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Abstract
This paper presents two inexact composite gradient methods, one inner accelerated and

another doubly accelerated, for solving a class of nonconvex spectral composite optimization
problems. More specifically, the objective function for these problems is of the form f1 + f2 +h,
where f1 and f2 are differentiable nonconvex matrix functions with Lipschitz continuous gra-
dients, h is a proper closed convex matrix function, and both f2 and h can be expressed as
functions that operate on the singular values of their inputs. The methods essentially use an
accelerated composite gradient method to solve a sequence of proximal subproblems involving
the linear approximation of f1 and the singular value functions underlying f2 and h. Unlike
other composite gradient-based methods, the proposed methods take advantage of both the
composite and spectral structure underlying the objective function in order to efficiently gen-
erate their solutions. Numerical experiments are presented to demonstrate the practicality of
these methods on a set of real-world and randomly generated spectral optimization problems.

Keywords: composite nonconvex problem, iteration complexity, inexact composite gradient
method, first-order accelerated gradient method, spectral optimization.

1 Introduction
There are numerous applications in electrical engineering, machine learning, and medical imaging
that can be formulated as nonconvex spectral optimization problems of the form

min
U∈Rm×n

φ(U) := f1(U) + (fV2 ◦ σ︸ ︷︷ ︸
f2

)(U) + (hV ◦ σ︸ ︷︷ ︸
h

)(U)

 , (1)

where σ is the function that maps a matrix to its singular value vector (in nonincreasing order of
magnitude), f1 and fV2 are continuously differentiable functions with Lipschitz continuous gradients,
and hV is a proper, lower semicontinuous, convex function. For this paper, we are interested in
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solving instances of (1) where: (i) the resolvents of λ∂h and λ∂hV , i.e., evaluations of the operators
(I + λ∂h)−1 and (I + λ∂hV)−1, are easy compute for any λ > 0; (ii) the resolvents of λ(∇f2 + ∂h)
and λ(∇fV2 + ∂hV) cannot be computed exactly for any λ > 0; and (iii) both fV2 and hV are
absolutely symmetric in their arguments, i.e., they do not depend on the ordering or the sign of
their arguments.

We now describe some practical instances of (1) that satisfy all three assumptions above. To
avoid repetition, we let R = Rs +Rn and P be two sparsity-inducing regularizers, where Rs and
P are continuously differentiable functions with Lipschitz continuous gradients and Rn is a proper,
lower semicontinuous, and convex function.

• Matrix Completion. Let A ∈ Rm×n be a given data matrix and let r = min{m,n}. Moreover,
let Ω denote a subset of the indices of A. The goal of the general matrix completion problem
is to find a low rank approximation of A that is close to A in some sense. A nonconvex
formulation (see, for example, [21]) of this problem is

min
X∈Rm×n

{1
2‖PΩ(X −A)‖2F + (R ◦ σ)(X)

}
,

where PΩ is the function that zeros out the entries of its input that are not in Ω. Note
that this problem is a special instance of (1) in which f1 = ‖PΩ(·) − A‖2F /2, fV2 = Rs, and
hV = Rn.

• Phase Retrieval. Given a vector x ∈ Rn, let x[ω] denote its discrete Fourier transform for
some frequency ω. Moreover, for some unknown noisy signal x̃ ∈ Rn and a frequency set
Ω ⊆ R+, suppose that we are given measurements {|x̃[ω]|}ω∈Ω and vectors aω ∈ Cn such
that | 〈aω, x̃〉 | = |x̃[ω]| for every ω ∈ Ω. The goal of the phase retrieval problem is to recover
an approximation x of x̃ such that | 〈aω, x〉 |2 ≈ | 〈aω, x̃〉 |2 for every ω ∈ Ω. A nonconvex
formulation of this problem is

min
X∈R|Ω|×|Ω|

{1
2‖A(X)− b‖2 + (R ◦ λ)(X) : X � 0

}
,

where λ denotes the function that maps matrices to their eigenvalue vector, X � 0 means
that X is symmetric positive semidefinite, and the quantities A : R|Ω|×|Ω| 7→ R|Ω| and b ∈ R|Ω|
are given by

[A(X)]ω = tr(aωa∗ωX), bω = |x̃[ω]|2, ∀(X,ω) ∈ R|Ω|×|Ω| × Ω.

Note that this problem is a special instance of (1) in which f1 = ‖A(·) − b‖2F /2, fV2 = Rs,
and hV = Rn + δR|Ω|+

where δR|Ω|+
is the indicator for the nonnegative orthant of R|Ω|. It is

worth mentioning that this formulation is a generalization of the one in [3] where the convex
function trX is replaced with the nonconvex function R.

• Robust Principal Component Analysis. Let M̂ ∈ Rm×n be a given data matrix and let
r = min{m,n}. The goal of the robust principal component analysis problem is to find an
approximation M +E of M̂ where M is low-rank and E is sparse. A nonconvex formulation
of this problem is

min
M,E∈Rm×n

{1
2‖M̂ − (M + E)‖2F + (R ◦ σ)(M) + P(E)

}
.

Note that this problem is a special instance of (1) in which f1 = ‖M̂ − [(·) − E]‖2F /2 + P,
fV2 = Rs, and hV = Rn. It is worth mentioning that this formulation is a instance of the one
in [20] where more structure is imposed on the functions R and P.
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A natural approach for finding approximate stationary points of the above instances is to employ
the exact composite gradient (ECG) method that, when applied to (1), exactly solves a sequence
of matrix subproblems of the form

min
U∈Rm×n

{
λ̃k [〈∇(f1 + f2)(Yk−1), U〉+ h(U)] + 1

2‖U − Yk−1‖2F
}
, (2)

where λk > 0 is an appropriately chosen stepsize and the point Yk−1 is the previous iterate. Its
computation primarily consists of computing a singular value decomposition (SVD) at the point
Ỹk := Yk−1− λ̃k∇(f1 +f2)(Yk−1) and an evaluation of the resolvent of λ̃k∂hV at σ(Ỹk). Accelerated
ECG (A-ECG) methods solve subproblems similar to (2) but with Yk−1 selected in an accelerated
manner. Notice that both of these approaches do not exploit the spectral structure in f2.

Our goal in this paper is to develop two efficient inexact composite gradient (ICG) methods
that find approximate stationary points of (1) by exploiting the spectral structure in both f2 and
h. Our first prototype, called the static inner accelerated ICG (IA-ICG) method, inexactly solves
a sequence of matrix prox subproblems of the form

min
U∈Rm×n

{
λk [〈∇f1(Yk−1), U〉+ f2(U) + h(U)] + 1

2‖U − Yk−1‖2F
}

(3)

where λk > 0 is an appropriately chosen stepsize and the point Yk−1 is the previous iterate. It
is shown (see Subsection 4.1) that the effort of finding the required inexact solution Yk of (3)
consists of computing one SVD and applying an accelerated gradient (ACG) algorithm to find an
approximate solution to the related vector prox subproblem

min
u∈Rr

{
λk
[
fV2 (u)− 〈ck−1, u〉+ hV(u)

]
+ 1

2‖u‖
2
}

(4)

where r = min{m,n} and ck−1 = σ(Yk−1 − λk∇f1(Yk−1)). Notice that (4) is a problem over the
vector space Rr, and hence, has significantly fewer dimensions than (3) which is a problem over
the matrix space Rm×n. The other prototype, called the static doubly accelerated ICG (DA-ICG),
solves a subproblem similar to (3) but with Yk−1 selected in an accelerated manner (and hence its
qualifier “doubly accelerated”). Notice that the static IA-ICG (resp. DA-ICG) can be viewed as
an inexact version of ECG (resp. A-ECG) where, instead of h in (2), the function f2 + h is viewed
as the composite term, i.e., the part that is not linearized in the subproblems. Moreover, neither
IA-ICG nor DA-ICG are able to solve (3) (or its accelerated version) exactly due to assumption
(ii) made in the first paragraph of this section.

Motivation of our approach. For high-dimensional instances of (1) where r = min{m,n} is
large, we have that the larger the Lipschitz constant of ∇fV2 is, the better the performance of the
ICG methods is compared to the performance of their exact counterparts. This fact immediately
follows from the following two claims:

(i) the ICG methods inexactly solve fewer matrix subproblems compared to their exact counter-
parts when the Lipschitz constant of ∇fV2 is large; and

(ii) the work of exactly solving (2) or inexactly solving (3) is comparable when r is large.

The justification of claim (i) is as follows. First, recall that the larger the stepizes λk’s (resp. λ̃k)
are, the smaller the number of generated subproblems (3) (resp. (2)) is. Second, the CG stepsizes
chosen in either (2) or (3) to guarantee convergence of the underlying CG method are inversely
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proportional to the Lipschitz constant of the gradient of the function being linearized. Hence, since
the inexact CG methods linearize f1 only and the exact CG methods linearize both f1 and f2, claim
(i) follows. Some specific applications where the Lipschitz constant of ∇fV2 may be large in practice
can be found, for example, in [1, 19, 21]. The justification for claim (ii) is due to the following two
observations: (a) all of the above CG methods require one SVD per subproblem; and (b) when
r is large, the computational bottleneck for solving a single subproblem is the aforementioned SVD.

Contributions and Main results. To the best of our knowledge, this paper is the first to present
ICG methods that exploit both the spectral and composite structure in (1).

When f2 is convex or, more generally, a key inequality is satisfied at every iteration of ACG
applied to (4), it is shown that for any given ρ̂ > 0, both the static IA-ICG and the static DA-ICG
always obtain a pair (Ŷ, V̂ ) satisfying the approximate stationarity condition

V̂ ∈ ∇f1(Ŷ) +∇f2(Ŷ) + ∂h(Ŷ), ‖V̂ ‖ ≤ ρ̂. (5)

by inexactly solving O(ρ̂−2) matrix prox subproblems as in (3). If, in addition, f1 is convex, it is
shown that this bound improves to O(ρ̂−2/3) for the static DA-ICG method.

When f2 is nonconvex, the static IA-ICG and the static DA-ICG may fail to obtain a pair as in
(5). To remedy this, we develop dynamic IA-ICG and DA-ICG methods that repeatedly invoke their
static counterparts to solve (1) with (f1, f2) replaced by (f1,ξ, f2,ξ) = (f1−ξ‖·‖2/2, f2 +ξ‖·‖2/2) for
strictly increasing values of ξ > 0. These dynamic versions always obtain a pair as in (5) because:
(i) f1 + f2 = f1,ξ + f2,ξ for every ξ > 0 and (ii) there always exists ξ > 0 such that f2,ξ is convex
due to the fact that ∇f2 is Lipschitz continuous.

Numerical experiments are also given to demonstrate the practicality of our proposed methods.
More specifically, our experiments demonstrate that the dynamic methods are substantially faster
(usually 10x) than other first-order methods at minimizing the primal residual ‖V̂ || in terms of
runtime.

Related works. The earliest complexity analysis of an ACG method for solving nonconvex
composite problems like the one in (1) is given in [6]. Building on the results in [6], many other
papers [5, 7, 13] have proposed similar ACG-based methods.

Another common approach for solving problems like (1) is to employ an inexact proximal point
method where each prox subproblem is constructed to be convex, and hence, solvable by an ACG
variant. For example, papers [4, 9, 10, 17] present inner accelerated inexact proximal point methods
whereas [12] presents a doubly accelerated inexact proximal point method.

Organization of the paper. Subsection 1.1 gives some notation and basic definitions. Section 2
presents some necessary background material for describing the ICG methods. Section 3 is split
into three subsections. The first one precisely describes the problem of interest, while the last
two present the IA-ICG and DA-ICG methods. Section 4 describes an efficient way of solving
problem (3) by modifying a solution of problem (4). Section 5 presents some numerical results.
Section 6 establishes the iteration complexity of the ICG methods. Finally, some auxiliary results
are presented in Appendices A to D.

1.1 Notation and Basic Definitions

This subsection provides some basic notation and definitions.
The set of real numbers is denoted by R. The set of non-negative real numbers and the set

of positive real numbers is denoted by R+ and R++ respectively. The set of natural numbers is
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denoted by N. The set of complex numbers is C. The set of unitary matrices of size n–by–n
is Un. For t > 0, define log+

1 (t) := max{1, log(t)}. Let Rn denote a real–valued n–dimensional
Euclidean space with norm ‖ · ‖. Given a linear operator A : Rn 7→ Rp, the operator norm of A is
denoted by ‖A‖ := sup{‖Az‖/‖z‖ : z ∈ Rn, z 6= 0}. Using the asymptotic notation O, we denote
O1(·) ≡ O(1 + ·).

