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Abstract
The low-rank matrix completion problem can be solved by Riemannian optimization 
on a fixed-rank manifold. However, a drawback of the known approaches is that the 
rank parameter has to be fixed a priori. In this paper, we consider the optimization 
problem on the set of bounded-rank matrices. We propose a Riemannian rank-adap-
tive method, which consists of fixed-rank optimization, rank increase step and rank 
reduction step. We explore its performance applied to the low-rank matrix comple-
tion problem. Numerical experiments on synthetic and real-world datasets illustrate 
that the proposed rank-adaptive method compares favorably with state-of-the-art 
algorithms. In addition, it shows that one can incorporate each aspect of this rank-
adaptive framework separately into existing algorithms for the purpose of improving 
performance.

Keywords  Rank-adaptive · Fixed-rank manifold · Bounded-rank matrices · 
Riemannian optimization · Low-rank · Matrix completion

1  Introduction

The low-rank matrix completion problem has been extensively studied in recent 
years; see the survey [11]. The matrix completion model based on a Frobenius norm 
minimization over the manifold of fixed-rank matrices is formulated as follows,
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where A ∈ ℝ
m×n is a data matrix only known on a subset Ω ⊂ {1,… ,m} × {1,… , n} , 

k ≤ min(m, n) is a given rank parameter and PΩ ∶ ℝ
m×n

→ ℝ
m×n denotes the projec-

tion onto Ω , i.e., 
[
PΩ(X)

]
i,j
= Xi,j if (i, j) ∈ Ω , otherwise 

[
PΩ(X)

]
i,j
= 0.

As mentioned in [17, §5.5], in many applications, the (unknown) singular val-
ues of A decay but do not become exactly zero; or A has low rank, but its rank is 
unknown. In both cases, A is known to admit good low-rank approximations, but 
the relation between the rank and the quality of the approximation is unknown, 
making it challenging to choose an adequate rank parameter k. If k is chosen 
too low, then the feasible set Mk of  (1) only contains poor approximations of 
A, hampering an accurate completion. On the other hand, when k gets too large, 
the dimension of the feasible set grows, leading to an increase of space and time 
complexity, and eventually again to an inaccurate completion, now because of 
overfitting. A brief overview of existing strategies to choose k can be found in [3, 
Remark 5.1]. This context motivates the development of techniques that endeavor 
to strike a suitable balance between the above-mentioned concerns by adapting 
the rank as the computation progresses.

We consider the following model for low-rank matrix completion:

Several algorithms based on Riemannian optimization (e.g., see [1]) for this prob-
lem have been developed in [12, 13, 15]. Recently, a Riemannian rank-adaptive 
method for low-rank optimization has been proposed in [19], and problem (2) can 
be viewed as a specific application. This rank-adaptive algorithm mainly consists of 
two steps: Riemannian optimization on the fixed-rank manifold and adaptive update 
of the rank. When a nearly rank-deficient point is detected, the algorithm reduces the 
rank to save computational cost. Alternatively, it increases the rank to gain accuracy. 
However, there are several parameters that users need to tune.

In this paper, we propose a new Riemannian rank-adaptive method (RRAM); 
see Algorithm 1. In comparison with the RRAM method in [19], we stray from 
convergence analysis concerns in order to focus on the efficiency of the proposed 
method for low-rank matrix completion. Specifically, the contributions are as 
follows.

–	 We adopt a Riemannian gradient method with non-monotone line search and 
Barzilai–Borwein step size to solve the optimization problem on the fixed-rank 
manifold (subsect. 3.2).

–	 By detecting the most significant gap of singular values of iterates, we propose a 
novel rank reduction strategy such that the fixed-rank problem can be restricted 
to a dominant subspace (subsect. 3.4). In addition, we propose a normal correc-
tion strategy to increase the rank (subsect. 3.3). Note that the existing algorithms 

(1)
min f (X) ∶=

1

2
‖‖PΩ(X) − PΩ(A)

‖‖2F
s. t. X ∈ Mk ∶= {X ∈ ℝ

m×n ∶ rank(X) = k},

(2)
min f (X)

s. t. X ∈ M≤k ∶= {X ∈ ℝ
m×n ∶ rank(X) ≤ k}.
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may benefit from these rank-adaptive mechanisms to improve their numerical 
performance.

–	 We demonstrate the effectiveness of the proposed method applied to low-rank 
matrix completion (Sect. 4). The numerical experiments on synthetic and real-
world datasets illustrate that the proposed rank-adaptive method is able to find 
the ground-truth rank and compares favorably with other state-of-the-art algo-
rithms in terms of computational efficiency.

The rest of paper is organized as follows. The next section introduces related work 
based on rank-update mechanisms, and presents necessary ingredients of the pro-
posed method. In Sect. 3, a new Riemannian rank-adaptive method is proposed and 
its implementation details are also provided. Numerical experiments are reported in 
Sect. 4. The conclusion is drawn in Sect. 5.

2 � Related work and preliminaries

In this section, we start with related work and give the preliminaries regarding the 
geometric aspect.

