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Abstract. In this paper, we study the low-rank matrix minimization prob-

lem, where the loss function is convex but nonsmooth and the penalty term
is defined by the cardinality function. We first introduce an exact continuous

relaxation, that is, both problems have the same minimzers and the same op-

timal value. In particular, we introduce a class of lifted stationary point of
the relaxed problem and show that any local minimizer of the relaxed problem

must be a lifted stationary point. In addition, we derive lower bound property

for the nonzero singular values of the lifted stationary point and hence also
of the local minimizers of the relaxed problem. Then the smoothing proximal

gradient (SPG) algorithm is proposed to find a lifted stationary point of the
continuous relaxation model. Moreover, it is shown that the whole sequence

generated by SPG algorithm converges to a lifted stationary point. At last,

numerical examples show the efficiency of the SPG algorithm.

1. Introduction

Over the last decade, finding a low-rank matrix solution to a system or low-rank
matrix optimization problem have received more and more attention. Numerous
optimization models and methods have been proposed in [9, 10, 11, 18, 20, 25].
In this paper, we consider the following matrix rank minimization problem with
cardinality penalty, that is,

(1.1) minFl0(X) := f(X) + λ · rank(X) = f(X) + λ‖σ(X)‖0,

where X ∈ Rm×n (n ≤ m) and σ(X) := (σ1(X), . . . , σn(X))
T

is a vector composed
of X ’s singular values with σ1(X) ≥ . . . ≥ σn(X) ≥ 0. Furthermore, f : Rm×n →
[0,∞) is convex (not necessarily smooth) and λ is a positive parameter.

One application of problem (1.1) is the low-rank matrix recovery problem[14, 17,
19, 24]. To solve such problem, traditional algorithms are always based on l2(or
Frobenius)-nuclear model, that is, the loss function is a l2-norm for vector case
or Frobenius norm for matrix case, and rank(X) is relaxed as a matrix nuclear
norm. However, these models are sensitive to non-Gaussian noise with outliers
[12, 30, 29, 28]. To overcome this drawback, the l1 model is considered in the
problem with the outlier-resistant loss function. For example, the following loss
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function is considered in the low-rank matrix recovery problem

(1.2) f(X) = ‖A (X)− b‖1,
where the linear map A : Rm×n → Rp and vector b ∈ Rp are given. Obviously,
f is convex but not smooth. Considering low-rank matrix completion problem, a
special case of low-rank matrix recovery problem, the corresponding loss function
f(X) can be written as

f(X) = ‖PΩ (X −M) ‖1,
where M ∈ Rm×n is a known matrix, Ω is an index set which locates the observed
data, PΩ is a linear operator that extracts the entries in Ω and fills the entries
not in Ω with zeros. In the robust principal component analysis (RPCA) problem
[2, 6, 23, 27], the loss function f(X) is adopted as

(1.3) f(X) = ‖L−X‖1,
where L ∈ Rm×n denotes the observed data. The RPCA problem aims to de-
compose the matrix L as the sum of a low-rank matrix X and a sparse matrix
E = L−X ∈ Rm×n.

It is known that matrix rank function is nonconvex and nonsmooth. In the matrix
rank minimization problem, one of common used convex relaxations of rank function
is matrix nuclear norm. Although the methods based nuclear norm relaxation have
strong theoretical guarantees, the obtained approximation solutions under certain
incoherence assumptions are usually hard to satisfy in real applications [4, 5]. In
other words, the nuclear norm is not a perfect approximation to the rank function.

In [1], the capped l1 function, a continuous relaxation of l0 function, was adopted
in penalized sparse regression problem with some advantages. Furthermore, a
smoothing proximal gradient (SPG) algorithm with global convergence was pro-
posed there. More recently, such technique was applied to group sparse optimiza-
tion for images recovery in [22]. It is well-known that the matrix norm can be
expressed as a vector norm of the singular value vector. Motivated by these, we
consider whether such SPG algorithm can be generalized from sparse regression
problem to low-rank matrix minimization or not.

For this aim, let Φ(X) =
∑n
i=1 φ (σi (X)) be a continuous relaxation of the rank

function with the capped-`1 function φ given by

(1.4) φ(t) = min{1, t/ν}, t ≥ 0,

where ν > 0 is a parameter. Based on Φ(X), we consider the following continuous
optimization problem for solving (1.1):

(1.5) minF(X) := f(X) + λΦ(X).

Our contributions are as follows. We first present the continuous relaxation
problem (1.5) of problem (1.1), which are shown to have the same global optimizers.
Furthermore, the local minimizer of (1.5) is a lifted stationary point of (1.5) with
an expected lower bound property of singular values. Then an SPG algorithm is
proposed to get a lifted stationary point of (1.5) with global convergence.

Notations. We denote [n] = {1, 2, . . . , n} and Dn = {d ∈ Rn : di ∈ {1, 2}, i ∈ [n]} .
The space of m× n matrices is denoted by Rm×n. For a given matrix X ∈ Rm×n,
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Bδ(X) denotes the open ball centered at X with radius δ. In addition, D(x) denotes
a diagonal matrix generated by vector x, whose dimension shall be clear from the
context. Denote Qm the set of m ×m-dimension unitary orthogonal matrix. Let
Ei = D(ei), where ei is a unit vector whose ith entry is 1.

For any given X,Y ∈ Rm×n, the standard inner product of X and Y is denoted
by 〈X,Y 〉, that is, 〈X,Y 〉 = tr

(
XY T

)
, where tr(·) denotes the trace of a matrix.

