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Abstract
In this paper, we consider stochastic weakly convex optimization problems, however 
without the existence of a stochastic subgradient oracle. We present a derivative free 
algorithm that uses a two point approximation for computing a gradient estimate 
of the smoothed function. We prove convergence at a similar rate as state of the art 
methods, however with a larger constant, and report some numerical results showing 
the effectiveness of the approach.
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1 Introduction

In this paper, we study the following class of problems:

with f (⋅) ∶ ℝ
n
→ ℝ a stochastic, weakly convex, and potentially nonsmooth (i.e., 

not necessarily continuously differentiable) function, and r(⋅) ∶ ℝ
n
→ ℝ̄ (i.e., it is 

(1)min
x∈ℝn

�(x) ∶= f (x) + r(x),
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extended real valued) is convex but not necessarily even continuous, however r(x) 
satisfies some additional conditions detailed below. Furthermore, we consider the 
derivative free or zeroth order context, wherein the subgradients �f  , or unbiased 
estimates thereof, are not available, but only unbiased estimates of function evalua‑
tions f(x) are available. We thus write

with {F(⋅, �), � ∈ Ξ} a collection of real valued functions and P a probability distri‑
bution over the set Ξ to be precise.

We define two quantitative assumptions regarding f (⋅) and r(⋅) below. First, we 
define the notion of a proximal map, in particular with any constant � and any con‑
vex function h we can write prox�h to indicate the following function:

The associated optimality condition is

We shall make use of the nonexpansiveness property of the proximal mapping in the 
sequel,

We now state our standing assumption on the properties of (1):

Assumption 1 

1. f (⋅) is �‑weakly convex, i.e., f (x) + �‖x‖2 is convex for some 𝜌 > 0 , directionally 
differentiable, bounded below by f⋆ and locally Lipschitz with constant L0.

2. r(⋅) is convex (but not necessarily continuously differentiable). Furthermore, r(x) 
is bounded below by r⋆.

We shall denote the lower bound of � by 𝜙⋆ = f⋆ + r⋆.
We further assume that the proximal map of r(x) can be evaluated at low com‑

putational complexity cost. We note that the �‑weak convexity property for a given 
function f is equivalent to hypomonotonicity of its subdifferential map, that is

for v ∈ �f (x) and w ∈ �f (y) (see e.g., [1, Example 12.28, p 549]).
The class of weakly convex functions is a special yet very common case of non‑

convex functions, which contains all convex (possibly nonsmooth) functions and 
Lipschitz smooth functions. One standard subset of weakly convex functions is 
given by the composite function f (x) = h(c(x)) where h is nonsmooth and convex 
and c(x) is continuously differentiable but non‑convex (see e.g., [2] and references 

f (x) = ��[F(x;�)] = ∫Ξ

F(x, �)dP(�),

prox�h(x) = argmin y{h(y) +
1

2�
‖y − x‖2}.

y = prox�h(x) ⟺ x − y ∈ ��h(y)

‖ prox�h(x) − prox�h(y)‖ ≤ ‖x − y‖.

(2)⟨v − w, x − y⟩ ≥ −�‖x − y‖2
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therein). The additive composite class is another widely used class of weakly convex 
functions [3], formed from all sums g(x) + l(x) with l closed and convex and g con‑
tinuously differentiable.

One method for solving a weakly convex stochastic optimization problem is given 
as repeated iterations of,

where 𝛼k > 0 is a stepsize sequence, typically taken to satisfy �k → 0 , and fxk (y;Sk) 
is approximating f at xk using a noisy estimate Sk of the data. A basic stochastic sub‑
gradient method will use the linear model

where 𝜁 ≈ 𝜁 ∈ 𝜕f (xk) . When using this approach, it is common to consider the exist‑
ence of some oracle of an unbiased estimate of an element of the subgradient that 
enables one to build up the approximation fxk with favorable properties (see e.g., 
[2] or [4]). In our case we assume such an oracle is not available, and we only get 
access, at a point x, to a noisy function value observation F(x, �) . Stochastic prob‑
lems with only functional information available often arise in optimization, machine 
learning and statistics. A classic example is simulation based optimization (see 
e.g., [5, 6] and references therein), where function evaluations usually represent the 
experimentally obtained behavior of a system and in practice are given by means of 
specific simulation tools, hence no internal or analytical knowledge for the functions 
is provided. Furthermore, evaluating the function at a given point is in many cases a 
computationally expensive task, and only a limited budget of evaluations is available 
in the end. Recently, suitable derivative free/zeroth order optimization methods have 
been proposed for handling stochastic functions (see e.g., [7–10]). For a complete 
overview of stochastic derivative free/zeroth order methods, we refer the interested 
reader to the recent review [6].

Weakly convex functions show up in the modeling of many different statistical 
learning applications like, e.g., (robust) phase retrieval, sparse dictionary learning, 
conditional value at risk (see [2] for a complete description of those problems). 
Other interesting applications include the training of neural networks with Exponen‑
tiated Linear Units (ELUs) activation functions [11] and machine learning problems 
with L‑smooth loss functions (see e.g., [12] and references therein).

In all these problems there might be cases where we only get access, at a point 
x, to an unbiased estimate of the loss function F(x, �) and we thus need to resort to 
a stochastic derivative free/zeroth order approach in order to handle our problem. 
Recalling that a standard setting is wherein a function evaluation is the noisy out‑
put of some complex simulation, such a problem can appear either for an inverse 
problem where we are interested in using a robust nonsmooth loss function to match 
parameters to a nonconvex simulation, i.e., F(x, �) =

∑
i ‖G(x, �i) − oi‖1 where {oi} 

is a the set of observations and {�i} a set of samples of the simulation run, which 
is of the form of the composite case h(c(x)) described above, or even a simulation 

(3)xk+1 ∈ argminy

�
fxk (y;Sk) + r(y) +

1

2�k
‖y − xk‖2

�

fxk (y;Sk) = f (xk) + �T (y − xk)
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function that is convex but we are interested in, e.g., minimizing its conditional 
value at risk.

