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A PIECEWISE CONSERVATIVE METHOD FOR UNCONSTRAINED

CONVEX OPTIMIZATION

ALESSANDRO SCAGLIOTTI AND PIERO COLLI FRANZONE

Abstract. We consider a continuous-time optimization method based on a dynamical
system, where a massive particle starting at rest moves in the conservative force field gen-
erated by the objective function, without any kind of friction. We formulate a restart
criterion based on the mean dissipation of the kinetic energy, and we prove a global con-
vergence result for strongly-convex functions. Using the Symplectic Euler discretization
scheme, we obtain an iterative optimization algorithm. We have considered a discrete
mean dissipation restart scheme, but we have also introduced a new restart procedure
based on ensuring at each iteration a decrease of the objective function greater than the
one achieved by a step of the classical gradient method. For the discrete conservative
algorithm, this last restart criterion is capable of guaranteeing a qualitative convergence
result. We apply the same restart scheme to the Nesterov Accelerated Gradient (NAG-C),
and we use this restarted NAG-C as benchmark in the numerical experiments. In the
smooth convex problems considered, our method shows a faster convergence rate than the
restarted NAG-C. We propose an extension of our discrete conservative algorithm to com-
posite optimization: in the numerical tests involving non-strongly convex functions with
ℓ1-regularization, it has better performances than the well known efficient Fast Iterative
Shrinkage-Thresholding Algorithm, accelerated with an adaptive restart scheme.

1. Introduction

Convex optimization is of primary importance in many fields of Applied Mathematics. In
this paper we are interested in unconstrained minimization problems of the form

min
x∈Rn

f(x),

where f : Rn → R is a smooth convex function. We will further assume that ∇f is Lipschitz-
continuous and that f is strongly convex. The simplest algorithm for the numerical resolution
of this minimization problem is the classical gradient descent. In the second half of the last
century other important first-order algorithms were introduced in order to speed up the
convergence of the gradient descent: Polyak proposed his heavy ball method (see [17], [18]),
and Nesterov introduced a new class of accelerated gradient descent methods (see [12], [14]).
For a complete introduction to the subject, we refer the reader to [4] and [5].

The approach of blending the study of optimization methods with Dynamical Systems
considerations has been fruitfully followed in several recent works, where Dynamical Systems
tools were employed to study existing optimization methods and to introduce new ones: in
[24] the authors derived an ODE for modeling the Nesterov Accelerated Gradient algorithm;
in [20] and [21] the authors studied accelerated methods (Nesterov and Polyak) through high-

resolution ODEs. Other contributions in this direction come from [1] and [2]. Almost all the
ODEs obtained in the aforementioned papers can be reduced to the form

ẍ+∇f(x) = −B(x, t)ẋ, (1)

where B(x, t) is a symmetric positive definite matrix, possibly depending on t. The term
−B(x, t)ẋ in (1) represents the contribution of a generalized viscous friction. If, for example,
the matrix B does not depend on the time t, then the convergence of any solution of (1)
to the minimizer of f is guaranteed by the dissipation of the total mechanical energy H =
1
2 |ẋ|2 + f(x), which plays the role of Lyapunov function. Indeed, by differentiation of the

energy H along any solution of (1), we obtain d
dt
H(t) = −ẋTB(x)ẋ < 0, as long as ẋ 6= 0.

The choice of the matrix B(x, t) is of primary importance as shown in [2] and [24].
1
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We recall that the Dynamical System approach was first undertaken in [24], where the
authors proved that the Nesterov method for non-strongly convex functions (NAG-C) can be
modeled by considering the solutions of (1), with the dissipative term of the form −B(x, t)ẋ =
− 3

t
ẋ and with initial velocity equal to zero. Moreover, they proved that the objective function

achieves a decay O(t−2) along these curves. In order to avoid oscillations of the solutions,
which otherwise would slow down the convergence, the authors introduced an adaptive restart
strategy that consists in resetting the velocity equal to zero in correspondence of local maxima
of the kinetic energy EK := 1

2 |ẋ|2. In [24] it was shown that this adaptively restarted method
has a linear convergence rate when the objective function is strongly convex. In this paper
we will focus on the conservative mechanical ODE

ẍ+∇f(x) = 0, (2)

and we will design a piecewise conservative method based on an adaptive restart strategy:
the resulting continuous-time algorithm achieves a linear convergence rate when the objective
function is strongly convex. As well as the aforementioned restarted method proposed in [24],
our method does not make use of the constant of strong convexity of the objective function.
This is a relevant point, since in practice estimating this quantity may be a very challenging
task.

The presence of viscosity friction in the dynamics studied in [24] yields to dissipate the
kinetic energy from the very beginning of the motion. In alternative, if we consider dynamics
(2) with initial velocity equal to zero and starting point x(0) = x0 far from the minimizer x∗,
it could be a good idea to let the system evolve without damping (i.e., conservatively) for an
amount of time ∆T , so that the solution may be free to get closer to the minimizer, without
being decelerated by the viscosity friction. This is the idea that underlies the restarted
method that we consider in this paper, based on the maximization of the mean dissipation of
the kinetic energy as a stopping criterion.

The introduction of this new restart strategy is motivated by the fact that the maximization
of the kinetic energy (employed in [24]) is not suitable for the conservative dynamics (2).
Indeed, in [24] the proof of the uniform upper bound for the restart time (which is the
cornerstone of the linear convergence result) heavily relies on the presence of the viscosity
friction. On the other hand, in the conservative dynamics, the efficacy of the maximization of
the kinetic energy as restart criterion depends on the dimension of the ambient space. In the
one-dimensional case the solution converges to a local minimizer in a single restart iteration,
as shown in Section 2. Unfortunately, in the multi-dimensional case and for a general f , it is
not possible to prove that a local maximum of the kinetic energy is reached in a finite amount
of time. For this reason in [25], where the conservative dynamics with maximization of the
kinetic energy was investigated, the authors proved a linear convergence result for strongly
convex objective functions by assuming a priori the existence of a uniform upper bound for
the restart time.

The original restart strategy (based on the mean dissipation of the kinetic energy) that
we develop in Section 3 allows us to manage the absence of viscosity friction in the system.
Indeed, we can prove that the restart time is always finite in the case that the objective
function is coercive. Moreover, when dealing with strongly convex functions, we prove that
the restart time is uniformly bounded, and hence we can strengthen the linear convergence
result of [25]. We also show that the trajectory obtained has finite length.

In Section 4 we derive a discrete-time optimization algorithm by applying the Symplectic
Euler scheme to (2), yielding an update rule of the form xk+1 = xk −α∇f(xk) + (xk − xk−1)
where α > 0 is the step-size.

We introduce two restart criteria for the discrete algorithm based on the maximization
of the mean dissipation of the discrete kinetic energy, referred as RCM-mmd (Algorithm 1
and Algorithm 2). We also consider the case of restarting the discrete conservative algorithm
when the discrete kinetic energy is maximized: this yields to the algorithm investigated in
[22], where the authors proved some partial results for quadratic objective functions.
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Finally, we design a restart criterion by imposing that, at each iteration, the decrease
of the objective function is greater or equal than the per-iteration-decrease achieved by the
classical gradient descent method with the same step-size. We end up obtaining a discrete
method referred as RCM-grad (Algorithm 3), similar to those described in [25]. Moreover, we
observe that this reasoning holds also for the Nesterov Accelerated Gradient with the gradient
restart scheme (NAG-C-restart) proposed in [15] and recently employed in [11]. In other
words, both RCM-grad and NAG-C-restart achieve at each iteration an effective acceleration
of the gradient method. This fact allows us, as a by-product, to prove a qualitative global
convergence result for RCM-grad: to the best of our knowledge, this is the first convergence
result for a method based on the discretization of conservative dynamics. This method is
suitable both for strongly and non-strongly convex optimization, since it does not require an
a priori estimate of the strong convexity constant of the objective function. We recall that
other important contributions in this direction for Nesterov-like restarted methods come from
[13], [6], [7].

In Section 5 we have planned a quite extensive comparison to experimentally evaluate
the performance of the convergence rate between the different discrete-time restart methods
and the different versions of the Nesterov Accelerated Gradient. In particular, we use as
benchmark NAG-C-restart, since it was shown to achieve high performances in both strongly
and non-strongly convex optimization (see [15]), and it does not require the knowledge of the
constant of strong convexity. We also give some insights on possible extensions of our method
for composite optimization problems. We carry out numerical experiments in presence of
ℓ1-regularization and we compare our method with the restarted FISTA proposed in [15].

