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Abstract

The study of Frank-Wolfe (FW) variants is often complicated by the presence of
different kinds of "good" and "bad" steps. In this article, we aim to simplify the con-
vergence analysis of specific variants by getting rid of such a distinction between steps,
and to improve existing rates by ensuring a non-trivial bound at each iteration.

In order to do this, we define the Short Step Chain (SSC) procedure, which skips
gradient computations in consecutive short steps until proper conditions are satisfied.
This algorithmic tool allows us to give a unified analysis and converge rates in the
general smooth non convex setting, as well as a linear convergence rate under a Kurdyka-
Łojasiewicz (KL) property. While the KL setting has been widely studied for proximal
gradient type methods, to our knowledge, it has never been analyzed before for the
Frank-Wolfe variants considered in the paper.

An angle condition, ensuring that the directions selected by the methods have the
steepest slope possible up to a constant, is used to carry out our analysis. We prove
that such a condition is satisfied, when considering minimization problems over a poly-
tope, by the away step Frank-Wolfe (AFW), the pairwise Frank-Wolfe (PFW), and the
Frank-Wolfe method with in face directions (FDFW).

Keywords: Nonconvex optimization, First-order optimization, Frank-Wolfe vari-
ants, Kurdyka-Łojasiewicz property.
MSC Classification:46N10, 65K05, 90C06, 90C25, 90C30

1 Introduction

The Frank-Wolfe method [25] and its variants (see, e.g., [26], [45] and references
therein) provide a valid alternative to projected gradient approaches for the constrained
optimization of a smooth objective f : Rn → R, in settings where projecting on the
feasible set may be unpractical. These methods have found many applications in sparse
and structured optimization (see, e.g., [9], [26], [33], [37], [54] and references therein).

In this paper, we aim to overcome an annoying issue affecting the analysis of some
FW variants, that is the presence of "bad iterations", i.e., iterations where we cannot
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show good progress. This happens when we are forced to take a short step along the
search direction to guarantee feasibility of the iterate. The number of short steps typi-
cally needs to be upper bounded in the convergence analysis with "ad hoc" arguments
(see, e.g., [26] and [45]). The main idea behind our method is to chain several short
steps by skipping gradient updates until proper conditions are met.

1.1 Related work

FW variants. The main drawback of the classic FW algorithm is its slow O(1/k)
convergence rate for convex objectives. This rate is tight even for strongly convex ob-
jectives on polytopes, due to a well understood zig-zagging behaviour near optima on
the boundary (see, e.g., [22] and [65]). The study of assumptions and variants leading
to faster rates is a rapidly developing field.
Alternative or modified directions moving away from "bad" vertices or atoms have a
long history, starting at least with the work of Wolfe [65] (see [43] and [45] for recent
references). In addition to considering new directions, the works [19] and [20] propose
strategies to skip the linear minimization oracle (LMO) computation from time to time
by caching linear minimizers, while the recent work [43] for optimization on polytopes
applies recursively a FW variant to smaller polytopes. However, to our knowledge, no
strategy to avoid short steps has been discussed in these previous works.
For smooth strongly convex objectives, the convergence rates of many of these "improved
directions" FW variants is linear on polytopes (see, e.g., [8] and [45]). Furthermore, in
[41] it was proved that convergence rate of an AFW variant is adaptive to Hölderian
error bound conditions interpolating between the general convex case and the strongly
convex one.
A different approach, adopted in the general smooth convex setting, is to use FW vari-
ants to approximate projections. In particular, the conditional gradient sliding method
uses the FW method to approximate projections on the feasible set within a projected
gradient scheme (see, e.g., [32] and [46]). Another approach introduced in [23] for
smooth convex objectives implicitly uses the Non Negative Matching Pursuit (NNMP)
algorithm to compute an approximate projection of the negative gradient on the tangent
cone. To our knowledge, however, conditional gradient sliding approaches always lead
to a sublinear O(1/ε) LMO complexity, and the approach in [23] does not lead to any
improvement on the O(1/ε) worst case gradient complexity of the classic FW.
Outside the projection free setting, in [52] a procedure making multiple steps without
updating the gradient (in a fashion similar to our SSC) is defined, and it is claimed that
the approach traces the piecewise linear projection curve on polytopes, thus leading
to the same linear convergence rate of the standard projected gradient method in the
strongly convex setting.
In the non convex setting, for the classic FW algorithm a convergence rate of O(1/

√
k)

was proved in [44] and then extended to other variants in [17] and [58].

KL property. The KL property (see, e.g., [4], [11] and [12]) has been extensively
applied to compute the convergence rates of proximal subgradient type methods (see,
e.g., [4], [5], [13], [64] and [66]). Furthermore, for convex objectives, it has been proved
that Hölderian error bound conditions are a particular case of this property [13]. How-
ever, we are not aware of previous applications to the Frank-Wolfe variants under study
in this paper.
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Angle condition. The analysis of unconstrained descent methods often relies on
some version of an angle condition, imposing an upper bound on the angle between the
negative gradient and the descent direction selected by the method (see, e.g., [1], [29]
and [67]). However, due to the presence of short steps and full FW steps, these analyses
do not extend to our setting in a straightforward way.
In Section 3, we present an angle condition for optimization over a convex set. While
to our knowledge this extension is novel for first order optimization methods, analogous
conditions can be found in the context of direct search methods for linearly constrained
derivative free optimization (see, e.g., [42] and [48]), imposed on the smallest angle
between the negative gradient and a search direction. Finally, we remark that our
condition was somehow used, but not stated explicitly, in [8] and [45] within the context
of smooth strongly convex optimization over polytopes.

1.2 Contributions

Our main contributions are twofold:

• We formulate an angle condition for projection free methods, and prove that it
leads to linear convergence in the number of "good steps" for non convex objec-
tives satisfying a KL inequality. We show that this condition applies to the away
step Frank-Wolfe (AFW), the pairwise Frank-Wolfe (PFW) and the FW method
with in face directions (FDFW) (see, e.g., [26], [45], [28] and [31]) on polytopes.
First, we give linear rates for good steps in Proposition 3.2. Then, we give global
asymptotical rates under the assumption that the number of bad steps between
two good steps is bounded in Proposition 3.3. We apply this result to FW variants
in Corollary 3.1.

• We define the SSC procedure, which can be applied to all the FW variants listed in
the first point, and show that it gets improvements on known rates (see Table 1 in
Section 4). In particular, we prove that it leads to global linear convergence rates
with no bad steps (see Lemma 4.3 and Corollary 4.3) under a global KL inequality
and the angle condition. We then prove that we have local linear convergence rates
and asymptotical linear convergence rates under a local KL property as well (see
Theorem 4.2 and Corollary 4.2). This, to our knowledge, is the first (bad step
free) linear convergence rate for FW variants under the KL inequality. In the
general smooth non convex case, we further prove, under the angle condition, a
O(1/

√
k) convergence rate with respect to a specific measure of non-stationarity

for the iterates, that is the projection of the negative gradient on the convex cone
of feasible directions (see Theorem 4.1, Corollary 4.1 and Remark 3).

While here we apply our framework only to the AFW, the PFW, and the FDFW on
polytopes, we remark that our results hold for projection free methods on generic convex
sets. In an extended version of this paper [60] we show applications on convex sets with
smooth boundary for FW variants and methods using orthographic retractions (see also
[2], [6], [47] and references therein).
The reasons why eliminating bad steps truly makes a difference in our context are the
following:

• it rules out impractical convergence rates due to a large number of bad steps. An
interesting example is given by the rate guarantee reported in [45] for the pairwise
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Frank-Wolfe (PFW) variant on the N − 1 dimensional simplex. This guarantee
is indeed more loose than for the other variants, because there is no satisfactory
bound on the number of such problematic steps (there is a best known bound of
3N ! bad steps for each good step);

• it eliminates the dependence of the convergence rates on the support of the start-
ing point (see, e.g., [35] and [43]). This dependence can significantly affect the
performance of FW variants on smooth non convex optimization problems [24].

Finally, while beyond the scope of this paper, we mention that bad steps lead to a
slow active set identification for the AFW, when compared to the "one shot" identifi-
cation property characterizing proximal gradient methods and active set strategies (see
[24], [53] and references therein). More precisely, analyses in recent works ([16], [17]
and [27]) show that a number of bad steps equal to the number of "wrong" atoms is
performed by the method in a sufficiently small neighborhood of a solution to identify
its support.

1.3 Paper structure

The structure of the paper is as follows. In Section 2, we define some notation and
state some preliminary results from convex analysis. In Section 3, we introduce the
angle condition for first-order projection free methods, show examples of FW variants
satisfying the condition and prove linear convergence in the number of good steps. We
define the SSC procedure in Section 4, where we also state the main convergence results.
Preliminary numerical results are reported in Section 6, while the missing proofs can
be found in the appendix.

2 Notation and preliminaries

We consider the following constrained optimization problem:

min{f(x) | x ∈ Ω} . (2.1)

In the rest of the article Ω is a compact and convex set and f ∈ C1(Ω) with L-Lipschitz
gradient:

‖∇f(x) − ∇f(y)‖ ≤ L‖x− y‖ for all x,y ∈ Ω .

We define D as the diameter of Ω, ĉ = c/‖c‖ for c ∈ R
n/{0} and ĉ = 0 for c = 0. For

sequences we write {xk} instead of {xk}k∈I when I is clear from the context, with
[j : i] = {j,j + 1, ..., i − 1, i}. For a,b ∈ R∪ {±∞} we denote as [a < f(x) < b] the set
{x ∈ Ω | f(x) ∈ (a,b)}, with analogous definitions for non strict inequalities. For subsets
C,D of Rn we define dist(C,D) as

dist(C,D) = inf{‖y − z‖ | z ∈ C, y ∈ D} ,

BR(C) as the neighborhood {x ∈R
n | dist(C,x) < R} of C of radius R and in particular

BR(x) as the open euclidean ball of radius R and center x. When C is closed and convex
we define as π(C, ·) the projection on C. If C is a cone then we denote with C∗ its polar.