The Frobenius norm of X is denoted by ‖X‖F , namely, ‖X‖F =
√

tr (XXT ).

Denote σ(X) = (σ1(X), . . . , σn(X))
T

and

M(X) =
{

(U, V ) ∈ Qm ×Qn : X = UD (σ(X))V T
}
.

2. An exact continuous relaxation for (1.1)

In this section, we present the relationships between (1.1) and (1.5). Without
specific explanation, Assumptions 1 and 2 are assumed throughout the paper.

Assumption 1. f is Lipschitz continuous with Lipschitz constant Lf .

Assumption 2. Positive parameter ν in (1.4) satisfies ν < ν̄ := λ/Lf .

2.1. Lifted stationary points of (1.5). Clearly, φ in (1.4) can be rewritten as a
DC function, i.e.,

φ(t) =
t

ν
−max {θ1(t), θ2(t)}

with θ1(t) = 0 and θ2(t) = t/ν − 1. Denote

(2.1) D(t) = {i ∈ {1, 2} : θi(t) = max {θ1(t), θ2(t)}} .

Following Theorem 3.7 in [15], the Clarke subdifferential of Φ at X is given by

∂Φ(X) =

{
UD(x)V T : x ∈ ∂

n∑
i=1

φ (σi (X)) , (U, V ) ∈M(X)

}
,

where ∂φ(x) is the Clarke subdifferential [8] of φ(x). Then we have the following
definition.

Definition 2.1. We say that X is a lifted stationary point of (1.5) if there exist
di ∈ D (σi(X)) for all i ∈ [n] such that

(2.2) λ

n∑
i=1

θ′di (σi(X))Ei ∈
{
UT∂f(X)V +

λ

ν
D (∂ ‖σ(X)‖1) : (U, V ) ∈M (X)

}
,

where σi(X) is the ith largest singular value of X.

If (2.2) holds for all di ∈ D (σi(X)) , i ∈ [n], then we call X a d-stationary
point.
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2.2. Characterizations of lifted stationary points of (1.5). We first show that
for any element in D (σi(X)) satisfying (2.2) is unique and well defined.

Proposition 2.2. If X̄ is a lifted stationary point of (1.5), then the vector dX̄ =(
dX̄1 , . . . , d

X̄
n

)T
∈
∏n
i=1D

(
σi(X̄)

)
satisfying (2.2) is unique. In particular, for

i ∈ [n],

(2.3) dX̄i =

{
1 if σi(X̄) < ν,
2 if σi(X̄) ≥ ν.

Proof. For case of σi(X̄) 6= ν, the statement in this proposition follows. Hence, it
suffices to consider the index i satisfying σi(X̄) = ν.

Now we assume that dX̄i = 1 by contradiction when σi(X̄) = ν. By (2.2), there
exists ξ(X̄) ∈ ∂f(X̄) such that 0 =

(
UT ξ(X̄)V

)
ii

+ λ/ν, where (U, V ) ∈ M
(
X̄
)
.

Then, λ/ν =
∣∣(UT ξ(X̄)V

)
ii

∣∣ ≤ ∥∥UT ξ(X̄)V
∥∥
F

=
∥∥ξ(X̄)

∥∥
F
≤ Lf . This leads to a

contradiction to ν < λ/Lf . Then, we can assert that dX̄i = 2, and hence (2.3) holds
for σi(X̄) = ν. �

For a given d = (d1, . . . , dn)
T ∈ Dn, we define

(2.4) Φd(X) :=

n∑
i=1

σi(X)/ν −
n∑
i=1

θdi (σi(X)) .

It is easy to see that

Φ(X) = min
d∈Dn

Φd(X), ∀X ∈ Rm×n.

Furthermore, for a fixed X̄, Φ(X̄) = Φd
X̄

(X̄) with dX̄ defined in (2.3). We next
show that any local minimizer of (1.5) is a lifted stationary point of the problem.

Theorem 2.3. Suppose that X̄ is a local minimizer of problem (1.5). Then X̄ is
a lifted stationary point of (1.5), that is, (2.2) holds at X̄.

Proof. Since X̄ is a local minimizer of (1.5) satisfying (1.5), it gives

(2.5)
f(X̄) + λΦd

X̄ (
X̄
)

= f(X̄) + λΦ
(
X̄
)

≤ f(X) + λΦ (X) ≤ f(X) + λΦd
X̄

(X) , ∀X ∈ B%(X̄),

where the first equality comes from Φd
X̄

(X̄) = Φ(X̄), dX̄ is defined as in (2.3) and

the last inequality is due to Φd
X̄

(X) ≥ Φ(X), ∀X ∈ Rm×n. Then X̄ is a local
minimizer of the problem

(2.6) min
X

f (X) + λΦd
X̄

(X) .

Hence, there exists some (Ū , V̄ ) ∈ M
(
X̄
)

such that

(2.7) 0 = ∂f
(
X̄
)

+ λŪ

(
1

ν
D
(
∂
∥∥σ(X̄)

∥∥
1

)
−

n∑
i=1

θ′
dX̄i

(
σi(X̄)

)
Ei

)
V̄ T ,

which implies (2.2) at X̄. �
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Now we show a lower bound property of the lifted stationary points of (1.5),
which is similar to Lemma 2.3 in [1]. For the ease of the reader, we present the
proof here.

Lemma 2.4. If X̄ is a lifted stationary point of (1.5), then it holds that

(2.8) σi(X̄) ∈ [0, ν)⇒ σi(X̄) = 0, i ∈ [n].