2. One-dimensional case and quadratic functions

In this Section we introduce the piecewise conservative method with restart strategy based
on the maximization of the kinetic energy EK := 1

2 |ẋ|2. More precisely, given a C1,1
L -function

f : Rn → R (i.e., a function of class C1 such that its gradient ∇f is Lipschitz-continuous
with constant L > 0) to be minimized, and given a starting point x0 ∈ R

n, we consider the
solution of the ODE

ẍ+∇f = 0, (3)

with x(0) = x0 and ẋ(0) = 0. We recall that (3) preserves the total mechanical energy
H(x, ẋ) := 1

2 |ẋ|2 + f(x), and we observe that at the initial instant the total mechanical
energy coincides with the potential energy. Hence, during the motion, part of the initial
potential energy is transformed into kinetic energy, and, if we aim at minimizing f , a natural
strategy could be to wait until the kinetic energy attains a local maximum. At this point,
we reset the velocity equal to zero, and we repeat the whole procedure. This continuous-
time method was investigated in [25], where the authors proved that, when f is coercive
and any critical point is a minimizer, the set of the minimizers of f is globally asymptotically
stable for the trajectories of the restarted system. However, the main difficulty in establishing
convergence rates lies in the estimate of the restart time. As we show in this section, in the
one-dimensional case the system converges to a local minimizer in a single iteration, i.e., in
a finite amount of time. On the other hand, in the multi-dimensional case the weakness of
this criterion is inherent in our inability to prove that the restart time is finite for a generic
strongly convex function. In Section 3 we modify the restart strategy in order to overcome
this issue. We use S

1,1
µ,L to denote the class of functions in C1,1

L that are µ-strongly convex,

i.e., there exists µ > 0 such that x 7→ f(x)− 1
2µ|x|2 is convex.

We start by investigating the one-dimensional case, when f : R → R is a C1,1
L function.

We consider the following Cauchy problem:










ẍ+ f ′(x) = 0,

x(0) = x0,

ẋ(0) = 0,

(4)
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and we reset the velocity equal to zero whenever the kinetic energy EK = 1
2 |ẋ|2 achieves a

local maximum. We prove that this continuous-time method arrives to a local minimizer of
f at the first restart.

Proposition 2.1. Let f : R→ R be a C1,1
L function and let us assume that f is coercive. For

every x0 ∈ R such that f ′(x0) 6= 0, let x : [0,+∞)→ R be the solution of Cauchy problem (4).
Then, there exists t̄ ∈ (0,+∞) such that the kinetic energy function EK : t 7→ 1

2 |ẋ(t)|2 has a

local maximum at t̄. Moreover, for every t̄ ∈ (0,+∞) such that EK has a local maximum at

t̄, the point x(t̄) is a local minimizer of f .

The proof of Proposition 2.1 is postponed in Appendix A. Under the same assumptions
and notations of Proposition 2.1, we can compute an explicit expression for the instant t̄
when the solution of (4) visits for the first time the local minimizer x∗ = x(t̄). We may
assume that x0 < x∗. For every y ∈ [x0, x

∗] and for t ∈ [0, t̄], from the conservation of the
total mechanical energy it follows that the solution of (4) visits the point y with velocity

vy =
√

2(f(x0)− f(y)). Thus, we obtain that

t̄ =

∫ x∗

x0

1
√

2(f(x0)− f(y))
dy. (5)

We observe that the hypothesis f ′(x0) 6= 0 guarantees that the singularity at x0 in (5) is
integrable, and thus that t̄ is finite.

When the objective function f : R → R is in S
1,1
µ,L we can give an upper bound to t̄ that

does not depend on the initial position x0. We prove this in the following Proposition.

Proposition 2.2. Let f : R → R be a function in S
1,1
µ,L. Let x∗ be the unique minimizer of

f and let us choose x0 ∈ R such that x0 6= x∗. Let t 7→ x(t) be the solution of the Cauchy

problem (4) and let t̄ be the instant when the solution visits for the first time the point x∗.
Then the following inequality holds:

t̄ ≤ π

2
√
µ
. (6)

The proof of Proposition 2.2 is postponed in Appendix B. The statement of Proposition 2.2
is sharp: inequality (6) is achieved for quadratic functions. On the other hand, if the function
f is not strongly convex, the visiting time t̄ depends, in general, on the initial position. As
we are going to show in the following example, it may happen that the closer the starting
point is to the minimizer, the longer it takes to arrive at.

Example 2.3. Let f : R → R be defined as f(x) = 1
4x

4. Clearly, f is strictly convex (but
not strongly) and x∗ = 0 is the unique minimizer. Let us choose x0 > 0. Then we have that

t̄ =

∫ x0

0

√
2

√

x4
0 − y4

dy =

∫ x0

0

√
2

√

x2
0 + y2

√

x2
0 − y2

dy

≥
∫ x0

0

1

x0

√

x2
0 − y2

dy =
π

2x0
.

This shows that, in general, we can not give a priori an upper bound for t̄. However, this does
not mean that methods designed with this approach are not suitable for the optimization of
non-strongly convex functions. Indeed, the visiting time t̄ is finite, and this guarantees that
the continuous-time method converges in a finite amount of time. This is not true, for
example, in the case of the classical gradient flow.

The multidimensional case is much more complicated. We now focus on quadratic objective
functions and, as we will see, also in this basic case our global knowledge is quite unsatisfac-
tory. On the other hand, the study of quadratic functions leads to useful considerations that
we try to apply to more general cases. Let us consider the Cauchy problem











ẍ+∇f(x) = 0,

x(0) = x0,

ẋ(0) = 0.

(7)
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The main difference with respect to the one-dimensional case lies in the fact that, in general,
the solution t 7→ x(t) of (7) never visits a local minimizer of f . The example below shows
this phenomenon.

Example 2.4. Let us consider f : R2 → R defined as f(x1, x2) =
a2

2 x2
1+

b2

2 x
2
2, where a, b > 0.

Let us set x(0) = (x0,1, x0,2)
T ∈ R

2. Then the solution of Cauchy problem (7) is

t 7→ x(t) = (x0,1 cos(at), x0,2 cos(bt))
T .

If x0,1, x0,2 6= 0 and if the ratio a/b is not a rational number, then x(t) 6= (0, 0)T for every
t ∈ [0,+∞). This also shows that, when the dimension is larger than one, Proposition 2.1
fails. Indeed, it is easy to check that the kinetic energy function t 7→ 1

2 |ẋ(t)|2 has many local
maxima, but the solution never visits any local minimizer of f .

When f : Rn → R is a strongly convex quadratic function, we can estimate the decrease
of the objective function after each arrest.

Lemma 2.5. Let f : Rn → R be a quadratic function of the form

f(x) =
1

2
xTAx,

where A is a symmetric and positive definite matrix. Let x0 ∈ R
n be the starting point of

Cauchy problem (7). Let 0 < λ1 ≤ . . . ≤ λn be the eigenvalues of A. Then, the following

inequality is satisfied:

f

(

x

(

π

2
√
λn

))

≤ cos2

(

π

2

√

λ1

λn

)

f(x0). (8)

Remark 2.6. Let us assume that the kinetic energy function has at least one local maximizer
and let t1 ∈ (0,+∞) be the smallest. Then Lemma 2.5 implies that

f(x(t1)) ≤ cos2

(

π

2

√

λ1

λn

)

f(x0).

Indeed, we have that t1 ≥ π

2
√
λn

, since the time derivative of the kinetic energy function

is non-negative at t = π

2
√
λn

. Hence, if we iterate the evolution-restart procedure k times

(assuming that the kinetic energy function always attains a local maximum) and if we call
x(k) the restart point after the k-th iteration, we have that

f(x(k)) ≤
[

cos2

(

π

2

√

λ1

λn

)]k

f(x0).

So, in terms of evolution-restart iterations, we have that the value of the objective function
decreases at exponential rate. However, since we do not have an upper bound on the restart
time, we do not know the rate of decrease in terms of the evolution time. As we explain in
the next Section, we can overcome this problem by designing alternative restart criteria. For
example, in the particular case of quadratic functions, we can keep the free-evolution amount
of time constant and equal to ∆T = π

2
√
λn

. Let t 7→ x̃(t) be the curve obtained with this

procedure, then, owing to the proof of Lemma 2.5, we have that

f(x̃(t)) ≤
[

cos2

(

π

2

√

λ1

λn

)]⌊ t

∆T ⌋
f(x0),

where ⌊·⌋ denotes the integer part.
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3. An alternative restart criterion

The restart criterion that we have considered so far consists in waiting until the kinetic
energy reaches a local maximum. This idea has already been introduced in [24] in order to
improve the convergence rate of the solutions of the ODE modeling the Nesterov method.
Indeed, the solutions of the ODE considered in [24] exhibit undesirable oscillations, that
can be avoided by means of this adaptive restart strategy. As a matter of fact, in [24] it is
proved that the restarted Nesteov ODE achieves a linear convergence rate when the objective
function is strongly convex. The proof of this result consists basically of two main steps
(i.e., the estimate of the decrease of the objective function at each evolution-restart iteration,
and the uniform upper bound for the restart time), and in both of them the presence of the
viscosity friction plays a crucial role. On the other hand, in the conservative ODE that we
study in the present paper there is no viscosity term, hence we cannot adapt to our case the
arguments employed in [24]. In order to manage the absence of friction, in this section we
introduce an original restart strategy, alternative to the one considered so far. We prove that
the resulting continuous-time method achieves linear convergence rate when the objective
function is strongly convex, and we show that the curve obtained has finite length. It is
important to recall that our method, as well as the restarted method studied in [24], does not
make use of the constant of strong convexity of the objective function.