We now state some elementary properties related to the tangent and the normal
cones, where for x̄ ∈ Ω we denote with TΩ(x̄) and NΩ(x̄) the tangent and the normal
cone to Ω in x̄ respectively. The next proposition (from [61], Theorem 6.9) characterizes
these cones for closed convex subsets of Rn.

4



Proposition 2.1. Let Ω be a closed convex set. For every point x̄ ∈ Ω we have

TΩ(x̄) = cl{w | ∃λ > 0 with x̄+ λw ∈ Ω} ,

int(TΩ(x̄)) = {w | ∃λ > 0 with x̄+ λw ∈ int(Ω)} ,

NΩ(x̄) = TΩ(x̄)∗ = {v ∈ R
n | (v,y − x̄) ≤ 0 ∀ y ∈ Ω} .

We have the following formula connecting the supremum of a linear function "slope"
along feasible directions to the tangent and the normal cone:

Proposition 2.2. If Ω is a closed convex subset of Rn, x̄ ∈ Ω then for every g ∈ R
n

max

{

0, sup
h∈Ω\{x̄}

(

g,
h − x̄

‖h − x̄‖

)

}

= dist(NΩ(x̄),g) = ‖π(TΩ(x̄),g)‖ .

This property is a consequence of the Moreau-Yosida decomposition [61] and we
refer the reader to the Appendix for a detailed proof. On polytopes, a geometric inter-
pretation is that the smallest angle between g and a descent direction d feasible in x̄ is
achieved for d = π(TΩ(x̄),g).
In the rest of the article to simplify notations we often use πx̄(g) as a shorthand for
‖π(TΩ(x̄),g)‖. Then, by Proposition 2.2, first order stationarity conditions in x̄ for the
gradient −g become equivalent to πx̄(g) = 0.
In the computation of the convergence rates, we often make the following assumption.

Assumption 2.1. Given a stationary point x∗ ∈ Ω, there exists η,δ > 0 such that for
every x ∈ [f(x∗) < f < f(x∗) + η] ∩Bδ(x∗)

πx(−∇f(x)) ≥
√

2µ(f(x) − f(x∗))
1
2 . (2.2)

We refer the reader to the extended version [60] of this article for a study of conver-
gence rates under a more general inequality, interpolating between (2.2) and the generic
non convex case. Let now iΩ be the indicator function of Ω so that iΩ(x) = 0 in Ω and
iΩ(x) = +∞ otherwise. It can easily be seen that (2.2) is a special case of the KL
inequality (see, e.g., [4], [5] and [13]) with exponent 1

2

dist(0,∂fΩ(x)) ≥
√

2µ(fΩ(x) − fΩ(x∗))
1
2 (2.3)

for fΩ = f + iΩ, using that

πx(−∇f(x)) = dist(−∇f(x),NΩ(x)) = dist(0,∂(f + iΩ)(x)) , (2.4)

with the last equality following by Proposition 2.2. For convex objectives, condition
(2.2) is therefore implied by the Holderian error bound f(x) − f(x∗) ≥ γdist(x,X ∗)2,
for X ∗ set of solutions of Problem (2.1) (see [13, Corollary 6]), which in turn is implied by
µ− strong convexity (see, e.g., [40]). Under suitable assumptions (see Proposition 8.1)
our KL condition is also implied by the classic Polyak-Lojasiewicz inequality ‖∇f(x)‖ ≥√

2µ(f(x)−f(x∗))
1
2 (from [50] and [57]). Finally, Assumption 2.1 is implied by the Luo

Tseng error bound [51] under some mild separability conditions for stationary points
(see [49, Theorem 4.1]). This error bound is known to hold in a variety of convex and
non convex settings (see Section 5 and references in [49]).
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3 An angle condition

Let A be a first-order optimization method defined for smooth functions on a closed
subset Ω of Rn. We assume that given first-order information (xk,∇f(xk)) the method
always selects xk+1 along a feasible descent direction, so that for (x,g) ∈ Ω×R

n we can
define

A(x,g) ⊂ TΩ(x) ∩ {y ∈ R
n | 〈g,y〉 > 0} ∪ {0}

as the possible descent directions selected by A when x = xk, g = −∇f(xk) for some k
(see Algorithm 1). When x is first-order stationary, we set A(x,g) = {0}, otherwise we
always assume 0 /∈ A(x,g) 6= ∅.

Algorithm 1: First-order method

Initialization. x0 ∈ Ω, k := 0.
1. If xk is stationary, then STOP
2. select a descent direction dk ∈ A(xk,−∇f(xk))
3. set xk+1 = xk + αkdk for some stepsize αk ∈ [0,αmax

k ]
4. set k := k + 1, go to Step 1.

We want to formulate an angle condition for the descent directions selected by A,
with respect to the infimum of the angles achieved with feasible descent directions. In
order to do that, we define the directional slope lower bound as

DSBA(Ω,x,g) = inf
d∈A(x,g)

〈g,d〉
πx(g)‖d‖

if 0 /∈ A(x,g). Otherwise x is stationary for −g, πx(g) = 0 and we set DSBA(Ω,x,g) = 1.
Then with this definition it immediately follows DSBA(Ω,x,g) ≤ 1 by Proposition 2.2.
Notice also that when x ∈ int(Ω) then DSBA(Ω,x,g) is simply a lower bound on cos(θg,d)
with θ the angle between g and a descent direction d:

DSBA(Ω,x,g) = inf
d∈A(x,g)

〈g,d〉
‖g‖‖d‖ (3.1)

and thus imposing DSBA(Ω,x,g) ≥ τ we retrieve the angle condition [1, equation (20)].
We remark that the RHS of (3.1) defining the unconstrained angle condition is also
considered in the constrained setting in [23] (referred to as alignment condition), as a
tool to evaluate potential descent directions. However, without πx(g) in the denomi-
nator no uniform lower bound can be given for the RHS, and therefore no worst case
linear convergence rate (the rate given in [23, Corollary 3.6] is in fact O(1/k)).
Given a subset P of Ω we can finally define the slope lower bound

SBA(Ω,P ) = inf
g∈R

n x∈P
DSBA(Ω,x,g) = inf

g:πx(g)6=0
x∈P

DSBA(Ω,x,g) .

For simplicity if P = Ω we write SBA(Ω) instead of SBA(Ω,Ω).
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We now show a few examples of Frank-Wolfe variants satisfying the following angle
condition

SBA(Ω) = τ > 0, (3.2)

i.e. cases where the slope lower bound is strictly greater than 0.

3.1 Frank-Wolfe variants over polytopes and the angle condition

We now consider the AFW, PFW and FDFW and show that the angle condition is
satisfied when Ω is a polytope. The AFW and PFW depend on a set of "elementary
atoms" A such that Ω = conv(A). Given A, for a base point x ∈ Ω we can define

Sx = {S ⊂ A | x is a proper convex combination of all the elements in S} ,

the family of possible active sets for x. In the rest of the article A is always clear from
the context and for simplicity we write PFW, AFW instead of PFWA, AFWA. For
x ∈ Ω, S ∈ Sx, dPFW is a PFW direction with respect to the active set S and gradient
−g iff

dPFW = s − q with s ∈ argmaxs∈Ω〈s,g〉 and q ∈ argminq∈S〈q,g〉 . (3.3)

Similarly, given x ∈ Ω, S ∈ Sx, dAFW is an AFW direction with respect to the active
set S and gradient −g iff

dAFW ∈ argmax{〈g,d〉 | d ∈ {dFW,dAS}} , (3.4)

where dFW is a classic Frank-Wolfe direction

dFW = s − x with s ∈ argmaxs∈Ω〈s,g〉 , (3.5)

and dAS is the away direction

dAS = x− q with q ∈ argminq∈S〈q,g〉 . (3.6)

The FDFW from [26], [31] (sometimes referred to as Decomposition invariant Con-
ditional Gradient (DiCG) when applied to polytopes [28], [7]) relies only on the current
point x and the current gradient −g to choose a descent direction and, unlike the AFW
and the PFW, does not need to keep track of the active set.

The in face direction is defined as

dF = xk − xF with xF ∈ argmin{〈g,y〉 | y ∈ F(x)}

for F(x) the minimal face of Ω containing x. The selection criterion is then analogous
to the one used by the AFW:

dFD ∈ argmax{〈g,d〉 | d ∈ {dF ,dFW}} . (3.7)

We write SBFD,DSBFD instead of SBFDFW,DSBFDFW in the rest of the paper. When
Ω is a polytope and |A| < ∞, the angle condition holds for the directions and the related
FW variants we introduced. Before stating a lower bound for SBA(Ω) in this setting
we need to recall the pyramidal width constant PWidth(A) introduced in [45]. We refer
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the reader to [59] and references therein for a discussion of various properties of this
and related parameters.

We use here a characterization of PWidth(A) proved in [55]:

PWidth(A) = min
F∈pfaces(Ω)

dist(F ,conv(A \ F)) , (3.8)

with pfaces(Ω) the set of proper faces of Ω. We now introduce one key property of
PWidth(A) which relates it to the angle along the PFW direction. While we give a self
contained proof of the lemma relying only on (3.8), we remark that the lemma can also
be proved using [45, Theorem 3].

Lemma 3.1. We have the following lower bound

〈g,dPFW〉
‖π(TΩ(x),g)‖ ≥ PWidth(A) .

Proof. We use s,q and S as in (3.3). For z in Ω and d feasible direction in z we define
as α̂max(z,d) the maximal feasible stepsize in the direction d. Let p = π(TΩ(x),g), and
let y be a maximizer of α̂max(y,p) for y ∈ S. We have

〈g,dPFW〉 = 〈g,(s − y) + (y − q)〉 ≥ 〈g,s − y〉 ≥ 〈g,(y + α̂max(y,p)p) − y〉

≥PWidth(A)

‖p‖ 〈g,p〉 = PWidth(A)‖p‖ ,
(3.9)

where we used Lemma 8.2 in the third inequality, and 〈g,p〉 = ‖p‖2 as it follows by the
Moreau-Yosida decomposition in the last equality.