At the time of writing, zeroth order, or derivative free optimization for weakly 
convex problems has not been investigated. There are a number of works for sto‑
chastic nonconvex zeroth order optimization (e.g.,  [13]) and nonsmooth convex 
derivative free optimization (e.g., [9]).

In the case of stochastic weakly convex optimization but with access to a noisy 
element of the subgradient, there are a few works that have appeared fairly recently. 
Asymptotic convergence was shown in  [4], which proves convergence with prob‑
ability one for the method given in (3). Non‑asymptotic convergence, as in conver‑
gence rates in expectation, is given in the two papers [2] and [14].

In this paper, we follow the approach proposed in [9] to handle nonsmoothness in 
our problem. We consider a smoothed version of the objective function, and we then 
apply a two point strategy to estimate its gradient. This tool is thus embedded in a 
proximal algorithm similar to the one described in [2] and enables us to get conver‑
gence at a similar rate as the original method (although with larger constants).

The rest of the paper is organized as follows. In Sect. 2 we describe the algorithm 
and provide some preliminary lemmas needed for the subsequent analysis. Section 3 
contains the convergence proof. In Section 4 we show some numerical results on 
two standard test cases. Finally we conclude in Sect. 5.

2  Two point estimate and algorithmic scheme

We use the two point estimate presented in [9] to generate an approximation to an 
element of the subdifferential. In particular, consider the randomized smoothing of 
the function f,

where Z is the pdf of a standard normal variable, i.e., we take an expectation for 
z ∼ N(0, In).

The two point estimate we use is given by considering a second smoothing, now 
of fu1,t for a given u1,t indexed by iteration t, i.e.,

To derive the specific step computed, let us consider the derivative of this function 
with respect to x. We first write,

where

fu(x) = �[f (x + uz)] = ∫ f (x + uz)dZ

fu1,t ,u2,t (x) = �[fu1,t (x + u2,tz)] = ∫ fu1,t (x + u2,tz)dZ.

fu1,tu2,t (x) = ∫ fu1,t (x + u2,tz)dZ =
1

�
∫ fu1,t (x + u2,tv)e

−
‖v‖2
2 dv

=
1

�un
2,t

∫ fu1,t (y)e
−

‖y−x‖2
2u2

2,t dy,
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and we used the change of variables y = x + u2,tv . Now we write,

where the third equality comes from the fact that the function ve−
‖v‖2
2  is even so inte‑

gration over f(x) is zero.
Now let {u1,t}∞t=1 , {u2,t}

∞
t=1

 be two nonincreasing sequences of positive parameters 
such that u2,t ≤ u1,t∕2 , xt is the given point, �t is a sample of the stochastic oracle 
Ξ , Z1 ∼ �1 and Z2 ∼ �2 are two vectors independently sampled from distributions 
�1 ∼ N(0, In) and �2 ∼ N(0, In) . From the derivation above, we can see that the 
quantity,

is an unbiased estimator of ∇fu1,t ,u2,t (x) . Thus, effectively, the first random variable 
u1,tZ1,t smooths out the nonsmooth function F and the second u2,tZ2,t obtains a zeroth 
order estimate, using noisy function computations, of its derivative. We shall use 
gt(x) specifically in our algorithm at each iteration. We highlight the importance 
of using an adequate random number generator to compute Z1,t , Z2,t and stochastic 
function realization �t at every iteration. We hence have that the two samples used 
for �t and Z1,t are the same in F(x + u1,tZ1,t + u2,tZt,2;�t) and F(x + u1,tZ1,t;�t) , making 
the two point estimator essentially a common random number device.

We now report some results that provide theoretical guarantees on the error in 
the estimate. These results appear in [15], however we include some of their (short) 
proofs for completeness.

Lemma 1 [15, Lemma 1] It holds that,

with p ∈ [0, 2] , and

with p ≥ 2.

� ∶= ∫ e
−

‖v‖2
2 dv = (2�)n∕2

(4)

∇fu1,t ,u2,t (x) =
1

�un+2
2,t

∫ fu1,t (y)e
−

‖y−x‖2
2u2

2,t (y − x)dy

=
1

�u2,t
∫ fu1,t (x + u2,tv)e

−
‖v‖2
2 vdv

=
1

�
∫ fu1,t

(x+u2,tv)−f (x)

u2,t
e
−

‖v‖2
2 vdv

= ∫ fu1,t
(x+u2,tz)−f (x)

u2,t
zdZ.

(5)
gt(x) = G(x, u1,t, u2,t, Z1,t, Z2,t, �t) =

=
F (x+u1,tZ1,t+u2,tZ2,t;�t)−F(x+u1,tZ1,t;�t)

u2,t
Z2,t,

(6)
1

� � ‖v‖pe− ‖v‖2
2 dv ≤ np∕2,

(7)np∕2 ≤ 1

� � ‖v‖pe− ‖v‖2
2 dv ≤ (p + n)p∕2,
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Lemma 2 [15, Theorem 1] It holds that,

with L0 Lipschitz constant for f.

Proof Indeed,

where we have used the Lipschitz constant L0 for f as given in Assumption 1 and the 
last inequality follows from Eq. (6) in Lemma 1.

Lemma 3 [15, Lemma 2] The function fu1,t is Lipschitz continuously differentiable 
with constant L0

√
n

u1,t
.

Proof 
The condition proved in Lemma 3 is equivalent to the following inequality (see e.g., 

[15]):

Lemma 4 [15, Lemma 3] It holds that

with �̄� =
L0
√
n(n+3)3∕2

2
.

Proof First, note that

And so,

(8)
���fu1,t (x) − f (x)

��� ≤ u1,tL0

√
n,

���fu1,t (x) − f (x)
��� ≤ 1

�
∫ ��f (x + u1,tv) − f (x)��e−

‖v‖2
2 dv ≤ u1,tL0

�
∫ ‖v‖e− ‖v‖2

2 dv

≤ u1,tL0
√
n,

���∇fu1,t (x) − ∇fu1,t (y)
��� ≤ 1

u1,t�
∫ ��f (x + u1,tv) − f (y + u1,tv)

��e−
‖v‖2
2 ‖v‖dv

≤ L0

u1,t�
‖x − y‖ ∫ e

−
‖v‖2
2 ‖v‖dv ≤ L0

√
n

u1,t
‖x − y‖.