Let (m,n) ∈ N2 and let r = min{m,n}. Given matrices X ∈ Rm×n and Y ∈ Rn×n, let the
quantities σ(X) and λ(Y ) denote the singular values and eigenvalues of X and Y , respectively, in
nonincreasing order. Let dg : Rr 7→ Rr×r and Dg : Rm×n 7→ Rr be given pointwise by

[dg z]ij =
{
zi, if i = j,

0, otherwise,
[DgZ]i = Zii,

for every z ∈ Rr, Z ∈ Rm×n, and (i, j) ∈ {1, ..., r}2.
The following notation and definitions are for a general complete inner product space Z, whose

inner product and its associated induced norm are denoted by 〈·, ·〉 and ‖ · ‖ respectively. Let
ψ : Z 7→ (−∞,∞] be given. The effective domain of ψ is denoted by domψ := {x ∈ Z : ψ(x) <∞}
and ψ is said to be proper if domψ 6= ∅. For ε ≥ 0, the ε-subdifferential of ψ at x ∈ domψ is
denoted by

∂εψ(z) :=
{
w ∈ Rn : ψ(z′) ≥ ψ(z) +

〈
w, z′ − z

〉
− ε,∀z′ ∈ Z

}
,

and we denote ∂ψ ≡ ∂0ψ. The set of proper, lower semi-continuous, convex functions is denoted
by Conv Z. The convex conjugate ψ is denoted by ψ∗. The linear approximation of ψ at a point
z0 ∈ domψ is denoted by `ψ(·; z0) := ψ(z0) + 〈∇ψ(z0), · − z0〉. The indicator of a closed convex
set C ⊆ Z at a point z ∈ Z is denoted by δC(z), which is 1 if z ∈ C and ∞ otherwise. The local
Lipschitz constant of ∇ψ at two points u, z ∈ Z is denoted by

Lψ(x, y) =


‖∇ψ(x)−∇ψ(y)‖

‖x−y‖ , x 6= y,

0, x = y,
∀x, y ∈ domψ. (6)

2 Background Material
Recall from Section 1 that our interest is in solving (1) by repeatedly solving a sequence of prox
subproblems as in (3). This section presents some background material regarding (3).

This section considers the nonconvex composite optimization (NCO) problem

min
u∈Z
{ψ(u) := ψs(u) + ψn(u)} , (7)

where Z is a finite dimensional inner product space and the functions ψs and ψn are assumed to
satisfy the following assumptions:

(B1) ψn ∈ Conv Z;

(B2) ψs is continuously differentiable on Z and satisfies ψs(u)− `ψs(u; y) ≤M‖u− y‖2/2 for some
M ≥ 0 and every u, y ∈ Z.

Clearly, problems (1) and (3) are special cases of (7), and hence any definition or result that is
stated in the context of (7) applies to (1) and/or (3).

An important notion of an approximate solution of (7) is as follows: given ρ̂ > 0, a pair (yr, vr)
is said to be a ρ̂–approximate solution of (7) if

vr ∈ ∇ψs(yr) + ∂ψn(yr), ‖vr‖ ≤ ρ̂. (8)
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In Section 3, we develop prox-type methods for finding ρ̂–approximate solutions of (1) that repeat-
edly solve (3) inexactly by taking advantage of its spectral decomposition.

We now discuss the inexactness criterion under which the subproblems (3) are solved. Again,
the criterion is described in the context of (7) as follows.

Problem A : Given (µ, θ) ∈ R2
++ and z0 ∈ Z, find (y, v, ε) ∈ domψ ×Z × R+ such that

v ∈ ∂ε
(
ψ − µ

2 ‖ · −y‖
2
)

(y), ‖v‖2 + 2ε ≤ θ2‖y − z0‖2. (9)

We begin by making three remarks about the above problem. First, if (y, v, ε) solves Problem A
with θ = 0, then (v, ε) = (0, 0), and z is an exact solution of (7). Hence, the output (y, v, ε) of
Problem A can be viewed as an inexact solution of (7) when θ ∈ R++. Second, the input z0 is
arbitrary for the purpose of this section. However, the two methods described in Section 3 for
solving (1) repeatedly solve (3) according to Problem A with the input z0 at the kth iteration
determined by the iterates generated at the (k − 1)th iteration. Third, defining the function

∆µ(u; y, v) := ψ(y)− ψ(u)− 〈v, y − u〉+ µ

2 ‖u− y‖
2 ∀u ∈ domψ, (10)

another way to express the inclusion in (9) is ∆µ(u; y, v) ≤ ε for every u ∈ domψ. Finally,
the relaxed ACG (R-ACG) algorithm presented later in this subsection will be shown to solve
Problem A when ψs is convex. Moreover, it solves a weaker version of Problem A involving ∆µ (see
Problem B later on) whenever ψs is not convex and as long as some key inequalities are satisfied
during its execution.

A technical issue in our analysis in this paper lies in the ability of refining the output of
Problem A to an approximate solution (yr, vr) of (7), i.e., one satisfying the inclusion in (8), in
which ‖vr‖ is nicely bounded. We now present a refinement procedure that addresses this issue.

Refinement Procedure

Input: a triple (M,ψs, ψn) satisfying (B1)–(B2) and a pair (y, v) ∈ domψn ×Z;
Output: a pair (yr, vr) satisfying the inclusion in (8);

1. set the quantities

yr = argmin
u∈Z

{
〈∇ψs(y)− v, u〉+ M

2 ‖u− y‖
2 + ψn(u)

}
, (11)

vr = v +M(y − yr) +∇ψs(yr)−∇ψs(y), (12)

and output (yr, vr).

The result below presents the key properties of the above procedure. For the sake of brevity,
we write (yr, vr) = RP (y, v) to indicate that the pair (yr, vr) is the output of the above procedure
with inputs (M,ψs, ψn) and (y, v).

Proposition 1. Let (M,ψs, ψn) satisfying assumptions (B1)–(B2) and a triple (y, v, ε) ∈ domψn×
Z ×R+ be given. Moreover, let (yr, vr) = RP (y, v), denote Lψs(·, ·) simply by L(·, ·) where Lψs(·, ·)
is as in (6), and let ∆µ be as in (10). Then, the following statements hold:

6



(a) vr ∈ ∇ψs(yr) + ∂ψn(yr);

(b) ∆µ(yr; y, v) ≥M‖yr − y‖2/2;

(c) if ∆µ(yr; y, v) ≤ ε and (y, v, ε) satisfies the inequality in (9), then

‖vr‖ ≤ θ
[
1 + M + L(y, yr)√

M

]
‖y − z0‖; (13)

(d) if (y, v, ε) solves Problem A, then ∆µ(u; y, v) ≤ ε for every u ∈ domψn, and, as a consequence,
bound (13) holds.

Proof. (a) Using the definition of vr and the optimality of yr, we have that

vr = v +M(y − yr) +∇ψs(yr)−∇ψs(y) ∈ ∇ψs(yr) + ∂ψn(yr).

(b) Let (y, v) ∈ domψn × Z be fixed, and define ψ̃s := ψs − 〈v, ·〉. Using Proposition 19 with
(g, h, L) = (ψ̃s, ψn,M) and (z, ẑ) = (y, yr), and the definition of ∆µ in (10), we have

M

2 ‖y − yr‖
2 ≤ (ψ̃s + ψn)(y)− (ψ̃s + ψn)(yr)

= ψ(y)− ψ(yr)− 〈v, y − yr〉 ≤ ∆µ(yr; y, v).

(c) Using the assumption that ∆µ(yr; y, v) ≤ ε, part (b), and the inequality in (9), we have that

‖y − yr‖ ≤

√
2∆µ(yr; y, v)

M
≤
√

2ε
M
≤ θ√

M
‖y − z0‖. (14)

Using the triangle inequality, the definition of L(·, ·), (14) and the inequality in (9) again, we
conclude that

‖vr‖ ≤ ‖v‖+ [M + L(y, yr)] · ‖y − yr‖ ≤ θ
[
1 + M + L(y, yr)√

M

]
‖y − z0‖.

(d) The fact that ∆µ(u; y, v) ≤ ε for every u ∈ domψn follows immediately from the inclusion in
(9) and the definition of ∆µ in (10). The fact that (13) holds now follows from part (c).

We make a few remarks about Proposition 1. First, it follows from (a) that (yr, vr) satisfies the
inclusion in (8). Second, it follows from (a) and (c) that if θ = 0, then (ε, vr) = (0, 0), and hence
yr is an exact stationary point of (7). In general, (13) implies that the residual ‖vr‖ is directly
proportional to ‖y − w‖, and hence, becomes smaller as this quantity approaches zero.

Inequality (13) plays an important technical role in the complexity analysis of the two prox-type
methods of Section 3. Sufficient conditions for its validity are provided in (c) and (d), with (c)
being the weaker one, in view of (d). When ψs is convex, it is shown that every iterate of the
R-ACG algorithm presented below always satisfies the inclusion in (9), and hence, verifying the the
validity of the sufficient condition in (c) amounts to simply checking whether the inequality in (9)
holds. When ψs is not convex, verification of the inclusion in (9), and hence the sufficient condition
in (d), is generally not possible, while the one in (c) is. This is a major advantage of the sufficient
condition in (c), which is exploited in this paper towards the development of adaptive prox-type
methods which attempt to approximately solve (7) when ψs is not convex.

For the sake of future reference, we now state the following problem for finding a triple (y, v, ε)
satisfying the sufficient condition in Proposition 1(c). Its statement relies on the refinement proce-
dure preceding Proposition 1.
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Problem B : Given the same inputs as in Problem A, find (y, v, ε) ∈ domψ×Z×R+ satisfying
the inequality in (9) and

∆µ(yr; y, v) ≤ ε, (15)

where ∆µ(·; ·, ·) is as in (10) and yr is the first component of the refined pair (yr, vr) = RP (y, v).

We now state the aforementioned R-ACG algorithm which solves Problem A when ψs is convex
and solves Problem B whenever ψs is not convex and two key inequalities are satisfied, one at every
iteration (i.e., (16)) and one at the end of its execution.

R-ACG Algorithm

Input: a quadruple (µ,M,ψs, ψn) satisfying (B1)–(B2) and a pair (θ, z0);
Output: a triple (y, v, ε) that solves Problem B or a failure status;

0. define ψ := ψs + ψn and set zc0 = z0, B0 = 0, Γ0 ≡ 0, and j = 1;

1. compute the iterates

ξj−1 = 1 + µBj−1
M − µ

, bj−1 =
ξj−1 +

√
ξ2
j−1 + 4ξj−1Bj−1

2 ,

Bj = Bj−1 + bj−1, z̃j−1 = Bj−1
Bj

zj−1 + bj−1
Bj

zcj−1,

zj = argmin
u∈Z

{
lψs(u; z̃j−1) + ψn(u) + M

2 ‖u− z̃j−1‖2
}
,

zcj = 1
1 + µBj

[
zcj−1 − bj−1(M − µ)(z̃j−1 − zj) + µ(Bj−1z

c
j−1 + bj−1zj)

]
;

2. compute the quantities

γ̃j = lψs(·; z̃j−1) + ψn + µ

2 ‖ · −z̃j−1‖2,

γj = γ̃j(zj) + (M − µ) 〈z̃j−1 − zj , · − zj〉+ µ

2 ‖ · −zj‖
2,

Γj = Bj−1
Bj

Γj−1 + bj−1
Bj

γj , rj =
zc0 − zcj
Bj

+ µ(zcj − zj),

ηj = max
{

0, ψ(zj)− Γj(zcj)−
〈
rj , zj − zcj

〉
+ µ

2 ‖zj − z
c
j‖2
}

;

3. if the inequality (
1

1 + µBj

)
‖Bjrj + zj − z0‖2 + 2Bjηj ≤ ‖zj − z0‖2 (16)

holds, then go to step 4; otherwise, stop with a failure status;

4. if the inequality

‖rj‖2 + 2ηj ≤ θ2‖zj − z0‖2, (17)

holds, then go to step 5; otherwise, go to step 1;
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5. set (y, v, ε) = (zj , rj , ηj) and compute (yr, vr) = RP (zj , rj); if the condition

∆µ(yr; y, v) ≤ ε,

holds then stop with a success status and output the triple (y, v, ε); otherwise, stop with a
failure status.

It is well-known (see, for example, [8, Proposition 2.3]) that the scalar Bj updated in step 1
satisfies

Bj ≥
1
M

max
{
j2

4 ,
(

1 +
√

µ

4M

)2(j−1)}
∀j ≥ 1. (18)

The next result presents the key properties about the R-ACG algorithm.