In order to define an angle condition for the FDFW, we use the following upper
bound on PWidth(A), independent from the particular set A chosen to represent Ω:

PFWidth(Ω) = min
F1,F2∈pfaces(Ω)

F1∩F2=∅

dist(F1,F2) . (3.10)

Proposition 3.1. SBPFW(Ω) ≥ τp := PWidth(A)
D ,SBAFW(Ω) ≥ τp

2 ,SBFD(Ω) ≥ τv
2 :=

PFWidth(Ω)
2D .

Proof. Let g be such that πx(g) 6= 0. We have

DSBPFW(Ω,x,g) = inf
dPFW∈PFW(x,g)

〈g,dPFW〉
‖dPFW‖‖π(TΩ(x),g)‖

≥ 〈g,dPFW〉
D‖π(TΩ(x),g)‖ ≥ PWidth(A)

D
,

where we used Lemma 3.1 in the last inequality.

Hence SBPFW(Ω) ≥ PWidth(A)
D follows by taking the inf on the LHS for x ∈ Ω and g

such that πx(g) 6= 0 in (3.1). The inequality SBAFW(Ω) ≥ PWidth(A)
2D is a corollary since

〈g,dAFW〉 ≥ 1

2
〈g,dPFW〉 ,

8



as it follows immediately from the definitions (see also [45, equation (6)]).
The angle condition for the FDFW can be proved analogously to the angle condition for
the AFW, where in Lemma 8.2 the RHS can be improved with PFWidth(Ω) instead of
PWidth(A) using that the active set A′ can be taken as the set of vertices of a face.

Remark 1. Results analogous to the ones in Proposition 3.1 can be proven relatively
to the vertex facial distance vf(Ω) from [8]. More precisely, assuming A = V (Ω), for
V (Ω) set of vertices of Ω, and that the AFW and the PFW keep active sets of size at

most s̄, we have SBPFW(Ω) ≥ vf(Ω)
s̄D , SBAFW(Ω) ≥ vf(Ω)

2s̄D as a consequence of [8, Lemma

3.1]. Furthermore, for the FDFW we have SBFD(Ω,Ωs̄) ≥ vf(Ω)
2s̄D , with x ∈ Ωs̄ ⊂ Ω iff

there exists S ∈ Sx such that |S| ≤ s̄.

3.2 Linear convergence for good steps under the angle condition

Consider now a method following the scheme described by Algorithm 1 and with
stepsize given by

αk = min(ᾱk,αmax
k ) , (3.11)

where

ᾱk =
〈−∇f(xk),dk〉

L‖dk‖2
. (3.12)

We notice that ᾱk in (3.12) is a standard stepsize, often used in numerical tests with a
properly tuned estimate for L (see, e.g., [56]). The following lemma shows that at every
iteration a sufficient decrease condition is satisfied, independently from the method A,
when using stepsize (3.12).

Lemma 3.2. If αk ≤ ᾱk, thus in particular for the stepsize (3.11), we have:

f(xk) − f(xk+1) ≥ L

2
‖xk − xk+1‖2 . (3.13)

The proof is straightforward and we defer it to the appendix.
Assume now that the method A used by Algorithm 1 satisfies the angle condition (3.2).
We say that the algorithm performs a full FW step if

xk+1 ∈ argminx∈Ω〈∇f(xk),x〉 . (3.14)

In the following proposition, we prove a general linear convergence rate in the number
of good steps, i.e., the steps satisfying αk = ᾱk or (3.14), under the assumption that the
method A satisfies the angle condition (3.2), and that the KL inequality (2.2) holds
for the objective function f in Problem (2.1).

Proposition 3.2. Let us assume that A satisfies the angle condition (3.2), and the
objective function f in Problem (2.1) satisfies condition (2.2) in xk and xk+1.

• If αk = ᾱk then

f(xk+1) − f(x∗) ≤
(

1 − µ

L
τ2
)

(f(xk) − f(x∗)) . (3.15)

• If the step k is a full FW step then

f(xk+1) − f(x∗) ≤
(

1 +
µ

L

)−1
(f(xk) − f(x∗)) . (3.16)
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Proof. Let pk = ‖π(TΩ(xk+1),−∇f(xk+1))‖ and p̃k = ‖π(TΩ(xk+1),−∇f(xk))‖. We
have

|pk − p̃k| = |‖π(TΩ(xk+1),−∇f(xk+1))‖ − ‖π(TΩ(xk+1),−∇f(xk))‖|
≤ ‖ − ∇f(xk+1) + ∇f(xk)‖ ≤ L‖xk+1 − xk‖ ,

(3.17)

where we used the 1-Lipschitzianity of projections in the first inequality.

If αk = ᾱk then

f(xk+1) =f(xk + ᾱkdk) ≤ f(xk) − 1

2L

( 〈∇f(xk),dk〉
‖dk‖

)2

≤ f(xk) − τ2

2L
p2

k−1

≤f(xk) − µτ2

L
(f(xk) − f(x∗)) ,

(3.18)

where we used (8.3) in the first inequality, SBf
A(Ω) = τ in the second one, and condition

(2.2) in the third one.
If the step k is a full FW step then p̃k = 0 because xk+1 ∈ argminy∈Ω〈∇f(xk),y〉 ⇔
−∇f(xk) ∈ NΩ(xk+1) ⇔ ‖π(TΩ(xk+1),−∇f(xk))‖ = 0, where the last equivalence is
true by Proposition 2.2. Then

f(xk+1)−f(x∗) ≤ p2
k

2µ
≤ (p̃k + L‖xk+1 − xk‖)2

2µ
=

L2

2µ
‖xk+1 −xk‖2 ≤ L

µ
(f(xk)−f(xk+1)) ,

(3.19)
where we used (2.2) in the first inequality, (3.17) in the second, p̃k = 0 and (8.4) in the
last inequality. Then (8.4) and (3.16) follow by rearranging (3.18) and (3.19) respec-
tively.

We finally report an asymptotic rate under the additional assumption that bad steps
between two good steps are limited.

Proposition 3.3. Assume that the number of bad steps between two good steps is limited
and that A satisfies the angle condition (3.2). Then:

• every accumulation point of {xk} is stationary, and f(xk) is decreasing and con-
vergent to f∗ ∈ R;

• if Assumption 2.1 holds for every stationary point in the level set [f(x) = f∗], we
have the asymptotic convergence rate:

f(xk) − f(x∗) ≤ Mq̄γ̄(k) , (3.20)

for some M > 0, γ̄(k) number of good steps among the first k steps and

q̄ = max

(

(

1 +
µ

L

)−1
,
(

1 − µ

L
τ2
)

)

. (3.21)

Proof. Let k(j) be the subsequence of iterates associated to good steps, so that by
assumption k(j +1)−k(j) is bounded, and define k̃(j) = k(j)−1 if αk(j) = ᾱk(j), k̃(j) =

k(j) otherwise. Notice that k̃(j + 1) − k̃(j) is also bounded. By (8.4) we have that
{f(xk)} is decreasing and thus convergent to f∗ ∈ R, and also that ‖xk − xk+1‖ → 0.

10



With the notation used in Proposition 3.2 we now claim pk̃(j) → 0. In fact if αk(j) = ᾱk(j)

then

p2
k̃(j)

= p2
k−1 ≤ 2L

τ2
(f(xk) − f(xk+1)) → 0 , (3.22)

where we used (3.18) in the inequality, and if k(j) is a full FW step then

pk̃(j) ≤ pk(j) ≤ p̃k(j) + L‖xk(j)+1 − xk(j)‖ = L‖xk(j)+1 − xk(j)‖ → 0 , (3.23)

where we used (3.17) in the first inequality and p̃k(j) = 0 in the equality.
We therefore have pk̃(j) → 0. Equivalently, thanks to (2.4) we have dist(0,∂fΩ(xk̃(j))) →
0, so if x∗ is a limit point of xk̃(j) by lower semicontinuity of the subdifferential we

must have 0 ∈ ∂fΩ(x∗), i.e., x∗ is stationary. In particular, by compactness {xk̃(j)}
must converge to the set of stationary points. By the boundedness of ‖xk+1 −xk‖ and
k̃(j + 1) − k̃(j) we also have that the set of limit points of {xk} coincides with the set
of limit points of {xk̃(j)}, and in particular it is a subset of stationary points contained

in [f(x) = f∗].
Let Ω̄ ⊂ [f(x) = f∗] be the set of limit points of {xk}. By compactness (see [14, Lemma
6]), we have that for some fixed ε,η > 0, the KL property holds for every x∗ ∈ Ω̄ with
parameters ε and η. Then for k large enough xk ∈ Bδ(x∗) ∩ [f(x∗) < f < f(x∗) + η] for
some x∗ ∈ Ω, and the asymptotic rates follow by Proposition 3.2.

For the three FW variants described before we can now give an asymptotic linear
convergence rate in the number of good steps. We refer the reader to Table 1 for bounds
on this number.

Corollary 3.1. Let us assume that the objective function f satisfies Assumption 2.1
for every stationary point in the level set [f(x) = f∗] and Ω = conv(A) with |A| < +∞
in Problem (2.1). Then the AFW, the PFW and the FDFW converge at a rate

f(xk) − f(x∗) ≤ Mq̄
γ̄(k)
gs , (3.24)

for some M > 0, with γ̄(k) the number of good steps among the first k steps,

q̄gs = max

(

1 − µ

L

(

PWidth(A)

2D

)2

,
(

1 +
µ

L

)−1
)

(3.25)

for the AFW,

q̄gs = 1 − µ

L

(

PWidth(A)

D

)2

(3.26)

for the PFW, and

q̄gs = max

(

1 − µ

L

(

PFWidth(Ω)

2D

)2

,
(

1 +
µ

L

)−1
)

(3.27)

for the FDFW.

Proof. For the AFW and the FDFW the rates (3.25) and (3.27) for good steps follow
directly from (3.15) and (3.16) together with the bound on τ given in Proposition 3.1.
Since the PFW never performs full FW steps, its rate (3.26) for good steps follow
directly from (3.15) together with the bound on τ given in Proposition 3.1. Finally,
given that the number of bad steps between two good steps is limited for all these
methods (see [45, 43]), we have all the assumptions to apply Proposition 3.3.
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4 First order projection free methods with SSC pro-

cedure

We introduce here the SSC procedure, and prove convergence rates both under the
KL inequality (2.2) and in the generic non convex case.