(9)���fu1,t (y) − fu1,t (x) − ⟨∇fu1,t (x), (y − x)⟩��� ≤
L0
√
n

u1,t
‖x − y‖2.

(10)���∇fu1,t ,u2,t (x) − ∇fu1,t (x)
��� ≤ u2,tL0

√
n(n + 3)3∕2

2u1,t
≤ u2,t

u1,t
�̄�,

∇fu1,t (x) =
1

� ∫ ⟨∇fu1,t (x), v⟩e−
‖v‖2
2 vdv.
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where the first inequality uses some basic property of the integrals, the second ine‑
quality uses equation (9) coming from Lemma 3, and the last inequality uses equa‑
tion (7) in Lemma 1.

We further report one more useful preliminary result.

Lemma 5 The following inequality holds:

Proof By using the definition of fu1,t (x) , we have

After a proper rewriting, we use (2) to get a lower bound on the considered term, for 
any given vector ex of n components and any one element equal to one, we have,

where the last inequality is obtained from the Lipschitz property of f (Assumption 1).

We make the following Assumption on f:

Assumption 2 It holds that F(⋅, �) is L(�)‑Lipschitz and L(P) ∶=
√
�[L(�)2] is finite.

The following lemma uses previous results to characterizes an important condi‑
tion on the error of the estimate.

Lemma 6 Given a point x s.t. ‖x‖ ≤ M , with M a finite positive value, then it holds 
that

���∇fu1,t ,u2,t (x) − ∇fu1,t (x)
���

=

������
1

� �
�
fu1,t (x + u2,tv) − fu1,t (x)

u2,t
− ⟨∇fu1,t (x), v⟩

�
ve

−
‖v‖2
2 dv

������
≤ 1

�u2,t �
���fu1,t (x + u2,tv) − fu1,t (x) − u2,t⟨∇fu1,t (x), v⟩���‖v‖e

−
‖v‖2
2 dv

≤ u2,tL0
√
n

2�u1,t � ‖v‖3e −‖v‖2
2 dv ≤ u2,tL0

√
n(n + 3)3∕2

2u1,t
,

⟨∇fu(x) − ∇fu(y), x − y⟩ ≥ −�‖x − y‖2 − 4L0u‖x − y‖.

⟨∇fu(x) − ∇fu(y), x − y⟩ = �
∇
�∫ (f (x + uz) − f (y + uz))dZ

�
, x − y

�

��
lim
t→0

∫ �
f (x + uz + tex) − f (x + uz) − f (y + uz + tex) + f (y + uz)

�
t

dZ

�
, x − y

�

≥ −�‖x − y‖2+

+

��
lim
t→0

∫ �
f (x + uz + tex) − f (x + tex) − f (x + uz) + f (x) − f (y + uz + tex) + f (y + tex) + f (y + uz) − f (y)

�
t

dZ

�
,−y

�

≥ −�‖x − y‖2 − 4L0u‖x − y‖,
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where Ĉ depends on M, L(P) and n but is independent of x.

Proof Define f̂ (x) = f (x) + 𝜌‖x‖2 for ‖x‖ ≤ M and a continuous linearly growing 
extension otherwise (e.g., for any x take the greatest norm subgradient g(x) at Mx

‖x‖ and 
linearize, f̂ (x) = f̂

�
Mx

‖x‖
�
+ g(x)T (x −

Mx

‖x‖ ) ). Note that by this construction and the 
assumptions on f(x), it holds that f̂ (x) is convex and Lipschitz. Let ĝt(x) be the two 
point gradient approximation of f̂ (x) , defining f̂u1,t (x) accordingly. Furthermore, let 
h(x) = f̂ (x) − f (x) , ĝh

t
(x) its two point gradient approximation, and hu1,t (x) its 

smoothed function. We have,

Since f̂u1,t and hu1,t are both Lipschitz and convex, we now directly apply [9, Lemma 
2] to both errors on the right hand side to obtain the final result.

Note that the last lemma combined with the previous results implies a tighter bound 
on ‖∇fu1,t (x)‖2 , specifically,

In order to get the first inequality, we used some basic properties of the expectation 
and the inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2. Then we used Lemma 4 to upper 
bound the first term in the summation and suitably rewrote the second one thus get‑
ting the RHS of the second inequality. The third one was finally obtained by taking 
into account unbiasedness of gt(x) (i.e., �[gt(x)] = ∇fu1,tu2,t (x)) and Lemma 6.

The algorithmic scheme used in the paper is reported in Algorithm 1. At each itera‑
tion t we simply build a two point estimate gt of the gradient related to the smoothed 
function and then apply a proximal map to the point xt − �tgt , with 𝛼t > 0 a suitably 
chosen stepsize.

We let �t be a diminishing step‑size and set

 

(11)�[‖gt(x)‖2] ≤ Ĉ.

‖gt(x)‖ = ‖ĝt(x) − ĝh
t
(x)‖ ≤ ‖ĝt(x)‖ + ‖ĝh

t
(x)‖.

(12)

‖∇fu1,t (x)‖2 ≤ 3‖∇fu1,t (x) − ∇fu1,t ,u2,t (x)‖2 + 3�‖gt(x) − ∇fu1,t ,u2,t (x)‖2

+ 3�‖gt(x)‖2 ≤ 3u2
2,t
�̄�2∕u2

1,t
− 6�

�
gt(x),∇fu1,t ,u2,t (x)

�

+ 3‖∇fu1,t ,u2,t (x)‖2 + 6�‖gt(x)‖2 ≤ 3u2
2,t
�̄�2∕u2

1,t
+ 6Ĉ ≤ C̄.

(13)u1,t = �2
t

and u2,t = �3
t
.
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We thus have in our scheme a derivative free version of Algorithm 3.1 reported in 
[2].