In this section we propose a restart criterion based on the maximization of the mean
dissipation. If we arrest the conservative evolution at the instant t > 0, then the value of
the kinetic energy EK(t) at the instant t equals the decrease of the objective function. The
idea behind this alternative restart criterion is that we arrest the conservative evolution of
the system when the mean dissipation t 7→ EK(t)/t reaches a local maximum. We use the

notation C2,1
L to denote the functions in C2 whose gradient is Lipschitz with constant L > 0.

The symbol S
2,1
µ,L is used to indicate the functions in C2,1

L that are strongly convex with
constant µ > 0.

Let f : Rn → R be a C1,1
L function and let us consider the Cauchy problem











ẍ+∇f(x) = 0,

x(0) = x0,

ẋ(0) = 0.

(9)

Let us define the function r : [0,+∞)→ [0,+∞) as

r(t) =

{

0 t = 0,
EK(t)

t
t > 0,

(10)

where EK is the kinetic energy function relative to the solution of Cauchy problem (9). We
observe that r is differentiable at t = 0, since we have that

EK(t) =
1

2
|∇f(x0)|2t2 + o(t2), (11)

as t→ 0. If we take the derivative of r with respect to the time, we obtain that

d

dt
r =

tĖK(t)− EK(t)

t2
(12)

for every t > 0. With a simple computation, we can check that the derivative of r can be
continuously extended at t = 0. We have that

d

dt
r =

{

1
2 |∇f(x0)|2 t = 0,
tĖK(t)−EK(t)

t2
t > 0.

We observe that the derivative of r at t = 0 is positive, hence it remains non-negative in an
interval [0, ε). The Maximum Mean Dissipation criterion consists of restarting the evolution
when the function t 7→ r(t) reaches a local maximum. The restart time is

ta = inf{t : tĖK(t)− EK(t) < 0}. (13)
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t �→ EK(t)

t

Figure 1. Mean dissipation. The black graph represents a typical profile
of the kinetic energy function, in the case it attains a local maximum. The
slope of the segments represents the mean dissipation that we obtain when
we stop the evolution in a given instant. The picture shows that stopping
the evolution in correspondence of a local maximum of the kinetic energy
function does not guarantee the highest mean dissipation.

We observe that, if t̄ ∈ (0,+∞) is a local maximizer of the kinetic energy, then we have that

t̄ĖK(t̄)− EK(t̄) = −EK(t̄) < 0.

This means that a local maximizer of the kinetic energy can not be a maximizer of the mean
dissipation r. This fact is described in Figure 1.

We can prove that the restart time ta is finite. We remark that the following result holds
even if the function f is not convex.

Lemma 3.1. Let f : Rn → R be a C1,1
L coercive function and let us take x0 ∈ R

n. Let

t 7→ EK(t) be the kinetic energy function of the solution of Cauchy problem (9). Then there

exists t̂ ∈ (0,+∞) such that

t̂ĖK(t̂)− EK(t̂) < 0.

Proof. We argue by contradiction. Let us assume that

tĖK(t)− EK(t) ≥ 0, (14)

for every t ≥ 0. Using (12), we deduce that the mean dissipation t 7→ r(t) is non-decreasing
for every t ≥ 0. Let t1 > 0 be any instant such that the kinetic energy is positive, i.e.,
EK(t1) > 0. Then we have that

EK(t) ≥ EK(t1)

t1
t, (15)

for every t > t1. This is impossible since the kinetic energy is always bounded from above if
the function f is coercive. �

Using the idea of the proof of Lemma 3.1, we can estimate from above the restart time of
the Maximum Mean Dissipation. Indeed, the derivative of the mean dissipation is positive at
t = 0, and then it remains non-negative in the interval [0, ta]. Then, using the same notations
as in the proof above, for every t ∈ [t1, ta] the kinetic energy function EK satisfies inequality
(15). On the other hand, from the conservation of the energy it follows that

f(x0)− f∗ ≥ EK(t),

where f∗ is the minimum value of the objective function f . This implies that

f(x0)− f∗ ≥ EK(t1)

t1
ta,
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that can be rewritten as

ta ≤
t1

EK(t1)
(f(x0)− f∗). (16)

Remark 3.2. Inequality (16) implies that the restart condition of the Maximum Mean

Dissipation is met after a finite amount of time, as soon as f is a coercive function in C1,1
L .

On the other hand, to the best of our knowledge, it is not possible to exclude that the
kinetic energy EK could grow monotonically, without assuming maximum. This means that
in general, when dealing with conservative system (9) together with the restart strategy based
on the maximization of the kinetic energy, it is not possible to prove an upper bound for the
restart time. For this reason, in [25] the linear convergence result for strongly convex objective
functions is proved under the assumption of the a priori existence of a uniform upper bound
for the restart time. On the other hand, using the Maximum Mean Dissipation, when the
objective function is in S

1,1
µ,L we can bound the restart time with a quantity that depends

only on the constants µ and L.

In the case of a strongly convex function, we can give uniform estimates for the restart
time ta.

Proposition 3.3. Let f : Rn → R be a function in S
1,1
µ,L. For every x0 ∈ R

n, let us consider

Cauchy Problem (9) with starting point x0 and let t 7→ EK(t) be the kinetic energy function

of the solution. Let ta be the stopping time defined in (13). Then the following estimate s

hold:

ta >

√
µ

8L
, (17)

and

ta ≤ TR := 32
L

µ
√
µ
. (18)

We postpone the proof of Proposition 3.3 since we need some technical lemmas. In the
following lemma we recall the Polyak-Lojasiewicz inequality for strongly-convex functions (see
[16] , and [14, Theorem 2.1.10] for its proof).

Lemma 3.4. Let f : Rn → R be a C1 function and let us assume that f is µ-strongly
convex, with µ > 0. Let x∗ be the unique minimizer of f . Then, for every x ∈ R

n, the

following Polyak-Lojasiewicz inequality holds:

f(x)− f(x∗) ≤ 1

2µ
|∇f(x)|2. (19)

In the following lemma, we give an estimate of the growth of the kinetic energy function
t 7→ EK(t) when t is small.

Lemma 3.5. Let f : Rn → R be a function in S
1,1
µ,L. For every x0 ∈ R

n, let us consider

Cauchy Problem (9) with starting point x0 and let t 7→ EK(t) be the kinetic energy function

of the solution. Then, for every 0 ≤ t ≤ √µ/(2L), the following inequality holds:

1

8
|∇f(x0)|2t2 ≤ EK(t) ≤ 25

32
|∇f(x0)|2t2. (20)

Proof. We recall that L is a Lipschitz constant for x 7→ ∇f(x). Using the conservation of the
mechanical energy, we deduce that

|∇f(x(t)) −∇f(x0)| ≤ L|x(t)− x0| ≤ L

∫ t

0

|ẋ(u)| du

≤ L

∫ t

0

√
2
√

f(x0)− f∗ du = L
√
2
√

f(x0)− f∗ t.

Owing to (19), we obtain that

|∇f(x(t)) −∇f(x0)| ≤
L√
µ
|∇f(x0)|t. (21)
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Using this fact, we deduce that

|ẋ(t) + t∇f(x0)| =
∣

∣

∣

∣

∫ t

0

(−∇f(x(s)) +∇f(x0)) ds

∣

∣

∣

∣

≤
∫ t

0

L√
µ
|∇f(x0)|s ds.

Hence we have that

|ẋ(t) + t∇f(x0)| ≤
L

2
√
µ
|∇f(x0)|t2. (22)

Using (22) and the triangular inequality, we obtain that

|∇f(x0)|t−
L

2
√
µ
|∇f(x0)|t2 ≤ |ẋ(t)| ≤ |∇f(x0)|t+

L

2
√
µ
|∇f(x0)|t2.

Therefore, if t ≤ √µ/L, we have that

1

2
|∇f(x0)|t ≤ |ẋ(t)|.

On the other hand, if t ≤ √µ/(2L), we have that

|ẋ(t)| ≤ 5

4
|∇f(x0)|t.

This concludes the proof. �

We now prove Proposition 3.3.

Proof of Proposition 3.3. The proof of inequality (17) is based on the study of the sign of the

quantity t 7→ tĖK(t)− EK(t). First of all, we observe that

ẋ(t) = −t∇f(x0)−
∫ t

0

(∇f(x(s)) −∇f(x0)) ds. (23)

Therefore, we deduce that

ĖK(t) = ẍ(t) · ẋ(t) = −∇f(x(t)) · ẋ(t)

= ∇f(x(t)) ·
(

t∇f(x0) +

∫ t

0

(∇f(x(s)) −∇f(x0)) ds

)

= (∇f(x(t)) −∇f(x0)) ·
(

t∇f(x0) +

∫ t

0

(∇f(x(s)) −∇f(x0)) ds

)

+ |∇f(x0)|2t+∇f(x0) ·
∫ t

0

(∇f(x(s))−∇f(x0)) ds.