2.1 � Related work

The feasible set Mk of problem  (1) is a smooth submanifold of dimension 
(m + n − k)k embedded in ℝm×n ; see [9, Example 8.14]. A Riemannian conjugate 
gradient (RCG) method for solving problem (1) has been proposed in [17], which 
efficiently assembles ingredients of RCG by employing the low-rank structure of 
matrices. There has been other methods for the fixed-rank optimization including 
the Riemannian trust-region method (RTR) [10] and the Riemannian gradient-
descent method (RGD) [19]. Mishra et al. [10] have considered a trace norm penalty 
model for low-rank matrix completion and have proposed a method that alternately 
performs a fixed-rank optimization and a rank-one update.

However, Mk is not closed in ℝm×n , hence minX∈Mk
f (X) may not have a solution 

even when f is continuous and coercive; moreover, if a Riemannian optimization 
algorithm has a limit point of rank less than k, then the classical convergence results 
in Riemannian optimization (e.g., [4]) do not provide guarantees about the limit 
point. As a remedy, one can resort to the set of bounded rank matrices, i.e., M≤k . 
Recently, algorithms for solving problem (2), combining the fixed-rank Riemannian 
optimization with a rank-increase update, have been introduced in [13, 15]. Basi-
cally, these methods increase the rank with a constant by searching along the tangent 
cone of M≤k and projecting onto Mk or M≤k . In addition, a general projected line-
search method on M≤k has been developed in [12] whose convergence guarantee is 
based on the assumption that limit points of algorithm have rank k.

The related work is further discussed in subsect. 3.5 after we introduce the neces-
sary geometric ingredients for Riemannian optimization.
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2.2 � Geometry of M≤k

The geometry of M≤k has been well studied in [12]. In this subsection, we introduce 
several Riemannian aspects that will be used in the rank-adaptive method.

Given the singular value decomposition (SVD) of fixed-rank matrices, an equiva-
lent expression of the manifold Mk is

where

denotes the (compact) Stiefel manifold, and a diagonal matrix with {�i} on its diago-
nal is denoted by diag(�1,… , �k) . This expression of Mk provides a convenient way 
to assemble other geometric tools. For instance, the tangent space of Ms at X ∈ Ms 
is given as follows; see [17, Proposition 2.1]

where U
⟂
∈ ℝ

m×(m−s) denotes a matrix such that U⊤U
⟂
= 0 and U⊤

⟂
U

⟂
= I . More-

over, the normal space of Ms at X associated with the Frobenius inner product, 
⟨X, Y⟩ ∶= tr(X⊤Y) , has the following form

Letting PU ∶= UU⊤ and P⟂

U
∶= U

⟂
U⊤

⟂
= I − PU , the orthogonal projections onto 

the tangent space and normal space at X for Y ∈ ℝ
m×n are

The Riemannian gradient of f at X ∈ Ms , denoted by gradsf (X) , is defined as the 
unique element in TXMs such that ⟨gradsf (X), Z⟩ = Df (X)[Z] for all Z ∈ TXMs , 
where Df (X) denotes the Fréchet derivative of f at X. It readily follows from [1, 
(3.37)] that

where ∇f (X) denotes the Euclidean gradient of f at X.
When s < k , the tangent cone of M≤k at X ∈ Ms can be expressed as the orthog-

onal decomposition [12, Theorem 3.2]

Mk =

{
UΣV⊤ ∶

U ∈ St(k,m),V ∈ St(k, n),

Σ = diag(𝜎1,… , 𝜎k) with 𝜎1 ≥ ⋯ ≥ 𝜎k > 0

}
,

St(k,m) ∶=
{
X ∈ ℝ

m×k ∶ X⊤X = Ik
}

TXMs =

{[
U U

⟂

] [ ℝ
s×s

ℝ
s×(n−s)

ℝ
(m−s)×s 0(m−s)×(n−s)

] [
V V

⟂

]⊤}
,

(3)
(
TXMs

)⟂
=

{[
U U

⟂

] [ 0s×s 0s×(n−s)
0(m−s)×s ℝ

(m−s)×(n−s)

] [
V V

⟂

]⊤}
.

(4)
PTXMs

(Y) = PUYPV + P⟂

U
YPV + PUYP

⟂

V
,

P
(TXMs)

⟂(Y) = P⟂

U
YP⟂

V
.

gradsf (X) = PTXMs
(∇f (X)),

(5)TXM≤k = TXMs ⊕
(
TXMs

)⟂
≤(k−s)

,
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where ⊕ denotes the direct sum and

is a subset of the normal space 
(
TXMs

)⟂ . Furthermore, the projection onto the tan-
gent cone has the form [12, Corollary 3.3]

where P
(TXMs)

⟂

≤(k−s)

(Y) ∈
(
TXMs

)⟂
≤(k−s)

 is a best rank-(k − s ) approximation of 
P
(TXMs)

⟂(Y) = Y − PTXMs
(Y) , i.e.,

Note that this projection is not unique when the singular values number k − s and 
k − s + 1 of P

(TXMs)
⟂(Y) are equal. For simplicity, we denote

and the projections of −∇f (X) are denoted by

Consequently, the optimality condition of problem (2) can be defined as follows; see 
[12, Corollary 3.4].

Definition 1  X∗ ∈ M≤k is called a critical point of optimization problem (2) if

3 � A Riemannian rank‑adaptive method

We propose a new Riemannian rank-adaptive algorithm in this section. The Rie-
mannian Barzilai–Borwein method with a non-monotone line search is proposed to 
solve the fixed-rank optimization problem. Rank increase and rank reduction strate-
gies are developed.