3  Convergence of the derivative free algorithm

We now analyze the convergence properties of Algorithm 1. We follow [2, Sect. 3.2] 
in the proof of our results. We consider a value �̄� > 𝜌 , and assume 𝛼t < min

{
1

�̄�
,
�̄�−𝜌

2

}
 

for all t.
We first define the function

and introduce the Moreau envelope function

with the proximal map

We use the corresponding definition of �1∕�(x) as well in the convergence theory,

To begin with let

Some of the steps follow along the same lines given in [2, Lemma 3.5], owing to the 
smoothness of fu1,t (x).

�u,t(x) = fu1,t (x) + r(x),

�
u,t

1∕�
(x) = min

y
�u,t(y) +

�

2
‖y − x‖2 ,

prox�u,t∕�(x) = argmin y{�
u,t(y) +

�

2
‖y − x‖2}.

�1∕�(x) = min
y

�(y) +
�

2
‖y − x‖2 = min

y
f (y) + r(y) +

�

2
‖y − x‖2.

x̂t = prox𝜙u,t∕�̄�(xt).
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We derive the following recursion lemma, which establishes an important 
descent property for the iterates. We denote by �t the conditional expectation with 
respect to the �‑algebra of random events up to iteration t, i.e., all of Z1,s , Z2,s and 
�s are given for s < t , and for s ≥ t are random variables. In order to derive this 
lemma, we require an additional assumption that is reasonable in this setting.

Assumption 3 The sequence {xt} generated by the algorithm is bounded (i.e., there 
exists an M > 0 s.t., ‖xt‖ ≤ M for all t).

Note that this assumption can be satisfied if, for instance, r(⋅) =
J∑
j=1

rj(⋅) and for 

at least one j ∈ {1, ...J} , rj(⋅) is an indicator for a compact set X  (i.e., r(x) = 0 if 
x ∈ X  and r(x) = ∞ otherwise).

Lemma 7 Let �t satisfy,

where 𝛿0 = 1 − 𝛼0�̄�.

Then it holds that there exists a B independent of t such that

Proof First we see that x̂t can be obtained as a proximal point of r:

We notice that the last equivalence follows from the optimality conditions related to 
the proximal subproblem. Letting 𝛿t = 1 − 𝛼t�̄� , we get,

where the inequality is obtained by considering the non‑expansiveness property of 
the proximal map prox�tr(x) . We thus can write the following chain of equalities:

(14)𝛼t ≤ �̄� − 𝜌

(1 + �̄�2 − 2�̄�𝜌 + 4𝛿0L0)
.

�t‖xt+1 − x̂t‖2 ≤ ‖xt − x̂t‖2 + 𝛼2
t
B − 𝛼t(�̄� − 𝜌)‖xt − x̂t‖2.

x̂t = prox𝜙u,t∕�̄�(xt) ⟺

�̄�(xt − x̂t) ∈ 𝜕r(x̂t) + ∇fu1,t (x̂t) ⟺

𝛼t�̄�(xt − x̂t) ∈ 𝛼t𝜕r(x̂t) + 𝛼t∇fu1,t (x̂t) ⟺

𝛼t�̄�xt − 𝛼t∇fu1,t (x̂t) + (1 − 𝛼t�̄�)x̂t ∈ x̂t + 𝛼t𝜕r(x̂t)

⟺ x̂t = prox𝛼tr

(
𝛼t�̄�xt − 𝛼t∇fu1,t (x̂t) + (1 − 𝛼t�̄�)x̂t

)
.

�t‖xt+1 − x̂t‖2 = �t‖prox𝛼tr(xt − 𝛼tgt) − prox𝛼tr(𝛼t�̄�xt − 𝛼t∇fu1,t (xt) + 𝛿tx̂t)‖2

≤ �t
���xt − 𝛼tgt − (𝛼t�̄�xt − 𝛼t∇fu1,t (x̂t) + 𝛿tx̂t)

���
2

,
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with the first equality obtained by rearranging the terms inside the norm, the second 
one by simply adding and subtracting �t∇fu1,t (xt) to those terms, and the third one by 
taking into account the definition of Euclidean norm and the basic properties of the 
expectation. Now, we get the following

The first equality, in this case, was obtained by explicitly taking expectation wrt to 
�t , while we used the unbiasedness of gt (i.e., �[gt] = ∇fu1,tu2,t (xt)) to get the second 
one. We now upper bound the terms in the summation:

�t
‖‖xt − 𝛼tgt − (𝛼t�̄�xt − 𝛼t∇fu,1(x̂t) + 𝛿tx̂t)

‖‖2 =
= �t

‖‖‖𝛿t(xt − x̂t) − 𝛼t(gt − ∇fu1,t (x̂t))
‖‖‖
2

=

= �t
‖‖‖𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)) − 𝛼t(gt − ∇fu1,t (xt))

‖‖‖
2

=

= �t
‖‖‖𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))

‖‖‖
2

− 2𝛼t�t

[⟨
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)), gt − ∇fu1,t (xt)

⟩]

+ 𝛼2

t
�t
‖‖‖gt − ∇fu1,t (xt)

‖‖‖
2

,

�t
‖‖‖𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))

‖‖‖
2

− 2𝛼t�t

[⟨
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)), gt − ∇fu1,t (xt)

⟩]

+ 𝛼2

t
�t
‖‖‖gt − ∇fu1,t (xt)

‖‖‖
2

=
‖‖‖𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))

‖‖‖
2

− 2𝛼t

[⟨
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)),�[gt] − ∇fu1,t (xt))

⟩]

+ 𝛼2

t
�t
‖‖‖gt − ∇fu1,t (xt)

‖‖‖
2

=
‖‖‖𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))

‖‖‖
2

− 2𝛼t

[⟨
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)),∇fu1,tu2,t (xt) − ∇fu1,t (xt))

⟩]

+ 𝛼2

t
�t
‖‖‖gt − ∇fu1,t (xt)