Owing to (21), we obtain that:

ĖK(t) ≥ |∇f(x0)|2t−
3

2

L√
µ
|∇f(x0)|2t2 −

1

2

L2

µ
|∇f(x0)|2t3.

Using inequality (20), we have that

tĖK(t)− EK(t) ≥ |∇f(x0)|2t2
(

7

32
− 3

2

L√
µ
t− 1

2

L2

µ
t2
)

,

for t ≤ √µ/(2L). With a simple computation, we obtain that tĖK(t)−EK(t) > 0 when t ≤ t̃,
where

t̃ :=

√
µ

8L
. (24)

By the definition of the stopping time ta, we deduce that ta > t̃. This proves (17).
We now prove (18). Using (17) and the definition of the stopping time ta, we have that

EK(ta)

ta
≥ EK(t̃)

t̃
,
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where t̃ is defined in (24). The last inequality can be rewritten as

ta ≤
EK(ta)

EK(t̃)
t̃. (25)

Using the conservation of the energy and inequality (20), we obtain that

EK(ta)

EK(t̃)
≤ 8(f(x0)− f∗)

|∇f(x0)|2t̃2
≤ 4

µ

1

t̃2
, (26)

where in the second inequality we used Lemma 3.4. Combining (25) and (26), and using the
definition of t̃ given in (24), we obtain that ta ≤ TR, where we set

TR := 32
L

µ
√
µ
.

This concludes the proof. �

The framework for analyzing our restarted scheme is similar to that employed in [24],
however we point out that the proofs are different since the ODE considered in [24] and the
conservative system (9) are structurally different.

For this stopping criterion we have proved that the restart time is uniformly bounded by
TR. In the following result, we provide an estimate about the value of the kinetic energy at
the restart instant.

Lemma 3.6. Let f : Rn → R be a C2,1
L function. For every x0 ∈ R

n, let us consider Cauchy

Problem (9) with starting point x0 and let t 7→ EK(t) be the kinetic energy function of the

solution. Then the following inequality holds:

EK(ta) ≥
1

2L
|∇f(x(ta))|2, (27)

where ta is the stopping time defined in (13).

Proof. Owing to the definition, we have that ta is a local maximizer for the function t 7→ r(t),
where r : [0,+∞)→ [0,+∞) is the Mean Dissipation function defined in (10). Recalling that

taĖK(ta) = EK(ta), we have that

d2

dt2
r(ta) =

ËK(ta)

ta
≤ 0.

On the other hand, we have

ËK(ta) = |∇f(x(ta))|2 − ẋ(ta)
T∇2f(x(ta))ẋ(ta) ≤ 0. (28)

By the hypothesis, the matrix LId−∇2f(x) is positive definite for every x ∈ R
n. Using this

fact in (28), we obtain that

2LEK(ta)− |∇f(x(ta))|2 ≥ 0,

and this concludes the proof. �

We conclude this section providing an estimate about the decrease of the objective function
with the convergence result. Moreover, we prove that the piecewise conservative method
produces a curve that has finite length.

Theorem 3.7. Let f : Rn → R be a function in S
2,1
µ,L. Let x∗ ∈ R

n be the unique minimizer

of f , and let x0 ∈ R
n be the starting point. Let t 7→ x̃(t) be the curve obtained applying the

following iterative procedure:

• set t0 = 0 and consider the forward solution of ¨̃x +∇f(x̃) = 0, with x̃(t0) = x0 and
˙̃x(t0) = 0;
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• for every k ≥ 1, let tk be the instant when the mean dissipation

t 7→ | ˙̃x(t)|2
2(t− tk−1)

, t > tk−1

attains a local maximum for the first time, and set xk = x̃(tk). Then consider the

forward solution of ¨̃x+∇f(x̃) = 0, with x̃(tk) = xk and ˙̃x(tk) = 0.

Then for every t ≥ 0 the following inequality is satisfied:

f(x̃(t))− f(x∗) ≤
(

1 +
µ

L

)−
⌊

t

TR

⌋

(f(x0)− f(x∗)), (29)

where TR is defined in (18). Moreover, we can prove the following upper bound for the length

of the curve t 7→ x̃(t):
∫ ∞

0

| ˙̃x(t)| dt ≤ 4
√
2
L

µ
TR
√

f(x0)− f(x∗). (30)

Proof. We begin by proving (29). Let t1 > 0 be the first stopping instant. Owing to the
conservation of the total mechanical energy, we have that

f(x0)− f(x(t1)) = EK(t1).

On the other hand, combining Lemma 3.6 and Lemma 3.4, we obtain that

EK(t1) ≥
1

2L
|∇f(x(t1))|2 ≥

µ

L
(f(x(t1))− f(x∗)) .

Therefore, we deduce that

f(x(t1))− f(x∗) ≤
(

1 +
µ

L

)−1

(f(x0)− f(x∗)). (31)

The last inequality gives an estimate of the decrease-per-iteration of the objective function.
Owing to Proposition 3.3, we have that the stopping time is always bounded by TR. This
means that in the interval [0, t] the number k of restart iterations is greater or equal than
⌊

t
TR

⌋

, where ⌊·⌋ denotes the integer part. Using inequality (31), we obtain that

f(x̃(t))− f(x∗) ≤
(

1 +
µ

L

)−k

(f(x0)− f(x∗))

≤
(

1 +
µ

L

)−
⌊

t

TR

⌋

(f(x0)− f(x∗)).

This proves (29).
We now study the length of the curve t 7→ x̃(t) at each evolution interval [tk, tk+1] for

k ≥ 0. Using the conservation of the total mechanical energy and Proposition 3.3, we have
that

∫ tk+1

tk

| ˙̃x(t)| dt ≤ TR
√

2(f(x̃(tk)− f(x∗). (32)

Moreover, owing to (31), we obtain that

f(x̃(tk)− f(x∗) ≤
(

1 +
µ

L

)−k

(f(x0)− f(x∗)) (33)

for every k ≥ 0. Combining (32) and (33), we have that
∫ ∞

0

| ˙̃x(t)| dt =
∞
∑

k=0

∫ tk+1

tk

| ˙̃x(t)| dt ≤ 4
√
2
L

µ
TR
√

f(x0)− f(x∗).

This concludes the proof. �

Remark 3.8. In the case of quadratic functions, we can compare our convergence result with
the one proved in [25]. Let f : Rn → R be of the form

f(x) =
1

2
xTAx,



12 A. SCAGLIOTTI AND P. COLLI FRANZONE

where A ∈ R
n×n is symmetric and positive definite, and let 0 < λ1 ≤ . . . ≤ λn be the

eigenvalues of A. Let x0 ∈ R
n be the starting point and let t 7→ x̄(t) the curve obtained

following the construction proposed in [25]. Owing to Theorem 2 and Lemma 4 in [25], the
following estimate holds:

f(x̄(t)) ≤
(

1 +
λ1

λn

)−
⌊

t

T ′
R

⌋

(f(x0)− f(x∗))

where

T ′
R =

2nπ√
λ1

.

On the other hand, if we consider the curve t 7→ x̃(t) obtained with our restart procedure,
inequality (29) holds with

TR = 32
λn

λ1

√
λ1

.

Hence we observe that T ′
R is affected by the dimension of the problem, while TR is sensitive

to the condition number of the matrix A.

Remark 3.9. It is important to observe that the estimate expressed in (30) is invariant if we
multiply the objective function f by a factor ν > 0. This is not the case for the estimate in
(29), because the multiplication of f by a factor ν > 0 does affect the parametrization of the
curve produced by the method, while the trajectory remains unchanged. For these reasons,
we believe that, when dealing with continuous-time optimization methods, the study of the
length of trajectories may be a useful tool.

4. Discrete version of the method

In this section we develop a discrete version of the continuous-time algorithm that we have
described so far. The basic idea is to rewrite the second order ODE

ẍ+∇f(x) = 0, x(0) = x0, ẋ(0) = 0,

as a first order ODE, by doubling the variables:
{

ẋ = v, x(0) = x0,

v̇ = −∇f(x), v(0) = 0.
(34)

The differential equation (34) is a time-independent Hamiltonian system and for its discretiza-
tion we use the Symplectic Euler scheme, due to its well-known suitability (see e.g. [8, 21]),
yielding to the following recurrence sequence for k ≥ 0 given (x0, v0):

{

vk+1 = vk − h∇f(xk),

xk+1 = xk + h vk+1,
(35)

where h > 0 is the discretization step, and where x0 is the starting point and v0 = 0.
We recall that, in general, the Symplectic Euler scheme for time-independent Hamiltonian
systems leads to implicit discrete systems. However, for the particular Hamiltonian function
H(x, v) = 1

2 |v|2 + f(x), the discrete system (35) is explicit. Combining the equations of (35),
we have that for k ≥ 0

xk+1 = xk − h2∇f(xk) + hvk. (36)

This shows that the sequence defined in (35) consists of an iteration of the classical gradient
descent method with step h2, plus the momentum term hvk.