4.1 The SSC procedure

The SSC procedure chains consecutive short steps, thus skipping updates for the
gradient (and possibly for related information, like linear minimizers), until proper
stopping conditions are met. Such a procedure, whose detailed scheme is given in
Algorithm 3, can be easily embedded in a first-order approach (see Algorithm 2).

Algorithm 2: First-order method with SSC

Initialization. x0 ∈ Ω, k = 0.
1. while xk is not stationary:
2. g = −∇f(xk)
3. xk+1 = SSC(xk,g)
5. k = k + 1.

Algorithm 3: SSC(x̄,g)

Initialization. y0 = x̄, j = 0.
Phase I

1. select dj ∈ A(yj,g), α
(j)
max ∈ αmax(yj ,dj)

2. if dj = 0 then:

3. return yj

Phase II

4. compute βj with (4.2)

5. let αj = min(α
(j)
max,βj)

6. yj+1 = yj + αjdj

7. if αj = βj then:
8. return yj+1

9. j = j + 1, go to Step 1.

Given that the gradient −g is constant during the SSC, this procedure is an application
of A for the minimization of the linearized objective fg(z) = 〈−g,z − x̄〉 + f(x̄) with
peculiar stepsizes and stopping criterion. More specifically, after a stationarity check
(Phase I), the stepsize αj is computed by taking the minimum between the maximal

stepsize α
(j)
max (which we always assume to be greater than 0) and an auxiliary stepsize

βj . The point yj+1 generated in Phase II is always feasible since αj ≤ α
(j)
max is always

12



smaller than the maximal feasible stepsize along the direction dj . Notice that if the
method A used in the SSC performs a FW step (see equation (3.5) for the definition of
FW step), then the SSC terminates, with αj = βj or with yj+1 global minimizer of fg.

The auxiliary step size βj is defined as the maximal feasible stepsize for the trust
region

Ωj = B̄‖g‖/2L(x̄ +
g

2L
) ∩ B̄〈g,d̂j〉/L(x̄) (4.1)

when yj ∈ Ωj , otherwise the method stops returning yj . Summarizing,

βj =

{

0 if yj /∈ Ωj ,

βmax(Ωj ,yj ,dj) if yj ∈ Ωj ,
(4.2)

where βmax(Ωj ,yj ,dj) = max{β ∈ R≥0 | yj +βdj ∈ Ωj} is the maximal feasible stepsize
in the direction dj starting from yj with respect to Ωj . Since Ωj is the intersection
of two balls there is a simple closed form expression for βj . In particular, using that
y0 = x̄, if d0 6= 0 we have

β0 =
〈g, d̂0〉
L‖d0‖ ,

which corresponds to (3.11) in the non maximal case, and where β0 > 0 since d0 6= 0 is
by assumption a descent direction for −g.

Employing the trust region Ωj in the definition of βj guarantees the sufficient de-
crease condition

f(yj) ≤ f(xk) − L

2
‖xk − yj‖2 (4.3)

and monotonicity of the true objective f during the SSC.
To see why (4.3) holds, notice that the second ball B̄ = B̄‖g‖/2L(xk + g

2L ) appearing

in the definition of Ωj does not depend on j, so that since y0 ∈ B̄ we have yj ∈ B̄ for
every j ∈ [0 : T ], with T maximal iteration index of the SSC. This is enough to obtain
(4.3) because for every z ∈ B̄ we have

f(z) ≤ f(x̄) − 〈g,z − x̄〉 +
L

2
‖z − x̄‖2 ≤ f(x̄) − L

2
‖x̄− z‖2 , (4.4)

where the first inequality is the standard descent lemma and the second follows from
the definition of B̄.

We prove that the true objective f is monotone decreasing in the next lemma.

Lemma 4.1. Let us assume yj ∈ B̄〈g,d̂j〉/L(x̄). Then for every β ∈ [0,βj ] we have

d

dβ
f(yj + βdj) ≤ 0 ,

and thus in particular f(yj + βjdj) ≤ f(yj).

Proof. We have

d

dβ
f(yj + βdj) = ‖dj‖〈∇f(yj + βdj), d̂j〉

=‖dj‖〈(∇f(yj + βdj) + g) − g, d̂j〉 = ‖dj‖(〈∇f(yj + βdj) + g, d̂j〉 − 〈g, d̂j〉)
≤‖dj‖(L‖x̄− yj − βdj‖ − 〈g, d̂j〉) ≤ 0 ,

13



where we used g = −∇f(x̄) and the Lipschitzianity of ∇f in the first inequality and

yj + βjdj ∈ B̄〈g,d̂j〉/L(x̄)

in the second.

The next result illustrates how the sequence {xk} generated by Algorithm 2 satisfies
certain descent conditions. This is an adaptation to our setting of the ones used in
the analysis of many proximal type gradient methods (see [4], [5], [13] and references
therein). A subtle difference is the introduction of an "hidden sequence" {x̃k} to control
the projection of the negative gradient on the tangent cone.

Proposition 4.1. Let us consider the sequence {xk} generated by Algorithm 2 and
assume that

• the angle condition (3.2) holds;

• the SSC condition terminates in a finite number of steps.

Then

f(xk) − f(xk+1) ≥ L

2
‖xk − xk+1‖2 , (4.5)

‖xk − xk+1‖ ≥ K‖π(TΩ(x̃k),−∇f(x̃k))‖ (4.6)

for some x̃k ∈ {yj}T
j=0 such that f(xk+1) ≤ f(x̃k) ≤ f(xk) − L

2 ‖xk − x̃k‖2, ‖x̃k − xk‖ ≤
‖xk+1 − xk‖ and for K = τ/(L(1 + τ)).

4.2 SSC for Frank-Wolfe variants

In this section, we show how to apply our results to the PFW, the AFW and the
FDFW on polytopes, i.e., we prove finite termination of the SSC procedure when one of
these methods is considered in Algorithm 2. We also give worst case and average worst
case bounds for the number of iterations of the SSC. We start by proving a general
termination criterion.

Lemma 4.2. Assume that the method A applied to any linear function Lg(x) = −〈g,x〉
on the feasible set Ω and with every stepsize maximal always terminates in at most T
iterations with an optimal solution, i.e. generates a sequence {yj}j∈[0,T ′] with T ′ ≤ T
and yT ′ ∈ argminx∈ΩLg(x). Then the SSC with the method A on the feasible set Ω
always terminates in at most T iterations.

Proof. Assume by contradiction that the SSC does at least T +1 iterations, generating
the sequence {yj}j∈[0:T+1] before terminating. Notice that in this case the SSC must
always do maximal steps for j ∈ [0 : T ], because it terminates at step 8 when αj =

βj and in particular if αj < α
(j)
max. Then for some T ′ ≤ T we must have that yT ′ ∈

argminx∈ΩLg(x), which gives a contradiction because in this case the method can’t
find a feasible descent direction in Phase I and terminates returning yT ′ .

Remark 2. Using the same line of reasoning, it is not difficult to prove that the SSC
always terminates if the method A applied to linear objectives and with stepsizes always
maximal generates a (possibly finite) sequence {yj} satisfying

liminf πyj
(g) = 0 . (4.7)
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We now denote with {S(j)} the sequence of active sets generated by the AFW and
the PFW method in the SSC, and with yj proper convex combination of the elements

in S(j). Furthermore, for the FDFW we assume that the maximal stepsize is given by
feasibility conditions as in [26]:

αmax(x,d) = max{α ∈ R≥0 | x+ αd ∈ Ω} . (4.8)

Notice that after a maximal in face step from yj we have dim(F(yj+1)) < dim(F(yj))
because yj+1 lies on the boundary of F(yj).

Proposition 4.2. The SSC always terminates in at most:

• |A| iterations for the AFW,

• |A| − 1 iterations for the PFW,

• dim(Ω) + 1 iterations for the FDFW.

Proof. By Lemma 4.2 we just need to bound the maximum number of iterations if
the method performs always maximal steps for a linear objective Lg(x). The AFW
can do at most |A| − 1 consecutive maximal away steps, since at every such step the
number of active atoms decreases by one. Analogously, the FDFW can do at most
dim(Ω) consecutive maximal in face steps, since at every such steps the dimension of
the minimal face containing the current iterate decreases by one. The respective bound
follows Lemma 4.2 by noticing that in the linear case the methods terminate after a
full FW step. For the PFW, the linearity of the objective implies that only atoms in
Ā := argmaxa∈A〈g,x〉 can be added to the support, and only atoms in A \ Ā can be
dropped from the support. In particular, once an atom is dropped from the active set it
cannot be added again, and since at every maximal step the PFW drops an atom from
the active set its maximal number of iterations is |A \ Ā| ≤ |A| − 1.

Proposition 4.3. Assume that the linear minimizer is not changed during the SSC.
Then, for an infinite sequence {xk}, the worst case average number of iterations is

• 2 for the AFW and the PFW,

• ∆(Ω) + 1 for the FDFW.

The proof uses analogous arguments to the ones in [45, Theorem 8] to bound the
number of bad steps and we defer it to the appendix.

4.3 Convergence rates

4.3.1 Smooth non convex objectives

We first prove, in the generic smooth non convex case, convergence to the set of
stationary points with a rate of O( 1√

k
) for ‖π(TΩ(x̃i),−∇f(x̃i))‖.

Theorem 4.1. Let us consider the sequence {xk} generated by Algorithm 2 and assume
that

• the angle condition (3.2) holds;

• the SSC procedure always terminates in a finite number of steps.
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Algorithm Article LMO c.r. Gradient c.r. Gap

NCGS [58] O
(

1
k0.25

)

O
(

1√
k

)

min0≤i≤k π(xi)

AFW, FW [17], [44] O
(

1√
k

)

O
(

1√
k

)

min0≤i≤k G(xi)

AFW, PFW, FDFW + SSC Ours O
(

1√
k

)

O
(

1√
k

)

min0≤i≤k ‖π(TΩ(x̃i),−∇f(x̃i))‖

Table 2: Comparison between convergence rates in the generic smooth non convex case.

See also Remark 3. π(x) = ‖x − π
(

Ω,x − ∇f(x)
2L

)

‖, G is the FW gap (see (4.10)).