‖‖‖
2

.
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We first split the last term from the previous displayed equation using 
(a + b)2 ≤ 2a2 + 2b2 and some basic properties of the expectation. The first inequal‑
ity was obtained by using Cauchy‑Schwarz and by suitably rewriting the third term 
in the summation. We then used the inequality 2a ⋅ b ≤ a2 + b2 combined with 
Lemma 4 (or equation (10)) to bound the resulting second term in the summation, 
that is ‖‖‖∇fu1,tu2,t (xt) − ∇fu1,t (xt)

‖‖‖
2

 , inputting equation (13) to obtain the explicit con‑
stant and relation with respect to �t , and Lemma 6 to upper bound the third term, 
and finally applying the unbiased estimate property of gt,thus getting the next ine‑
quality. Hence we write

���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

− 2𝛼t

��
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)),∇fu1,tu2,t (xt) − ∇fu1,t (xt))

��

+ 𝛼2

t
�t
���gt − ∇fu1,t (xt)

���
2

≤ ���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

− 2𝛼t

��
𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t)),∇fu1,tu2,t (xt) − ∇fu1,t (xt))

��

+ 2𝛼2

t
�t
���gt − ∇fu1,t ,u2,t (xt)

���
2

+ 2𝛼2

t
�t
���∇fu1,t ,u2,t (xt) − ∇fu1,t (xt)

���
2

≤ ���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 2

�
𝛼t
���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))

���
����∇fu1,tu2,t (xt) − ∇fu1,t (xt)

���
+ 2𝛼2

t
�t
��gt��2 − 4𝛼2

t
�t

�
gt(xt),∇fu1,t ,u2,t (xt)

�
+ 2𝛼2

t

���∇fu1,t ,u2,t (xt)
���
2

+ 2𝛼2

t
�t
���∇fu1,t ,u2,t (xt) − ∇fu1,t (xt)

���
2

≤ ���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 𝛼2

t

���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 𝛼2

t
�̄�2

+ 2𝛼2

t
Ĉ − 2𝛼2

t
‖∇fu1,t ,u2,t (x)‖2 + 2𝛼4

t
�̄�2
.

≤ ���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 𝛼2

t

���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ
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where the equality is given by rearranging the terms in the summation and taking 
into account the definition of Euclidean norm. The inequality is obtained by upper 
bounding the scalar product by means of Lemma 5 and the third term in the summa‑
tion by combining the triangle inequality, the Cauchy‑Schwartz inequality and (12). 
Continuing:

The first and last equality are simply obtained by rearranging the terms in the sum‑
mation. The inequality is obtained by upper bounding the third term in the sum‑
mation using inequality 2a ⋅ b ≤ a2 + b2 . Finally, recalling the definition of 
𝛿t = 1 − 𝛼t�̄� , we have

���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+

+ 𝛼2

t

���𝛿t(xt − x̂t) − 𝛼t(∇fu1,t (xt) − ∇fu1,t (x̂t))
���
2

+ 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

= (1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 − 2(1 + 𝛼2

t
)𝛿t𝛼t⟨xt − x̂t,∇fu1,t (xt) − ∇fu1,t (x̂t)⟩

+ (1 + 𝛼2

t
)𝛼2

t
‖∇fu1,t (xt) − ∇fu1,t (x̂t)‖2 + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

≤ (1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 8(1 + 𝛼2

t
)𝛿tL0𝛼

3

t
‖xt − x̂t‖

+ (1 + 𝛼2

t
)𝛼2

t

�
‖∇fu1,t (xt)‖2 − 2⟨∇fu1,t (xt),∇fu1,t (x̂t)⟩ + ‖∇fu1,t (x̂t)‖2

�

+ 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

≤ (1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 8(1 + 𝛼2

t
)𝛿tL0𝛼

3

t
‖xt − x̂t‖

+ (1 + 𝛼2

t
)𝛼2

t

�
‖∇fu1,t (xt)‖2 + 2‖∇fu1,t (xt)‖‖∇fu1,t (x̂t)‖ + ‖∇fu1,t (x̂t)‖2

�

+ 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

≤ (1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 8(1 + 𝛼2

t
)𝛿tL0𝛼

3

t
‖xt − x̂t‖

+ 4(1 + 𝛼2

t
)𝛼2

t
C̄ + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ,

(1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 8(1 + 𝛼2

t
)𝛿tL0𝛼

3

t
‖xt − x̂t‖

+ 4(1 + 𝛼2
t
)𝛼2

t
C̄ + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

= (1 + 𝛼2
t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2

+ 8(1 + 𝛼2

t
)𝛿tL0

�
𝛼2

t

��
𝛼t‖xt − x̂t‖

�

+ 4(1 + 𝛼2
t
)𝛼2

t
C̄ + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

≤ (1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 4(1 + 𝛼2

t
)𝛿tL0𝛼

4

t

+ 4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
‖xt − x̂t‖2 + 4(1 + 𝛼2

t
)𝛼2

t
C̄ + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

= (1 + 𝛼2
t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2

+ 4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
‖xt − x̂t‖2 + 4(1 + 𝛼2

t
)𝛿tL0𝛼

4

t
+ 4(1 + 𝛼2

t
)𝛼2

t
C̄

+ 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ.
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where the second to last inequality is obtained by simply considering the expression 
of �t in Eq. (14). We combine the sequence of inequalities shown in the lemma to 
obtain the result.

After proving Lemma 7, we can now state the main convergence result for 
Algorithm 1.