Proof. Suppose X̄ is a lifted stationary point of (1.5). Assume that σi(X̄) ∈
(0, ν) for some i ∈ [n]. Then, dX̄i = 1. By Definition 2.1, there exists ξ(X̄) ∈
∂f(X̄) such that 0 =

(
UT ξ(X̄)V

)
ii

+ λ/ν, where (U, V ) ∈ M
(
X̄
)
. Then, λ/ν =∣∣(UT ξ(X̄)V

)
ii

∣∣ ≤ ∥∥UT ξ(X̄)V
∥∥
F

=
∥∥ξ(X̄)

∥∥
F
≤ Lf , which leads to a contradiction

to ν < λ/Lf . Thus, for any i ∈ [n], σi(X̄) ∈ [0, ν) implies that σi(X̄) = 0. �

2.3. Relationship between (1.1) and (1.5). This subsection presents the rela-
tionship between problem (1.1) and its continuous relaxation (1.5). According to
the lower bound property of the lifted stationary points of (1.5) in Lemma 2.4, we
are ready to link (1.1) and (1.5) by the following two results.

Theorem 2.5. X̄ is a global minimizer of (1.1) if and only if it is a global mini-
mizer of (1.5). Moreover, problems (1.1) and (1.5) have the same optimal value.

Proof. Let X̄ be a global minimizer of (1.5), then X̄ is a lifted stationary point of
(1.5) from Theorem 2.3. By (2.8), it follows Φ(X̄) = ‖σ(X̄)‖0. Then,

f(X̄) + λ‖σ(X̄)‖0 = f(X̄) + λΦ(X̄)

≤ f(X) + λΦ(X)

≤ f(X) + λ‖σ(X)‖0,

where the last inequality comes from Φ(X) ≤ ‖σ(X)‖0, ∀X ∈ Rm×n. Thus, X̄ is
a global minimizer of (1.1).

Next, suppose X̄ is a global minimizer of (1.1) but not a global minimizer of

(1.5). Assume that X̂ is a global minimizer of (1.5) satisfying

f(X̂) + λΦ(X̂) < f(X̄) + λΦ(X̄).

As shown earlier, Φ(X̂) = ‖σ(X̂)‖0. Together with Φ(X̄) ≤ ‖σ(X̄)‖0, we have

f(X̂) + λ‖σ(X̂)‖0 < f(X̄) + λ‖σ(X̄)‖0, which leads to a contradiction. Thus, any
global minimizer of (1.1) must be a global minimizer of (1.5).

Lemma 2.4 ensures that problems (1.1) and (1.5) have the same optimal value.
�

Proposition 2.6. If X̄ is a local minimizer of (1.5), then it is a local minimizer
of (1.1), and the objective functions of (1.1) and (1.5) have the same value at X̄,
i.e., F`0(X̄) = F(X̄).

The proof is similar to the first part of Theorem 2.5 and hence we omit it here.

To end this subsection, we present Figure 1 to summarize the relationship be-
tween problems (1.1) and (1.5).
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Figure 1. Links between problems (1.1) and (1.5).

3. Numerical algorithm and its convergence analysis

In this section, we establish a numerical algorithm to find a lifted stationary
point of (1.5). We first introduce some useful preliminary results on smoothing
methods and the proximal gradient algorithm, then we propose a proximal gradient
algorithm based on the smoothing method. After that we present the convergence
of the proposed algorithm.

3.1. Smoothing approximation method and proximal gradient method.
Smoothing approximation method is a common-used numerical method for solving
nonsmooth optimization problems. For more details, see [21] and references therein.
For the sake of completeness, we recall a class of smoothing functions for f(X) in
(1.5).

Definition 3.1. We call f̃ : Rm×n × [0, µ̄] → R with µ̄ > 0 a smoothing function

of the convex function f in (1.5), if f̃(·, µ) is continuously differentiable in Rm×n
for any fixed µ > 0 and satisfies the following conditions:

(i) lim
X→X̄,µ↓0

f̃(X,µ) = f(X̄), ∀X̄ ∈ Rm×n;

(ii) (convexity) f̃(X,µ) is convex with respect to X for any fixed µ > 0;

(iii) (gradient consistency)

{
lim

Z→X,µ↓0
∇Z f̃(Z, µ)

}
⊆ ∂f(X), ∀X ∈ Rm×n;

(iv) ( f̃ (X, ·) Lipschitz continuity with respect to µ) there exists a positive con-
stant κ such that∣∣∣f̃ (X,µ2)− f̃ (X,µ1)

∣∣∣ ≤ κ |µ1 − µ2| , ∀X ∈ Rm×n, µ1, µ2 ∈ [0, µ̄];

(v) (∇X f̃(·, µ) Lipschitz continuity with respect to X) there exists a constant

L > 0 such that for any µ ∈ (0, µ̄], ∇X f̃(·, µ) is Lipschitz continuous with
Lipschitz constant Lµ−1.

Throughout this paper, we denote f̃(X,µ) a smoothing function of f(X) in (1.5).

For convenience of notation, the gradient of f̃(X,µ) with respect to X is denoted

as ∇f̃(X,µ). Furthermore, Definition 3.1-(iv) indicates that

(3.9) |f̃(X,µ)− f(X)| ≤ κµ, ∀X ∈ Rm×n, 0 < µ ≤ µ̄.
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Some smoothing functions of the l1 loss function in (1.2) can be found in Example
3.1 of [1] and we omit it here.

Some notations are listed here.