3.1 � Algorithmic framework

The proposed algorithmic framework for solving problem  (2) is listed in Algo-
rithm 1. Several comments are in order.

(
TXMs

)⟂
≤(k−s)

∶=
{
N ∈

(
TXMs

)⟂
∶ rank(N) ≤ (k − s)

}

PTXM≤k
(Y) ∈ argminZ∈TXM≤k

‖Y − Z‖F = PTXMs
(Y) + P

(TXMs)
⟂

≤(k−s)

(Y),

(6)P
(TXMs)

⟂

≤(k−s)

(Y) ∈ argminrank(N)≤(k−s)
‖‖‖Y − PTXMs

(Y) − N
‖‖‖F.

(7)Nk−s(X) ∶= P
(TXMs)

⟂

≤(k−s)

(−∇f (X)),

(8)Gs(X) ∶= PTXMs
(−∇f (X)) = −gradsf (X),

(9)G≤k(X) ∶= PTXM≤k
(−∇f (X)) = Gs(X) + Nk−s(X).

‖‖G≤k(X)
‖‖F = 0.
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Algorithm  1 consists of the fixed-rank optimization and the rank adaptation. 
Except for its rank reduction feature, Algorithm 1 can be thought of as a descent 
method that aims at finding an approximate critical point of problem (2). In view of 
Definition 1 and (9), we consider the following measure of criticality at X∗ ∈ M≤k:

where X∗ has rank s∗ and the equality follows from the orthogonal decomposition (5) 
of G≤k(X

∗).
Algorithm 1 is initialized by a rank parameter k and an initial guess X0 ∈ Mk ; 

see (17) for an initialization. After a pre-process on X0 (line 3 of Algorithm 1), we 
obtain X̃0 with the update (working) rank s; this process works favorably in numeri-
cal experiments (see Sect. 4).

During the iterations of Algorithm 1, line 5 aims for solving the fixed-rank opti-
mization on Ms , i.e.,

by a globally convergent Riemannian optimization algorithm (Algorithm  2). Note 
that

is the first-order optimality condition of (11); see [1, §4.1].
Subsequently, we consider adapting the rank. On the one hand, if the obtained Xp 

from line 5 of Algorithm 1 has a large gap among singular values, we consider the 
working rank is too large, which leads to high space and time complexity. Thus, the 
rank is reduced by Algorithm 4. On the other hand, we check the condition in line 8 
of Algorithm  1. Specifically, if s = k , we do not increase the rank; otherwise we 
check the condition

(10)‖‖G≤k(X
∗)‖‖2F = ‖‖Gs∗ (X

∗)‖‖2F + ‖‖Nk−s∗ (X
∗)‖‖2F,

(11)min
X∈Ms

f (X),

‖‖Gs(X)
‖‖F = ‖‖gradsf (X)‖‖F = 0

(12)
‖‖‖Nk−s(Xp)

‖‖‖F > 𝜖
‖‖‖Gs(Xp)

‖‖‖F,
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where 𝜖 > 0 is a parameter that determines how much we crave for increasing the 
rank. If the condition (12) holds, in view of (10), it means that a significant part of 
G≤k(Xp) is in the normal space to Ms , in which case we consider that the current 
rank s is too low, hampering an accurate completion. To this end, we increase the 
rank by Algorithm 3. Note that (12) is more apt to hold with smaller �.

Note that Algorithm 1 endeavors to strike a balance between the rank and the qual-
ity of the completion by updating the rank adaptively. In order to have a more intuitive 
look at the rank-adaptive mechanism, Algorithm 1 is also presented as a flowchart in 
Fig. 1. There are three major parts in the framework: optimization on the fixed-rank 
manifold; rank increase; rank reduction. In the rest of this section, we introduce these 
features in detail.

3.2 � Riemannian optimization on Ms

Very recently, the Riemannian gradient method with non-monotone line search and 
Barzilai–Borwein (BB) step size [2] has been shown to be efficient in various applica-
tions; see [6–8]. In addition, its global convergence has been established (e.g., see [6, 
Theorem 5.7]). We adopt this method on the fixed-rank manifold Ms to address line 5 
of Algorithm 1. Given the initial point X̃p−1 ∈ Ms , the detailed method called RBB is 
listed in Algorithm 2.

Fig. 1   Flowchart of the Riemannian rank-adaptive method (RRAM, Algorithm 1); see Algorithm 2 for 
the fixed-rank optimization, Algorithm 3 for the rank increase, and Algorithm 4 for the rank reduction
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In line 5 of Algorithm 2, we calculate a step size based on the Riemannian BB 
method [8], and the vector transport on Ms is defined as

The non-monotone line search is presented in line  6 and line  8 of Algorithm  2. 
The metric projection PMs

 is chosen as the retraction map in line  7 of Algo-
rithm 2, which can be calculated by a truncated SVD. Note that this projection is 
not necessarily unique, but we can always choose one in practice. All these cal-
culations in Algorithm  2 can be efficiently achieved by exploiting the low-rank 
structure of X(j) = UΣV⊤ . The interested readers are referred to [17] for detailed 
implementations.

We terminate Algorithm  2 when the maximum iteration number jmax is 
reached. In practice, the stopping criteria of Algorithm  1 (the relative errors 
introduced in Sect. 4) will also be checked during the iterations of Algorithm 2. 
Regarding the computational efficiency of Algorithm 2, it often compares favora-
bly with other methods for fixed-rank optimization; see numerical examples in 
subsect. 4.1.

