.

(73)ker(𝛷�𝚥)�(ū) =

⎧
⎪⎪⎨⎪⎪⎩

(𝜉, 𝜂) ∈ ℝ
n ×ℝ

n

����������

𝜉�J∪I<
= 0,

𝜕F
⧵�J∪I>

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

= 0,

𝜂�J∪I<
=

𝜕F�J∪I<

𝜕x
⧵�J∪I>

(x̄)𝜉
⧵�J∪I>

, 𝜂
⧵�J∪I>

= 0

⎫
⎪⎪⎬⎪⎪⎭

.

(74)v̄ ∉ ker(𝛷j)�(ū) ∀ j ∈ A(ū) ⧵ {�𝚥}.

(75)
𝜉J ≠ 0 or

𝜕F⧵J∪I>

𝜕x⧵J∪I>
(x̄)𝜉⧵J∪I> ≠ 0 or 𝜂̄J∪I< ≠

𝜕FJ∪I<

𝜕x⧵J∪I>
(x̄)𝜉⧵J∪I> or 𝜂̄⧵J ≠ 0

∀ J ⊂ I=, J ≠ �J.

(76)im(𝛷�𝚥)�(ū) = {(y, z) ∈ ℝ
n ×ℝ

n ∣ (y, z) satisfies (77)}

(77)(y + z)
⧵�J∪I>

−
𝜕F

⧵�J∪I>

𝜕x�J∪I<
(x̄)z�J∪I<

∈ im
𝜕F

⧵�J∪I>

𝜕x
⧵�J∪I>

(x̄),

(𝛷�𝚥)��(ū)[v̄] =

⎛⎜⎜⎜⎝

𝜕2F

𝜕x�J∪I<
𝜕x

⧵�J∪I>

(x̄)
�
𝜉
⧵�J∪I>

�
𝜕2F

𝜕x2
⧵�J∪I>

(x̄)
�
𝜉
⧵�J∪I>

�
0

0 0 0

⎞⎟⎟⎟⎠
.
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Combining this with (76), we conclude that violation of (56)–(57) for any � ∈ ℝ
n 

with 𝜉
⧵�J∪I>

≠ 0 precisely gives the needed 2-regularity property.
Considerations above demonstrate that requirement 1 in Theorem 3 holds.
Recall now that (32) implying (33) is automatically satisfied in this setting, thus 

also yielding requirement 2 in Theorem 3.
Requirement 3 in Theorem 3 readily follows from (55), (68), and the first equality 

in (70).
Finally, from (71)–(72) we readily have that for any uk ∈ ℝ

n ×ℝ
n , any solution 

uk+1 = (xk+1, yk+1) of the Eq. (6) satisfies

Moreover, since x̄I> > 0 and ȳI< > 0 , from Theorem  1 it follows that xk+1
I>

> 0 , 
yk+1
I<

> 0 assuming that uk ∈ K�𝜀, �𝛿(ū, v̄) with sufficiently small �𝜀 > 0 and �𝛿 > 0 . Com-
bining these inequalities with (78), we conclude that uk+1 belongs to Q defined in 
(69). This yields requirement 4 in Theorem 3. 	�  ◻

Proposition  3 combined with Theorem  3 and the results for the uncon-
strained case allows to ensure that all the properties of the algorithms discussed 
in Sect.  3.2 remain valid when these algorithms are applied with � defined in 
(62)–(63) and U ∶= ℝ

n
+
×ℝ

n
+
 , with any G ∶ ℝ

n
→ ℝ

n×n satisfying (66)–(67), and 
for appropriate choices of v̄.

In conclusion of this section, we emphasize that the material presented in it 
can be readily extended from NCPs to more general complementarity systems, 
which, in particular, would allow to cover Example  2. We do not provide this 
extension here, in order to avoid extra technicalities.
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⧵�J∪I>

(ū)
�
𝜉
⧵�J∪I>
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�

0

⎞
⎟⎟⎟⎠
.
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