F̃d(X,µ) , f̃(X,µ) + λΦd(X) and F̃(X,µ) , f̃(X,µ) + λΦ(X),

where f̃ is a smoothing function of f , µ > 0 and d ∈ Dn. For any fixed µ > 0 and
d ∈ Dn, both F̃d(X,µ) and F̃(X,µ) are nonconvex. Moreover, F̃d(X,µ) is smooth,

but F̃(X,µ) is nonsmooth. Moreover,

(3.10) F̃d(X,µ) ≥ F̃(X,µ), ∀d ∈ Dn, X ∈ Rm×n, µ ∈ (0, µ̄].

Now we are ready to recall some preliminaries on proximal gradient method.

Similar to the analysis in Subsection 3.2 of [1], we have a closed-form solution
to proximal operator of τΦd as follows.

Lemma 3.2. For any given vectors d ∈ Dn, w ∈ Rn+, and a positive number τ > 0,
the proximal operator of proxτΦd(w) has a closed-form solution; i.e.,

(3.11) x̂ = proxτΦd(w) := arg min
x∈Rn

+

{
τΦd(D(x)) +

1

2
‖x− w‖2F

}
can be calculated by

(3.12) x̂i = max{w̄i − τ/ν, 0}, i ∈ [n],

where

w̄i =

{
wi if di = 1,
wi + τ

ν if di = 2.

Theorem 3.3. For given W ∈ Rm×n and τ > 0, let UD(w)V T be the singular
value decomposition of W and x̂ = proxτΦd(w). Then x̂1 ≥ x̂2 ≥ . . . ≥ x̂n ≥ 0

and X̂ = UD(x̂)V T is an optimal solution of the problem

(3.13) min
X

{
τΦd(X) +

1

2
‖X −W‖2F

}
.

Proof. From w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, it is clear that d1 ≥ d2 ≥ . . . ≥ dn. Next,
we will prove that x̂1 ≥ x̂2 ≥ . . . ≥ x̂n ≥ 0. We split the proof into three cases.

Case 1. di = di+1 = 2. By (3.12), it holds

x̂i = wi ≥ wi+1 = x̂i+1 ≥ 0.

Case 2. di = 2 and di+1 = 1. By (3.12), it holds

x̂i = wi ≥ max {wi+1 − τ/ν, 0} = x̂i+1 ≥ 0.

Case 3. di = di+1 = 1. By (3.12), it holds

x̂i = max {wi − τ/ν, 0} ≥ max {wi+1 − τ/ν, 0} = x̂i+1 ≥ 0.

Combining with all cases, the non-increasing of x̂i is asserted.
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Invoking by [16, Proposition 2.1] with F (X) = τΦd(X), φ(t) = t2/2, ‖·‖ = ‖·‖F
and using the fact that x̂ is an optimal solution of proxτΦd(w), it is concluded that

X̂ = UD (x̂)V T is an optimal solution of (3.13). �

Before we end this subsection, we consider the following approximation of F̃d(·, µ)
on a given matrix Z

(3.14) Qd,γ(X,Z, µ) = f̃(Z, µ) + 〈X −Z,∇f̃(Z, µ)〉+ 1

2
γµ−1‖X −Z‖2F + λΦd(X)

with a constant γ > 0. Then, minimization problem minX Qd,γ(X,Z, µ) has a

closed form, denoted by X̂, which can be calculated by Theorem 3.3 with τ = λγ−1µ
and W = Z − γ−1µ∇f̃(Z, µ).

3.2. SPG algorithm. In this subsection, a proximal gradient algorithm based
on the smoothing method, denoted by SPG for simplicity, will be established for
finding a lifted stationary point of (1.5).

The following assumptions are needed in the convergence analysis of the SPG
algorithm:

• (A1) Assumption 1 and Assumption 2 hold;

• (A2) f̃ is a smoothing function of f defined in Definition 3.1;
• (A3) The global minimum point of F in (1.5) (or F`0 in (1.1)) is bounded.

Borrowing from Lf in Assumption 1, ν can be defined such that problems (1.1)
and (1.5) have the consistency in Theorem 2.5 and Proposition 2.6. Parameter κ
in Definition 3.1 is used in the SPG algorithm, which can be calculated exactly for
most smoothing functions [7]. The value of L in Definition 3.1 is not necessary, and
we will use a simple line search method to find an acceptable value at each iteration
of the SPG algorithm.

Based on the above assumptions, the SPG algorithm for solving (1.5) is outlined
as Algorithm 1 here.

At each iteration, the proximal gradient algorithm is adopted for solving minX
Qdk,γk(X,Xk, µk) with fixed µk, γk, and dk. The values of γk are chosen indepen-
dently in Step 1 of each iteration. Step 3 updates the smoothing parameter µk by
(3.18), where F̃

(
Xk+1, µk

)
+ κµk can be seen as an energy function, with mono-

tone nonincreasing property, which can be seen from Lemma 3.5. If the energy
function decreases more than the given scale, then the smoothing parameter µk is
still acceptable; otherwise, we reduce it by the updating rule (3.19). Let

N s = {k ∈ N : µk+1 6= µk} ,

and denote nsr the rth smallest number in N s. Then, we can update {µk} by

(3.20) µk = µns
r+1 =

µ0

(nsr + 1)
σ , ∀nsr + 1 ≤ k ≤ nsr+1,

which will be used in the proof of Lemma 3.6.
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Algorithm 1 SPG algorithm.