TX→Y ∶ TXMs → TYMs, Z ↦ PTYMs
(Z).
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3.3 � Rank increase

In order to increase the rank of Xp , we propose the “normal correction” step 
defined in Algorithm 3. The principle is to make an update along the normal vec-
tor Nl(Xp) as defined in (6)-(7) provided l ≤ k − s . Specifically, the normal correc-
tion steps consists of a line search along the direction of

such that l̃ ≤ l , W ∈ St(l̃,m) , Y ∈ St(l̃, n) , and D ∈ ℝ
l̃×l̃ is a diagonal matrix that 

has full rank. The factors W, D and Y can be obtained by an l-truncated SVD of 
−∇f (Xp) − Gs(Xp) . The next result relates WDY⊤ to Nl(Xp) and confirms that it 
yields a descent direction whenever it does not vanish.

Proposition 1  Given X = UΣV⊤ ∈ Ms , every best rank-l approximation WDY⊤ of 
−∇f (X) − Gs(X) satisfies that

More precisely, WDY⊤ belongs to P
(TXMs)

⟂

≤l

(−∇f (X)) as defined in (6). Moreover, if 
−∇f (X) − Gs(X) ≠ 0 (i.e., if ∇f (X) ∉ TXMs ) , then WDY⊤ is a descent direction for 
f, i.e.,

Proof  It follows from (4) and (8) that

Therefore, any SVD of H(X) has the form U
⟂
ŪΣ̄V̄⊤V⊤

⟂
 , where

with 𝜎̄1 ≥ ⋯ ≥ 𝜎̄r > 0 and r = rank(H(X)) . It follows that

which is any compact SVD of H(X). Note that WDY⊤ is a best rank-l approxi-
mation of H(X) iff WDY⊤ is a l-truncated SVD of 

∑r

i=1
𝜎̄i
�
U

⟂
ūi
��
V
⟂
v̄i
�⊤ , i.e., ∑l̃

i=1
𝜎̄i
�
U

⟂
ūi
��
V
⟂
v̄i
�⊤ where l̃ ∶= min(l, r) . Let

(13)Nl(Xp) = WDY⊤ ∈ argminrank(N)≤l
‖‖‖−∇f (Xp) − Gs(Xp) − N

‖‖‖F

W⊤U = 0 and Y⊤V = 0.

d

dt
f (X + tWDY⊤)

����t=0 = −‖D‖2
F
< 0.

H(X) ∶= −∇f (X) − Gs(X) = −∇f (X) − PTXMs
(−∇f (X))

= P
(TXMs)

⟂(−∇f (X)) = −P⟂

U
∇f (X)P⟂

V

= −U
⟂
U⊤

⟂
∇f (X)V

⟂
V⊤

⟂
.

Ū = [ū1,… , ūr] ∈ St(r,m − s),

V̄ = [v̄1,… , v̄r] ∈ St(r, n − s),

Σ̄ = diag(𝜎̄1,… , 𝜎̄r)

H(X) = −U
⟂
U⊤

⟂
∇f (X)V

⟂
V⊤

⟂
= U

⟂
ŪΣ̄V̄⊤V⊤

⟂
=

r∑
i=1

𝜎̄i
(
U

⟂
ūi
)(
V
⟂
v̄i
)⊤
,
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It yields that W⊤U = 0 and Y⊤V = 0.
In addition, it follows from U⊤

⟂
∇f (X)V

⟂
= −ŪΣ̄V̄⊤ that

Thus, WDY⊤ is a descent direction.	�  ◻

Hence, we can perform a line-search

As the objective function f(X) in (1) is quadratic, this problem has the closed-form 
solution

Moreover, unless ∇f (Xp) ∈ TXMs , the normal correction step is guaranteed to 
increase the rank.

Proposition 2  Let X and WDY⊤ be as in Proposition  1. Then, for all � ≠ 0 , 
X + 𝛼WDY⊤ has rank s + l̃ , where l̃ = rank(D).

Proof  In view of Proposition 1, it readily follows from W⊤U = 0 and Y⊤V = 0 that

has rank s + l̃ . 	�  ◻

W = U
⟂
[ū1,… , ūl̃],

Y = V
⟂
[v̄1,… , v̄l̃],

D = diag(𝜎̄1,… , 𝜎̄l̃).

d

dt
f (X + tWDY⊤)

����t=0 =
�
∇f (X),WDY⊤

�

=

�
∇f (X),U

⟂

⎛
⎜⎜⎝

l̃�
i=1

𝜎̄iūiv̄
⊤

i

⎞
⎟⎟⎠
V⊤

⟂

�

=

�
U⊤

⟂
∇f (X)V

⟂
,

l̃�
i=1

𝜎̄iūiv̄
⊤

i

�

= −

�
ŪΣ̄V̄⊤,

l̃�
i=1

𝜎̄iūiv̄
⊤

i

�

= −

l̃�
i=1

𝜎̄2
i
= −‖D‖2

F
< 0.

min
𝛼>0

f (Xp + 𝛼WDY⊤).

(14)𝛼∗ = −

⟨
PΩ(WDY⊤),PΩ(X − A)

⟩
‖‖PΩ(WDY⊤)‖‖2F

.