Then {f(xk)} is decreasing, f(xk) → f̃ ∈ R and the limit points of {xk} are stationary.
Furthermore, for any sequence {x̃k} satisfying the conditions of Proposition 4.1, we
have ‖x̃k − xk‖ → 0, and

min
0≤i≤k

‖π(TΩ(x̃i),−∇f(x̃i))‖ ≤ min
0≤i≤k

‖xi+1 − xi‖
K

≤
√

2(f(x0) − f̃)

K2L(k + 1)
, (4.9)

for K = τ/(L(1 + τ)).

We now give a corollary for Theorem 4.1 specialized to the FW variants described
in Section 3.1 (see also Table 2).

Corollary 4.1. Let us assume that Ω = conv(A), with |A| < +∞ in Problem (2.1).
Then the sequence {xk} generated by Algorithm 2 with AFW (PFW or FDFW) in the
SSC converges at a rate given by equation (4.9), with τ = τp/2 (τp or τv/2, respectively).

Proof. Finite termination of the SSC follows by Proposition 4.2, and the angle condition
is satisfied by Proposition 3.1. Thus we have all the assumptions to apply Theorem
4.1.

Remark 3. Let G : Ω → R≥0 be the FW gap (see, e.g., [44]):

G(x) = max
s∈Ω

〈−∇f(x),s − x〉 . (4.10)

Then, for any y ∈ Ω

G(y) = max
s∈Ω

〈−∇f(y),s−y〉 = max
s∈Ω\{y}

‖s−y‖〈−∇f(y),
s − y

‖s − y‖〉 ≤ D‖π(TΩ(y),−∇f(y))‖ ,

(4.11)
where the inequality follows from Proposition 2.2.

Taking into account equation (4.11), it is easy to see that our rate is an improvement
of the ones proved in [44] and [17] (see Table 2). Furthermore, we do not need to start
from a vertex to avoid dependence from the support of {x0} like in [17, Theorem
5.1]. Finally, our method improves the conditional gradient sliding rate (NCGS) not
only in LMO but also in gradients, given that from Ω− {y} ⊂ TΩ(y) it follows π(y) ≤
‖π(TΩ(y),−∇f(y))‖/2L for every y ∈ Ω.
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4.3.2 Objectives with KL property

As a consequence of Proposition 4.1, we have linear convergence rates for the general
algorithmic scheme reported in Algorithm 2 under the KL inequality (2.2), the angle
condition (3.2), and finite termination of the SSC procedure. In the next results (Lemma
4.3, Theorem 4.2 and Corollary 4.2), we always assume the following:

• the angle condition (3.2) holds;

• the SSC procedure always terminates in a finite number of steps.

Lemma 4.3. Let us consider the sequence {xk} generated by Algorithm 2 and assume
that the objective function f satisfies condition (2.2), with f(x∗) fixed, in every feasible

point generated by the algorithm. Then, for q =
(

1 + µ
L

τ2

(1+τ)2

)−1
we have f(xk) →

f(x∗), with
f(xk) − f(x∗) ≤ qk(f(x0) − f(x∗)) , (4.12)

and xk → x̃∗ with

‖xk − x̃∗‖ ≤
√

2 − 2q(f(x0) − f(x̃∗))√
L(1 − √

q)
q

k
2 , (4.13)

for x̃∗ stationary point such that f(x̃∗) = f(x∗).

As an example, the assumption of Lemma 4.3 is clearly satisfied if (2.2) holds globally,
corresponding to a constrained version of the global PL property used in [40]. By [13,
Corollary 6], for convex objectives this assumption is satisfied in particular under a
global quadratic Holderian error bound, thus, e.g., by strongly convex objectives.
Under mild assumptions on the stationary point x∗, we can also apply Lemma 4.3
locally on non convex objectives, thus adapting to our projection free setting the local
results given in [5, Section 2.3] for proximal methods.

Theorem 4.2. Let Assumption 2.1 hold at x∗. Further assume that xk ∈ Bδ(x∗) ⇒
f(xk+1) ≥ f(x∗). Then, for some δ̃ > 0, if x0 ∈ Bδ̃(x∗) the rates (4.12) and (4.13) hold.

It is not difficult to see that the assumption xk ∈ Bδ(x∗) ⇒ f(xk+1) ≥ f(x∗) is true,
e.g., if x∗ is a minimizer on its connected component of the sublevel set [f ≤ f(x0)].

As a corollary of Theorem 4.2, we can apply Lemma 4.3 and derive the following
asymptotic rates.

Corollary 4.2. Let us consider the sequence {xk} generated by Algorithm 2. Let As-
sumption 2.1 hold at every point of the limit set of {xk}. Then, for some positive
constants M and M̄ , {xk} → x∗, with the asymptotic rates:

f(xk) − f(x∗) ≤ Mqk ,

‖xk − x∗‖ ≤ M̄q
k
2 .

(4.14)

Similarly to what we did for Theorem 4.1, here we give a corollary for Lemma 4.3
related to the FW variants described in Section 3.1.

Corollary 4.3. Let us assume that the objective function f satisfies condition (2.2)
on every point generated by the algorithm, with f(x∗) fixed, and that Ω = conv(A) with
|A| < +∞ in Problem (2.1). Then the sequence {xk} generated by Algorithm 2 with
AFW (PFW or FDFW) in the SSC converges at the rates given by Lemma 4.3, with
τ = τp/2 (τp or τv/2, respectively).

17



Algorithm Article Objective γ(k) Ib qgs hk/h0 upper bound Tavg

AFW [45] SC k/2 |S0| − 1 1− µ
L

τ2
p

4

(

1− µ
L

τ2
p

4

)
k
2

-

PFW [45] SC k/(3|A|! + 1) - 1− µ
L

τ2
p

(

1− µ
L

τ2
p

)
k

3|A|!+1 -

FDFW1 [43] SC k/(∆(Ω)+ 1) dim(F(x0)) 1− µ
L

τ2
v

4

(

1− µ
L

τ2
v

4

)
k

∆(Ω)+1
-

AFW + SSC Ours NC, KL k -

(

1+ µ
L

τ2
p

(2+τp)2

)−1 (

1+ µ
L

τ2
p

(2+τp)2

)−k

2

PFW + SSC Ours NC, KL k -

(

1+ µ
L

τ2
p

(1+τp)2

)−1 (

1+ µ
L

τ2
p

(1+τp)2

)−k

2

FDFW + SSC Ours NC, KL k -
(

1+ µ
L

τ2
v

(1+τv)2

)−1 (

1+ µ
L

τ2
v

(1+τv)2

)−k
∆(Ω)+ 1

Table 1: Comparison between the rates of the standard and SSC version of some FW
variants for Ω = conv(A) with |A| < ∞. SC = strongly convex, NC = non convex, KL = KL
property. γ(k): lower bound on the number of good steps after k steps, counting from the
first good step. Ib: bound on the number of bad steps before the first good step. qgs: rate
in good steps. hk/h0 upper bound: worst case rate assuming no initial bad steps, equal to

q
γ(k)
gs . ∆(Ω) = maximum increase in face dimension F(xk+1)−F(xk) after a FW step. S0 =

active set for x0. Tavg = worst case average iteration number of the SSC (see Proposition
4.3)

Proof. Finite termination of the SSC follows by Proposition 4.2, and the angle condition
is satisfied by Proposition 3.1. Thus we have all the assumptions to apply Lemma
4.3.

For comparison, we now recall some well-known result related to global linear con-
vergence rates for the FW variants under analysis.

Proposition 4.4. Let us assume that the objective function f is µ−strongly convex and
Ω = conv(A) with |A| < +∞ in Problem (2.1). Let {xk} be a sequence generated by the
AFW (PFW or FDFW), with stepsize given by exact linesearch. If the initial active set
is S0 = {x0} for the AFW (S0 = {x0} for the PFW, dim(F(x0)) = 0 for the FDFW),
then

f(xk) − f∗ ≤ q
γ(k)
gs (f(x0) − f∗) , (4.15)

for γ(k) and qgs given in Table 1.

Proof. For the AFW and the PFW the result follows directly from [45, Theorem 1],
with the exception of the good steps rate for the PFW, which can be obtained by
applying the bound [45, Equation 10] in [45, Equation 5]. For the FDFW the result
follows from [43, Theorem 1] (where the method is referred to as DiCG), with the bound
µPWidth(V (Ω)2 on the geometric strong convexity constant implied by [45, Theorem
6] improved to µPFWidth(Ω)2 as in Proposition 3.1.

For all the examples where an upper bound on τp = PWidth(A)
D is known (see [59],

[55] and references therein) when dim(conv(A)) → ∞ then τp → 0 and our rates for
the SSC converge to the rates without SSC for good steps in Table 1. While we are
not able to prove this limit in general, for all polytopes with dimension greater or
equal to 2, except low dimensional simplices (see Example 1), we still have τp ≤ 1

2
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(because PdirW(A,g,x)+PdirW(A,−g,x) ≤ D for x in the relative interior of conv(A)
and ±g feasible and orthogonal to conv(S) for some S ∈ Sx). Using this together with
Example 1 for simplices, it is easy to check that the rates in Corollary 4.3 (SSC based
FW variants) are strict improvements on the known worst case rates (standard FW
variants) reported in Proposition 4.4, with a limited number of exceptions. These are
the trivial one dimensional case and simplices with low dimension (≤ 4 for the PFW,
and ≤ 8 for the AFW using the loose bounds in Example 1) combined with objectives
having condition number µ/L sufficiently close to 1.

Example 1. If W (conv(A)) is the width of conv(A) (see [45, Section 3]) then it follows
directly from the definition of PWidth that W (conv(A)) ≥ PWidth(A), with equality for
A = {e1, ...,en} (see [45] and [55]). Let now A = {a1, ...,an} be a set of n affinely

independent points in R
n−1. We claim that, for rn =

√

1 − 1
n circumradius of the n−1

dimensional unit simplex ∆n−1

PWidth(A)/D ≤ r−1
n W (∆n−1) =







2r−1
n

√

1
n for n even,

2r−1
n

√

1
n−1/n

for n odd.
(4.16)

To see this, assume without loss of generality D = 1 and 0 ∈ int(Ω) for Ω = conv(A).
Then if Â = {â1, ..., ân} we have W (conv(Â)) ≥ W (conv(A)). We can conclude

PWidth(A)

D
= PWidth(A) ≤ W (conv(A)) ≤ W (conv(Â)) ≤ r−1

n W (∆n−1) , (4.17)

where in the last inequality we used that regular simplices maximize the width among
simplices with fixed inradius (see, e.g., [3] and [30]).