Theorem 1 The sequence generated by Algorithm 1 satisfies,

and thus,

In particular, if we define �t to be

(1 + 𝛼2

t
)𝛿2

t
‖xt − x̂t‖2 + 2(1 + 𝛼2

t
)𝛿t𝛼t𝜌‖xt − x̂t‖2 + 4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
‖xt − x̂t‖2

+ 4(1 + 𝛼2

t
)𝛿tL0𝛼

4

t
+ 4(1 + 𝛼2

t
)𝛼2

t
C̄ + 𝛼2

t
(1 + 2𝛼2

t
)�̄�2 + 2𝛼2

t
Ĉ

=
�
1 − 2𝛼t�̄� + 𝛼2

t
�̄�2 + 𝛼2

t
− 2𝛼3

t
�̄� + 𝛼4

t
�̄�2 + 2𝛼t𝜌 − 2𝛼2

t
�̄�𝜌 + 2𝛼3

t
𝜌 − 2𝛼4

t
�̄�𝜌

+4𝛿tL0𝛼
2

t
+ 4𝛿tL0𝛼

4

t

�‖xt − x̂t‖2
+
�
4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
+ 4(1 + 𝛼2

t
)C̄ + (1 + 2𝛼2

t
)�̄�2 + 2Ĉ

�
𝛼2

t

=
�
1 − 2𝛼t(�̄� − 𝜌) + 𝛼2

t
(1 + �̄�2 − 2�̄�𝜌 + 4𝛿tL0) − 2𝛼3

t
(�̄� − 𝜌)

�‖xt − x̂t‖2
+ 𝛼4

t
(�̄�2 − 2�̄�𝜌 + 4𝛿tL0)‖xt − x̂t‖2

+
�
4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
+ 4(1 + 𝛼2

t
)C̄ + (1 + 2𝛼2

t
)�̄�2 + 2Ĉ

�
𝛼2

t

≤ �
1 − 2𝛼t(�̄� − 𝜌) + 𝛼t(�̄� − 𝜌) − 2𝛼3

t
(�̄� − 𝜌)

�‖xt − x̂t‖2
+ 𝛼3

t
(�̄� − 𝜌)‖xt − x̂t‖2

+
�
4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
+ 4(1 + 𝛼2

t
)C̄ + (1 + 2𝛼2

t
)�̄�2 + 2Ĉ

�
𝛼2

t

≤ �
1 − 𝛼t(�̄� − 𝜌)

�‖xt − x̂t‖2
+
�
4(1 + 𝛼2

t
)𝛿tL0𝛼

2

t
+ 4(1 + 𝛼2

t
)C̄ + (1 + 2𝛼2

t
)�̄�2 + 2Ĉ

�
𝛼2

t

∶=
�
1 − 𝛼t(�̄� − 𝜌)

�‖xt − x̂t‖2 + B𝛼2

t
,

�[𝜙1∕�̄�(xt+1)] ≤ �[𝜙1∕�̄�(xt)] + (2L0
√
n +

B�̄�

2
)𝛼2

t
−

𝛼t(�̄�−𝜌)

2�̄�
�[‖∇𝜙u,t

1∕�̄�
(xt)‖2]

(15)

�[‖∇𝜙u,t∗

1∕�̄�
(xt∗ )‖2] = 1∑T

t=0
𝛼t

T�
t=0

𝛼t�[‖∇𝜙u,t

1∕�̄�
(xt)‖2]

≤ 2�̄�

�̄� − 𝜌

𝜙1∕�̄�(x0) − 𝜙⋆ + (2L0
√
n +

B�̄�

2
)

T∑
t=0

𝛼2
t

T∑
t=0

𝛼t

.
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then,

Proof We have,

where the first inequality comes from the definition of the proximal map, the second 
by considering the result proved in Lemma 7, and the third by Lemma 2. Continuing,

with the first inequality obtained by Lemma  2. Indeed, let us now call x̄t 
the minimizer of 𝜙(xt) +

�̄�

2
‖x − xt‖2 and recall that x̂t is the minimizer of 

𝜙u,t(xt) +
�̄�

2
‖x − xt‖2 . We have

The second inequality is obtained by using definition of u1,t in (13). The last equal‑
ity is due basic properties of the Moreau envelope and to the definition of x̂t (see the 
beginning of Lemma 7). Now, we take full expectations and obtain:

(16)𝛼t = min

⎧
⎪⎨⎪⎩
1

�̄�
,
�̄� − 𝜌

2
,

����𝜙1∕�̄�(x0) − 𝜙∗

2L0
√
n +

B�̄�

2

⎫
⎪⎬⎪⎭

1√
T + 1

(17)�[‖∇𝜙u,t∗

1∕�̄�
(xt∗ )‖2] ≤ 4�̄�

�̄� − 𝜌

�
(𝜙1∕�̄�(x0) − 𝜙∗)(2L0

√
n +

B�̄�

2
)

T + 1
.

�t[𝜙1∕�̄�(xt+1)] ≤ �t

�
𝜙(x̂t) +

�̄�

2
‖x̂t − xt+1‖2

�

≤ 𝜙(x̂t) +
�̄�

2

�‖xt − x̂t‖2 + B𝛼2
t
− 𝛼t(�̄� − 𝜌)‖xt − x̂t‖2

�

≤ 𝜙u,t(x̂t) + u1,tL0

√
n +

�̄�

2

�‖xt − x̂t‖2 + B𝛼2
t
− 𝛼t(�̄� − 𝜌)‖xt − x̂t‖2

�
,

𝜙u,t(x̂t) + u1,tL0

√
n +

�̄�

2

�‖xt − x̂t‖2 + B𝛼2
t
− 𝛼t(�̄� − 𝜌)‖xt − x̂t‖2

�

= 𝜙
u,t

1∕�̄�
(xt) + u1,tL0

√
n +

B�̄�

2
𝛼2
t
−

�̄�𝛼t

2
(�̄� − 𝜌)‖xt − x̂t‖2

≤ 𝜙1∕�̄�(xt) + 2u1,tL0

√
n +

B�̄�

2
𝛼2
t
−

�̄�𝛼t

2
(�̄� − 𝜌)‖xt − x̂t‖2

≤ 𝜙1∕�̄�(xt) + 2𝛼2
t
L0

√
n +

B�̄�

2
𝛼2
t
−

�̄�𝛼t

2
(�̄� − 𝜌)‖xt − x̂t‖2

= 𝜙1∕�̄�(xt) + 2𝛼2
t
L0

√
n +

B�̄�

2
𝛼2
t
−

𝛼t(�̄� − 𝜌)

2�̄�
‖∇𝜙u,t

1∕�̄�
(xt)‖2,

𝜙
u,t

1∕�̄�
(xt) = 𝜙u,t(xt) +

�̄�

2
‖x̂t − xt‖2 ≤𝜙u,t(xt) +

�̄�

2
‖x̄t − xt‖2

≤𝜙(xt) + u1,tL0

√
n +

�̄�

2
‖x̄t − xt‖2

=𝜙1∕�̄�(xt) + u1,tL0

√
n.
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The rest of the proof is as in [2, Theorem 3.4]. In particular, summing the recursion, 
we get,

Now, noting that

where we used the lower boundedness of f + r in Assumption 1, we can finally state 
that

Since the left‑hand side is by definition �[‖∇𝜙u,t∗

1∕�̄�
(xt∗ )‖2] , we get the inequality (15). 