X + 𝛼WDY⊤ = UΣV⊤ + 𝛼WDY⊤ =
[
U W

] [Σ 0

0 𝛼D

] [
V Y

]⊤
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We summarize these steps in Algorithm 3.

The effect of the rank increase is illustrated in Fig. 2. We consider a method that 
combines the fixed-rank optimization (RBB) with the rank-one increase. Figure 2 
reports the evolution of ‖‖Nk−s(X)

‖‖F and ‖‖Gs(X)
‖‖F for solving problem  (2) with a 

rank-one initial point. It is observed that when the stage of fixed-rank optimization 
is finished, ‖‖Gs(X)

‖‖F dramatically degrades while ‖‖Nk−s(X)
‖‖F does not. The peaks on 

the curve of ‖‖Gs(X)
‖‖F are caused by the change from Gs(Xp) to Gs+1(X̃p).

3.4 � Rank reduction

As Ms is not closed, an iterate sequence in Ms may have limit points of rank less than 
s. If the iterates are found to approach M≤(s−1) , then it makes sense to solve the optimi-
zation problem on the set of smaller fixed-rank matrices. In addition, it can reduce the 
dimension of problem and thereby save the memory.

One possible strategy to decrease the rank has been proposed in [19]. Specifically, 
given Xp = UΣV⊤ with Σ = diag(�1,… , �s) and 𝜎1 ≥ ⋯ ≥ 𝜎s > 0 , given a threshold 
𝛥 > 0 , we can replace the singular values smaller than �1� by zero. This rank reduc-
tion step returns a matrix X̃p ∈ Mr̃ by the best rank-r̃ approximation of Xp , where 
r̃ ∶= max

{
i ∶ 𝜎i ≥ 𝜎1𝛥

}
.

Fig. 2   Effect of the rank 
increase
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In practice, we observe that the gap of singular values also plays an important role 
in fixed-rank optimization; see the numerical examples in subsect. 4.2. Therefore, we 
propose to check if there is a large gap in the singular values and, if so, to decrease the 
rank accordingly. To this end, we consider a criterion based on the relative change of 
singular values

where � ∈ (0, 1) is a given threshold. Figure 3 presents two typical distributions of 
singular values, and �i∕�1 , (�i − �i+1)∕�i are also computed. We observe that the 
large gap of singular values in the first row can be detected by  (15) with setting 
� = 0.1 , while the condition 𝜎i < 𝜎1𝛥 is not activated.

In order to avoid losing too much information, we do not reduce the rank aggres-
sively. The large gap of singular values is only detected by finding the index r̃ such that

In other words, if all the gaps (�i − �i+1)∕�i are small, then we do not reduce 
the rank, i.e., r̃ = s ; otherwise, we choose the index that maximizes the gap 
(�i − �i+1)∕�i . A benefit of taking maximum of (�i − �i+1)∕�i is to avoid aggressive 
rank reductions. For instance, given a threshold � = 0.1 , if singular values are dis-
tributed as {100, 80, 1, 0.8} , the condition  (15) always holds. Nevertheless, we are 
not in favor of reducing the rank at the first gap (between 100 and 80), which is too 

(15)
𝜎i − 𝜎i+1

𝜎i
> 𝛥,

(16)r̃ ∶=

⎧⎪⎨⎪⎩

s, if maxi

�
𝜎i−𝜎i+1

𝜎i

�
≤ 𝛥;

argmaxi

�
𝜎i−𝜎i+1

𝜎i

�
, otherwise .

Fig. 3   Singular values of X = PM20
(PΩ(A)) . First row: A = LR

⊤ ∈ ℝ
1000×1000 , where L,R ∈ ℝ

1000×10 . 
Second row: A = �����(1000, 1000) ∈ ℝ

1000×1000
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aggressive in this case. The condition (16) that takes maximal gap is able to return a 
suitable detection between 80 and 1.

The proposed rank reduction step is listed in Algorithm 4.

Algorithm 4 is just one among many possible rank reduction strategies that retain 
the “largest” singular values and set the other ones to zero. The performance of 
those strategies is highly problem-dependent. Nevertheless, without such a strategy, 
the rank-adaptive method may miss opportunities to reduce the rank and thereby 
benefit from a reduced computational cost. Moreover, in order to address the issue, 
mentioned in subsect. 2.1, that Mk is not closed, some rank reduction mechanism is 
required to rule out sequences with infinitely many points in M>s and a limit point 
in Ms.

3.5 � Discussion

In this subsection, we discuss the differences and improvements between the pro-
posed rank-adaptive method and other rank-related algorithms. These methods with 
their corresponding features (fixed-rank algorithm, rank increase, and rank reduc-
tion) are listed in Table 1.