5 Examples

We now discuss some examples of objectives satisfying the KL property and sets
where the angle condition can be satisfied with an explicit bound, relevant to practical
optimization problems.

5.1 KL property

The KL property of Assumption 2.1 is satisfied for Problem (2.1) in the following
cases:

• f is composite strongly convex, i.e. f(x) = g(Bx) with g strongly convex, and Ω
is a polytope [49, Proposition 4.1],

• f is composite strongly convex as in the previous point, Ω is the lp ball for p ∈ [1,2],
and infx∈Ω f(x) > infx∈Rn g(Bx) [49, Proposition 4.2],

• f is (non convex) quadratic, i.e. f(x) = x⊤Qx+b⊤x+c, and Ω is a polytope, [49,
Corollary 5.2],

• f is non convex quadratic and does not satisfy the degeneracy condition of [34,
equation (30)], and Ω is the unit sphere [34, Theorem 3.13].
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5.2 Angle condition bounds

5.2.1 Bounds using PWidth

For the unit simplex and the unit cube explicit Θ(1/
√

n) values were given in [55,
Example 1 and 2]. With analogous arguments it can be proved that the PWidth of the
l1 ball is 1/

√
n. By Proposition (3.1), this implies that the angle condition can be lower

bounded with τ = Θ(1/
√

n) for the unit simplex and the l1 ball, and with τ = Θ(1/n)
for the unit cube.

5.2.2 Bounds using facial distance vf

For a polytope Ω = {x ∈ R
n | Ax ≤ b} with A ∈ R

m×n the facial distance can be
defined as (see [8]):

vf(Ω) = min
v∈V (Ω)

i:〈a(i),v〉<bi

bi − 〈a(i),v〉
‖a(i)‖ . (5.1)

It is the easy to bound vf(Ω) on some specific class of polytopes and, consequently, give
an explicit bound for the angle condition (see also [7]). For instance, if the matrix A
is totally unimodular (i. e. all the vertices are integral for b integral), we have the
following properties.

Proposition 5.1. If the matrix A is totally unimodular and b is integral, then for
ā = maxi∈[1:m] ‖ai‖:

• for the AFW or the PFW, if the size of the active set stays bounded by s̄, then

SBAFW(Ω) ≥ 1

2s̄āD
, SBPFW(Ω) ≥ 1

s̄āD
; (5.2)

• for the FDFW,

SBFD(Ω) ≥ 1

2Dā(dim(Ω) + 1)
≥ 1

2Dā(n + 1)
. (5.3)

Proof. If A is totally unimodular then for i ∈ [1 : m],v ∈ V such that bi − 〈a(i),v〉 > 0
we have

bi − 〈a(i),v〉
‖ai‖

≥ 1

‖ai‖
(5.4)

since the numerator on the LHS must be at least one. By applying (5.4) to the RHS of
(5.1) we obtain

vf(Ω) ≥ min
i∈[1:m]

1

‖ai‖
=

1

ā
. (5.5)

Then the thesis follows for the AFW and the PFW directly from the bounds of Remark
1. For the FDFW, the second part of (5.3) is trivially true since dim(Ω) ≤ n, and the
first follows by the bound given in Remark 1, using that by the Caratheodory theorem
for every feasible point x there exists S ∈ Sx with |S| ≤ dim(Ω) + 1.
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The bound of Proposition 5.1 allows us to bound the angle condition for the min
cost flow polytope with integral capacities:

Ω = {x ∈ R
n | Ax ≤ b, 0 ≤ x ≤ c} , (5.6)

with b,c integral and A incidence matrix of a directed graph G.

Corollary 5.1. Consider a directed graph G with incidence matrix A ∈ R
m×n and

maximum degree of a vertex d. Then if Ω is given as in (5.6):

SBFD(Ω) ≥ 1

2
√

d(n + 1)‖c‖
(5.7)

Proof. By the capacity constraints, the diameter of Ω is at most ‖c‖. Then the result
follows easily from Proposition 5.1 by noticing that Ω can be rewritten as {x ∈R

n | Āx ≤
b} for Ā = (A;I;−I) totally unimodular (see, e.g., [63]) with maximum norm of a row
equal to

√
d.

5.2.3 Bounds on sets with smooth boundary

On convex sets with smooth boundary the angle condition can be satisfied with
constant arbitrarily close to 1 using orthographic retractions [60, Section 6.3]. Further-
more, on sublevel sets of smooth and strongly convex functions the FDFW satisfies the
angle condition with constant equal to the condition number of the function divided by
2 [60, Section 6.2].

5.3 Applications

There is a number of practical optimization problems with the feasible sets and
objectives discussed above. To start with, the LASSO problem, the minimum enclosing
ball problem, training linear support vector machines and finding maximal cliques in
graphs can all be formulated as convex quadratic optimization problems [18] on the l1
ball or the simplex. The trust region subproblem is a non convex quadratic problem on
the unit sphere (see [34]). The min cost flow problem with a quadratic objective is also
of practical interest [62]. Many other examples can be found in [49].

6 Numerical tests

We tested the SSC on the AFW and the PFW methods, applied to a quadratic (non
convex) relaxation of the maximum clique problem proposed in [15].
More precisely, let A be the adjacency matrix of a graph G. In [15] it is proved that
there is a one to one correspondence between the maximal cliques of G and the local
minima of the function f : ∆n−1 → R defined by

f(x) = −x⊺Ax− 1

2
‖x‖2. (6.1)

Therefore, we consider instances of Problem (2.1) with objective (6.1) and feasible set
the n − 1 dimensional unit simplex, that is Ω = ∆n−1.
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Table 3: Max clique found, average clique size, standard deviation of clique sizes and
average CPU time for AFW and SSC + AFW on max clique instances from the DIMACS
benchmark.

AFW SSC + AFW

Instance Max Mean Std CPU time Max Mean Std CPU time

C2000.5 14 11.7 0.89 2.800 14 11.6 1.00 0.082
C2000.9 67 60.2 2.20 3.135 65 60.0 2.05 0.200
C4000.5 16 12.8 0.94 23.487 16 12.5 0.92 0.429
MANN_a81 1080 1080.0 0.00 31.156 1080 1080.0 0.00 25.047
keller6 45 38.4 2.41 13.713 43 37.8 2.22 0.413

Table 4: Max clique found, average clique size, standard deviation of clique sizes and
average CPU time for PFW and SSC + PFW on max clique instances from the DIMACS
benchmark.

PFW SSC + PFW

Instance Max Mean Std CPU time Max Mean Std CPU time

C2000.5 14 11.8 0.86 2.811 14 12.1 0.86 0.077
C2000.9 67 62.3 1.83 3.031 68 62.0 1.77 0.150
C4000.5 15 12.7 0.92 23.423 16 13.4 0.95 0.379
MANN_a81 1080 1080.0 0.00 19.867 1080 1080.0 0.00 15.442
keller6 44 37.3 2.68 13.515 45 35.6 2.83 0.258

The graph instances we use are taken from the DIMACS benchmark [36]. To have a
fair comparison for both the AFW and the PFW we use the stepsize given by

αk = min{αmax
k ,−〈∇f(xk),dk〉

L‖dk‖2
} (6.2)

with αmax
k determined by boundary conditions. In this way the new point computed

by the methods coincides with the first point computed in the SSC procedure of their
multistep versions.
We reported in Table 3, 4 the results for the most challenging instances, aggregated on
100 runs starting from random points. The SSC clearly improves the CPU times while
keeping the solution quality. Indeed in these problems the SSC allows the methods
to identify the support of a local minimum in fewer iterations, so that the slow initial
convergence phase is skipped (see Figures 1, 2).
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Figure 1: Iteration number and CPU time vs log(hk/h0) in the first and the second column
respectively for the instance keller6

7 Conclusions

FW variants rely on the choice of good feasible descent directions, for which there
needs to be a trade-off between slope and maximal stepsize. To address this issue
we proposed the SSC procedure, which allowed us to prove bad step free convergence
rates under an angle condition for the directions selected by the method. Preliminary
numerical experiments also support the soundness of this approach.

Future research directions include employing our framework to design and analyze
other projection free first order methods, investigating active set identification properties
of FW variants with the SSC, generalizing our framework to constrained stochastic
optimization, as well as applications for the solution of real-world data science problems.

8 Appendix

8.1 KL property

We state here a result showing an implication between the (global) PL property
used in [40] and (2.2). We first recall the PL property used in [40]:

1

2
‖∇f(x)‖2 ≥ µ(f(x) − f∗) . (8.1)

with f∗ optimal value of f with non empty solution set X ∗.
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Figure 2: Iteration number and CPU time vs log(hk/h0) in the first and the second column
respectively for the instance C4000.5

Proposition 8.1. If f is convex, the optimal solution set X ∗ of f is contained in Ω
and (8.1) holds, then (2.2) holds for every x ∈ Ω.

Proof. By [40, Theorem 2] the PL property is equivalent, for convex objectives, to the
unconstrained quadratic growth condition:

f(x) − f∗ ≥ µ

2
dist(x,X ∗)2 (8.2)

In turn, given that by the assumption X ∗ ⊂ Ω the set X ∗ is the solution set for fΩ

as well, (8.2) implies the global non smooth Holderian error bound condition from [13]

with ϕ(t) =
√

2t
µ , and by [13, Corollary 6] this is equivalent to the KL property (2.2)

holding globally on Ω.

Remark 4. We remark that without the assumption X ∗ ⊂ Ω the implication is no
longer true even for convex objectives, a counter example being Ω equal to the unitary
ball and f((x(1), ...,x(n))) = (x(1) − 1)2. At the same time, the KL property we used
does not imply the PL property in general, since the latter only deals with unconstrained
minima.