Furthermore, by plugging the expression of �t given in (16) into (15), we get the 
final inequality (17).

Theorem 1 gives an overall bound on the weighted expected norm of the proxi‑
mal map as the statistical measure of distance to convergence with respect to the 
number of iterations. The worst case bound is weighted by the possible range of 
the function the algorithm must traverse, i.e., from the starting value to the global 
minimum, as well as the error in the iterates in traversing this range due to the inac‑
curacy in the zeroth order function and noisy subgradient approximations. The order 
of the convergence is the same as the one reported in [2], however, the constant is 
larger, given the additional error in the quality of the steps. Note that as the con‑
vergence result is stated in a similar formalism, using the gradient of the Moreau 
envelope, we can interpret this approximate stationarity concept as given in [2, pp 
3–4], namely that a small value of ‖∇��(x)‖ implies that x is near some point x̂ 
(specifically ‖x − x̂‖ = 𝜆‖∇𝜙𝜆(x)‖ ) satisfying a bound to the distance to stationar‑
ity, dist (0, 𝜕𝜙(x̂)) ≤ ‖∇𝜙𝜆(x)‖ . In this case an additional level of approximation to 

�[𝜙1∕�̄�(xt+1)] ≤ �[𝜙1∕�̄�(xt)] + 2𝛼2
t
L0

√
n

+
B�̄�

2
𝛼2
t
−

𝛼t(�̄� − 𝜌)

2�̄�
�[‖∇𝜙u,t

1∕�̄�
(xt)‖2].

�[𝜙1∕�̄�(xT+1)] ≤ �[𝜙1∕�̄�(x0)] + (2L0
√
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stationarity is added as we are taking the gradient of the smoothed proximal func‑
tion, which is itself a perturbation of the original function.

4  Numerical results

In this section, we investigate the numerical performance of Algorithm 1 on a set of 
standard weakly convex optimization problems defined in [2]. In particular, we con‑
sider phase retrieval, which seeks to minimize the function,

and blind deconvolution, which seeks to minimize

Both of these applications are ones in which Common Random Numbers (CRNs) 
are a reasonable assumption, making two‑point gradient estimates relevant. In par‑
ticular, in (18), the pairs (ai, bi) can be held constant between two function evalua‑
tions, and in (19), triplets (ui, vi, bi) can be fixed as well.

4.1  Comparison with methods using a stochastic subgradient oracle

We first compare Algorithm 1 with the stochastic subgradient method and the sto‑
chastic proximal method in [2]. The goal in this set of experiments is understanding 
if our approach is competitive with those ones that use a stochastic subgradient ora‑
cle and how the practical behavior of the method fits with the theoretical analysis.

We generate random Gaussian measurements in N(0, Id×d ) and a tar‑
get signal x̄ uniformly on the random sphere to compute bi with dimensions 
(d,m) = (10, 30), (20, 60), (40, 120) . We use fixed stepsizes �t in the range 
[10−6, 10−1] . We generate ten runs of each algorithm for every dimension and step‑
size, and pick the best one according to the final objective value. The total number 
of iterations used in all cases is 100000.

We show the gap of the different methods when varying the stepsize for both 
phase retrieval (Fig. 1) and blind deconvolution (Fig. 2).

It is interesting that the zeroth order algorithm performs on par with the ones that 
use the stochastic subgradient oracle. In particular, our method is more robust to the 
choice of the stepsize than the stochastic subgradient method and it is competitive 
with the proximal method. In Figs. 3 and  4, we report the path of the objective val‑
ues obtained with the stepsize equal to 10−4 for the instances (d,m) = (10, 30) . These 
are nice examples of how good the zeroth order algorithm works when the stepsize 
is properly chosen.

(18)min
x∈ℝd

1

m

m�
i=1

���⟨ai, x⟩
2 − bi

���

(19)min
(x,y)∈ℝd

1

m

m�
i=1

��⟨ui, x⟩⟨vi, y⟩ − bi
��.
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4.2  Comparison with a naive stochastic variant of NOMAD

Now, in order to understand if Algorithm 1 is somehow competitive with other (sto‑
chastic) non‑smooth methods from the DFO literature, we report here a preliminary 
comparison with a naive stochastic variant of NOMAD [16, 17]. More specifically, we 
consider a mesh adaptive direct‑search (MADS) that uses a unit‑size sample for each 
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Fig. 1  Gap values for phase retrieval
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evaluation of the zeroth order oracle1. We use 100 randomly generated instances 
in our tests for both phase retrieval and blind deconvolution problems. We gener‑
ate random Gaussian measurements in N(0, Id×d ) and a target signal x̄ uniformly on 
the random sphere to compute bi with dimensions (d,m) = (4, 10) . The choice of 
restricting the analysis to small dimensional instances is mainly due to the fact that 
this naive version of NOMAD gives very poor performances on larger dimensional 
instances. We use fixed stepsizes �t ∈ {10−3, 10−2} in our algorithm. We generate 
ten runs of each algorithm for every problem and pick the best one according to the 
final objective value. The total number of function values used in all cases is 10000. 
We considered data and performance profiles  [19] when comparing the methods. 
Specifically, let S be a set of algorithms and P a set of problems. For each s ∈ S and 
p ∈ P , let tp,s be the number of function evaluations required by algorithm s on prob‑
lem p to satisfy the condition

where 0 < 𝜏 < 1 and fL is the best objective function value achieved by any solver 
on problem p. Then, performance and data profiles of solver s are the following 
functions

where np is the dimension of problem p.
We report, in Figs. 5 and 6, the data and performance profiles for the experiments 

on phase retrieval and blind deconvolution problems, respectively. From the plots it 
can be seen that our algorithm (with suitable choices of the stepsize) outperforms 