Note that the proposed rank-adaptive method in Algorithm  1 has several novel 
aspects. Firstly, as an inner iteration for the fixed-rank optimization, the RBB method 
with non-monotone line search proposed in [6] is applied to low-rank matrix comple-
tion. The numerical comparisons show that RBB tends to outperform other Riemann-
ian methods such as RCG; see subsect. 4.1 and 4.4. Secondly, we search along the nor-
mal space to increase the rank, which is supported by Proposition 2. This contrasts with 
[19], where the update direction is obtained by projecting the antigradient onto a tangent 
cone. Moreover, in contrast with [15, §III.A], we do not assume the fixed-rank algo-
rithm (Algorithm 2) to return a point Xp that satisfies Gs(Xp) = 0 ; however, if it does, 
then the proposed rank increase step coincides with the update X+ = X + �G≤(s+l)(X) 
of [15] in view of (10). Thirdly, the proposed rank reduction mechanism differs from 
the one in [19]. It detects the most significant gap of singular values of iterates, while 
the rank reduction in [19] removes the singular values that are smaller than a threshold. 
The performance of the new rank reduction is illustrated in subsect. 4.2.
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4 � Numerical experiments

In this section, we first demonstrate the effectiveness of the proposed rank-adaptive 
algorithm, and then compare it with other methods on low-rank matrix completion 
problems. For simplicity, we restrict our comparisons to manifold-based methods since 
they usually perform well on this problem and are comparable with other low-rank 
optimization methods; see [17].

Unless otherwise mentioned, the low-rank matrix

in  (2) is generated by two random matrices L ∈ ℝ
m×r , R ∈ ℝ

n×r with i.i.d. 
standard normal distribution. The sample set Ω is randomly generated on 
{1,… ,m} × {1,… , n} with the uniform distribution of |Ω|∕(mn) . The oversampling 
rate (OS, see [17]) for A is defined as the ratio of |Ω| to the dimension of Mr , i.e.,

Note that OS represents the difficulty of the completion problem, and it should be 
larger than 1.

The stopping criteria for different algorithms are based on the relative gradi-
ent and relative residual of their solutions, also the relative change of function value. 
Specifically,

A = LR⊤ ∈ ℝ
m×n

OS ∶=
|Ω|

(m + n − r)r
.

Table 1   Rank-related algorithms based on the geometry of the feasible set

algorithm fixed-rank rank

increase reduction

[10] RTR​ X+ = X + 𝛼wy⊤ -
[12] - X+ = PM≤k

(X + �G≤k) -
[13] RCG​ X+ = PMs+l

(X + �G≤(s+l)) -
[15] RCG​ X+ = X + �G≤(s+l) -
[19] RGD X+ = PM≤(s+l∗)

(X + �G≤(s+l∗)) 𝜎i∕𝜎1 < 𝛥

Algorithm 1 RBB X+ = X + 𝛼WDY⊤ (𝜎i − 𝜎i+1)∕𝜎i>𝛥
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Once one of the above criteria or the maximum iteration number 1000 is reached, we 
terminate the algorithms. Note that these criteria are introduced in [17]. The default 
tolerance parameters are chosen as �g = 10−12 , �Ω = 10−12 , �f = 10−4 . The rank 
increase parameter � in (12) is set to 10, and the rank increase number l is 1. The 
rank reduction threshold � in (16) is set to 0.1. The inner maximum iteration num-
ber jmax is set to 100, �0 is computed by [17, Algorithm 5], and other parameters in 
Algorithm 2 are the same as those in [6]. Specifically, � = 10−4, � = 0.1, � = 0.85 , 
�min = 10−15 , and �max = 1015.

All experiments are performed on a laptop with 2.7 GHz Dual-Core Intel i5 
processor and 8GB of RAM running MATLAB R2016b under macOS 10.15.2. 
The code that produces the result is available from https://​github.​com/​opt-​gaobin/​
RRAM.

4.1 � Comparison on the fixed‑rank optimization

Before we test the rank-adaptive method, we first illustrate the performance of the 
RBB method proposed in Algorithm 2 on the fixed-rank optimization problem (1). 
We compare RBB with a state-of-the-art fixed-rank method called LRGeomCG1 
[17], which is a Riemannian CG method for fixed-rank optimization.

The problem is generated with m = n = 10000, r = 40 and OS = 3 . The rank 
parameter k in (1) is set to k = r , which means the true rank of A is provided. The 
initial point is generated by

Figure 4 reports the numerical results. It is observed that the RBB method performs 
better than LRGeomCG in terms of computational efficiency to achieve compara-
ble accuracy. In addition, one can observe the non-monotone property of RBB that 
stems from the non-monotone line search procedure in Algorithm 2.

In order to investigate the performance of RBB on different problems, we test 
on three datasets with varying m, the rank parameter k, and OS , respectively. Spe-
cifically, we fix the oversampling rate OS = 3 , k = 20 , and chose m = n from the 
set {2000j ∶ j = 1,… , 10} . Alternatively, we choose k from {10j ∶ j = 1,… , 8} and 
fix m = n = 10000 . In addition, the last dataset is varying OS from {1,… , 10} , and 

relative gradient ∶
��gradsf (X)��F
max(1, ‖X‖F) < 𝜖g,

relative residual ∶
��PΩ(X) − PΩ(A)

��F
��PΩ(A)

��F
< 𝜖Ω,

relative change ∶
�����
1 −

��PΩ(Xi) − PΩ(A)
��F

��PΩ(Xi−1) − PΩ(A)
��F

�����
< 𝜖f .

(17)X0 ∶= PMk
(PΩ(A)).

1  Available from https://​www.​unige.​ch/​math/​vande​reyck​en/​matrix_​compl​etion.​html.

https://github.com/opt-gaobin/RRAM
https://github.com/opt-gaobin/RRAM
https://www.unige.ch/math/vandereycken/matrix_completion.html
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choosing m = n = 10000 , k = 20 . The running times of RBB and LRGeomCG are 
reported in Fig. 5. Notice that RBB has less running time than LRGeomCG when 
the size of problem (m and k) increases. Additionally, we observe that RBB outper-
forms LRGeomCG among all different oversampling settings.