Remark 4.1. We observe that we can rewrite (36) as follow s for k ≥ 0:

xk+1 = xk − h2∇f(xk) + (xk − xk−1), (37)

with x−1 = x0 − hv0.
The last expression is very similar to the update rule of the heavy-ball method:

xk+1 = xk − α∇f(xk) + β(xk − xk−1).
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It is important to recall that the local-convergence result for the heavy-ball method proved in
[18] requires that 0 ≤ β < 1. This means that we can not apply the aforementioned theorem
to the sequence obtained using (36). However, this is not an issue, since, as well as in the
continuous-time case, the convergence of our method relies on a proper restart scheme.

Remark 4.2. We point out that the discretization of conservative system (34) should not
be understood as a method for providing an accurate approximation of the continuous-time
solution. Nevertheless, it is natural to ask what is the structure of the update rule obtained
with an higher-order symplectic scheme. For instance, if we apply the symplectic second-
order Störmer-Verlet scheme (see [8, Chapter VI]) to the conservative system (34), a simple
computation shows that the sequence (xk)k produced satisfies the so called leapfrog scheme,

i.e., the same recurrence scheme as in (37), with initialization x−1 = x0 − hv0 − h2

2 ∇f(x0).
In other words, we obtain that the sequence (xk)k produced by the Störmer-Verlet method
satisfies the same recursive relation as the one produced by the Symplectic Euler scheme, but
with a different trigger.

In order to design a discrete restart procedure, a first natural attempt is to formulate a
discrete-time version of the Maximum Mean Dissipation. We recall that in the continuous-
time setting this procedure consists in restarting the evolution as soon as the quantity

r(t) :=
|v(t)|2
2t

(38)

attains a local maximum. Hence we can restart the discrete system (35) as soon as the
following condition is met:

|vk|2
k − l

>
|vk+1|2
k + 1− l

, (39)

where l is 0 or it is the index when the latest restart has occurred. On the other hand, a local
maximum can be characterized by a change of sign of the first derivative

ṙ(t) = −|v(t)|
2 + 2t∇f(x(t)) · v(t)

2t
,

thus we can restart the discrete evolution when

|vk+1|2 + 2(k + 1− l)∇f(xk+1) · vk+1 > 0, (40)

where l is 0 or it is the index when the latest restart has occurred. We call Restart-

Conservative Method with maximum mean dissipation (RCM-mmd-r) the procedure given
by (35) with restart condition (39). We call Restart-Conservative Method with differential

maximum mean dissipation (RCM-mmd-dr) the procedure given by (35) with restart condi-
tion (40). These methods are described respectively in Algorithm 1 and Algorithm 2.

Now we consider an alternative restart strategy, for which we can prove a qualitative global
convergence result. Indeed a natural request for our discrete algorithm is that, at each
iteration, the decrease of the objective function is greater or equal than the decrease achieved
by the gradient descent method with the same step. Let f : Rn → R be a C1-convex function
and let us define zk+1 = xk − h2∇f(xk), then, owing to the convexity of f , we have that

f(zk+1) ≥ f(zk+1 + hvk)−∇f(zk+1 + hvk) · hvk.
Recalling that xk+1 = zk+1 + hvk, we deduce that as long as the following inequality holds

∇f(xk+1) · vk ≤ 0, (41)

then we have that

f(xk − h2∇f(xk)) ≥ f(xk+1).

We can use inequality (41) to design a restart criterion for the sequence defined in (35): when
(41) is violated, i.e.,

∇f(xk+1) · vk > 0,

then we set

xk+1 = xk − h2∇f(xk), vk+1 = −h∇f(xk).
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Algorithm 1 Restart-Conservative Method with maximum mean dissipation (RCM-mmd-r)

1: x← x0 − h2∇f(x0)
2: v ← −h∇f(x0)
3: i← 1
4: l ← i− 1
5: while i ≤ max iter do

6: i← i+ 1
7: v′ ← v − h∇f(x)
8: x′ ← x+ hv′

9: if |v′|2/(i− l) < |v|2/(i− 1− l) then
10: x← x− h2∇f(x)
11: v ← −h∇f(x)
12: l ← i− 1
13: else

14: x← x′

15: v ← v′

16: end if

17: end while

Algorithm 2 Restart-Conservative Method with differential maximum mean dissipation
(RCM-mmd-dr)

1: x← x0 − h2∇f(x0)
2: v ← −h∇f(x0)
3: i← 1
4: l ← i− 1
5: while i ≤ max iter do

6: i← i+ 1
7: v′ ← v − h∇f(x)
8: x′ ← x+ hv′

9: if |v′|2 + 2(i− l)∇f(x′) · v′ > 0 then

10: x← x− h2∇f(x)
11: v ← −h∇f(x)
12: l ← i− 1
13: else

14: x← x′

15: v ← v − h∇f(x)
16: end if

17: end while

We call this procedure Restart-Conservative Method with gradient restart (RCM-grad) and
we present its implementation in Algorithm 3. This method coincides with the one described
in [25].

Remark 4.3. It is interesting to observe that the discrete restart condition

∇f(yk + hvk) · vk > 0 (42)

is the discrete-time analogue of the inequality

∇f(x(t)) · ẋ(t) ≥ 0,

which is satisfied as soon as the kinetic energy function E(t) = 1
2 |ẋ(t)|2 stops growing. This

fact suggests that we may also consider a discrete restart strategy based on the maximization
of the kinetic energy. Namely, we can restart the evolution of the discrete system (35) as soon
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Algorithm 3 Restart-Conservative Method with gradient restart (RCM-grad)

1: x← x0

2: v ← 0
3: while i ≤ max iter do

4: x′ ← x− h2∇f(x) + hv
5: if ∇f(x′) · v > 0 then

6: x← x− h2∇f(x)
7: v ← −h∇f(x)
8: else

9: x← x′

10: v ← v − h∇f(x)
11: end if

12: i← i+ 1
13: end while

as
1

2
|vk|2 >

1

2
|vk+1|2. (43)

This restarted algorithm was proposed in [22], where the authors proved some partial results
when dealing with quadratic objectives.

The convergence of RCM-grad for strictly convex functions in C1,1
L descends directly from

the convergence of the gradient method, as shown in the following result.

Theorem 4.4. Let f : Rn → R be a C1,1
L strictly convex function that admits a unique

minimizer x∗ ∈ R
n. Let (xk)k≥0 ⊂ R

n be the sequence produced by RCM-grad with time-step

0 < h <
√
2√
L
. Then the sequence converges to the minimizer x∗.

Proof. Owing to the construction of RCM-grad, we have that, for every k ≥ 0 the following
inequality holds:

f(xk+1)− f(xk) ≤ f(xk − h2∇f(xk))− f(xk).

By the fact that f is a convex function in C1,1
L , we deduce that f(x+ν) ≤ f(x)+〈∇f(x), ν〉+

L
2 |ν|2 for every x, ν ∈ R

n (see, e.g., [14, Theorem 2.1.5]). This implies that

f(xk+1)− f(xk) ≤ −ω(h)|∇f(xk)|2, (44)

where

ω(h) = h2

(

1− L

2
h2

)

.

Since we have that ω(h) > 0 when 0 < h <
√
2√
L
, then f(xk+1) ≤ f(xk) for every k ≥ 0.

Moreover, we observe that the function f is coercive, since it is assumed to be strictly convex
and to admit a minimizer. Therefore, the sequence (xk)k≥0 ⊂ {x ∈ R

n : f(x) ≤ f(x0)}
is bounded. Hence we can repeat the argument of [14, Theorem 2.1.14] to deduce that
f(xk)→ f(x∗) as k →∞. Using again the boundedness of the sequence (xk)k≥0 and the fact
that f admits a unique minimizer, we obtain that xk → x∗ as k →∞. �

Remark 4.5. If we define ek := f(xk)− f(x∗) for every k ≥ 0, and if we assume f ∈ S
1,1
µ,L,

then, combining (19) with (44), we obtain ek+1 ≤ ek(1−2µω(h)) for 0 < h <
√

2/L. Choosing

h̄ = 1/
√
L we have as a byproduct the linear convergence estimate ek+1 ≤ ek(1 − µ

L
). We

point out that Theorem 4.4 and the previous estimate should be understood as a qualitative

global convergence result. Indeed, on one hand, we may deduce that the convergence rate
of RCM-grad is at least as fast as the convergence rate of the classical gradient descent. On
the other hand, this estimate of the performances of RCM-grad is very pessimistic, as shown
in the numerical experiments of Section 5. To the best of our knowledge, Theorem 4.4 is
the first convergence result for an optimization algorithm based on the discretization of the
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conservative dynamics, although it does not provide the convergence rate observed in the
numerical experiments developed in the paper.