Input: Let X0 ∈ Rm×n and µ−1 = µ0 ∈ (0, µ̄]. Choose ρ, σ > 1, α > 0, and
0 < γ ≤ γ̄. Set k := 0.
while not converge do

Step 1. Choose γk ∈ [γ, γ̄] and let dk := dX
k

, where dX
k

is defined in (2.3).

Step 2. 2a) Compute

(3.15) X̂k+1 = arg min
X

Qdk,γk
(
X,Xk, µk

)
.

2b) If X̂k+1 satisfies

(3.16) F̃d
k
(
X̂k+1, µk

)
≤ Qdk,γk

(
X̂k+1, Xk, µk

)
,

let

(3.17) Xk+1 := X̂k+1

and go to Step 3. Otherwise, γk := ργk, and return to Step 2a).
Step 3. If

(3.18) F̃
(
Xk+1, µk

)
+ κµk − F̃

(
Xk, µk−1

)
− κµk−1 ≤ −αµk,

set µk+1 = µk; otherwise, set

(3.19) µk+1 :=
µ0

(k + 1)σ
.

Let k := k + 1 and go to Step 1.
end while

Output: Xk+1.

3.3. Convergence analysis. In this subsection, we will present the convergence
analysis for the SPG algorithm.

Let
{
Xk
}

, {γk} and {µk} be the sequences generated by the SPG algorithm.
We first show that the SPG algorithm is well-defined. Then we establish some
basic properties of the iterates

{
Xk
}

, {γk} and {µk} in Lemma 3.4-3.7. Next, the

subsequential convergence of
{
Xk
}

to a lifted stationary point of (1.5) is established
in Proposition 3.8. Finally, we prove the global sequence convergence of iterates{
Xk
}

in Theorem 3.9.

Lemma 3.4. The SPG algorithm is well-defined and {γk} ⊆ [γ,max{γ̄, ρL}].

Proof. Clearly, (3.16) holds if and only if

f̃
(
X̂k+1, µk

)
≤ f̃

(
Xk, µk

)
+
〈
∇f̃

(
Xk, µk

)
, X̂k+1 −Xk

〉
+

1

2
γkµ

−1
k

∥∥∥X̂k+1 −Xk
∥∥∥2

F
.

Invoking Definition 3.1-(v), (3.16) holds when γk ≥ L. Thus, the updating of γk in
Step 2 is at most logη(L/γ) + 1 times at each iteration. Hence, the SPG algorithm
is well-defined, and we have that γk ≤ max{γ̄, ρL}, ∀k ∈ N. �
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Lemma 3.5. For any k ∈ N, we have

(3.21) F̃
(
Xk+1, µk

)
≤ F̃

(
Xk, µk

)
,

which implies that
{
F̃
(
Xk+1, µk

)
+ κµk

}
is nonincreasing.

Proof. By (3.15), it follows

Qdk,γk
(
Xk+1, Xk, µk

)
≤ Qdk,γk

(
X,Xk, µk

)
, ∀X ∈ Rm×n.

From (3.14), upon rearranging the terms, we have
(3.22)

λΦd
k (
Xk+1

)
≤λΦd

k

(X) +
〈
X −Xk+1,∇f̃

(
Xk, µk

)〉
+

1

2
γkµ

−1
k

∥∥X −Xk
∥∥2

F

− 1

2
γkµ

−1
k

∥∥Xk+1 −Xk
∥∥2

F
.

Moreover, (3.16) can be written as

(3.23)
F̃d

k (
Xk+1, µk

)
≤f̃
(
Xk, µk

)
+
〈
Xk+1 −Xk,∇f̃

(
Xk, µk

)〉
+

1

2
γkµ

−1
k

∥∥Xk+1 −Xk
∥∥2

F
+ λΦd

k (
Xk+1

)
.

Summing up (3.22) and (3.23), there holds

(3.24)
F̃d

k (
Xk+1, µk

)
≤f̃
(
Xk, µk

)
+ λΦd

k

(X) +
〈
X −Xk,∇f̃

(
Xk, µk

)〉
+

1

2
γkµ

−1
k

∥∥X −Xk
∥∥2

F
, ∀X ∈ Rm×n.

For a fixed µ > 0, the convexity of f̃(X,µ) with respect to X leads to

(3.25) f̃
(
Xk, µk

)
+
〈
X −Xk,∇f̃

(
Xk, µk

)〉
≤ f̃ (X,µk) , ∀X ∈ Rm×n.

Combining (3.24) and (3.25) and recalling the definition of F̃dk , it follows

(3.26) F̃d
k (
Xk+1, µk

)
≤F̃d

k

(X,µk) +
1

2
γkµ

−1
k

∥∥X −Xk
∥∥2

F
, ∀X ∈ Rm×n.

Letting X = Xk in (3.26) and by dk = dX
k

, we obtain Φd
k

(Xk) = Φ(Xk), and
hence

(3.27) F̃d
k (
Xk+1, µk

)
≤ F̃

(
Xk, µk

)
.

Thanks to (3.10), F̃dk
(
Xk+1, µk

)
≥ F̃

(
Xk+1, µk

)
. Therefore, (3.27) leads to

(3.21).