Proposition 2. The R-ACG algorithm has the following properties:

(a) it stops with either failure or success in

O
([

1 +
√
L

µ

]
log+

1 [LKθ(1 + µKθ)]
)

(19)

iterations, where Kθ := 1 +
√

2/θ;

(b) if it stops with success, then its output (y, v, ε) solves Problem B;

(c) if ψs is µ–strongly convex then it always stops with success and its output (y, v, ε) solves
Problem A.

Proof. (a) See Appendix B.
(b) This follows from the successful checks in step 4 and 5 of the algorithm.
(c) The fact that the algorithm never stops with failure follows from Proposition 20(c)–(d) in

Appendix B. The fact that the algorithm stops with success follows from the previous statement,
the successful checks in step 4 and 5 of the algorithm, and the fact that the algorithm stops in a
finite number of iterations in part (a).

3 Inexact Composite Gradient Methods

This section presents the ICG methods and the general problem that they solve. It contains three
subsections. The first one presents the problem of interest and gives a general outline of the ICG
methods, the second one presents the IA-ICG method, and the third one presents the DA-ICG
method. For the ease of presentation, the proofs in this section are deferred to Section 6.

3.1 Problem of Interest and Outline of the Methods

This subsection describes the problem that the ICG methods solve and outlines their structure.
Instead of considering problems having the spectral structure mentioned in Section 1, this

section considers a more general NCO problem where its variable u lies in a finite dimensional
inner product space Z (and, hence, can be either a vector and/or matrix) and presents both ICG
methods in this more general setting. Section 4 then presents a modification of the ACG subroutine
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used by both ICG methods that drastically improves their efficiency in the setting of the spectral
problem (1).

More specifically, this section considers the problem

min
u∈Z

[φ(u) := f1(u) + f2(u) + h(u)] (20)

where the functions f1, f2, and h are assumed to satisfy the following assumptions:
(A1) h ∈ Conv Z;

(A2) f1, f2 are continuously differentiable functions and there exists (m1,M1) ∈ R2 and (m2,M2) ∈
R2 such that, for i ∈ {1, 2}, we have

−mi

2 ‖u− y‖
2 ≤ fi(u)− `fi

(u; y) ≤ Mi

2 ‖u− y‖
2 ∀u, y ∈ dom h; (21)

(A3) for i ∈ {1, 2}, we have

‖∇fi(u)−∇fi(y)‖ ≤ Li‖u− y‖ ∀u, y ∈ dom h,

where Li := max{|mi|, |Mi|};

(A4) φ∗ := infu∈Z φ(u) > −∞.
Note that assumption (A2) implies that assumption (A3) holds when the interior of dom h is
nonempty. Under the above assumptions, the proposed ICG methods find an approximate solution
(ŷ, v̂) of (20) as in (8) with ψs = f1 + f2 and ψn = h, i.e.

v̂ ∈ ∇f1(ŷ) +∇f2(ŷ) + ∂h(ŷ), ‖v̂‖ ≤ ρ̂. (22)

We now outline the ICG methods. Given a starting point y0 ∈ domψn and a special stepsize
λ > 0, each method continually calls the R-ACG algorithm of Section 2 to find an approximate
solution of a prox-linear form of (20). More specifically, each R-ACG call is used to tentatively find
an approximate solution of

min
u∈Z

[
ψ(u) = λ [`f1(u; z0) + f2(u) + h(u)] + 1

2‖u− z0‖2
]
, (23)

for some reference point z0. For the IA-ICG method, the point z0 is y0 for the first R-ACG call
and is the last obtained approximate solution for the other R-ACG calls. For the DA-ICG method,
the point z0 is chosen in an accelerated manner.

From the output of the kth R-ACG call, a refined pair (ŷ, v̂) = (ŷk, v̂k) is generated which:
(i) always satisfies the inclusion of (22); and (ii) is such that mini≤k ‖v̂i‖ → 0 as k → ∞. More
specifically, this refined pair is generated by applying the refinement procedure of Section 2 and
adding some adjustments to the resulting output to conform with our goal of finding an approximate
solution as in (22). For the ease of future reference, we now state this specialized refinement
procedure. Before proceeding, we introduce the shorthand notation

M+
i := max {Mi, 0} , m+

i := max {mi, 0} , Li(x, y) := Lfi
(x, y), (24)

for i ∈ {1, 2}, to keep its presentation (and future results) concise.

Specialized Refinement Procedure

Input: a quadruple (M2, f1, f2, h) satisfying (A1)–(A2), a scalar λ > 0, and a triple (y, v, z0) ∈
domψn ×Z ×Z;
Output: a pair (ŷ, v̂) satisfying the inclusion of (22);

10



1. compute (ŷ, vr) = RP (y, v) using the refinement procedure in Section 2 with

M = λM+
2 + 1, ψs = λ [`f1(·; z0) + f2] + 1

2‖ · −z0‖2, ψn = λh; (25)

2. compute the residual
v̂ = 1

λ
(vr + z0 − y) +∇f1(ŷ)−∇f1(z0),

and output (ŷ, v̂).

The result below states some properties about the above procedure. For the sake of brevity, we
write (ŷ, v̂) = SRP (y, v, z0) to indicate that the pair (ŷ, v̂) is the output of the above procedure
with inputs (M2, f1, f2, h), λ, and (y, v, z0).

Lemma 3. Let (m1,M1), (m2,M2), and (f1, f2, h) satisfying assumptions (A1)–(A3) and a quadru-
ple (z0, y, v, ε) ∈ Z × domψn ×Z × R+ be given. Moreover, let (ŷ, v̂) = SRP (y, v, z0) and define

Cλ(x, y) :=
1 + λ

[
M+

2 + L1(x, y) + L2(x, y)
]

√
1 + λM+

2

, (26)

for every x, y ∈ Z. Then, the following statements hold:

(a) v̂ ∈ ∇f1(ŷ) +∇f2(ŷ) + ∂h(ŷ);

(b) if (y, v, ε) solves Problem B with (µ, ψs, ψn) as in (28), then

‖v̂‖ ≤
[
L1(y, w) + 2 + θCλ(y, ŷ)

λ

]
‖y − z0‖.

It is worth recalling from Section 1 that in the applications we consider, the cost of the R-ACG
call is small compared to SVD computation that is performed before solving each subproblem as
in (23). Hence, in the analysis that follows, we present complexity results related to the number of
subproblems solved rather than the total number of R-ACG iterations. We do note, however, that
the number of R-ACG iterations per subproblem is finite in view of Proposition 2(a).

3.2 Static and Dynamic IA-ICG Methods

This subsection presents the static and dynamic IA-ICG methods.
We first state the static IA-ICG method.

Static IA-ICG Method

Input: function triple (f1, f2, h) and scalar quadruple (m1,M1,m2,M2) ∈ R4 satisfying (A1)–(A4),
tolerance ρ̂ > 0, initial point y0 ∈ dom h, and scalar pair (λ, θ) ∈ R++ × (0, 1) satisfying

λM1 + θ2 ≤ 1
2; (27)

Output: a pair (ŷ, v̂) satisfying (22) or a failure status;

0. let ∆1(·; ·, ·) be as in (10) with µ = 1, and set k = 1;

11



1. use the R-ACG algorithm to tentatively solve Problem B associated with (23), i.e., with
inputs (µ,M,ψs, ψn) and (θ, z0) where the former is given by

µ = 1, M = λM+
2 + 1,

ψs = λ [`f1(·; z0) + f2] + 1
2‖ · −z0‖2, ψn = λh,

(28)

and z0 = yk−1; if the R-ACG stops with failure, then stop with a failure status; otherwise,
let (yk, vk, εk) denote its output and go to step 2;

2. if the inequality ∆1(yk−1; yk, vk) ≤ εk holds, then go to step 3; otherwise, stop with a failure
status;

3. set (ŷk, v̂k) = SRP (yk, vk, yk−1); if ‖v̂k‖ ≤ ρ̂ then stop with a success status and output
(ŷ, v̂) = (ŷk, v̂k); otherwise, update k ← k + 1 and go to step 1.

Note that the static IA-ICG method may fail without obtaining a pair satisfying (22). In
Theorem 4(c) below, we state that a sufficient condition for the method to stop successfully is that
f2 be convex. This property will be important when we present the dynamic IA-ICG method,
which: (i) repeatedly calls the static method; and (ii) incrementally transfers convexity from f1 to
f2 between each call until a successful termination is achieved.

We now make some additional remarks about the above method. First, it performs two kinds
of iterations, namely, ones that are indexed by k and ones that are performed by the R-ACG
algorithm. We refer to the former kind as outer iterations and the latter kind as inner iterations.
Second, in view of (27), ifM1 > 0 then 0 < λ < (1−2θ2)/(2M1) whereas ifM1 ≤ 0 then 0 < λ <∞.
Finally, the most expensive part of the method is the R-ACG call in step 1. In Section 4, we show
that this call can be replaced with a call to a spectral version of R-ACG that is dramatically more
efficient when the underlying problem has the spectral structure as in (1).

The next result summarizes some facts about the static IA-ICG method. Before proceeding,
we first define some useful quantities. For λ > 0 and u,w ∈ Z, define

˜̀
φ(u;w) := `f1(u;w) + f2(u) + h(u), Cλ := 1 + λ(M+

2 + L1 + L2)√
1 + λM+

2

. (29)

Theorem 4. The following statements hold about the static IA-ICG method:

(a) it stops in

O1

[√λL1 + 1 + θCλ√
λ

]2 [
φ(z0)− φ∗

ρ̂2

] (30)

outer iterations, where φ∗ is as in (A4);

(b) if it stops with success, then its output pair (ŷ, v̂) is a ρ̂–approximate solution of (20);

(c) if f2 is convex, then it always stops with success.

We now make three remarks about the above results. First, if θ = O(1/Cλ) then (30) is on the
order of

O1

([√
λL1 + 1√

λ

]2 [φ(z0)− φ∗
ρ̂2

])
. (31)
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Moreover, comparing the above complexity to the iteration complexity of the ECG method de-
scribed in Section 1, which is known (see, for example, [14]) to obtain an approximate solution of
(20) in

O1

([√
λ(L1 + L2) + 1√

λ

]2 [φ(z0)− φ∗
ρ̂2

])
(32)

iterations, we see that (31) is smaller than (32) in magnitude when L2 is large. Notice also that the
complexity in (31) corresponds to applying the ECG method to (1) where the composite function
is f2 + h instead of just h. Second, Theorem 4(b) shows that if the method stops with success,
regardless of the convexity of f2, then its output pair (ŷ, v̂) is always an approximate solution of
(20). Third, in view of Proposition 10, the quantities L1 and Cλ in all of the previous complexity
results can be replaced by their averaged counterparts in (48). As these averaged quantities only
depend on {(yi, ŷi)}ki=1, we can infer that the static IA-ICG method adapts to the local geometry
of its input functions.

We now state the dynamic IA-ICG method that resolves the issue of failure in the static IA-ICG
method.

Dynamic IA-ICG Method

Input: the same as the static IA-ICG method but with an additional parameter ξ0 > 0;
Output: a pair (ŷ, v̂) satisfying (22);

0. set ξ = ξ0, ` = 1, and

f1 = f1 −
ξ

2‖ · ‖
2, f2 = f2 + ξ

2‖ · ‖
2,

m1 = m1 + ξ, M1 = M1 − ξ, m2 = m2 − ξ, M2 = M2 + ξ;
(33)

1. call the static IA-ICG method with inputs (f1, f2, h), (m1,M1,m2,M2), ρ̂, y0, and (λ, θ);

2. if the static IA-ICG call stops with a failure status, then set ξ = 2ξ, update the quantities in
(33) with the new value of ξ, increment ` = ` + 1, and go to step 1; otherwise, let (ŷ, v̂) be
the output pair returned by the static IA-ICG call, stop, and output this pair.

Some remarks about the above method are in order. First, in view of (27) and the fact thatM1
is monotonically decreasing, the parameter λ does not need to be changed for each IA-ICG call.
Second, in view of assumption (A2) and Theorem 4(c), the IA-ICG call in step 1 always terminates
with success whenever m2 ≤ 0. As a consequence, the total number of IA-ICG calls is at most
dlog(2m+

2 /ξ0)e. Third, in view of the second remark and Theorem 4(b), the method always obtains
a ρ̂–approximate solution of (20) in a finite number of IA-ICG outer iterations. Finally, in view of
second remark again, the total number of IA-ICG outer iterations is as in Theorem 4(a) but with:
(i) an additional multiplicative factor of dlog(2m+

2 /ξ0)e; and (ii) the constants m1 and M2 replaced
with (m1 +2m+

2 ) and (M2 +2m+
2 ), respectively. It is worth mentioning that a more refined analysis,

such as the one in [10], can be applied in order to remove the factor of dlog(2m+
2 /ξ0)e from the

previously mentioned complexity.