4.1. Choice of the time-step. The proof of the convergence of RCM-grad holds true for
any choice of the time-step h such that the gradient method with step-size h2 is convergent.
In this subsection, we provide considerations about the choice of time-step h by studying the
one-dimensional quadratic case. Let us fix a > 0 and let us consider f(x) = 1

2ax
2. In this

case the sequences (xk)k≥0 and (vk)k≥0 are recursively defined as
{

vk+1 = vk − ha xk,

xk+1 = xk + h vk+1.
(45)

It is easy to check that the following discrete conservation holds:

1

2
v2k +

a

2
x2
k −

1

2
ah xkvk =

a

2
x2
0.

This implies that the sequence of points (xk, vk)k≥0 ∈ R
2 lies on the following conic curve in

the (x, v)-plane:
1

2
v2 +

a

2
x2 +

1

2
ah xv = c. (46)

It is natural to set h such that the curve defined by (46) is compact. Using the characterization
of conic curves in the plane, we obtain that

h <
2√
a
. (47)

Another natural request is to impose that |x1| < |x0| and that x0x1 ≥ 0. Using (45), we have
that x1 = (1 − ah2)x0, so we impose that 1 > 1− ah2 > 0, and we deduce that

h <
1√
a
. (48)

For a generic C1,1
L convex function f : Rn → R, an heuristic rule for designing h could be to

use (48), where a is a constant that bounds from above the Lipschitz constant of ∇f .

4.2. Nesterov Accelerated Gradient methods with restart. We recall that the most
efficient algorithms for convex optimization problems belong to the the family of the Nesterov
Accelerated Gradient methods (see [12], [14]). We use the acronymNAG to refer to this family.

Namely, when the problem consists in minimizing a function in S
1,1
µ,L whose constant µ is

known, the most performing algorithm is called NAG-SC and it is defined as
{

yk+1 = xk − s∇f(xk),

xk+1 = yk+1 +
1−√

µs

1+
√
µs
(yk+1 − yk),

(49)

with 0 < s ≤ 1
L
.

On the other hand, when dealing with a non-strongly convex function in C1
L, the most

suitable algorithm is NAG-C, whose update rule is
{

yk+1 = xk − s∇f(xk),

xk+1 = yk+1 +
k

k+3 (yk+1 − yk),
(50)

where, as above, 0 < s ≤ 1
L
.

In order to boost the convergence of NAG-C via adaptive restart, in [15] O’Donoghue and
Candès suggest some schemes reproducing in a discrete form the requirement that f(x(t))
is monotone decreasing along the curve t 7→ x(t), solution of an ODE with suitable friction
term. More precisely, they proposed to restart (50) as soon as f(yk+1) > f(yk) (function
scheme), or as soon as ∇f(xk+1) · (yk+1 − yk) > 0 (gradient scheme). The intuitive idea that
lies behind the latter scheme is to restart the evolution when the momentum and the negative
direction of the gradient form an obtuse angle. We recall that the update of yk+1 coincides
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with a step of the gradient method, namely yk+1 = xk − s∇f(xk). Hence we have that the
step of NAG-C is given by

xk+1 = yk+1 + wk,

where

wk = βk(yk+1 − yk) and βk =
k

k + 3
.

Using these facts, the gradient restart scheme for NAG-C can be better motivated. Indeed,
as done before for the conservative algorithm, we can impose that each iteration of NAG-C
achieves a greater decrease of the objective function than a step of the gradient method:

f(yk+1) ≥ f(yk+1 + wk). (51)

If we apply verbatim the reasoning done before about the restart of the conservative method,
then for every C1-convex function we have that

f(yk+1) ≥ f(yk+1 + wk)−∇f(yk+1 + wk) · wk.

Recalling that xk+1 = yk+1+wk and that wk = βk(yk+1−yk), we deduce that (51) is satisfied
as long as the following condition holds:

∇f(xk+1) · (yk+1 − yk) ≤ 0. (52)

If we restart the method as soon as (52) is violated, we recover the gradient restart scheme
proposed by O’Donoghue and Candès in [15]. In conclusion, this proves that the NAG-C with
the gradient restart scheme achieves, at each iteration, an effective acceleration with respect
to the classical gradient descent. In the experiments reported in [15], the authors show that
the gradient restart scheme has better performances than the function restart scheme. For
these reasons, in the numerical tests reported in Section 5 we used NAG-C with gradient
restart as benchmark for the convergence rate. From now on, we refer to this method as
NAG-C-restart. An important feature of NAG-C-restart is that it is suitable for strongly
convex minimization when the strong convexity parameter of the objective is not available,
as observed in [13] in the framework of composite optimization. This aspect was further
studied in [6], where the authors proved linear convergence results for restarted accelerated
methods when the objective function satisfies a local quadratic growth condition. In [7] this
was extended to accelerated coordinate descent methods. Finally, we observe that the gradient
restart scheme has been recently used in [11] in order to accelerate the convergence of the
Optimized Gradient Method introduced in [10].

5. Numerical tests

In this section we describe the numerical experiments that we used to test the efficiency of
our method. We used different variants of NAG as comparison: in particular, NAG-C-restart
(see Subsection 4.2) is the benchmark of our numerical tests.

5.1. Quadratic function. We considered a quadratic function f : Rn → R of the form

f(x) =
1

2
xTAx+ bTx

where n = 1000,A is a symmetric positive definite matrix and b ∈ R
n is sampled usingN (0, 1).

The eigenvalues of A are randomly chosen using an uniform distribution over [0.03, 15]. The
Lipschitz constant of ∇f is λmax, the largest eigenvalue of A. The function f is µ-strongly
convex for every 0 < µ ≤ λmin, where λmin is the minimum eigenvalue of A. For each
experiment, we run the following algorithms:

• NAG-SC with s = 1
λmax

and µ = λmin. This is the sharpest possible setting of the
parameters for the given problem;
• NAG-SC with s = 1

λmax
and µ = λmin

3 . This simulates an underestimation of the
strongly-convexity constant;
• NAG-C-restart with s = 1

λmax
;

• RCM-grad with h = 1√
λmax

;
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Figure 2. Quadratic case. At the top we report the result of a single
experiment, at the bottom the average over 50 repetitions of the experi-
ment. The plots at left-hand side shows the decay of the objective function
achieved by RCM-grad (blue), RCM-mmd-dr (magenta), NAG-SC with ex-
act strongly-convexity constant (NAG-SC-1, black), NAG-SC with underesti-
mated strongly-convexity constant (NAG-SC-2, dashed), and NAG-C-restart
(red). At right-hand side we compare the convergence rate of the Restart-
Conservative method with different restart schemes. We observe that on
average RCM-grad and RCM-mmd-dr have a slightly better performances
than the benchmark NAG-C-restart.

• RCM-mmd-dr with h = 1√
λmax

;

• RCM-mmd-r with h = 1√
λmax

;

• RCM-kin with h = 1√
λmax

.

The results are described in Figure 2. This test shows that, among the Restart-Conservative
Methods, RCM-grad and RCM-mmd-dr are the most performing. Moreover, RCM-grad and
RCM-mmd-dr achieve a faster convergence rate than NAG-SC-2 when a sharp estimate of
the strongly-convexity constant is not available. We also observe that both RCM-grad and
RCM-mmd-dr have on average slightly better performances than NAG-C-restart. However,
when the strongly-convexity constant is known, NAG-SC has better performances than the
other algorithms. Finally, RCM-mmd-r and RCM-kin have a slower convergence rate than
other Restart-Conservative methods.

5.2. Logistic regression. We considered a typical logistic regression problem. First of all,
we randomly generated the vector x0 ∈ R

n using N (0, 0.01). Then we independently sampled

the entries of the vector y = (y1, . . . , ym)T ∈ {0, 1}m using the law

P(Yi = 1) =
1

1 + e−aT

i
x0

,
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Figure 3. Logistic regression. At the top we report the result of a single
experiment, at the bottom the average over 50 repetitions of the experiment.
The plots at left-hand side shows the decay of the norm of the gradient of
the objective function achieved by RCM-grad (blue), RCM-mmd (magenta),
NAG-C-restart (red), and the classical gradient descent (black). At right-
hand side we compare the convergence rate of RCM with different restart
schemes. RCM-grad and RCM-mmd-dr seem to have faster convergence rate
than the benchmark NAG-C-restart.

where A = (a1, . . . , an) was a n × m matrix with i.i.d. entries generated with the N (0, 1)
distribution. Supposing that y and A were known, we tried to recover x0 using the log-
likelyhood maximization. This is equivalent to the minimization of the function

f(x) =

m
∑

i=1

(

(1− yi)a
T
i x+ log

(

1 + e−aT

i
x
))

(53)

We set n = 100 and m = 500. Let L be the Lipschitz constant of the function ∇f . We recall
that function (53) is convex but not strongly convex. We minimized the right-hand-side of
(53) using the following algorithms:

• Classical gradient descent method with step-size s = 1
L
;

• NAG-C-restart and s = 1
L
;

• RCM-grad with h = 1√
L
;

• RCM-mmd-dr with h = 1√
L
;

• RCM-mmd-r with h = 1√
L
;

• RCM-kin with h = 1√
L
;

The results of the experiment are presented in Figure 3. We observe that the most performing
methods are RCM-grad and RCM-mmd-dr and they show similar behavior in both single and
average runs. Moreover, RCM-grad and RCM-mmd-dr have faster convergence rates than
NAG-C-restart. Among the RCM methods the RCM-kin and RCM-mmd-r are the slowest.
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Figure 4. LogSumExp function. At the top we report the result of a single
experiment, at the bottom the average over 50 repetitions of the experiment.
The plots at left-hand side shows the decay of the norm of the gradient of
the objective function achieved by RCM-grad (blue), RCM-mmd (magenta),
NAG-C-restart (red), and the classical gradient descent (black). At right-
hand side we compare the convergence rate of RCM with different restart
schemes. RCM-grad and RCM-mmd-dr seem to be faster than the bench-
mark NAG-C-restart.