Since F̃(X,µ) = f̃(X,µ) + λΦ(X), it is clear that

F̃(X,µk)− F̃(X,µk−1) = f̃(X,µk)− f̃(X,µk−1) ≤ κ (µk−1 − µk) ,

where the last inequality comes from Definition 3.1 (iv). Together with (3.21), there
holds

(3.28) F̃
(
Xk+1, µk

)
+ κµk ≤ F̃

(
Xk, µk

)
+ κµk ≤ F̃

(
Xk, µk−1

)
+ κµk−1,

which implies the nonincreasing property of
{
F̃
(
Xk+1, µk

)
+ κµk

}
. �

Lemma 3.6. The following statements hold:
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(i)
∞∑
k=0

µk ≤ Λ with Λ = 1
α

(
F̃
(
X0, µ−1

)
+ κµ−1 −minF(X)

)
+ µ0σ

σ−1 <∞;

(ii) lim
k→∞

µk = 0.

Proof. (i) From (3.20), we have

(3.29)
∑
k∈N s

µk =

∞∑
r=1

µ0

(nsr + 1)
σ ≤

∞∑
k=1

µ0

kσ
≤ µ0σ

σ − 1
,

where nsr is the rth smallest element in N s. By (A3) and (3.9), we see that

(3.30) F̃
(
Xk+1, µk

)
+ κµk ≥ F

(
Xk+1

)
≥ minF(X) = minF`0(X) > −∞,

where the equality follows from Theorem 2.5. When k /∈ N s, (3.18) can be rewritten
as

αµk ≤ F̃
(
Xk, µk−1

)
+ κµk−1 − F̃

(
Xk+1, µk

)
− κµk,

which together with the nonincreasing property of
{
F̃
(
Xk+1, µk

)
+ κµk

}
and

(3.30) implies that

(3.31)
∑
k/∈N s

µk ≤
1

α

(
F̃
(
X0, µ−1

)
+ κµ−1 −minF(X)

)
.

Combining (3.29) and (3.31), the proof for the estimation in item (i) is completed.

(ii) From (i), (ii) is obvious. �

Lemma 3.7. Suppose that the sequence
{
Xk
}

generated by SPG algorithm is
bounded. Then there exists K ∈ N such that for all k ≥ K, it holds that

(i)
∥∥∥∇f̃ (Xk, µk

)∥∥∥
F
< 1

2 (λ/ν + Lf );

(ii)
∥∥Xk+1 −Xk

∥∥
F
≤ (
√
n+ 1) (λ/ν)γ−1

k µk;

(iii)
∞∑
k=0

∥∥Xk+1 −Xk
∥∥
F
<∞.

Proof. (i) We argue it by contradiction. Suppose that there exists a subsequence
of
{
Xk
}

, denoted by
{
Xki

}
, such that

(3.32)
∥∥∥∇f̃ (Xki , µki

)∥∥∥
F
≥ 1

2
(λ/ν + Lf ) > Lf , ∀i ∈ N.

Since
{
Xki

}
is bounded, there exists a subsequence of

{
Xki

}
(also denoted by{

Xki
}

for simplicity) and X̄ such that lim
i→∞

Xki = X̄. Due to lim
i→∞

µki = 0, the

property of f̃ in Definition 3.1-(iii) and (3.32) imply the existence of ξ̄ ∈ ∂f(X̄)
such that ‖ξ̄‖F > Lf , which leads to a contradiction to the definition of Lf given
in Assumption 1. Hence, (i) is established.

(ii) Let W k = Xk − γ−1
k µk∇f̃

(
Xk, µk

)
and UkD

(
wk
) (
V k
)T

be the singular

value decomposition of W k. By (3.12), we have

(3.33)
∥∥Xk+1 −W k

∥∥
F

=
∥∥xk+1 − wk

∥∥
F
≤
√
n(λ/ν)γ−1

k µk.
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From (i), there exists K ∈ N such that for all k > K, it holds that

(3.34)
∥∥W k −Xk

∥∥
F

=
∥∥∥−γ−1

k µk∇f̃
(
Xk, µk

)∥∥∥
F
≤ (λ/ν)γ−1

k µk.

Combining (3.34) and (3.33), we have∥∥Xk+1 −Xk
∥∥
F
≤
∥∥Xk+1 −W k

∥∥
F

+
∥∥W k −Xk

∥∥
F
≤
(√
n+ 1

)
(λ/ν)γ−1

k µk,

which completes the proof for item (ii).

(ii) From Lemma 3.6-(i) and (ii) of this lemma, we have

∞∑
k=0

∥∥Xk+1 −Xk
∥∥
F
≤
K−1∑
k=0

∥∥Xk+1 −Xk
∥∥
F

+

∞∑
k=K

∥∥Xk+1 −Xk
∥∥
F

≤
K−1∑
k=0

∥∥Xk+1 −Xk
∥∥
F

+
(√
n+ 1

)
(λ/ν)γ−1

∞∑
k=K

µk <∞.

�

Proposition 3.8. Suppose that the sequence
{
Xk
}

generated by SPG algorithm

is bounded. Then any accumulation point of
{
Xk
}

is a lifted stationary point of
(1.5).

Proof. Suppose that X̄ is an accumulation point of any convergence subsequent{
Xki

}
. By Lemma 3.7-(iii), we have

(3.35)

∞∑
i=0

∥∥Xki+1 −Xki
∥∥
F
≤
∞∑
k=0

∥∥Xk+1 −Xk
∥∥
F
<∞,

which implies that

(3.36) lim
i→∞

∥∥Xki+1 −Xki
∥∥
F

= 0 and lim
i→∞

Xki+1 = X̄.

Recalling Xki+1 = X̂ki+1 defined in (3.15) and by first-order optimality condi-
tion, we have

(3.37) ∇f̃
(
Xki , µki

)
+ γkiµ

−1
ki

(
Xki+1 −Xki

)
+ λζki = 0,∀ζki ∈ ∂Φd

ki
(
Xki+1

)
.