4.2 � Comparison on the rank reduction

The effectiveness of the rank reduction step in RRAM is verified in this subsection. 
RRAM combines with the RBB method as the fixed-rank optimization, and we call 
it RRAM-RBB. For comparison, we also test LRGeomCG to illustrate that the rank-
adaptive method is more suitable than fixed-rank methods for low-rank matrix com-
pletion. We generate problem (2) with m = n = 1000 and OS = 3 . The data matrix 
A = LR⊤ is randomly generated by two rank 10 matrices. The following comparison 
is twofold based on different initial guesses that have similar singular value distribu-
tions in Fig. 3.

In a first set of experiments, the methods are initialized by (17), i.e., the best rank-
k approximation of PΩ(A) . Given the rank parameter k > rank(A) = 10 , the distribu-
tion of this type of initial points is similar to the one in the first row of Fig. 3, which 

(a) (b)

Fig. 4   A comparison on the fixed-rank optimization

(a) (c)(b)

Fig. 5   A comparison on the fixed-rank optimization with varying m, k and OS



83

1 3

A Riemannian rank‑adaptive method for low‑rank matrix…

has a large gap of singular values. We make a test on different rank parameters k 
chosen from the set {10, 11,… , 20} . The numerical results are presented in Fig. 6, 
and observations are summarized as follows.

–	 In Fig. 6a, b, it is observed that for LRGeomCG, the best choice of k is by far 
k = 10 , which is the true rank of data matrix A. It reveals that the performance of 
the fixed-rank optimization method LRGeomCG highly depends on the choice of 
rank parameter, while the proposed rank-adaptive method has comparable results 
among all choices.

–	 The update rank of RRAM is listed in Fig.  6c. Notice that the rank reduction 
step is invoked in the initialization stage (line 3 of Algorithm 1) for most choices 
of the initial rank, and it reduces the rank to 10. In the cases of k = 14, 15, 16 , 
although a initial rank reduction is not activated, the algorithm can detect the 
large gap of singular values when the first call of the fixed-rank method (Algo-
rithm 2) terminates (at its maximum iteration number 100) and reduces k to the 
true rank 10.

–	 It is worth mentioning that in Fig. 6, when a rank reduction step completes, it 
often increases the function value at the very beginning, but the algorithm 
quickly converges once the true rank is detected.

Another class of initial points is randomly generated by a low-rank matrix LR⊤ that 
has rank k. It has a uniform singular values distribution that is the same as the sec-
ond row of Fig.  3. Similarly, we compare RRAM-RBB with LRGeomCG on the 

(a) (c)(b)

Fig. 6   A comparison with different rank parameters k. The initial point is generated by X0 = PM
k
(PΩ(A))

(a) (c)(b)

Fig. 7   A comparison with different rank parameters k. The initial point is randomly generated
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problems with different rank parameters, and the results are reported in Fig. 7. We 
observe that RRAM-RBB can reduce the rank among all choices of k > 10 even 
when the singular values of the initial point do not have a large gap. Note that in 
the cases of k = 15 and 18, the first fixed-rank optimization stops with the iteration 
number less than 100 since the relative change is achieved.

4.3 � Comparison on the rank increase

In this subsection, we consider a class of problems for which the data matrix A is ill-
conditioned. This type of problem has been numerically studied in [15]. Specifically, 
we construct

where U ∈ ℝ
m×r and V ∈ ℝ

n×r . Note that A has exponentially decaying singular val-
ues. We generate the problem with m = n = 1000 , k = r = 20 and OS = 3 . The ini-
tial point is generated by  (17). We choose the rank increase parameter � = 2 such 
that RRAM-RBB is inclined to increase the rank. The tolerance parameter �g is set 
to 10−15.

We test on three different settings: (I) the maximum iteration number jmax 
for the fixed-rank optimization is set to 5, and the rank increase number l = 1 ; 
(II)  jmax = 100 and l = 1 ; (III) jmax = 20 and l = 2 . Figure 8 reports the evolution of 
errors and the update rank of RRAM-RBB. The observations are as follows.

A = Udiag(1, 10−1,… , 10−r+1)V⊤,

(a) (c)(b)

Fig. 8   A comparison on the rank increase with three settings. First row: evolution of errors. Second row: 
update rank
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–	 In this ill-conditioned problem, RRAM-RBB performs better than the fixed-rank 
optimization method LRGeomCG ( k = 20 ). In addition, we observe that the rank 
reduction step is invoked at the initial point for three settings, and RRAM-RBB 
increases the rank by a number l after each fixed-rank optimization.

–	 Note that the oscillation of relative gradient in RRAM-RBB stems from the rank 
increase step. From the first two columns of Fig. 8, it is observed that if the fixed-
rank problem is inexactly solved ( jmax = 5 ), the performance of RRAM-RBB is 
still comparable with the “exactly” solved algorithm ( jmax = 100).

4.4 � Ablation comparison on the proposed rank‑adaptive mechanism

In this subsection, we produce an ablation study by incorporating Algorithm 1 into 
the fixed-rank optimization LRGeomCG [17] (Riemannian CG method). The result-
ing algorithm is called RRAM-RCG​. Note that RRAM-RCG and RRAM-RBB differ 
only for the inner iteration (Algorithm 2). The purpose of this ablation study is to 
understand how the choice of the fixed-rank optimization method impacts the entire 
rank-adaptive framework.