5.3. LogSumExp. We considered the non-strongly convex function f : Rn → R defined as

f(x) = ρ log

(

m
∑

i=1

exp

(

aTi x− bi
ρ

)

)

, (54)

where A = (a1, . . . , am) was a n × m matrix whose entries were independently generated
using the normal distribution N (0, 1). The vector b ∈ R

m was sampled using N (0, 1). We
set n = 50, m = 200 and ρ = 1. Let L be the Lipschitz constant of the function ∇f . We
minimized f using the following algorithms:

• Classical gradient descent method with step-size s = 1
L
;

• NAG-C-restart with s = 1
L
;

• RCM-grad with h = 1√
L
;

• RCM-mmd-dr with h = 1√
L
;

• RCM-mmd-r with h = 1√
L
;

• RCM-kin with h = 1√
L
;

The results are shown in Figure 4. We observe that in the presented single run the RCM-grad
shows the best performance. In the average RCM-grad and RCM-mmd-dr exhibit very similar
behaviors and have a slightly better performances than the benchmark NAG-C-restart.

We want to conclude this section with some considerations about the non-smooth case.
We try to give heuristic ideas to generalize our method to the minimization of composite

functions (see, for example, [13] for an introduction to the subject). Namely, we consider
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functions f : Rn → R of the form

f(x) = g(x) + Ψ(x),

where g : Rn → R is a smooth convex function and Ψ : Rn → R is a Lipschitz-continuous
convex function. The main obstruction to the direct application of RCM for the minimization
of f is due to the fact that, in general, the gradient ∇f may not be well-defined. In order to
avoid this inconvenient, we introduce the map ∂−f : Rn → R

n defined as follows:

∂−f(x) = argmin{||v||2 : v ∈ ∂f(x)} , (55)

where ∂f(x) ⊂ R
n is the sub-differential of f at the point x, and || · ||2 denotes the Euclidean

norm. The good definition of the map ∂−f descends from general properties of convex
functions (see, for example, the textbooks [9], [19]). Hence, the first modification consists in
replacing ∇f with ∂−f .

The second modification to the original RCM is suggested by physical intuition. Let
us imagine that a small massive ball subject to the gravity force is constrained to move
on the graph of the function f . The graph is sharp-shaped in correspondence of the non-
differentiability points of the function f . If a physical ball crosses these regions, we expect a
loss of kinetic energy due to the inelastic collision between the ball and the sharp surface of
the graph. Then, for example, we can reset the velocity equal to zero whenever the sequence
crosses a non-differentiability region. This intuition can be motivated by the fact that the
quantity ∂−f usually has sudden variation in correspondence of non-differentiability points
of f . Hence, when we cross these regions, the information carried by the momentum can be
of little use, if not misleading.

From now on, we suppose that Ψ : Rn → R has the form:

Ψ(x) =

n
∑

i=1

|xi|.

For this choice of Ψ, we propose in Algorithm 4 a variant of RCM.

Algorithm 4 Restart-Conservative Method for ℓ1-composite optimization (RCM-COMP-
grad)

1: x← x0

2: v ← 0
3: while i ≤ max iter do

4: x′ ← x− h2∂−f(x) + hv
5: if ∂−f(x′) · v > 0 then

6: x′ ← x− h2∂−f(x)
7: v ← −h∂−f(x)
8: else

9: v ← v − h∂−f(x′)
10: end if

11: for j = 1, . . . , n do

12: if x′
jxj < 0 then

13: x′
j ← 0

14: v ← 0
15: end if

16: end for

17: x← x′

18: i← i+ 1
19: end while

In the lines 11–16 of Algorithm 4 we check if the sequence has crossed the set where the
function f is not differentiable, i.e., the set {x ∈ R

n : x1 · · ·xn = 0}. If it has, we reset the
velocity equal to 0. As done for RCM-grad, we can replace the gradient restart criterion at
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line 5 with the alternative restart procedures described in Section 4. Similarly as before, we
call RCM-COMP-kin, RCM-COMP-mmd-r and RCM-COMP-mmd-dr the methods obtained
using the alternative restart criteria. We just recall that, in the case of RCM-mmd-dr, in (40)
we need to replace ∇f(xk+1) with ∂−f(xk+1).

For the experiments concerning the ℓ1-composite optimization, we use as benchmark
the restarted version of FISTA proposed in [15]: as done for the NAG-C, in their paper
O’Donoghue and Candès proposed an adaptive restart procedure to accelerate the conver-
gence of FISTA. We refer to this algorithm as FISTA-restart. We recall that FISTA was
originally introduced in [3].

5.4. Quadratic with ℓ1-regularization. We considered the function f : Rn → R defined
as

f(x) =
1

2
xTAx+ bTx+ γ

n
∑

i=1

|xi|, (56)

where A ∈ R
n×n and b ∈ R

n were constructed as in Subsection 5.1. We set γ = 1
4 ||b||∞, in

order to guarantee that the minimizer is not the origin. Let λmax be the greatest eigenvalue
of A. We minimized (56) using the following algorithms:

• FISTA with step-size s = 1
λmax

;

• FISTA-restart with step-size s = 1
λmax

;

• RCM-COMP-grad with step-size h = 1√
λmax

;

• RCM-COMP-mmd-dr with step-size h = 1√
λmax

;

• RCM-COMP-mmd-r with step-size h = 1√
λmax

;

• RCM-COMP-kin with step-size h = 1√
λmax

.

The results are shown in Figure 5. We measured the convergence rate by considering the
decay of ||∂−f || along the sequences generated by the methods. We observe that in this
problem the most performing algorithm is the benchmark FISTA-restart and the worst is the
original FISTA without restart. Among the RCM algorithms RCM-mmd-r and RCM-mmd-dr
exhibit similar convergence rate while RCM -kin is the slowest. Finally, RCM-COMP-grad
shows an asymptotic convergence rate very similar to FISTA-restart.

5.5. Logistic with ℓ1-regularization. We considered the function g : Rn → R defined as

g(x) =

m
∑

i=1

(

(1− yi)a
T
i x+ log

(

1 + e−aT

i
x
))

,

where A = (a1, . . . , am) ∈ R
n×m and y = (y1, . . . , ym)T ∈ R

m were constructed as in Subsec-
tion 5.2. We studied the function f : Rn → R defined as

f(x) = g(x) + γ

n
∑

i=1

|xi|. (57)

We set γ = 1
2 ||∇g(0)||∞, in order to guarantee that the minimizer of f is not the origin.

Let L be the Lipschitz constant of the function ∇g. We minimized (57) using the following
algorithms:

• FISTA with step-size s = 1
L
;

• FISTA-restart with step-size s = 1
L
;

• RCM-COMP-grad with step-size h = 1√
L
;

• RCM-COMP-mmd-dr with step-size h = 1√
L
;

• RCM-COMP-mmd-r with step-size h = 1√
L
;

• RCM-COMP-kin with step-size h = 1√
L
.
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Figure 5. Quadratic function with ℓ1-regularization. At the top we re-
port the result of a single experiment, at the bottom the average over 100
repetitions of the experiment. The plots at left-hand side shows the de-
cay of ||∂−f || achieved by RCM-COMP-grad (blue), RCM-COMP-mmd-dr
(magenta), FISTA-restart (red), and FISTA (black). At right-hand side we
compare the convergence rate of the Restart-Conservative method with dif-
ferent restart schemes. The benchmark method FISTA-restart has the best
performances. Among the Restart-Conservative family, RCM-COMP-grad
shows the fastest convergence rate.

The results are shown in Figure 6. We measured the convergence rate by considering the
decay of ||∂−f || along the sequences generated by the methods. We recall that in this test
the smooth part of the objective function is a non-strongly convex function. We observe
that RCM-COMP-grad and RCM-COMP-mmd-r exhibit the best performances while the
original FISTA is the worst performing method. In this case RCM-COMP-mmd-dr shows on
average performances very close to the benchmark FISTA-restart and both exhibit the same
convergence rate.