3.3 Static and Dynamic DA-ICG Methods

This subsection presents the static DA-ICG method, but omits the statement of its dynamic variant
for the sake of brevity. We do argue, however, that the dynamic variant can be stated in the same
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way as the dynamic IA-ICG method of Subsection 6.1 but with the call to the static IA-ICG method
replaced with a call to the static DA-ICG method of this subsection.

We start by stating some additional assumptions. It is assumed that:

(i) the set dom h is closed;

(ii) there exists a bounded set Ω ⊇ dom h for which a projection oracle exists.

We now state the static DA-ICG method.

Static DA-ICG Method

Input: function triple (f1, f2, h) and scalar quadruple (m1,M1,m2,M2) ∈ R4 satisfying (A1)–(A4),
tolerance ρ̂ > 0, initial point y0 ∈ dom h, and scalar pair (λ, θ) ∈ R++ × (0, 1) satisfying

λM1 + θ2 ≤ 1
2; (34)

Output: a pair (ŷ, v̂) satisfying (22) or a failure status;

0. let ∆1(·; ·, ·) be as in (10) with µ = 1, and set A0 = 0, x0 = y0, and k = 1;

1. compute the quantities

ak−1 = 1 +
√

1 + 4Ak−1
2 , Ak = Ak−1 + ak−1,

x̃k−1 = Ak−1yk−1 + ak−1xk−1
Ak

;
(35)

2. use the R-ACG algorithm to tentatively solve Problem B associated with (23), i.e., with
inputs (µ,M,ψs, ψn) and (θ, z0) where the former is as in (28) and z0 = x̃k−1; if the R-ACG
stops with success, then let (yak , vk, εk) denote its output and go to step 3; otherwise, stop
with a failure status;

3. if the inequality ∆1(yk−1; yak , vk) ≤ εk holds, then go to step 4; otherwise, stop with a failure
status;

4. set (ŷk, v̂k) = SRP (yak , vk, x̃k−1) where SRP (·, ·, ·) is described in Subsection 3.1; if ‖v̂k‖ ≤ ρ̂
then stop with a success status and output (ŷ, v̂) = (ŷk, v̂k); otherwise, compute

xk = argmin
u∈Ω

1
2 ‖u− [xk−1 − ak−1 (vk + x̃k−1 − yak)]‖2 ,

yk = argmin
u∈{yk−1,y

a
k}

[f1(u) + f2(u) + h(u)] ,
(36)

update k ← k + 1, and go to step 1.

Note that, similar to the static IA-ICG method, the static DA-ICG method may fail without
obtaining a pair satisfying (22). Proposition 5(c) shows that a sufficient condition for the method
to stop successfully is that f2 be convex. Using arguments similar to the ones employed to derive
the dynamic IA-ICG method, a dynamic version of DA-ICG method can also be developed that
repeatedly invokes the static DA-ICG in place of the static IA-ICG.
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We now make some additional remarks about the above method. First, it performs two kinds
of iterations, namely, ones that are indexed by k and ones that are performed by the R-ACG
algorithm. We refer to the former kind as outer iterations and the latter kind as inner iterations.
Second, in view of the update for yk in (36), the collection of function values {φ(yi)}ki=0 is non-
increasing. Third, in view of (34), if M1 > 0 then 0 < λ < (1 − 2θ2)/(2M1) whereas if M1 ≤ 0
then 0 < λ < ∞. Finally, the most expensive part of the method is the R-ACG call in step 2. In
Section 4, we show that this call can be replaced with a call to a spectral version of R-ACG that
is dramatically more efficient when the underlying problem has the spectral structure as in (1).

It is worth mentioning that the outer iteration scheme of the DA-ICG method is a monotone
and inexact generalization of the A-ECG method in [6]. More specifically, this A-ECG method is
a version of the DA-ICG method where: (i) θ = 0; (ii) the R-ACG algorithm in step 2 is replaced
by an exact solver of (23); (iii) the update of xk in (36) is replaced by an update involving the
prox evaluation of the function ak−1h; and (iv) both f1 and f2 are linearized instead of just f2
in the DA-ICG method. Hence, the DA-ICG method can be significantly more efficient when its
R-ACG call is more efficient than an exact solver of (23) and/or when the projection onto Ω is
more efficient than evaluating the prox of ak−1h.

The next result summarizes some facts about the DA-ICG method. Before proceeding, we
introduce the useful constants

Dh := sup
u,z∈domh

‖u− z‖, DΩ := sup
u,z∈Ω

‖u− z‖, ∆0
φ := φ(y0)− φ∗,

d0 := inf
u∗∈Z
{‖y0 − u∗‖ : φ(u∗) = φ∗}, Eλ,θ :=

√
λL1 + 1 + θCλ√

λ
.

(37)

Theorem 5. The following statements hold about the static DA-ICG method:

(a) it stops in

O1

(
E2
λ,θ[m

+
1 D

2
h + ∆0

φ]
ρ̂2 + Eλ,θ[m+

1 + 1/λ]1/2DΩ
ρ̂

)
(38)

outer iterations;

(b) if it stops with success, then its output pair (ŷ, v̂) is a ρ̂–approximate solution of (20);

(c) if f2 is convex, then it always stops with success in

O1

E2
λ,θm

+
1 D

2
h

ρ̂2 + Eλ,θ[m+
1 ]1/2DΩ
ρ̂

+
E

2/3
λ,θ d

2/3
0 λ−1/3

ρ̂2/3

 (39)

outer iterations.

We nowmake three remarks about the above results. First, in the “best” scenario of max{m1,m2} ≤
0, i.e., f1 and f2 are convex, we have that (39) reduces to

O1

([
L1 + 1

λ

]2/3
[
d

2/3
0
ρ̂2/3

])
,

which has a smaller dependence on ρ̂ when compared to (31). In the “worst” scenario of min{m1,m2} >
0, if we take θ = O(1/Cλ), then (38) reduces to

O1

([√
λL1 + 1√

λ

]2
[
m+

1 D
2
h + φ(y0)− φ∗

ρ̂2

])
,
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which has the same dependence on ρ̂ as in (31). Second, part (c) shows that if the method stops
with an output pair (ŷ, v̂), regardless of the convexity of f2, then that pair is always an approximate
solution of (20). Third, in view of Proposition 18, the quantities L1 and Cλ in all of the previous
complexity results can be replaced by their averaged counterparts in (63). As these averaged
quantities only depend on {(yai , ŷi, x̃i−1)}ki=1, we can infer that the static DA-ICG method, like the
static IA-ICG method of the previous subsection, also adapts to the local geometry of its input
functions.

4 Exploiting the Spectral Decomposition

Recall that at every outer iteration of the ICG methods in Section 3, a call to the R-ACG algorithm
is made to tentatively solve Problem B (see Subsection 3.1) associated with (23). Our goal in this
section is to present a more efficient version of R-ACG (based on the idea outlined in Section 1)
when the underlying problem has the spectral structure as in (1).

The content of this section is divided into two subsections. The first one presents the aforemen-
tioned algorithm, whereas the second one proves its key properties.

4.1 Spectral R-ACG Algorithm

This subsection presents the R-ACG algorithm mentioned above. Throughout our presentation,
we let Z0 represent the starting point given to the R-ACG algorithm by the two ICG methods.

We first state the aforementioned efficient algorithm.

Spectral R-ACG Algorithm

Input: a quadruple (M2, f1, f
V
2 , h

V) satisfying (A1)–(A3) with (f2, h) = (fV2 , hV) and a triple
(λ, θ, Z0);
Output: a triple (Y, V, ε) that solves Problem B associated with (23) or a failure status;

1. compute
Zλ0 := Z0 − λ∇f1(Z0), (40)

and a pair (P,Q) ∈ Um × Un satisfying Zλ0 = P [dg σ(Zλ0 )]Q∗;

2. use the R-ACG algorithm to tentatively solve Problem B associated with (4), i.e., with inputs
(µ,M,ψVs , ψ

V
n ) and (θ, z0) where the former is given by

µ = 1, M := λM+
2 + 1,

ψVs := λfV2 − 〈σ(Zλ0 ), ·〉+ 1
2‖ · ‖

2, ψVn := λhV ,
(41)

and z0 = Dg(P ∗Z0Q); if the R-ACG stops with success, then let (y, v, ε) denote its output
and go to step 3; otherwise, stop with a failure status;

3. set Y = P (dg y)Q∗ and V = P (dg v)Q∗, and output the triple (Y, V, ε).

We now make three remarks about the above algorithm. First, the matrices P and Q in step 1
can be obtained by computing an SVD of Zλ0 . Second, in view of Proposition 20(a) and the fact
that (µ,M) in (41) and (28) are the same, the iteration complexity is the same as the vanilla
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R-ACG algorithm. Finally, because the functions ψVs and ψVn in (41) have vector inputs over Rr,
the steps in the spectral R-ACG algorithm are significantly less costly than the ones in the R-ACG
algorithm, which use functions with matrix inputs over Rm×n.

The following result, whose proof is in the next subsection, presents the key properties of this
algorithm.

Proposition 6. The spectral R-ACG algorithm has the following properties:

(a) if it stops with success, then its output triple (Y, V, ε) solves Problem B associated with (23);

(b) if f2 is convex, then it always stops with success and its output (Y, V, ε) solves Problem A
associated with (23).

4.2 Proof of Proposition 6

For the sake of brevity, let (ψs, ψn) be as in (28) and, using P and Q from the spectral R-ACG
algorithm, define for every (u, U) ∈ Rr × Rm×n, the functions

M(u) := P (dg u)Q∗, V(U) := Dg(P ∗UQ),
ψ(U) := ψs(U) + ψn(U), ψV(u) := ψVs (u) + ψVn (u).

The first result relates (ψs, ψn) to (ψVs , ψVn ).

Lemma 7. Let (y, v, ε) and (Y, V ) be as in the spectral R-ACG algorithm. Then, the following
properties hold:

(a) we have
ψVn (y) = ψn(Y), ψVs (y) +Bλ

0 = ψs(Y),

where Bλ
0 := λf1(Z0)− λ〈∇f1(Z0), Z0〉+ ‖Z0‖2F /2;

(b) we have

V ∈ ∂ε
(
ψ − 1

2‖ · −Y‖
2
F

)
(Y) ⇐⇒ v ∈ ∂ε

(
ψV − 1

2‖ · −y‖
2
)

(y). (42)

Proof. (a) The relationship between ψVn and ψn is immediate. On the other hand, using the
definitions of Y, f2, and Bλ

0 , we have

ψVs (y) +Bλ
0 = λf2(Y)− 〈Zλ0 , Y〉+ 1

2‖Y‖
2
F +Bλ

0

= λ [f2(Y) + f1(Z0) + 〈∇f1(Z0), Y − Z0〉] + 1
2‖Y − Z0‖2F = ψs(Y).

(b) Let S0 = V + Zλ0 − Y and s0 = v + σ(Zλ0 ) − y, and note that S0 = M(s0). Moreover,
in view of part (a) and the definition of ψ, observe that the left inclusion in (42) is equivalent to
S0 ∈ ∂ε(λ[f2 + h])(Y). Using this observation, the fact that S0 and Y have a simultaneous SVD,
and Theorem 23 with (S, s) = (S0, s0), Ψ = λ[f2 + h], and ΨV = λ[fV2 + hV ], we have that the left
inclusion in (42) is also equivalent to s0 ∈ ∂ε(λ[fV2 + hV ])(y). The conclusion now follows from the
observation that the latter inclusion is equivalent to the the right inclusion in (42).

We are now ready to give the proof of Proposition 6.
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Proof of Proposition 6. (a) Since (y, v) = (V(Y),V(V )), notice that the successful termination of
the algorithm implies that the inequality in (9) and (15) hold. Using this remark, the fact that
‖V ‖2F = ‖v‖2, and the bound

θ2‖zj − z0‖2 = θ2
(
‖zj‖2 − 2〈zj ,V(z0)〉+ ‖Z0‖2F

)
+ θ2(‖V(z0)‖2 − ‖Z0‖2F )

≤ θ2
(
‖Zj‖2F − 2〈Zj , Z0〉+ ‖Z0‖2F

)
= θ2‖Zj − Z0‖2F , (43)

we then have that the inequality in (9) also holds with (y, v) = (Y, V ).
To show the corresponding inequality for (15), let (Yr, Vr) = RP (Y, V ) using the refinement

procedure in Section 2. Moreover, let (yr, vr) = RP (y, v) and ∆V1 (·; ·, ·) be as in (10), where
(ψs, ψn) = (ψVs , ψVn ). It now follows from (11), (12), Lemma 22 with Ψ = ψn and S = V + MY −
∇ψs(Y), and Lemma 21(b) that Yr, Y, V , and Vr have a simultaneous SVD. As a consequence of
this, the first remark, and Lemma 7(a), we have that

ε ≥ ∆V1 (yr; y, v) = ψV(y)− ψV(yr)− 〈v, y − yr〉+ 1
2‖yr − y‖

2

= ψ(Y)− ψ(Yr)− 〈V, Y − Yr〉+ 1
2‖Yr − Y‖

2 = ∆1(Yr;Y, V ),

and hence that (15) holds with (y, v) = (Y, V ).
(b) This follows from part (a), Proposition 2(c), and Lemma 7(b).