Since the elements in
{
dki : i ∈ N

}
are finite and lim

i→∞
Xki+1 = X̄, there exists a

subsequence of {ki}, denoted as
{
kij
}

, and d̄ ∈ D(σ(X̄)) such that dkij = d̄, ∀j ∈ N.

By the definition of ∂Φd̄ and lim
j→∞

Xkij +1 = X̄, it gives

(3.38)

{
lim
j→∞

ζkij : ζkij ∈ ∂Φd
kij
(
Xkij +1

)}
⊆ ∂Φd̄(X̄).

Along with the subsequence
{
kij
}

and letting j → ∞ in (3.37), from Definition

3.1-(iii), (3.36) and (3.38), we obtain that there exist ξ̄ ∈ ∂f(X̄) and ζ̄ d̄ ∈ ∂Φd̄(X̄)
such that

(3.39) ξ̄ + λζ̄ d̄ = 0.

By d̄ ∈ D(σ(X̄)) and the definition of Φd̄ in (2.4), (3.39) implies that X̄ is a lifted
stationary point of (1.5). �
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Theorem 3.9. Suppose that the sequence
{
Xk
}

generated by SPG algorithm is

bounded. Then
{
Xk
}

is globally convergent to a lifted stationary point of (1.5),

i.e., there exists a lifted stationary point X̄ of (1.5) such that lim
k→∞

Xk = X̄.

Proof. Suppose that
{
Xkj

}
is a convergent subsequence of

{
Xk
}

with lim
j→∞

Xkj =

X̄. By Proposition 3.8, X̄ is a lifted stationary point of (1.5).

For any t, s ∈ N, we have

(3.40)
∥∥Xt+s+1 − X̄

∥∥
F
≤
∥∥Xt − X̄

∥∥
F

+

t+s∑
k=t

∥∥Xk+1 −Xk
∥∥
F
.

Foe any given ε > 0, there exists K1 > 0 such that

(3.41)
∥∥Xkj − X̄

∥∥
F
≤ ε/2,

∞∑
k=kj

∥∥Xk+1 −Xk
∥∥
F
≤ ε/2, ∀kj ≥ K1.

Here the first inequality dues to lim
j→∞

Xkj = X̄ and the second inequality comes

from Lemma 3.7-(iii).

By letting t = k̄j ≥ K1 in (3.40) and from (3.41), we obtain
∥∥Xk − X̄

∥∥
F
≤

ε, ∀k > K1 + 1. From the arbitrariness of ε > 0, lim
k→∞

Xk = X̄ follows. �

4. Numerical experiments

In this section we conduct numerical experiments to test the performance of the
SPG method. In particular, we apply it to solve the problem (1.1) with f(X) =
‖PΩ (X −M) ‖1, that is,

(4.42) min
X∈Rm×n

Fl0(X) := ‖PΩ (X −M) ‖1 + λ‖σ(X)‖0.

We conduct extensive experiments to evaluate our method and then comparing
it with some existing methods, including FPCA [18], SVT [3] and VBMFL1 [29].
The platform is Matlab R2014a under Windows 10 on a desktop of a 3.2GHz CPU
and 8GB memory. We adopt the root-mean-square error (RMSE) as evaluation
metrics

RMSE :=

√
‖X∗ −M‖2F

mn
,

and the final performance of each simulation is evaluated by obtaining an ensemble
average of the relative error with T independent Monte Carlo runs.

In the simulation, a typical two-component Gaussian mixture model (GMM) is
used as the non-Gaussian noise model. The probability density function (PDF) of
GMM is defined as

pv(i) = (1− c)N
(
0, σ2

A

)
+ cN

(
0, σ2

B

)
,
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where N
(
0, σ2

A

)
represents general the noise disturbance with variance σ2

A, and

N
(
0, σ2

B

)
stands for outliers that occur occasionally with a large variance σ2

B . The
variable c controls the occurrence probability of outliers.

4.1. Random Matrix Completion. In this subsection, we aim to recover a ran-
dom matrix M ∈ Rm×n with rank r based on a subset of entries {Mij}(i,j)∈Ω. In

detail, we first generate random matrices ML = unifrnd(−0.1, 0.3,m, r) ∈ Rm×r
and MR = unifrnd(−0.1, 0.3, n, r) ∈ Rn×r, then let M = MLM

T
R . We then sample

a subset with sampling ratio SR uniformly at random, where SR = |Ω|/(mn). In
our experiment, we set m = n. The GMM noise are set at σ2

A = 0.0001, σ2
B =

0.1, c = 0.1. The rank r is set to 30 and the sampling ratio SR is set to 0.8. For
each simulation, an average relative error is obtained via 100 Monte Carlo runs
with different realizations of M, Ω and noise.

The performance is firstly compared for different µ0 under different µk iterative
methods in step 3 of SPG algorithm. We compare different µ0 under α = 0.8 and
α = +∞ 1. µ0 increases from 10 to 100 with increment 10 and the size of the square
matrix m is set to 150. From Figure 2, we can see that the larger µ0 becomes, the
smaller the value of RMSE, but the more time and iteration steps it costs. It can
also be observed that α = 0.8 has the better performance than α = ∞. This is
because when α = 0.8, it is necessary to reduce µk when (3.18) is not satisfied.

When α = ∞, no matter how much F̃
(
Xk+1, µk

)
+ κµk decreases, µk will be

reduced. It can be seen that the SPG algorithm can accelerate the convergence
speed by adjusting the strategy of µk in step 3.
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Figure 2. Curves of RMSE, average running times and average
number of running iterations with different µ0.