In the first test, we compare RRAM-RCG with RRAM-RBB on problem 
instances generated as in subsect.  4.2, with the random initial guess described 
therein. Specifically, the problem is generated with m = n = 10000 , k = 15 , r = 10 
and OS = 3 . For both fixed-rank methods (RBB and RCG), the maximum iteration 
number jmax is set to 100. In Fig. 9, the numerical results illustrate that RCG still 
enjoys the benefit of the rank reduction step (16) that reduces the rank from 15 to the 
true rank 10. Moreover, it indicates that using RBB instead of RCG yields a consid-
erable improvement on this problem instance. This observation can be explained by 
the comparison in subsect. 4.1.

Another test is generated as in subsect.  4.3 with m = n = 50000 , k = r = 20 
and OS = 3 . Figure  10 reports the performance comparison of RRAM-RBB and 
RRAM-RCG. It shows that the proposed rank increase strategy is also effective for 

(a) (b)

Fig. 9   An ablation comparison on the rank reduction
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RCG. Notice that the performance of RRAM-RBB is slightly better than RRAM-
RCG in terms of computational efficiency.

4.5 � Test on real‑world datasets

In this subsection, we evaluate the performance of RRAM on low-rank matrix com-
pletion with real-world datasets. The MovieLens2 dataset contains movie rating data 
from users on different movies. In the following experiments, we choose the dataset 
MovieLens100K that consists of 100000 ratings from 943 users on 1682 movies, 
and MovieLens 1M that consists of one million movie ratings from 6040 users on 
3952 movies.

For comparison, we test RRAM-RBB with several state-of-the-art methods that 
particularly target low-rank matrix completion, namely, LRGeomCG1 [17] (Rie-
mannian CG method), NIHT3 and CGIHT3 [18] (iterative hard thresholding algo-
rithms), ASD3 and ScaledASD3 [14] (alternating steepest descent methods). Note 
that all these methods are based on the fixed-rank problem where the rank param-
eter has to be given a priori. For these two real-world datasets, we randomly choose 
80% of the known ratings as the training set Ω and the rest as the test set Ωc . The 
rank parameter k is set to 10 for all tested algorithms, and we terminate these algo-
rithms once the maximum allowed running time (10s for MovieLens100K and 70s 
for MovieLens 1M) is reached or their own stopping criteria are achieved.

Figure  11 shows the singular values of the initial point  (17), namely the rank-10 
approximation of the zero-filled MovieLens dataset. It is observed that the largest gap 
can be detected between the first two singular values by the rank reduction  (16) for 
both examples. According to the pre-process (line 3 of Algorithm 1), RRAM-RBB will 

(a) (b)

Fig. 10   An ablation comparison on the rank increase

2  Available from https://​group​lens.​org/​datas​ets/​movie​lens/.
3  Available from http://​www.​sdspe​ople.​fudan.​edu.​cn/​weike/​publi​catio​ns.​html.

https://grouplens.org/datasets/movielens/
http://www.sdspeople.fudan.edu.cn/weike/publications.html
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thereby reduce the rank to one just after the initialization (17), which explains the first 
rank reduction in the following figures for RRAM-RBB.

The numerical results are illustrated in Fig. 12. The quality of matrix completion 
is evaluated by the root-mean-square error (RMSE) for a matrix X and a given index 
set Ω� , i.e., RMSE(Ω�) ∶= ��PΩ�(X) − PΩ�(A)��F∕

√�Ω�� . The training RMSE and test 
RMSE are defined as RMSE(Ω) and RMSE(Ωc) , respectively. Note that RRAM-RBB 
achieves the best final RMSE (test) among all methods in the MovieLens100K dataset 
( m = 943 , n = 1682 ), and is comparable with other algorithms in terms of computa-
tional efficiency. The evolution of update rank of RRAM-RBB shows that RRAM-RBB 
adaptively increases the rank and automatically finds a rank that is lower than the rank 
given to the other methods but with a smaller RMSE (test). In the larger dataset Mov-
ieLens 1M ( m = 6040 , n = 3952 ), RRAM-RBB still has a comparable RMSE (test). In 
summary, the rank-adaptive method accepts the flexible choices of rank parameter, and 
is able to search for a suitable rank.

Fig. 11   Singular values of the initial points for the MovieLens dataset. First row: MovieLens100K. Sec-
ond row: MovieLens 1M
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5 � Conclusion

This paper concerns the low-rank matrix completion problem that can be mod-
eled with a bounded-rank constraint. A Riemannian rank-adaptive method is pro-
posed, featuring a Riemannian gradient method with non-monotone line search, a 
new rank increase strategy by searching along the normal space, and a new rank 
reduction scheme by detecting large gaps among singular values.

This paper explores the numerical behavior of rank-adaptive methods on syn-
thetic and real-world problems. Although the value of the new rank-adaptive 
method is application dependent, our observations provide insight on the kind 
of data matrices for which rank-adaptive mechanisms play a valuable role. This 
suggests that the proposed method might also perform well on other low-rank 
optimization problems, such as those mentioned in [5, 12, 16, 19].
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(a) (b)

Fig. 12   A comparison on real-world datasets. First row: MovieLens100K. Second row: MovieLens 1M
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