5 Computational Results

This section presents computational results that highlight the performance of the dynamic IA-
ICG and dynamic DA-ICG methods, and it contains three subsections. The first one describes
the implementation details, the second presents computational results related to a set of spectral
composite problem, while the third gives some general comments about the computational results.

5.1 Implementation Details

This subsection precisely describes the implementation of the methods and experiments of this
section. Moreover, all of the code needed to replicate these experiments is readily available online1.

We first describe some practical modifications to the dynamic IA-ICG method. Given λ > 0
and (zj , z0) ∈ Z2, denote

∆λ
φ = 4λ

[
φ(z0)− ˜̀φ(zj ; z0)− M1

2 ‖zj − z0‖2
]

where ˜̀φ is as in (29). Motivated by the first inequality in the descent condition (46), we relax (17)
in the R-ACG call to the three separate conditions: ‖zj − z0‖2 ≤ ∆λ

φ, ‖rj‖2 ≤ ∆λ
φ, and 2ηj ≤ ∆λ

φ.
We now describe some modifications and parameter choices that are common to both methods.

First, both ICG methods use the spectral R-ACG algorithm of Subsection 4.1 in place of the R-ACG
algorithm of Section 2. Moreover, this R-ACG variant uses a line search subroutine for estimating
the upper curvature M that is used during its execution. Second, when each of the dynamic ICG
methods invokes their static counterparts, the parameters A0 and y0 are set to be the last obtained
parameters of the previous invocation or the original parameters if it is the first invocation, i.e., we

1See https://github.com/wwkong/nc_opt/tree/master/tests/papers/icg.

18

https://github.com/wwkong/nc_opt/tree/master/tests/papers/icg


implement a warm–start strategy. Third, we adaptively update λ at each outer iteration as follows:
given the old value of λ = λold at the kth outer iteration, the new value of λ = λnew at the (k+ 1)th

iteration is given by

λnew =


λold, rk ∈ [0.5, 2.0] ,
λold ·

√
0.5, rk < 0.5,

λold ·
√

2, rk > 2.0,
rk =

[
λ(M+

2 + 2m+
2 ) + 1

]
‖yk − ŷk‖

‖v̂k −
[
λ(M+

2 + 2m+
2 ) + 1

]
(yk − ŷk)‖

.

Fourth, we take µ = 1/2 rather than µ = 1 for each of R-ACG calls in order to reduce the
possibility of a failure from the R-ACG algorithm. Fifth, in view of (43), we relax condition (17)
in the vector-based R-ACG call of Subsection 4.1 to

‖rj‖2 + 2ηj ≤ θ2‖zj − z0‖2 + τ,

where τ := θ2(‖Z0‖2F−‖z0‖2) ≥ 0. Finally, both ICG methods choose the common hyperparameters
(ξ0, λ, θ) = (M1, 5/M1, 1/2) at initialization.

We now describe the five other benchmark methods considered. Throughout their descriptions,
we let m = m1 +m2, M = M1 +M2, and L = max{m,M}. The first method is Nesterov’s efficient
ECG method of [16] with (λ, γu, γd) = (100/L, 2, 2). The second method is the accelerated inexact
proximal point (AIPP) method of [10] with (λ, θ, τ) = (1/m, 4, 10[λM + 1]) and the R-AIPPv2
stepsize scheme. The third method is a variant of the A-ECG method of [6, Algorithm 2], which
we abbreviate as AG. In particular, this variant chooses its parameters as in [6, Corollary 2] with
LΨ replaced by M , i.e., βk = 1/(2M) for every k (implying a more aggressive stepsize policy). It is
worth mentioning that we tested the more conservative AG variant with βk = 1/(2LΨ) and observed
that it performed substantially less efficient than the above aggressive variant. The fourth method
is a special implementation of the adaptive A-ECG method in [7] with (γ1, γ2, γ3) = (0.4, 0.4, 1.0)
and (δ, σ) = (10−2, 10−10), which we abbreviate as UP. More specifically, we consider the UPFAG-
fullBB method described in [7, Section 4], which uses a Barzilai-Borwein type stepsize selection
strategy. The last is the A-ECG method of [13], named NC-FISTA, with (ξ, λ) = (1.05m, 0.99/M),
which we abbreviate as NCF.

Finally, we state some additional details about the numerical experiments. First, the problems
considered are of the form in (1) and satisfy assumptions (A1)–(A4) with f2 = fV2 ◦σ and h = hV ◦σ.
Second, given a tolerance ρ̂ > 0 and an initial point Y0 ∈ dom h, every method in this section seeks
a pair (Ŷ, V̂ ) ∈ dom h× Rm×n satisfying

V̂ ∈ ∇f1(Ŷ) +∇(fV2 ◦ σ)(Ŷ) + ∂(hV ◦ σ)(Ŷ), ‖V̂ ‖
‖∇f1(Y0) + (fV2 ◦ σ)(Y0)‖+ 1

≤ ρ̂,

and stops after 1000 seconds if such a point cannot be found. Third, to be concise, we abbreviate
the IA-ICG and DA-ICG methods as IA and DA, respectively. Finally, all described algorithms
are implemented in MATLAB 2020a and are run on Linux 64-bit machines that contain at least 8
GB of memory.

5.2 Spectral Composite Problems

This subsection presents computational results of a set of spectral composite optimization problems
and contains two sub-subsections. The first one examines a class of nonconvex matrix completion
problems, while the second one examines a class of blockwise matrix completion problems.
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Name ` n % nonzero mini,j Aij maxi,j Aij

Anime2 506 9437 10.50% 1 10
FilmTrust3 1508 2071 1.14% 0.5 8

Table 1: Description of the MC data matrices A ∈ Rm×n.

5.2.1 Matrix completion

Given a quadruple (α, β, µ, θ) ∈ R4
++, a data matrix A ∈ R`×n, and indices Ω, this subsection

considers the following constrained matrix completion (MC) problem:

min
U∈Rm×n

1
2‖PΩ(U −A)‖2F + κµ ◦ σ(U) + τα ◦ σ(U)

s.t. ‖U‖2F ≤
√
`n ·max

i,j
|Aij |,

where PΩ is the linear operator that zeros out any entry that is not in Ω and

κµ(z) = µβ

θ

n∑
i=1

log
(

1 + |zi|
θ

)
, τα(z) = αβ

[
1− exp

(
−‖z‖

2
2

2θ

)]

for every z ∈ Rn. Here, the function κµ + τα is a nonconvex generalization of the convex elastic net
regularizer (see, for example, [18]), and it is well-known (see, for example, [21]) that the function
κµ − µ‖ · ‖∗ is concave, differentiable, and has a (2βµ/θ2)-Lipschitz continuous gradient.

We now describe the different data matrices that are considered. Each matrix A ∈ R`×n is
obtained from a different collaborative filtering system where each row represents a unique user,
each column represents a unique item, and each entry represents a particular rating. Table 1 lists
the names of each data set, where the data originates from (in the footnotes), and some basic
statistics about the matrices.

We now describe the experiment parameters considered. First the starting point Z0 is randomly
generated from a shifted binomial distribution that closely follows the data matrix A. More specif-
ically, the entries of Z0 are distributed according to a Binomial(a, µ/a)−A distribution, where µ
is the sample average of the nonzero entries in A, the integer a is the ceiling of the range of ratings
in A, and A is the minimum rating in A. Second, the decomposition of the objective function is as
follows

f1 = 1
2‖PΩ(· −A)‖2F , fV2 = µ

[
κµ(·)− β

θ
‖ · ‖1

]
+ τα(·), hV = µβ

θ
‖ · ‖1 + δF (·), (44)

where F = {U ∈ Rm×n : ‖U‖F ≤
√
`n ·maxi,j |Aij |} is the set of feasible solutions. Third, in view

of the previous decomposition, the curvature parameters are set to be

m1 = 0, M1 = 1, m2 = 2βµ
θ2 + 2αβ

θ
exp

(−3θ
2

)
, M2 = αβ

θ
, (45)

where it can be shown that the smallest and largest eigenvalues of ∇2τα(z) are bounded below
and above by −2αβ exp(−3θ/2)/θ and αβ/θ, respectively, for every z ∈ Rn. Finally, each problem
instance uses a specific data matrix A from Table 1, the hyperparameters (α, β, µ) = (10, 20, 2) and

2See the subset of the ratings from https://www.kaggle.com/CooperUnion/anime-recommendations-database
where each user has rated at least 720 items.

3See the ratings in the file “ratings.txt” under the FilmTrust section in https://www.librec.net/datasets.html.
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ρ̂ = 10−6, different values of the parameter θ, and Ω to be the index set of nonzero entries in the
chosen matrix A.

We now present the results. Figure 1 presents two subplots for the results of the Anime dataset
under a value of θ = 10−1. The first subplot contains the log objective value against runtime, while
the second one contains the log of the minimal subgradients, i.e. mini≤k ‖V̂i‖, against runtime.
Tables 2 to 3 present the minimal subgradient size obtained within the time limit of 1000. Moreover,
each row of these tables corresponds to a different choice of θ and the bolded numbers highlight
which algorithm performed the best in terms of the size obtained in a run.

Figure 1: Function values and minimum subgradients for the Anime dataset with θ = 10−1.

Parameters Time Minimum Subgradient Size (mini≤k ‖V̂i‖)
(θ,m,M)T t ECG AIPP AG UP NCF IA DA[

1
169
201

] 100 1088.6 1421.0 1568.9 1599.4 1488.8 13.0 78.5
200 1088.6 221.9 1510.2 132.6 1362.4 11.6 39.2
400 1088.6 55.6 1284.6 7.5 1147.9 11.6 11.1
800 1088.6 7.7 716.7 7.5 862.7 11.6 11.1[

0.1
11443
2001

] 100 1542.0 1595.8 1593.8 - 1595.0 189.7 1345.1
200 1489.9 1595.0 1591.5 1595.2 1594.2 23.1 378.1
400 1391.0 1587.8 1584.3 1595.1 1592.3 13.0 60.6
800 1276.3 990.5 1557.2 1594.3 1589.2 13.0 13.0[

0.01
839400
20001

] 100 1594.6 1595.9 1595.6 1595.8 1595.9 162.9 452.0
200 1592.8 1595.6 1595.0 1595.8 1595.8 33.5 68.0
400 1589.8 1569.5 1592.2 1595.8 1595.8 15.3 14.7
800 1583.8 861.8 1582.3 1595.7 1595.7 15.3 14.1

Table 2: Minimum subgradient sizes for the Anime dataset. Times are in seconds and “-” indicates
a run that did not generate a subgradient within the given time limit.

5.2.2 Blockwise matrix completion

Given a quadruple (α, β, µ, θ) ∈ R4
++, a block decomposable data matrix A ∈ R`×n with blocks

{Ai}ki=1 ⊆ Rp×q, and indices Ω, this subsection considers the following constrained blockwise matrix
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Parameters Time Minimum Subgradient Size (mini≤k ‖V̂i‖)
(θ,m,M)T t ECG AIPP AG UP NCF IA DA[

1
169
201

] 100 127.1 328.6 328.5 - 326.2 77.7 342.4
200 106.7 326.2 326.8 330.0 319.4 60.7 203.1
400 106.7 294.6 319.2 330.0 305.9 60.7 186.4
800 106.7 107.4 291.0 251.9 280.5 60.7 186.4[

0.1
11443
2001

] 100 309.0 330.0 329.6 329.9 329.9 71.0 242.3
200 287.0 326.9 327.8 329.9 329.5 71.0 235.4
400 248.0 188.7 321.9 329.8 328.8 71.0 202.7
800 186.9 188.7 301.8 329.4 327.4 71.0 202.7[

0.01
839400
20001

] 100 330.1 330.2 330.2 - 330.2 91.8 263.9
200 330.0 330.2 330.2 330.2 330.2 91.8 262.1
400 329.7 330.2 330.1 330.2 330.2 91.8 262.1
800 329.2 328.7 329.7 330.2 330.2 91.8 262.1

Table 3: Minimum subgradient sizes for the FilmTrust dataset. Times are in seconds and “-”
indicates a run that did not generate a subgradient within the given time limit.

completion (BMC) problem:

min
U∈Rm×n

1
2‖PΩ(U −A)‖2F +

k∑
i=1

[κµ ◦ σ(Ui) + τα ◦ σ(Ui)]

s.t. ‖U‖2F ≤
√
`n ·max

i,j
|Aij |,

where PΩ, κµ, and τα are as in Subsection 5.2.1 and Ui ∈ Rp×q is the ith block of U with the same
indices as Ai with respect to A.