8.2 Proofs

We report here the missing proofs. We start with the proof of Lemma 3.2.

Proof. By the standard descent lemma [10, Proposition 6.1.2],

f(xk+1) = f(xk + αkdk) ≤ f(xk) + αk〈∇f(xk),dk〉 + α2
k

L

2
‖dk‖2 , (8.3)
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and in particular

f(xk)−f(xk+1) ≥ −αk〈∇f(xk),dk〉−α2
k

L

2
‖dk‖2 ≥ L

2
α2

k‖dk‖2 =
L

2
‖xk+1 −xk‖2 , (8.4)

where we used αk ≤ ᾱk in the last inequality. This proves (3.13).

We now state a preliminary result needed to prove Proposition 2.2:

Proposition 8.2. Let C be a closed convex cone. For every y ∈ R
n

dist(C∗,y) = sup
c∈C

〈ĉ,y〉 .

As stated in [21] this is an immediate consequence of the Moreau-Yosida decompo-
sition:

y = π(C,y) + π(C∗,y) .

Proposition 2.2. First, by continuity of the scalar product we have

sup
h∈Ω/{x̄}

(

g,
h − x̄

‖h − x̄‖

)

= sup
h∈TΩ(x̄)\{0}

(g, ĥ) . (8.5)

Since NΩ(x̄) = TΩ(x̄)∗ the first equality is exactly the one of Proposition 8.2 if g /∈ NΩ(x̄),
and it is trivial since both terms are clearly 0 if g ∈ NΩ(x̄).
It remains to prove

dist(NΩ(x̄),g) = ‖π(TΩ(x̄),g)‖ ,

which is true by the Moreau - Yosida decomposition.

Proposition 4.1. Let Bj = B̄〈g,d̂j〉/L(xk) and let T be such that xk+1 = yT .

Inequality (4.3) applied with j = T gives (4.5). Moreover, by taking x̃k = yT̃ for some

T̃ ∈ [0 : T ] the conditions

f(xk+1) ≤ f(x̃k) ≤ f(xk) − L

2
‖xk − x̃k‖2 (8.6)

are satisfied by Lemma 4.1 and (4.3).
Let now pj = ‖π(TΩ(yj),−∇f(yj))‖ and p̃j = ‖π(TΩ(yj),g)‖ = ‖π(TΩ(yj),−∇f(xk))‖.
We have

|pj − p̃j| ≤ L‖yj − xk‖ , (8.7)

reasoning as for (3.17). We now distinguish four cases according to how the SSC ter-
minates.
Case 1: T = 0 or dT = 0. Since there are no descent directions xk+1 = yT must be
stationary for the gradient g. Equivalently, p̃T = ‖π(TΩ(xk+1),g)‖ = 0. We can now
write

‖xk+1 − xk‖ ≥ 1

L
(|pT − p̃T |) =

pT

L
> KpT ,

where we used (8.7) in the first inequality and p̃T = 0 in the equality. Finally, it is clear
that if T = 0 then d0 = 0, since y0 must be stationary for −g.
Before examining the remaining cases we remark that if the SSC terminates in Phase
II then αT−1 = βT−1 must be maximal w.r.t. the conditions yT ∈ BT−1 or yT ∈ B̄. If
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αT−1 = 0 then yT−1 = yT , and in this case we cannot have yT−1 ∈ ∂B̄, otherwise the SSC
would terminate in Phase II of the previous cycle. Therefore necessarily yT = yT−1 ∈
int(BT−1)c (Case 2). If βT−1 = αT−1 > 0 we must have yT−1 ∈ ΩT−1 = BT−1 ∩ B̄, and
yT ∈ ∂BT−1 (case 3) or yT ∈ ∂B̄ (case 4) respectively.
Case 2: yT−1 = yT ∈ int(BT−1)c. We can rewrite the condition as

〈g, d̂T−1〉 ≤ L‖yT−1 − xk‖ = L‖yT − xk‖ . (8.8)

Thus

pT = pT−1 ≤ p̃T−1 + L‖yT − xk‖ ≤ 1

τ
〈g, d̂T−1〉 + L‖yT − xk‖ ≤

(

L

τ
+ L

)

‖yT − xk‖ ,

(8.9)
where in the equality we used yT = yT−1, the first inequality follows from (8.7) and again

yT = yT−1, the second from 〈g,d̂T 〉
p̃T

≥ DSBA(Ω,yT ,g) ≥ SBA(Ω) = τ , and the third from

(8.8). Then x̃k = xk+1 = yT satisfies the desired conditions.
Case 3: yT = yT−1 + βT−1dT−1 and yT ∈ ∂BT−1. Then from yT−1 ∈ BT−1 it follows

L‖yT−1 − xk‖ ≤ 〈g, d̂T−1〉 , (8.10)

and yT ∈ ∂BT−1 implies

〈g, d̂T−1〉 = L‖yT − xk‖ . (8.11)

Combining (8.10) with (8.11) we obtain

L‖yT−1 − xk‖ ≤ L‖yT − xk‖ . (8.12)

Thus

pT−1 ≤ p̃T−1 + L‖yT−1 − xk‖ ≤ 1

τ
〈g, d̂T−1〉 + L‖yT−1 − xk‖ ≤

(

L

τ
+ L

)

‖yT − xk‖ ,

where we used (8.11), (8.12) in the last inequality and the rest follows reasoning as for
(8.9). In particular we can take x̃k = yT−1, where ‖x̃k − xk‖ ≤ ‖xk+1 − xk‖ by (8.12).
Case 4: yT = yT−1 + βT−1dT−1 and yT ∈ ∂B̄.
The condition xk+1 = yT ∈ B̄ can be rewritten as

L‖xk+1 − xk‖2 − 〈g,xk+1 − xk〉 = 0 . (8.13)

For every j ∈ [0 : T ] we have

xk+1 = yj +

T−1
∑

i=j

αidi . (8.14)

We now want to prove that for every j ∈ [0 : T ]

‖xk+1 − xk‖ ≥ ‖yj − xk‖ . (8.15)

Indeed, we have

L‖xk+1 − xk‖2 = 〈g,xk+1 − xk〉 = 〈g,yj − xk〉 +

T−1
∑

i=j

αi〈g,di〉

≥ 〈g,yj − xk〉 ≥ L‖yj − xk‖2 ,
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where we used (8.13) in the first equality, (8.14) in the second, 〈g,dj〉 ≥ 0 for every j in
the first inequality and yj ∈ B̄ in the second inequality.
We also have

〈g,xk+1 − xk〉
‖xk+1 − xk‖ =

〈g,
∑T−1

j=0 αjdj〉
‖∑T−1

j=0 αjdj‖
≥

〈g,
∑T−1

j=0 αjdj〉
∑T−1

j=0 αj‖dj‖

≥ min

{ 〈g,dj〉
‖dj‖ | 0 ≤ j ≤ T − 1

}

.

(8.16)

Thus for T̃ ∈ argmin
{ 〈g,dj〉

‖dj‖ | 0 ≤ j ≤ T − 1
}

〈g, d̂T̃ 〉 ≤ 〈g,xk+1 − xk〉
‖xk+1 − xk‖ = L‖xk+1 − xk‖ , (8.17)

where we used (8.16) in the first inequality and (8.13) in the second.
We finally have

pT̃ ≤ p̃T̃ + L‖yT̃ − xk‖ ≤ 1

τ
〈g, d̂T̃ 〉 + L‖yT̃ − xk‖ ≤

(

L

τ
+ L

)

‖xk+1 − xk‖ ,

where we used (8.15), (8.17) in the last inequality and the rest follows reasoning as
for (8.9). In particular x̃k = yT̃ satisfies the desired properties, where ‖x̃k − xk‖ ≤
‖xk+1 − xk‖ by (8.15).

Proof of Proposition 4.3. Let T (k) be the number of iterates generated by the SSC
at the step k in Phase II. For the AFW and the PFW, reasoning as in the proof of
Proposition 4.2 we obtain that if the SSC does T (k) iterations, the number of active
vertices decreases by at least T (k) − 2. Then on the one hand

|S(k)| − |S(0)| ≥ 1 − |S(0)| , (8.18)

while on the other hand

|S(k)| − |S(0)| =

k−1
∑

i=0

(|S(i+1)| − |S(i)|)

≤ 2k −
k−1
∑

i=0

T (i) .

(8.19)

Combining (8.18) and (8.19) and rearranging, we obtain:

1

k

k−1
∑

i=0

T (i) ≤ 2 +
|S(0)| − 1

k
, (8.20)

and the desired result follows by taking the limit for k → ∞.
For the FDFW, notice that at every iteration the SSC performs a sequence of maximal
in face steps terminated either by a Frank Wolfe step, after which F(yj) can increase
of at most ∆(Ω), or by a non maximal in face step, after which F(yj) stays the same.
In both cases, we have

dim(F(xk+1)) − dim(F(xk)) ≤ ∆(Ω) − T (k) + 1. (8.21)
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Then,
dimF(xk) − dimF(x0) ≥ −dimF(x0) , (8.22)

and

dimF(xk) − dimF(x0) =

k−1
∑

i=0

(dim(F(xi+1) − dim(F(xi))))

≤ k∆(Ω) + k −
k−1
∑

i=0

T (i) .

(8.23)

The conclusion follows as for the AFW and the PFW.

Theorem 4.1. The sequence {f(xk)} is decreasing by (4.5). Thus by compactness
f(xk) → f̃ ∈ R and in particular f(xk) − f(xk+1) → 0. So that by (4.5) also ‖xk+1 −
xk‖ → 0. Let {xk(i)} → x̃∗ be any convergent subsequence of {xk}. For {x̃k} chosen as
in the proof of Proposition 4.1 we have ‖x̃k −xk‖ ≤ ‖xk+1 −xk‖ because x̃k = yT = xk

in case 1 and case 2, by (8.12) in case 3, and by (8.15) in case 4. Therefore

‖x̃k(i) − xk(i)‖ ≤ ‖xk(i)+1 − xk(i)‖ → 0 .