5.6. LogSumExp with ℓ1-regularization. We considered the function g : Rn → R defined
as

g(x) = ρ log

(

m
∑

i=1

exp

(

aTi x− bi
ρ

)

)

,

where A = (a1, . . . , am) ∈ R
n×m and b ∈ R

m were constructed as in Subsection 5.3. We set
ρ = 1. We studied the function f : Rn → R defined as

f(x) = g(x) + γ

n
∑

i=1

|xi|. (58)

We set γ = 1
2 ||∇g(0)||∞, in order to guarantee that the minimizer of f is not the origin.

Let L be the Lipschitz constant of the function ∇g. We minimized (57) using the following
algorithms:
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Figure 6. Logistic with ℓ1-regularization. At the top we report the re-
sult of a single experiment, at the bottom the average over 100 repeti-
tions of the experiment. The plots at left-hand side shows the decay of
||∂−f || achieved by RCM-COMP-grad (blue), RCM-COMP-mmd-dr (ma-
genta), FISTA-restart (red), and FISTA (black). At right-hand side we com-
pare the convergence rate of the Restart-Conservative method with different
restart schemes. RCM-COMP-grad and RCM-COMP-mmd-r (green) show
better convergence rate than the benchmark FISTA-restart.

• FISTA with step-size s = 1
L
;

• FISTA-restart with step-size s = 1
L
;

• RCM-COMP-grad with step-size h = 1√
L
;

• RCM-COMP-mmd-dr with step-size h = 1√
L
;

• RCM-COMP-mmd-r with step-size h = 1√
L
;

• RCM-COMP-kin with step-size h = 1√
L
.

The results are shown in Figure 7. We measured the convergence rate by considering the decay
of ||∂−f || along the sequences generated by the methods. We observe that RCM-COMP-grad
is the most performing method. Moreover on average, all the other RCM methods show
performances very close to the benchmark FISTA-restarted.

6. Conclusions

In a series of recent works (see, e.g., [23], [24], [1], [20], [2], [21]) the connection between
ODEs with suitable friction term and discrete optimization algorithms with suitable mo-
mentum term has been investigated from both theoretical and computational point of view.
Conversely, in the present work we investigate optimization method derived from a conserva-
tive ODE (i.e., without friction) with suitable restarting criteria.

In the first part of the paper we propose a continuous-time optimization method for con-
vex functions starting from a conservative ODE coupled with an original restart procedure
based on the mean dissipation of the kinetic energy. Here, our main contribution consists
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Figure 7. LogSumExp with ℓ1-regularization. At the top we report the
result of a single experiment, at the bottom the average over 100 repeti-
tions of the experiment. The plots at left-hand side shows the decay of
||∂−f || achieved by RCM-COMP-grad (blue), RCM-COMP-mmd-dr (ma-
genta), FISTA-restart (red), and FISTA (black). At right-hand side we com-
pare the convergence rate of the Restart-Conservative method with different
restart schemes. RCM-COMP-grad is the most performing and it shows
better convergence rate than the benchmark FISTA-restart.

in proving a linear convergence result. Indeed, with our stopping procedure we can prove
the boundedness of the restart time, and therefore we can strengthen the linear convergence
theorem of [25], where the authors assumed the boundedness in the hypotheses. As well as
in [24], where a restarted dissipative dynamics was investigated, our continuous-time method
does not require an estimate of the strong convexity parameter.

In the second part, a discrete algorithm is derived (Restart-Conservative Method, RCM)
and various discrete restart criteria are considered, some of them proposed in [22] and [25]. A
new contribution is the qualitative global convergence result for RCM with gradient restart
(RCM-grad). To the best of our knowledge, no global convergence result was available for
optimization methods obtained by the discretization of the conservative dynamics.

The numerical tests show that the Restart Conservative methods can effectively compete
with the most performing existing algorithms. We used as benchmark the restarted versions
of NAG-C and FISTA proposed in [15]. We recall that these methods do not make use of
the constant of strong convexity of the objective, and they are suitable both for strongly and
non-strongly convex optimization. In the smooth case, in the experiments with non-strongly
convex functions, RCM-grad and RCM-mmd-dr have similar performances and they both
show a faster convergence rate than NAG-C-restart (see Figures 3, 4). In the non-smooth
case, when minimizing a non-strongly convex function with ℓ1-regularization, the experiments
show that RCM-COMP-grad outperforms FISTA-restart. Moreover, RCM-COMP-mmd-dr
shows performances similar to FISTA-restart (see Figures 6, 7).

Acknowledgments. The Authors want to thank Prof. G. Savaré for the helpful suggestions
and discussions.
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Appendix A. Proof of Proposition 2.1

Proof. Let us prove that the function t 7→ EK(t) has a local maximum in [0,+∞). By
contradiction, if t 7→ EK(t) has no local maxima, then t 7→ EK(t) is injective (otherwise we
can apply twice Weierstrass Theorem and we can find a local maximum). Since t 7→ EK(t)
is continuous, it has to be strictly increasing. This implies that t 7→ ẋ(t) can not change sign
and hence that it is monotone as well. Moreover, it follows that t 7→ x(t) is monotone as well.
Since both x(t) and ẋ(t) remain bounded for every t ∈ [0,+∞), there exist x∞, v∞ ∈ R such
that

lim
t→+∞

x(t) = x∞ and lim
t→+∞

ẋ(t) = v∞.

On the other hand, v∞ should be zero, and this is a contradiction.
Let t̄ be a point of local maximum for the kinetic energy function t 7→ EK(t). This implies

that |ẋ(t̄)| > 0. The conservation of the total mechanical energy ensures that the function
t 7→ f(x(t)) attains a local minimum at t̄. Using the Implicit Function Theorem, we obtain
that t 7→ x(t) is a local homeomorphism around t̄. This implies that x(t̄) is a point of local
minimum for f . �

Appendix B. Proof of Proposition 2.2

Proof. Without loss of generality, we can assume that x∗ = 0 and that x0 > 0. We define a
strongly convex function g : R 7→ R as follows:

g(x) :=
1

2
µ|x− x∗|2 =

1

2
µ|x|2.

We claim that, for every y ∈ [0, x0], the following inequality is satisfied:

f(x0)− f(y) ≥ g(x0)− g(y). (59)

Indeed, we have that

f(x0)− g(x0) = f(y)− g(y) +

∫ x0

y

(f ′(u)− g′(u)) du ≥ f(y)− g(y),

since f ′(u)− g′(u) ≥ 0 for every u ≥ 0. Combining (5) and (59) we obtain:

t1 =

∫ x0

0

1
√

2(f(x0)− f(y))
dy ≤

∫ x0

0

1
√

2(g(x0)− g(y))
dy

=

∫ x0

0

1
√

µ(x2
0 − y2)

dy =
π

2
√
µ
.

This completes the proof. �

Appendix C. Proof of Lemma 2.5

Proof. Up to a linear orthonormal change of coordinates, we can assume that the function f
is of the form

f(x) =

n
∑

i=1

λi

x2
i

2
.

Hence, the differential system (7) becomes














ẍ1 + λ1x1 = 0,
...

ẍn + λnxn = 0,

i.e., the components evolve independently one of each other. If the Cauchy datum is

x(0) = (x1,0, . . . xn,0) and ẋ(0) = 0,
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then we can compute the expression of the kinetic energy function EK : t 7→ 1
2 |ẋ(t)|2:

EK(t) =

n
∑

i=1

λi

x2
i,0

2
sin2(

√

λit).

For every 0 ≤ t ≤ π

2
√
λn

, we have that

0 ≤ sin(
√

λ1t) ≤ . . . ≤ sin(
√

λnt),

and then we deduce that

EK(t) ≥
(

n
∑

i=1

λi

x2
i,0

2

)

sin2(
√

λ1t),

for every t ∈ [0, π/(2
√
λn)]. Evaluating the last inequality for t = π

2
√
λn

and using the

conservation of the energy, we obtain the thesis. �

References

[1] H. Attouch, J. Peypouquet, P. Redont: Fast convex optimization via inertial dynamics with Hessian
driven damping. Journal of Differential Equations, 261:5734–5783, 2016.

[2] H. Attouch, Z. Chbani, J. Peypouquet, P. Redont: Fast convergence of inertial dynamics and algorithms
with asymptotic vanishing viscosity. Mathematical Programming, 168:123–175, 2018.

[3] A. Beck, M. Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2:183–202, 2009.

[4] A. Beck Introduction to nonlinear optimization : theory, algorithms, and applications with MATLAB.
SIAM, Philadelphia, 2014.

[5] S. Boyd, L. Vandenberghe: Convex optimization. Cambridge University Press, 2004.
[6] O. Fercoq, Z. Qu: Adaptive restart of accelerated gradient methods under local quadratic growth condi-

tion. IMA Journal of Numerical Analysis, 39(4):2069–2095, 2019.
[7] O. Fercoq, Z. Qu: Restarting the accelerated coordinate descent method with a rough strong convexity

estimate. Computational Optimization and Applications, 75:63–91, 2020.
[8] E. Hairer, C. Lubic, G. Wanner: Geometric Numerical Integration: Structure-Preserving Algorithms for

Ordinary Differential Equations. Springer-Verlag Berlin Heidelberg, 2006.
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