We now describe the two classes of data matrices that are considered. Every data matrix is a
5-by-5 block matrix consisting of 50-by-100 sized submatrices. Every submatrix contains only 25%
nonzero entries and each data matrix generates its submatrix entries from different probability
distributions. More specifically, for a sampled probability p ∼ Uniform[0, 1] specific to a fixed
submatrix, one class uses a Binomial(n, p) distribution with n = 10, while the other uses a
TruncatedNormal(µ, σ) distribution with µ = 10p, σ2 = 10p(1 − p), and upper and lower
bounds 0 and 10, respectively.

We now describe the experiment parameters considered. First, the the decomposition of the
objective function and the quantities Z0, (m1,M1), (m2,M2), ρ̂, and Ω are the same as in Sub-
section 5.2.1. Second, we fix (α, β, µ) = (10, 20, 2) and vary (θ,A) across the different problem
instances.

We now present the results. Figure 2 contains the plots of the log objective function value
against the runtime for the binomial data set, listed in increasing order of M2. The corresponding
plots for the truncated normal data set are similar to the binomial plots so we omit them for the
sake of brevity. Tables 4 and 5 present the minimal subgradient size obtained within the time limit
of 1000. Moreover, each row of these tables corresponds to a different choice of θ and the bolded
numbers highlight which algorithm performed the best in terms of the size obtained in a run.

5.3 General Comments

This subsection makes two comments about the results obtained in the previous subsection. First,
within the alloted time (i.e., 1000 seconds), the DA-ICG and IA-ICG methods obtained approximate
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Figure 2: Function values and minimum subgradients for the truncated normal dataset with θ =
10−1.

solutions with small primal residual ‖V̂k‖ much faster than the other first-order methods. More
specifically, the former methods were able to obtain higher quality solutions much sooner than the
latter ones, i.e, within the first 100 seconds. Second, the larger the ratio m/M is, the more efficient
the ICG methods are compared to the other benchmarked methods.

6 Static ICG Iteration Complexities

This section establishes the iteration complexities for each of the static ICG methods in Section 3.

6.1 Static IA-ICG Iteration Complexity

This subsection establishes the key properties of the static IA-ICG method.

Lemma 8. Let {(yi, ŷi, v̂i)}ki=1 be the collection of iterates generated by the static IA-ICG method.
For every i ≥ 1, we have

1
4λ‖yi−1 − yi‖2 ≤ φ(yi−1)− ˜̀φ(yi; yi−1)− M1

2 ‖yi − yi−1‖2 ≤ φ(yi−1)− φ(yi), (46)

where ˜̀φ is as in (29).

Proof. Let i ≥ 1 be fixed and let (yi, vi, εi) be the point output by the ith successful call to the
R-ACG algorithm. Moreover, let ∆1(·; ·, ·) be as in (10) with (ψs, ψn) given by (28). Using the
definition of ˜̀φ, step 2 of the method, and fact that (ya, v, ε) = (yi, vi, εi) solves Problem B in
Section 2 with (µ, ψs, ψn) as in (28), we have that

εi ≥ ∆1(yi−1; yi, vi) = λ˜̀φ(yi; yi−1)− λφ(yi−1)− 〈vi, yi − yi−1〉+ ‖yi − yi−1‖2.

Rearranging the above inequality and using assumption (A2), (27), and the fact that 〈a, b〉 ≥
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Parameters Time Minimum Subgradient Size (mini≤k ‖V̂i‖)
(θ,m,M)T t ECG AIPP AG UP NCF IA DA[

1
169
201

] 100 392.4 500.3 501.2 506.0 482.5 33.9 75.5
200 392.4 478.4 492.3 506.0 465.0 33.9 43.2
400 392.4 182.2 455.9 57.1 407.0 33.9 43.2
800 392.4 36.7 320.6 57.1 284.3 33.9 43.2[

0.1
11443
2001

] 100 489.1 505.9 505.7 - 505.8 43.4 416.0
200 476.9 505.6 505.3 505.5 505.5 43.4 76.9
400 449.5 503.4 503.1 505.5 505.0 43.4 53.8
800 399.4 240.8 496.2 505.3 503.9 43.4 53.8[

0.01
839400
20001

] 100 505.6 505.9 505.8 505.9 505.9 48.6 137.5
200 505.1 505.9 505.7 505.9 505.9 48.6 58.6
400 504.1 498.1 504.9 505.9 505.9 48.6 58.6
800 502.2 176.9 502.1 505.9 505.9 48.6 58.6

Table 4: Minimum subgradient sizes for the binomial dataset. Times are in seconds and “-” indicates
a run that did not generate a subgradient within the given time limit.

−‖a‖2/2− ‖b‖2/2 for every a, b ∈ Z yields

λφ(yi−1)− λ˜̀φ(yi; yi−1) ≥ 〈vi, yi−1 − yi〉 − εi + ‖yi − yi−1‖2

= 1
2‖yi − yi−1‖2 −

1
2
(
‖vi‖2 + 2εi

)
≥
(

1− θ2

2

)
‖yi − yi−1‖2

= λM1
2 ‖yi − yi−1‖2 +

(
1− λM1 − θ2

2

)
‖yi − yi−1‖2

= λM1
2 ‖yi − yi−1‖2 + 1

4‖yi − yi−1‖2. (47)

Rearranging terms yields the first inequality of (46). The second inequality of (46) follows from
the first inequality, the fact that ˜̀φ(yi; yi−1) + M1‖yi − yi−1‖2/2 ≥ φ(yi) from assumption (A2),
and the definition of ˜̀φ.

The next results establish the rate at which the residual ‖v̂i‖ tends to 0.

Lemma 9. Let p > 1 be given. Then, for every a, b ∈ Rk, we have

min
1≤i≤k

{|aibi|} ≤ k−p ‖a‖1 ‖b‖1/(p−1) .

Proof. Let p > 1 and a, b ∈ Rk be fixed and let q ≥ 1 be such that p−1 + q−1 = 1. Using the fact
that 〈x, y〉 ≤ ‖x‖p‖y‖q for every x, y ∈ Rk, and denoting ã and b̃ to be vectors with entries |ai|1/p
and |bi|1/p, respectively, we have that

k min
1≤i≤k

{|aibi|}1/p ≤
k∑
i=1
|aibi|1/p

≤ ‖ã‖p‖b̃‖q = ‖a‖1/p1

(
k∑
i=1
|bi|q/p

)1/q

=
(
‖a‖1‖b‖q/p

)1/p
.
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Parameters Time Minimum Subgradient Size (mini≤k ‖V̂i‖)
(θ,m,M)T t ECG AIPP AG UP NCF IA DA[ 1

169
201

] 100 - 564.3 562.7 - 552.2 39.1 362.3
200 433.5 551.8 554.1 566.6 536.2 30.0 80.3
400 433.5 351.5 526.6 566.6 501.7 30.0 40.8
800 433.5 35.6 433.7 55.8 435.7 30.0 40.8[ 0.1

11443
2001

] 100 533.8 566.4 566.2 - 566.2 41.0 465.0
200 507.4 566.1 565.7 566.0 566.0 41.0 81.4
400 478.2 563.6 561.8 566.0 565.6 41.0 50.0
800 417.6 159.0 549.9 565.8 564.4 41.0 50.0[ 0.01

839400
20001

] 100 565.5 566.4 566.2 566.4 566.4 45.8 54.3
200 564.6 563.9 565.5 566.4 566.4 45.8 54.3
400 562.7 186.1 563.1 566.3 566.4 45.8 54.3
800 559.1 143.6 555.6 566.3 566.3 45.8 54.3

Table 5: Minimum subgradient sizes for the truncated normal dataset. Times are in seconds and
“-” indicates a run that did not generate a subgradient within the given time limit.

Dividing by k, taking the pth power on both sides, and using the fact that p/q = p− 1, yields

min
1≤i≤k

{|aibi|} ≤ k−p‖a‖1‖b‖q/p = k−p‖a‖1‖b‖1/(p−1).

Proposition 10. Let {(yi, ŷi, v̂i)}ki=1 be as in Lemma 8 and define the quantities

Lavg
1,k := 1

k

k∑
i=1

L1(yi, yi−1), Cavg
λ,k := 1

k

k∑
i=1

Cλ(ŷi, yi),

Davg
k := Lavg

1,k + θ

λ
Cavg
λ,k , β1 :=

(
1 + Cλ
λ

)
+
√

2
(

2 + λL1 + θCλ
λ

)
,

(48)

where Cλ(·, ·) and Cλ are as in (26) and (29), respectively. Then, we have

min
i≤k
‖v̂i‖ = O1

([
√
λLavg

1,k +
1 + θCavg

λ,k√
λ

] [
φ(z0)− φ∗

k

]1/2)
+ ρ̂

2 .

Proof. Using Lemma 3 with (y, w) = (yi, yi−1) and the fact that Cλ(·, ·) ≤ Cλ and L1(·, ·) ≤ L1,
we have ‖v̂i‖ ≤ Ei‖yi − yi−1‖, for every i ≤ k, where

Ei := 2 + λL1(yi, yi−1) + θCλ(ŷi, yi)
λ

∀i ≥ 1.

As a consequence, using the sum of the second bound in Lemma 8 from i = 1 to k, the definitions
in (48), and Lemma 9 with p = 3/2, ai = Ei, and bi = ‖yi − yi−1‖ for i = 1 to k, yields

min
i≤k
‖v̂i‖ ≤ min

i≤k
Ei‖yi − yi−1‖ ≤

1
k3/2

(
k∑
i=1
Ei

)(
k∑
i=1
‖yi − yi−1‖2

)1/2

= O1

([
√
λLavg

1,k +
1 + θCavg

λ,k√
λ

] [
φ(z0)− φ∗

k

]1/2)
. (49)
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We are now ready to give the proof of Theorem 4.

Proof of Theorem 4. (a) This follows from Proposition 10, the fact that Cλ(·, ·) ≤ Cλ and Lf1(·, ·) ≤
L1, and the stopping condition in step 3.

(b) The fact that (ŷ, v̂) = (ŷk, v̂k) satisfies the inclusion of (22) follows from Lemma 3 with
(y, v, w) = (yk, vk, yk−1). The fact that ‖v̂‖ ≤ ρ̂ follows from the stopping condition in step 3.

(c) This follows from Proposition 2(c) and the fact that method stops in finite number of
iterations from part (a).

6.2 Static DA-ICG Iteration Complexity

This subsection establishes several key properties of static DA-ICG method.
To avoid repetition, we assume throughout this subsection that k ≥ 1 denotes an arbitrary

successful outer iteration of the DA-ICG method and let

{(ai, Ai, yi, yai , xi, x̃i−1, ŷi, v̂i, vi, εi)}ki=1

denote the sequence of all iterates generated by it up to and including the kth iteration. Observe
that this implies that the ith DA-ICG outer iteration for any 1 ≤ i ≤ k is successful, i.e., the (only)
R-ACG call in step 2 of the DA-ICG method does not stop with failure and ∆1(yi−1; yai , vi) ≤ εi.
Moreover, throughout this subsection we let

γ̃i(u) = `f1(u; x̃i−1) + f2(u) + h(u), γi(u) = γ̃i(yai ) + 1
λ
〈vi + x̃i−1 − yai , u− yai 〉. (50)

The first set of results present some basic properties about the functions γ̃i and γi as well as
the iterates generated by the method.

Lemma 11. Let ∆1(·; ·, ·) be as in (10) with (ψs, ψn) given by (28). Then, the following statements
hold for any s ∈ dom h and 1 ≤ i ≤ k:

(a) γi(yai ) = γ̃i(yai );

(b) xi = argminu∈Ω
{
λai−1γi(u) + ‖u− xi−1‖2/2

}
;

(c) yai − vi = argminu∈Z
{
λγi(u) + ‖u− x̃i−1‖2/2

}
;

(d) −M1‖u− x̃i−1‖2/2 ≤ γ̃i(u)− φ(u) ≤ m1‖u− x̃i−1‖2/2;

(e) φ(yi−1) ≥ φ(yi) and φ(yai ) ≥ φ(yi).