(20)f (xk) ≤ fL + �(f (x0) − fL)

�s(�) =
1

|P|
|||||

{
p ∈ P ∶

tp,s

min{tp,s� ∶ s� ∈ S}
≤ �

}|||||
,

ds(�) =
1

|P|
|||
{
p ∈ P ∶ tp,s ≤ �(np + 1)

}|||

Fig. 4  Convergence of the func‑
tion values—blind deconvolu‑
tion (d,m)=(10,30)
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1 We would like to notice that the MADS algorithm was originally developed for deterministic blackbox 
optimization. Recently a stochastic variant of this approach was proposed in [18].
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the naive version of NOMAD for all precisions. We notice that, when � = 10−3 , 
NOMAD does not appear in the plots, hence it never satisfies the condition (20) for 
this precision. We further report, in Figs. 7 and 8, the box plots related to the func‑
tion gaps obtained with the algorithms over the 100 instances considered in the tests. 
Those plots show that our algorithm gets very close to the optimal value for suitable 
choices of the stepsize.
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5  Conclusion

In this paper we studied, for the first time, minimization of a stochastic weakly 
convex function without the presence of an oracle of a noisy estimate of the sub‑
gradient of the function, i.e., in the context of derivative‑free or zeroth order 
optimization. We were able to derive theoretical convergence rate results on par 
with the standard methods for stochastic weakly convex optimization, and dem‑
onstrated the algorithm’s efficacy on a couple of standard test cases. In expand‑
ing the scope of zeroth order optimization, we hope that this work highlights 
the potential of derivative free methods in general, and the two point smoothed 
function approximation technique in particular, to an increasingly wider class of 
problems.

Acknowledgements The authors are indebted to the referees for their constructive suggestions which 
helped to improve on the earlier version of this article.

Fig. 7  Box plots function gap—
phase retrieval

DFO 1e-2 DFO 1e-3 NOMAD

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 8  Box plots function gap—
blind deconvolution

DFO 1e-2 DFO 1e-3 NOMAD

0

0.1

0.2

0.3

0.4

0.5



752 V. Kungurtsev, F. Rinaldi 

1 3

Funding Open access funding provided by Università degli Studi di Padova within the CRUI‑CARE 
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis‑
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Rockafellar, R.T., Wets, R.J.‑B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
 2. Davis, D., Drusvyatskiy, D.: Stochastic model‑based minimization of weakly convex functions. 

SIAM J. Optim. 29(1), 207–239 (2019)
 3. Davis, D., Grimmer, B.: Proximally guided stochastic subgradient method for nonsmooth, noncon‑

vex problems. SIAM J. Optim. 29(3), 1908–1930 (2019)
 4. Duchi, J.C., Ruan, F.: Stochastic methods for composite and weakly convex optimization problems. 

SIAM J. Optim. 28(4), 3229–3259 (2018)
 5. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms 

and applications. Ann. Oper. Res. 240(1), 351–380 (2016)
 6. Larson, J., Menickelly, M., Wild, S. M.: Derivative‑free optimization methods. Acta Numer. 28, 

287–404 (2019)
 7. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic 

trust‑region method via supermartingales. Inf. J. Optim. 1(2), 92–119 (2019)
 8. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust‑region method and 

random models. Math. Program. 169(2), 447–487 (2018)
 9. Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero‑order convex opti‑

mization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)
 10. Larson, J., Billups, S.C.: Stochastic derivative‑free optimization using a trust region framework. 

Comput. Optim. Appl. 64(3), 619–645 (2016)
 11. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential 

linear units (elus). (2015) arXiv preprint arXiv: 1511. 07289
 12. Ghadimi, S., Lan, G.: Stochastic first‑and zeroth‑order methods for nonconvex stochastic program‑

ming. SIAM J. Optim. 23(4), 2341–2368 (2013)
 13. Balasubramanian, K., Ghadimi, S.: Zeroth‑order nonconvex stochastic optimization: Handling con‑

straints, high‑dimensionality, and saddle‑points. pp 651–676 (2019) arXiv preprint arXiv: 1809. 
06474

 14. Li, X., Zhu, Z., So, A.M., Lee, J.D.: Incremental methods for weakly convex optimization. (2019) 
arXiv preprint arXiv: 1907. 11687

 15. Nesterov, Y., Spokoiny, V.: Random gradient‑free minimization of convex functions. Found. Com‑
put. Math. 17(2), 527–566 (2017)

 16. Audet, C., Le Digabel, S., Tribes, C., Rochon Montplaisir, V.: The NOMAD project. Software avail‑
able at https:// www. gerad. ca/ nomad/

 17. Audet, C., Le  Digabel, S., Tribes, C.: NOMAD user guide. Technical Report G‑2009‑37, Les 
cahiers du GERAD (2009)

 18. Audet, C., Dzahini, K.J., Kokkolaras, M., Le Digabel, S.: Stomads: stochastic blackbox optimization 
using probabilistic estimates. (2019) arXiv preprint arXiv: 1911. 01012

 19. Moré, J.J., Wild, S.M.: Benchmarking derivative‑free optimization algorithms. SIAM J. Optim. 
20(1), 172–191 (2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1809.06474
http://arxiv.org/abs/1809.06474
http://arxiv.org/abs/1907.11687
https://www.gerad.ca/nomad/
http://arxiv.org/abs/1911.01012


753

1 3

A zeroth order method for stochastic weakly convex optimization  

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	A zeroth order method for stochastic weakly convex optimization
	Abstract
	1 Introduction
	2 Two point estimate and algorithmic scheme
	3 Convergence of the derivative free algorithm
	4 Numerical results
	4.1 Comparison with methods using a stochastic subgradient oracle
	4.2 Comparison with a naive stochastic variant of NOMAD

	5 Conclusion
	Acknowledgements 
	References