Furthermore, ‖π(TΩ(x̃k(i)),−∇f(x̃k(i))))‖ ≤ ‖xk(i)+1−xk(i)‖
K → 0 again by Proposition

4.1, so that x̃k(i) → x̃∗ with ‖π(TΩ(x̃k(i)),−∇f(x̃k(i)))‖ → 0. Then ‖π(TΩ(x̃∗),−∇f(x̃∗))‖ =
0 and x̃∗ is stationary.

The first inequality in (4.9) follows directly from (4.6). As for the second, we have

k + 1

K2
( min
0≤i≤k

‖xi+1 − xi‖)2 =
k + 1

K2
min

0≤i≤k
‖xi+1 − xi‖2

≤ 1

K2

k
∑

i=0

‖xi − xi+1‖2 ≤ 2

LK2

k
∑

i=0

(f(xi+1) − f(xi)) ≤ 2(f(x0) − f̃)

LK2
,

where we used (4.5) in the first inequality, {f(xi)} decreasing together with f(xi) → f̃
in the second and the thesis follows by rearranging terms.

We now prove Lemma 4.3. We start by recalling Karamata’s inequality ([38], [39])
for concave functions. Given A,B ∈ R

N it is said that A majorizes B, written A ≻ B, if

j
∑

i=1

Ai ≥
j
∑

i=1

Bi for j ∈ [1 : N ] ,

N
∑

i=1

Ai =

N
∑

i=1

Bi .

If h is concave and A ≻ B by Karamata’s inequality

N
∑

i=1

h(Ai) ≤
N
∑

i=1

h(Bi) .

In order to prove Lemma 4.3 we first need the following technical Lemma.
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Lemma 8.1. Let {f̃i}i∈[0:j] be a sequence of nonnegative numbers such that f̃i+1 ≤ qf̃i

for some q < 1. Then
j−1
∑

i=0

√

f̃i − f̃i+1 ≤

√

f̃0(1 − q)

1 − √
q

. (8.24)

Proof. Let j̄ = max{i ≥ 0 | f̃j ≤ qif̃0}, so that by (8.32) we have j̄ ≥ j. Define w∗,v ∈
R

j̄+1
≥0 by

v = (f̃0 − qf̃0, ...,qj̄−1f̃0 − qj̄ f̃0,qj̄ f̃0 − f̃j) ,

w∗ = (f̃0 − f̃1, ..., f̃j−1 − f̃j,0, ...,0) .
(8.25)

Then for 0 ≤ l < j̄ we have

l
∑

i=0

vi = f̃0 − ql+1f̃0 ≤ f̃0 − f̃min(l+1,j) =

l
∑

i=0

w∗
i , (8.26)

where we used ql+1f̃0 ≥ f̃l+1 for l ≤ j −1 and ql+1f̃0 ≥ f̃j for j ≤ l < j̄ in the inequality.
Furthermore, for l = j̄ we have

l
∑

i=0

vi = f̃0 − f̃j =

l
∑

i=0

w∗
i . (8.27)

Now if w is the permutation in descreasing order of w∗, clearly thanks to (8.26), and
(8.27) we have w ≻ v. Then

j−1
∑

i=0

√

f̃i − f̃i+1 =

j̄+1
∑

i=0

√

w∗
i =

j̄+1
∑

i=0

√
wi ≤

j̄+1
∑

i=0

√
vi

≤
√

f̃0

+∞
∑

i=0

√

qi − qi+1 =

√

f̃0(1 − q)

1 − √
q

,

(8.28)

where the first inequality follows from Karamata’s inequality.

Proof of Lemma 4.3. If the sequence {xk} is finite, with xm = x̃ stationary for some
m ≥ 0, we define xk = xm for every k ≥ m, so that we can always assume {xk} infinite.
Notice that with this convention the sufficient decrease condition (4.5) is still satisfied for
every k. Let fk = f(xk)−f(x∗). {fk} is monotone decreasing by (4.5), and nonnegative
since (2.2) holds for every xk.
We want prove fk+1 ≤ qfk. This is clear if fk+1 = 0. Otherwise using the notation of
Proposition 4.1 we have

fk − fk+1 ≥ L

2
‖xk − xk+1‖2 ≥ LK2

2
‖π(TΩ(x̃k),−∇f(x̃k))‖ , (8.29)

where we used (4.5) in the first inequality, (4.6) in the second. Since x̃k ∈ {yj}T
j=0 by

Proposition 4.1, we can apply (2.2) in x̃k to obtain

LK2

2
‖π(TΩ(x̃k),−∇f(x̃k))‖2 ≥ µLK2(f(x̃k) − f(x∗)) ≥ µLK2fk+1. (8.30)
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Concatenating (8.29), (8.30) and rearranging we obtain

fk+1 ≤ (1 + µLK2)−1fk = qfk . (8.31)

Thus by induction for any i ≥ 0
fk+i ≤ qifk , (8.32)

which implies in particular (4.12).
We can now bound the length of the tails of {xk}:

+∞
∑

i=0

‖xk+i − xk+i+1‖ ≤
√

2

L

+∞
∑

i=0

√

fk+i − fk+i+1 ≤
√

2fk(1 − q)√
L(1 − √

q)
≤
√

2f0(1 − q)√
L(1 − √

q)
q

k
2 ,

(8.33)
where we used (4.5) in the first inequality, Lemma 8.1 with {f̃i} = {fk+i} and for
j → +∞ in the second inequality, and (8.32) in the third. In particular xk → x̃∗ with

‖xk − x̃∗‖ ≤
+∞
∑

j=0

‖xk+j − xk+j+1‖ =

√

2f0(1 − q)√
L(1 − √

q)
q

k
2 (8.34)

by (8.33).

Proof of Theorem 4.2. By continuity, for δ̃ → 0 and f0 = f(x0) − f(x∗) we have that

max
x0∈B

δ̃
(x∗)∩[f≥f(x∗)]

f0 → 0 , (8.35)

so we can take δ̃ < δ/2 small enough in such a way that

max
x0∈B

δ̃
(x∗)∩[f≥f(x∗)]

√

2f0(1 − q)

L(1 − √
q)

+

√

2

L

√

f0 <
δ

2
. (8.36)

Let now x0 ∈ Bδ̃(x∗) ∩ [f ≥ f(x∗)], so that

δ̃ <
δ

2
< δ −

√

2f0(1 − q)

L(1 − √
q)

−
√

2

L

√

f0 , (8.37)

where we use (8.36) in the second inequality. We now want to prove, by induction on
k, {xi}i∈[0:k] ⊂ Bδ(x∗) with f(xi+1) ≤ qf(xi) for every i ∈ [0 : k] and k ∈ N. To start
with,

k−1
∑

i=0

‖xi − xi+1‖ ≤
√

2

L

k−1
∑

i=0

√

fi − fi+1 ≤
√

2f0(1 − q)√
L(1 − √

q)
(8.38)

where we used (4.5) in the first inequality, and Lemma 8.1 (which we can apply thanks
to the inductive assumption) in the second. But then

‖xk+1 − x∗‖ ≤ ‖x0 − x∗‖ +

(

k−1
∑

i=0

‖xi − xi+1‖
)

+ ‖xk − xk+1‖

≤ δ̃ +

√

2f0(1 − q)

L(1 − √
q)

+

√

2

L

√

fk − fk+1

< δ̃ +

√

2f0(1 − q)

L(1 − √
q)

+

√

2

L

√

fk < δ ,

(8.39)
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where we used (8.38) together with (4.5) in the second inequality, the assumption
xk ∈ Bδ(x∗) ⇒ fk+1 ≥ 0 in the third inequality, and (8.37) together with f0 ≥ fk in
the last inequality.

We now have

‖x̃k − x∗‖ ≤ ‖x0 − x∗‖ +

(

k−1
∑

i=0

‖xi − xi+1‖
)

+ ‖xk − x̃k‖

≤ ‖x0 − x∗‖ +

(

k−1
∑

i=0

‖xi − xi+1‖
)

+ ‖xk − xk+1‖ < δ ,

(8.40)

where we use ‖x̃k − xk‖ ≤ ‖xk+1 − xk‖ in the second inequality and the last inequality
follows as in (8.40). Thus x̃k ∈ Bδ(x∗) as well, which is enough to prove (8.31) and
complete the induction. We have thus obtained {x̃k},{xk} ⊂ Bδ(x∗), and the conclusion
follows exactly as in the proof of Lemma 4.3.

Proof of Corollary 4.2. Let x∗ be a limit point of {xk}, and let δ̃ be as in Theorem 4.2.
First, for some k̄ ∈ N we must have xk̄ ∈ Bδ̃(x∗). Furthermore, for every k ∈ N we have
f(xk) ≥ f(x∗) because f(xk) is non increasing and converges to f(x∗). Thus we have
all the necessary assumptions to obtain the asymptotic rates by applying Theorem 4.2
to {yk} = {xk̄+k}.

Lemma 8.2. Let x be a proper convex combination of atoms in A′ ⊂ A, and d 6= 0
feasible direction in x. Then, for some y ∈ conv(A′), we have

α̂max(y,d) ≥ PWidth(A)

‖d‖ . (8.41)

Proof. Let y ∈ argmaxz∈conv(A′)α̂
max(z,d), and let A′′ ⊂ A′ be such that y is a proper

convex combination of elements in A′′. Furthermore, let Fy be the minimal face con-
taining the maximal feasible step point ȳ := y + α̂max(y,d). We claim that Fy ∩A′′ = ∅.
In fact, for p ∈ A′′ ∩ Fy we can consider an homothety of center p and factor 1 + ǫ
mapping y in yǫ ∈ conv(A′′) and ȳ in ȳǫ ∈ Fy with

ȳǫ = yǫ + (1 + ǫ)α̂max(y,d)d.

But then we would have α̂(ȳǫ,d) ≥ (1 + ǫ)α̂(ȳ,d), in contradiction with the maximality
of α̂(ȳ,d). Therefore

α̂max(y,d) ≥ dist(A′′,Fy) ≥ min
F∈pfaces(Ω)

dist(F ,conv(A \ F)) = PWidth(A) , (8.42)

where we used A′′ ∩F = ∅ in the second inequality, and [55, Theorem 2] in the equality.
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