Proof. To keep the notation simple, denote

(ya+, y+, y, x̃) = (yai , yi, yi−1, x̃i−1), (x+, x) = (xi, xi−1),
(A+, A, a) = (Ai, Ai−1, ai−1), (v, ε) = (vi, εi).

(51)

(a) This is immediate from the definitions of γ and γ̃ in (50).
(b) Define x̂i := xk−1 − ak−1 (vk + x̃k−1 − yak). Using the definition of γ in (50), we have that

argmin
u∈Ω

{
λaγ (u) + 1

2‖u− x‖
2
}

= argmin
u∈Ω

{
a
〈
v + x̃− ya+, u− x

〉
+ 1

2‖u− x‖
2
}

= argmin
u∈Ω

1
2
∥∥u− (x− a [v + x̃− ya+

])∥∥2 = argmin
u∈Ω

1
2 ‖u− x̂+‖2 = x+.
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(c) Using the definition of γ in (50), we have that

λ∇γ
(
ya+ − v

)
+ (ya+ − v)− x̃ = (v + x̃− ya+) + (ya+ − v)− x̃ = 0,

and hence, the point ya+ − v is the global minimum of λγ + ‖ · −x̃‖2/2.
(d) This follows from inequality (21) with i = 1 and the definition of γ̃ in (50).
(e) This follows immediately from the update rule of yi in (36).

Lemma 12. Let w = x̃i−1, the pair (ψn, ψs) be as in (28), and ∆1(·; ·, ·) be as in (10) with (ψs, ψn)
given by (28). Then, following statements hold:

(a) the triple (yai , vi, εi) solves Problem B and satisfies ∆1(yi−1; yai , vi) ≤ ε, and hence

‖vi‖+ 2εi ≤ θ2‖yai − x̃i−1‖2, ∆1(u; yai , vi) ≤ εi ∀u ∈ {ŷi, yi−1}, (52)

(b) if f2 is convex, then (yai , vi, εi) solves Problem A;

(c) ∆1(s; yai , vi) = λ[γi(s)− γ̃i(s)];

(d) ∆1(yi; yai , vi) ≤ ε.

Proof. (a) This follows from step 2 of the DA-ICG method and Proposition 2(b).
(b) This follows from steps 2 and 3 of the DA-ICG method, the fact that h is convex, and

Proposition 2(c) with ψs = γ̃i + ‖ · −x̃i−1‖2/2.
(c) Using the definitions of (ψs, ψn) and (γ, γ̃) in (28) and (50), respectively, we have that

∆1(s; ya+, v) = (ψs + ψn)(ya+)− (ψs + ψn)(s)−
〈
v, ya+ − s

〉
+ 1

2‖s− y
a
+‖2

=
[
λγ̃(ya+) + 1

2‖y
a
+ − x̃‖2

]
−
[
λγ̃(s) + 1

2‖s− x̃‖
2
]
−
〈
v, ya+ − s

〉
+ 1

2‖s− y
a
+‖2

=
[
λγ(s) + 1

2‖s− x̃‖
2
]
−
[
λγ̃(s) + 1

2‖s− x̃‖
2
]

= λγ(s)− λγ̃(s).

(d) If yi = yi−1, then this follows from step 3 of the method. On the other hand, if yi = yai ,
then this follows from part (c).

We now state (without proof) some well-known properties of Ai and ai−1.

Lemma 13. For every 1 ≤ i ≤ k, we have that:

(a) a2
i−1 = Ai;

(b) i2/4 ≤ Ai ≤ i2.

The next two lemmas are technical results that are needed to establish the key inequality in
Proposition 16.

Lemma 14. For every u ∈ dom h and 1 ≤ i ≤ k, we have that

1
2
(
Ai−1‖yi−1 − x̃i−1‖2 + ai−1‖u− x̃i−1‖2

)
≤ 2D2

Ω + ai−1D
2
h.
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Proof. Throughout the proof, we use the notation in (51). Using the relation (p+ q)2 ≤ 2p2 + 2q2

for every p, q ∈ R, Lemma 13(a), the fact that A ≤ A+, x ∈ Ω, and y ∈ dom h, and the definitions
of x̃ in (35) and of DΩ and Dh in (37), we conclude that

A‖y − x̃‖2 + a‖u− x̃‖2 = A

∥∥∥∥ a

A+
(y − x)

∥∥∥∥2
+ a

∥∥∥∥ AA+
(u− y) + a

A+
(u− x)

∥∥∥∥2

≤ A

A+

(
‖(y − u) + (u− x)‖2 + 2a

[
A2

A2
+
‖u− y‖2 + a2

A2
+
‖u− x‖2

])

≤ 2A
A+

(
‖u− y‖2 + ‖u− x‖2

)
+ 2a‖u− y‖2 + 2a

A+
‖u− x‖2

≤ 2
[
‖u− x‖2 + (1 + a)‖u− y‖2

]
≤ 2[D2

Ω + (1 + a)D2
h].

The conclusion now follows from dividing both sides of the above inequalities by 2 and using the
fact that Dh ≤ DΩ.

Lemma 15. For every u ∈ dom h and 1 ≤ i ≤ k, we have that

Ai

[
φ(yi) +

(1− λM1
2λ

)
‖yai − x̃i−1‖2 −

‖vi‖2

2λ

]
+ 1

2λ‖u− xi‖
2

≤ Ai−1γi(yi−1) + ai−1γi(u) + 1
2λ‖u− xi−1‖2. (53)

Proof. Throughout the proof, we use the notation in (51). We first present two key expressions.
First, using the definition of γ in (50) and Lemma 11(c), it follows that

min
u∈Z

{
λγ (u) + 1

2‖u− x̃‖
2
}

= λγ̃(ya+)−
〈
v + x̃− ya+, v

〉
+ 1

2
∥∥v + x̃− ya+

∥∥2

= λγ̃(ya+)− ‖v‖2 −
〈
v, x̃− ya+

〉
+ 1

2
∥∥v + x̃− ya+

∥∥2

= λγ̃(ya+)− 1
2‖v‖

2 + 1
2‖x̃− y

a
+‖2. (54)

Second, Lemma 11(b) and the fact that the function aγ + ‖ · −x‖2/(2λ) is (1/λ)–strongly convex
imply that

aγ (x+) + 1
2λ‖x+ − x‖2 ≤ aγ (u) + 1

2λ‖u− x‖
2 − 1

2λ‖u− x+‖2. (55)

Using (54), Lemma 11(d)–(e), Lemma 13(a), and the fact that γ is affine, we have that

A+

[
φ(y+) +

(1− λM1
2λ

)
‖ya+ − x̃‖2

]
≤ A+

[
γ̃
(
ya+
)

+ 1
2λ‖y

a
+ − x̃‖2

]
= A+

[
min
u∈Z

{
γ (u) + 1

2λ‖u− x̃‖
2
}

+ ‖v‖
2

2λ

]

≤ A+

[
γ

(
Ay + ax+

A+

)
+ 1

2λ

∥∥∥∥Ay + ax+
A+

− Ay + ax

A+

∥∥∥∥2
+ ‖v‖

2

2λ

]

= Aγ (y) + aγ (x+) + a2

2λA+
‖x− x+‖2 + A+

2λ ‖v‖
2

= Aγ (y) + aγ (x+) + 1
2λ‖x− x+‖2 + A+

2λ ‖v‖
2 (56)

The conclusion now follows from combining (55) with (56).
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We now present an inequality that plays an important role in the analysis of the DA-ICG
method.

Proposition 16. Let ∆1(·; ·, ·) be as in (10) with (ψs, ψn) as in (28), and define

θi(u) := Ai [φ(yi)− φ(u)] + 1
2λ‖u− xi‖

2 ∀i ≥ 0. (57)

For every u ∈ dom h satisfying ∆1(u; yai , vi) ≤ ε and 1 ≤ i ≤ k, we have that

Ai
4λ‖y

a
i − x̃i−1‖2 ≤ m+

1

(
ai−1D

2
h + 2D2

Ω

)
+ θi−1(u)− θi(u). (58)

Proof. Throughout the proof, we use the notation in (51) together with the notation π = πi−1 and
π+ = πi. Let u ∈ dom h be such that ∆1(u; ya+, v) ≤ ε. Subtracting Aφ(u) from both sides of the
inequality in (53) and using the definition of π+ we have

A+
2λ

[
(1− λM1)‖ya+ − x̃‖2 − ‖v‖2

]
+ π+(u)

= A+
2λ

[
(1− λM1)‖ya+ − x̃‖2 − ‖v‖2

]
+A+ [φ(y+)− φ(u)] + 1

2λ‖u− y
a
+‖2

≤ Aγ (y) + aγ (u)−Aφ(u) + 1
2λ‖u− x‖

2

= a [γ (u)− φ(u)] +A [γ (y)− φ(y)] + π(u). (59)

Moreover, using Lemma 12(a) and (c), and with our assumption that ∆1(u; ya+, v) ≤ ε, we have
that

γ (s)− φ(s) = γ̃ (s)− φ(s) + ∆1(s; ya+, v)
λ

≤ m+
1

2 ‖s− x̃‖
2 + ε

λ
∀s ∈ {u, y}. (60)

Combining (59), (60), and Lemma 14 then yields
A+
2λ

[
(1− λM1)‖ya+ − x̃‖2 − ‖v‖2

]
+ π+(u)

≤ m+
1

2
[
a‖u− x̃‖2 +A‖y − x̃‖2

]
+ εA+

λ
+ π(u) ≤ m+

1

(
aD2

h + 2D2
Ω

)
+ εA+

λ
+ π(u).

Re-arranging the above terms and using (34) together with the first inequality in (52), we conclude
that

m+
1

(
aD2

h + 2D2
Ω

)
+ π(u)− π+(u) ≥ A+

2λ
[
(1− λM1)‖ya+ − x̃‖2 − ‖v‖2 − 2ε

]
≥ A+(1− λM1 − θ2)

2λ ‖ya+ − x̃‖2 ≥
A+
4λ ‖y

a
+ − x̃‖2.

The following result describes some important technical bounds obtained by summing (58) for
two different choices of u (possibly changing with i) from i = 1 to k.

Proposition 17. Let ∆0
φ and d0 be as in (37) and define

Sk := 1
4λ

k∑
i=1

Ai‖yai − x̃i−1‖2. (61)

Then, the following statements hold:
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(a) Sk = O1(k2[m+
1 D

2
h + ∆0

φ] + k[m+
1 + 1/λ]D2

Ω);

(b) if f2 is convex, then Sk = O1(k2m+
1 D

2
h + km+

1 D
2
Ω + d2

0/λ).

Proof. (a) Let ∆1(·; ·, ·) be defined as in (10) with (ψs, ψn) given by (28). Using (57), the fact that
xi, y

a
i ∈ Ω, the fact that Ai is nonnegative and increasing, and the definitions of θi and DΩ in (57)

and (37), respectively, we have that

k∑
i=1

[θi−1(yi)− θi(yi)] ≤
k∑
i=1

Ai−1 [φ(yi−1)− φ(yi)] + 1
2λ

k∑
i=1
‖yi − xi−1‖2

≤ Ak
k∑
i=1

[φ(yi−1)− φ(yi)] + k

2λD
2
Ω ≤ Ak [φ(y0)− φ∗] + k

2λD
2
Ω. (62)

Moreover, noting Lemma 12(d) and using Proposition 16 with u = yi, we conclude that (58) holds
with u = yi for every 1 ≤ i ≤ k. Summing these k inequalities and using (62), the definition of Sk
in (61), and Lemma 13(b) yields the desired conclusion.

(b) Assume now that f2 is convex and let y∗ be a point such that φ(y∗) = φ∗ and ‖y0−y∗‖ = d0.
It then follows from Lemma 12(b) and Proposition 1(d) with (y, v) = (yai , vi) that ∆1(y∗; yai , vi) ≤ ε
for every 1 ≤ i ≤ k. The conclusion now follows by using an argument similar to the one in (a) but
which instead sums (58) with u = y∗ from i = 1 to k, and uses the fact that

k∑
i=1

[θi−1(y∗)− θi(y∗)] = θ0(y∗)− θk(y∗) ≤
1

2λ‖y0 − y∗‖2 = d0
2λ,

where the inequality is due to the fact that θk(y∗) ≥ 0 (see (57)) and A0 = 0.

We now establish the rate at which the residual ‖v̂i‖ tends to 0.