Secondly, the performance of the algorithms for different sizes of completion
problems. The size of the square matrix m increases from 100 to 200 with increment
10. Figure 3 shows the curves of the average RMSE and running times in terms of
different matrix sizes m. As can be seen from Figure 3, the SPG algorithm achieves
comparably lower average RMSE than the other algorithms, while FPCA and SVT
algorithms based on l2 norm have higher RMSE values. Moreover, as the size of
the matrix increases, the average RMSE values decrease for all algorithms. With
the increase of matrix size, the average running time of all algorithms increases
gradually, but the average running time of SPG algorithm is the least. The average
running time of VBMFL1 algorithm based on l1 norm increases much faster than

1α = +∞ means N s = {1, 2, . . .}.
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the other three algorithms. In summary, SPG algorithm performs best in four
algorithms.
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Figure 3. Curves of RMSE and average running times with dif-
ferent matrix size m.

4.2. Image Inpainting. In this subsection, the performance of the algorithms is
compared for some image inpainting tasks with non-Gaussian noise. Note that
grayscale images can be expressed as matrix. When the matrix data is of low-rank,
or numerical low-rank, the image inpainting problem can be modeled as matrix
completion problem. To evaluate the algorithm performances under non-Gaussian
noise, a mixture of Gaussian is selected for the noise model. We adopt the peak
signal-to-noise ratio (PSNR) as evaluation metrics, which is defined by

PSNR := 10 log10

(
mn

‖X∗ −M‖2F

)
.

A higher PSNR represents better recovery performance.

We use the USC-SIPI image database2 to evaluate our method for image in-
painting. In our test, we randomly select 6 images from this database for testing
and the images are normalized in the range [0, 1]. In Figure 4, we consider the
case where entries are missing at random by sampling ratio SR = 0.9. The GMM
noise are set at σ2

A = 0.001, σ2
B = 0.1, c = 0.1. From Figure 4, we can see that the

image restored by FPCA and SVT algorithm with l2 norm is very blurred, while
the image restored by SPG and VBMFL1 algorithm with l1 norm is relatively clear,
indicating that the recovery effect of l1 norm for non-Gaussian noise is better than
that of l2 norm. In the image restored by VBMFL1 algorithm, the recovery effect
is not good for those isolated small pixels, especially in “Chart”. It may be that
these abnormal small pixels are treated as outliers. The image restored by SPG
algorithm performs well in all aspects. At the same time, in order to compare the
recovery effect of the five algorithms more clearly, we give the PSNR and running
time of the four algorithms in Table 1. It can be seen from the table that the
VBMFL1 algorithm based on l1 norm have higher PSNR values than the FPCA
and SVT algorithms based on l2 norm, but the running time is much longer. SPG
algorithm has the highest PSNR value and short running time. We can assert that
SPG is the best of the four algorithms.
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(a) Original (b) Observation (c) SPG (d) VBMFL1 (e) FPCA (f) SVT

Figure 4. Image inpainting sample of image under a mixture of
Gaussian noise.

Table 1. Image inpainting performance comparison under a mix-
ture of Gaussian noise: PSNR and running times.

Method
Image Chart House Splash

PSNR time PSNR time PSNR time
SPG 26.21 7.33 29.19 9.34 31.92 39.02

VBMFL1 21.43 65.67 28.08 53.84 30.88 183.73
FPCA 16.96 7.45 20.35 4.75 24.05 24.64
SVT 10.97 14.33 17.20 8.22 13.79 22.13

In Figure 5 and Table 2, we consider the case where entries are missing at random
by sampling ratio SR = 0.7, Gaussian noise with variance 0.0001 is added to the
observed pixels. It can be seen from Figure 5 and Table 2 that the recovery effect
of the algorithm based on l1 norm is similar to that of the algorithm based on l2
norm in Gaussian noise, and the running time is relatively long. However, SPG
algorithm still has the highest PSNR value and shorter running time. Therefore,
whether Gaussian noise or non-Gaussian noise, SPG algorithm performs best for
image restoration.

4.3. MRI Volume Dataset. The resolution of the MRI volume dataset3 is of size
217 × 181 with 181 slices and we selected the 38th slice and the 88th slice for the
experiment. We consider the case where entries are missing at random by sampling
ratio SR = 0.9. The GMM noise are set at σ2

A = 0.0001, σ2
B = 0.1, c = 0.01.

From Figure 6 and Histogram 7, we can see that the effect of FPCA and SVT to
restore images is very poor. The effect of VBMFL1 algorithm to restore images is

2http://sipi.usc.edu/database/
3http://graphics.stanford.edu/data/voldata/

http://graphics.stanford.edu/data/voldata/
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(a) Original (b) Observation (c) SPG (d) VBMFL1 (e) FPCA (f) SVT

Figure 5. Image inpainting sample of image under Gaussian
noise.

Table 2. Image inpainting performance comparison under Gauss-
ian noise: PSNR and running times.

Method
Image Clock Ruler Man

PSNR time PSNR time PSNR time
SPG 29.65 3.62 28.65 12.37 30.11 21.17

VBMFL1 28.23 25.48 17.88 15.73 23.82 114.15
FPCA 24.13 4.82 21.75 23.02 22.68 22.58
SVT 28.87 27.64 10.37 40.73 25.86 81.60

good, but the running time is relatively long. SPG algorithm to restore the image
effect and good running time is short. In summary, the SPG algorithm has the best
recovery effect.
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