Proposition 18. Let Sk be as in (61). Moreover, define the quantities

Lavg
1,k := 1

k

k∑
i=1

L1(yai , x̃i−1), Cavg
λ,k := 1

k

k∑
i=1

Cλ(ŷi, yai ),

Derg
k := Lerg

1,k + θ

λ
Cerg
λ,k , 8

√
2
(

2 + λL1 + θCλ
λ

)
,

(63)

where Cλ(·, ·) and Cλ are as in (26) and (29), respectively. Then, we have

min
i≤k
‖v̂i‖ = O1

([
√
λLavg

1,k +
1 + θCavg

λ,k√
λ

] [
Sk
k3

]1/2
)

+ ρ̂

2 .

Proof. Let ` = dk/2e. Using Lemma 3 with (z, w) = (yai , x̃i−1) and the bounds Cλ(·, ·) ≤ Cλ and
L1(·, ·) ≤ L1 we have that ‖v̂i‖ ≤ Ei‖yai − x̃i−1‖, for every ` ≤ i ≤ k, where

Ei = 2 + λL1(yai , x̃i−1) + θCλ(ŷi, yai )
λ

∀i ≥ 1.

As a consequence, using the definition of Sk in (61), the definitions in (63), Lemma 9 with p =
3/2, ai = Ei/

√
Ai, and bi =

√
Ai‖yai − x̃i−1‖ for i ∈ {`, ..., k}, Lemma 13(b), and the fact that
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(k − `+ 1) ≥ k/2, yields

min
`≤i≤k

‖v̂i‖ ≤ min
`≤i≤k

Ei‖yai − x̃i−1‖

≤ 1
(k − `+ 1)3/2

(
k∑
i=`

Ei√
Ai

)(
k∑
i=`

Ai‖yai − x̃i−1‖2
)1/2

≤ 23/2

k3/2

(
2
k

k∑
i=1
Ei

)
(4λSk)1/2 = O1

([
√
λLavg

1,k +
1 + θCavg

λ,k√
λ

] [
Sk
k3

]1/2
)
.

We are now ready to prove Theorem 5.

Proof of Theorem 5. (a) This follows from Proposition 18, Proposition 17(a), the fact that Cλ(·, ·) ≤
Cλ and Lf1(·, ·) ≤ L1, and the termination condition in step 4.
(b) The fact that (ŷ, v̂) = (ŷk, v̂k) satisfies the inclusion of (22) follows from Lemma 3 with
(y, v, z0) = (yak , vk, x̃k−1). The fact that ‖v̂‖ ≤ ρ̂ follows from the stopping condition in step 4.

(c) The fact that the method does not fail follows from Proposition 2(c). The bound in (39)
follows from a similar argument as in part (a) except that Proposition 17(a) is replaced with
Proposition 17(b).

A Technical Bounds
The result below presents a basic property of the composite gradient step.

Proposition 19. Let h ∈ Conv (Z), z ∈ dom h, and g be a differentiable function on dom h which
satisfies g(u)− `g(u; z) ≤ L‖u− z‖2/2 for some L ≥ 0 and every u ∈ dom g. Moreover, define

ẑ := argmin
u

{
`g(u; z) + h(u) + L

2 ‖u− z‖
2
}
.

Then, it holds that

L

2 ‖z − ẑ‖
2 ≤ (g + h)(z)− (g + h)(ẑ).

Proof. Using the definition of ẑ, the fact that `g(·; z) +h(·) +L‖ ·−z‖2/2 is L-strongly convex, and
the assumed bound g(u)− `g(u; z) ≤ L‖u− z‖2/2 at u = ẑ, we have

(g + h)(z) = `g(z; z) + h(z) ≥ `g(ẑ; z) + h(ẑ) + L‖ẑ − z‖2 ≥ (g + h)(ẑ) + L

2 ‖ẑ − z‖
2.

B R-ACG Algorithm
This section presents technical results related to the R-ACG algorithm.

The first set of results describes some basic properties of the generated iterates.

Proposition 20. If ψs is µ–strongly convex, then the following statements hold:
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(a) zcj = argminu∈Z
{
BjΓj(u) + ‖u− zc0‖2/2

}
;

(b) Γj ≤ ψ and Bjψ(zj) ≤ infu∈Z
{
BjΓj(u) + ‖u− zc0‖2/2

}
;

(c) ηj ≥ 0 and rj ∈ ∂ηj

(
ψ − µ‖ · −zj‖2/2

)
(zj);

(d) it holds that (
1

1 + µBj

)
‖Bjrj + zj − z0‖2 + 2Bjηj ≤ ‖zj − z0‖2

Proof. (a) See [15, Proposition 1].
(b) See [15, Proposition 1(b)].
(c) The optimality of zcj in part (a), the µ-strong convexity of Γj , and the definition of rj imply

that

rj =
zc0 − zcj
Bj

+ µ(zj − zcj) ∈ ∂
(

Γj −
µ

2 ‖ · −z
c
j‖2 + µ

〈
·, zcj − zj

〉)
(zcj)

= ∂

(
Γj −

µ

2 ‖ · −zj‖
2
)

(zcj).

Using the above inclusion, the definition of ηj , the fact that Γj − µ‖ · ‖2/2 is affine, and part (b),
we now conclude that

ψ(z)− µ

2 ‖z − zj‖
2 ≥ Γj(z)−

µ

2 ‖z − zj‖
2 = Γj(zcj)−

µ

2 ‖z
c
j − zj‖2 +

〈
rj , z − zcj

〉
= ψ(zj) + 〈rj , z − zj〉 − ηj ,

for every z ∈ domψn, which is exactly the desired inclusion. The fact that ηj ≥ 0 follows from the
above inequality with z = zj .

(d) It follows from parts (a)–(b) and the definition of ηj that

ηj ≤ Γj(u) + 1
2Bj
‖u− z0‖2 − ψ(zj)

= µ

2 ‖zj − z
c
j‖2 −

1
Bj

〈
z0 − zcj , zj − zcj

〉
+ 1

2Bj
‖zcj − z0‖2

= 1
2Bj
‖zj − z0‖2 −

1
2Bj

(1 + µBj)‖zj − zcj‖2

= 1
2Bj
‖zj − z0‖2 −

1
2Bj(1 + µBj)

‖Bjrj + zj − z0‖2.

Multiplying both sides of the above inequality by 2Bj yields the desired conclusion.

The next result presents the general iteration complexity of the algorithm, i.e. Proposition 2(a).

Proof of Proposition 2(a). Let ` be the first iteration where

min
{

B2
`

4(1 + µB`)
,
B`
2

}
≥ K2

θ (64)

and suppose that the R-ACG has not stopped with failure before iteration `. We show that it must
stop with success at the end of the `th iteration. Combining the triangle inequality, the successful
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check in step 3 of the method, (64), and the relation (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we first
have that

‖r`‖2 + 2η`

≤ max
{

1 + µB`
A2
`

,
1

2B`

}( 1
1 + µB`

‖B`r`‖2 + 4B`η`
)

≤ max
{

1 + µB`
B2
`

,
1

2B`

}( 2
1 + µB`

‖B`r` + z` − z0‖2 + 2‖z` − z0‖2 + 4B`η`
)

≤ max
{

4(1 + µB`)
B2
`

,
2
B`

}
‖z` − z0‖2 ≤

1
K2
θ

‖z` − z0‖2 ≤ θ2‖z` − z0‖2,

and hence the method must terminate at the `th iteration. We now bound ` based on the re-
quirement in (64). Solving for the quadratic in B` in the first bound of (64), it is easy to see that
B` ≥ 4µK2

θ +2Kθ implies (64). On the other hand, for the second condition in (64), it is immediate
that B` ≥ 2K2

θ implies (64). In view of (18) and the previous two bounds, it follows that

B` ≥
1
L

(
1 +

√
µ

4L

)2(`−1)
≥ 2Kθ(1 + 2µK2

θ )

implies (64). Using the bound log(1 + t) ≥ t/(1 + t) for t ≥ 0 and the above bound on `, it is
straightforward to see that ` is on the same order of magnitude as in (19).

C Refined ICG Points

This appendix presents technical results related to the refined points of the ICG methods.
The result below proves Lemma 3 from the main body of the paper.

Proof of Lemma 3. (a) Using Proposition 1(a), the definition of v̂, and the definitions of ψs and ψn
in (28), we have that

v̂ ∈ 1
λ

[∇ψs(ŷ) + ∂ψn(ŷ) + w − y] +∇f1(ŷ)−∇f1(w)

= 1
λ

[λ∇f1(w) + λf2(ŷ) + (w − y) + λ∂h(y)] +∇f1(ŷ)−∇f1(w)

= ∇f1(ŷ) +∇f2(ŷ) + ∂h(ŷ),

(b) Using assumption (A3), Proposition 1(b), the choice ofM in (28), and the fact that ∆µ(yr; y, v) ≤
ε, we first observe that

‖∇f1(ŷ)−∇f1(z0)‖ − L1(y, z0)‖y − z0‖ ≤ L1(y, ŷ)‖ŷ − y‖

≤
L1(y, ŷ)

√
2∆µ(yr; y, v)√

λM+
2 + 1

≤ θL1(y, ŷ)√
λM+

2 + 1
‖y − z0‖. (65)

Using now (65), the choice of M in (28), Proposition 1(c) with L(·, ·) = λL2(·, ·), the fact that
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σ ≤ 1, and the definition of Cλ(·, ·), we conclude that

‖v̂‖ ≤ 1
λ
‖vr‖+ 1

λ
‖y − z0‖+ ‖∇f1(ŷ)−∇f1(z0)‖

≤

L1(y, z0) + 1 + θ

λ
+
θ
[
λM+

2 + 1 + λL1(y, ŷ) + λL2(y, ŷ)
]

λ
√
λM+

2 + 1

 ‖y − z0‖

≤
[
L1(y, z0) + 2 + θCλ(y, ŷ)

λ

]
‖y − z0‖.

D Spectral Functions
This section presents some results about spectral functions as well as the proof of Propositions 6.
It is assumed that the reader is familiar with the key quantities given in Subsection 4.1 (e.g., see
(40) and (41)).

We first state two well-known results [2, 11] about spectral functions.
Lemma 21. Let Ψ = ΨV ◦ σ for some absolutely symmetric function ΨV : Rr 7→ R. Then, the
following properties hold:
(a) Ψ∗ = (ΨV ◦ σ)∗ = (ΨV)∗ ◦ σ;

(b) ∇Ψ = (∇ΨV) ◦ σ;
Lemma 22. Let (Ψ,ΨV) be as in Lemma 21, the pair (S,Z) ∈ Z × dom Ψ be fixed, and the
decomposition S = P [dg σ(S)]Q∗ be an SVD of S, for some (P,Q) ∈ Um×Un. If Ψ ∈ Conv Rm×n
and ΨV ∈ Conv Rr, then for every M > 0, we have

S ∈ ∂
(

Ψ + M

2 ‖ · ‖
2
F

)
(Z) ⇐⇒

σ(S) ∈ ∂
(
ΨV + M

2 ‖ · ‖
2
)

(σ(Z)),
Z = P [dg σ(Z)]Q∗.

We now present a new result about spectral functions.
Theorem 23. Let (Ψ,ΨV) be as in Lemma 21 and the point Z ∈ Rm×n be such that σ(Z) ∈ dom ΨV .
Then for every ε ≥ 0, we have S ∈ ∂εΨ(Z) if and only if σ(S) ∈ ∂ε(S)ΨV(σ(Z)), where

ε(S) := ε− [〈σ(Z), σ(S)〉 − 〈Z, S〉] ≥ 0. (66)

Moreover, if S and Z have a simultaneous SVD, then ε(S) = ε.
Proof. Using Lemma 21(a), (66), and the well-known fact that S ∈ ∂εΨ(Z) if and only if ε ≥
Ψ(Z) + Ψ∗(S)− 〈Z, S〉, we have that S ∈ ∂εΨ(Z) if and only if

ε(S) = ε− [〈σ(Z), σ(S)〉 − 〈Z, S〉]
≥ Ψ(Z) + Ψ∗(S)− 〈Z, S〉 − [〈σ(Z), σ(S)〉 − 〈Z, S〉]
= ΨV(σ(Z)) + (ΨV)∗(σ(S))− 〈σ(Z), σ(S)〉 ,

or, equivalently, σ(S) ∈ ∂ε(S)ΨV(σ(Z)) and ε(S) ≥ 0. To show that the existence of a simultaneous
SVD of S and Z implies ε(S) = ε it suffices to show that 〈σ(S), σ(Z)〉 = 〈S,Z〉. Indeed, if
S = P [dg σ(S)]Q∗ and Z = P [dg σ(Z)]Q∗, for some (P,Q) ∈ Um × Un, then we have

〈S,Z〉 = 〈dg σ(S), P ∗P [dg σ(Z)]Q∗Q〉 = 〈dg σ(S),dg σ(Z)〉 = 〈σ(S), σ(Z)〉.
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