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Abstract

This paper considers the problem of minimizing the summation of a differentiable function
and a nonsmooth function on a Riemannian manifold. In recent years, proximal gradient method
and its invariants have been generalized to the Riemannian setting for solving such problems.
Different approaches to generalize the proximal mapping to the Riemannian setting lead ver-
sions of Riemannian proximal gradient methods. However, their convergence analyses all rely
on solving their Riemannian proximal mapping exactly, which is either too expensive or imprac-
ticable. In this paper, we study the convergence of an inexact Riemannian proximal gradient
method. It is proven that if the proximal mapping is solved sufficiently accurately, then the
global convergence and local convergence rate based on the Riemannian Kurdyka-Łojasiewicz
property can be guaranteed. Moreover, practical conditions on the accuracy for solving the
Riemannian proximal mapping are provided. As a byproduct, the proximal gradient method on
the Stiefel manifold proposed in [CMSZ20] can be viewed as the inexact Riemannian proximal
gradient method provided the proximal mapping is solved to certain accuracy. Finally, numer-
ical experiments on sparse principal component analysis are conducted to test the proposed
practical conditions.

1 Introduction

Proximal gradient method and its variants are family of efficient algorithms for composite optimiza-
tion problems of the form

min
x∈Rn

F (x) = f(x) + g(x), (1.1)

where f is differentiable, and g is continuous but could be nonsmooth. In the simplest form, the
method updates the iterate via

{

dk = argminp∈Rn 〈∇f(xk), p〉F + L
2 ‖p‖2F + g(xk + p), (Proximal mapping1)

xk+1 = xk + dk, (Update iterates)
(1.2)
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where 〈u, v〉F = uT v and ‖u‖2F = 〈u, u〉F. The idea is to simplify the objective function in each
iteration by replacing the differentiable term f with its first order approximation around the current
iterate. In many applications, the proximal mapping has a closed-form solution or can be computed
efficiently. Thus, the algorithm has low per iteration cost and is applicable for large-scale problems.
For convergence analysis of proximal gradient methods, we refer the interested readers to [BT09,
Bec17, Dar83, Nes83, AB09, LL15, GL16] and references therein.

This paper considers a problem similar to (1.1) but with a manifold constraint,

min
x∈M

F (x) = f(x) + g(x), (1.3)

whereM is a finite dimensional Riemannian manifold. Such optimization problem is of interest due
to many important applications including but not limit to compressed models [OLCO13], sparse
principal component analysis [ZHT06, HW21b], sparse variable principal component analysis [US08,
CMW13, XLY20], discriminative k-means [YZW08], texture and imaging inpainting [LRZM12], co-
sparse factor regression [MDC17], and low-rank sparse coding [ZGL+13, SQ16].

In the presence of the manifold constraints, developing Riemannian proximal gradient methods
is more difficult due to nonlinearity of the domain. The update formula in (1.2) can be generalized
to the Riemannian setting using a standard technique, i.e., via the notion of retraction. However,
generalizing the proximal mapping to the Riemannian setting is not straightforward and different
versions have been proposed. In [CMSZ20], a proximal gradient method on the Stiefel manifold
called ManPG, is proposed and analyzed by generalizing the proximal mapping (1.2) to

ηk = argmin
η∈Txk

M
〈∇f(xk), η〉F +

L̃

2
‖η‖2F + g(xk + η) (1.4)

via the restriction of the search direction η onto the tangent space at xk. It is shown that such
proximal mapping can be solved efficiently by a semi-smooth Newton method when the manifoldM
is the Stiefel manifold. In [HW21b], a diagonal weighted proximal mapping is defined by replacing
‖η‖2F in (1.4) with 〈η,Wη〉F, where the diagonal weighted linear operator W is carefully selected.
Moreover, the Nesterov momentum acceleration technique is further introduced to accelerate the al-
gorithm, yielding an algorithm called AManPG. Note that the Riemannian proximal mappings (1.4)
involves the calculation of the addition, i.e., xk + η, which cannot be defined on a generic manifold.
In [HW21a], a Riemannian proximal gradient method, called RPG, is proposed by replacing the
addition xk + p with a retraction Rxk

(η), so that it is well-defined for generic manifolds. In addi-
tion, the Riemannian metric 〈, 〉x is further used instead of the Euclidean inner product 〈, 〉F, and a
stationary point is used instead of a minimizer. More precisely, letting

ℓxk
(η) := 〈∇f(xk), η〉xk

+
L̃

2
〈η, η〉xk

+ g(Rxk
(η)),

the Riemannian proximal mapping in RPG is given by

ηk ∈ Txk
M is a stationary point of ℓxk

(η) that satisfies ℓxk
(ηk) ≤ ℓxk

(0). (1.5)

Unlike ManPG and AManPG that only guarantee global convergence, the local convergence rate of
RPG has also been established in terms of Riemannian KL property.

The convergence analyses of Riemannian proximal gradient methods in [CMSZ20, HW21b,
HW21a] all rely on solving proximal mappings (1.4) and (1.5) exactly. On the one hand, solving
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these proximal mappings exactly is not practicable due to rounding errors from the finite precision
arithmetic. On the other hand, these Riemannian proximal mappings generally do not admit a
closed-form solution, and finding a highly accurate solution may take too much computational time.
Therefore, it makes sense to study the convergence of the inexact Riemannian proximal gradient
method (i.e., the method without solving the proximal mapping (1.5) exactly), which is essentially
the goal of this paper. The main contributions of this paper can be summaries as follows:

• A general framework of the inexact RPG method is presented in Section 3. The global
convergence as well as the local convergence rate of the method are respectively studied in
Sections 3.1 and 3.2 based on different theoretical conditions. The local convergence analysis
is based on the Riemannian KL property.

• It is shown in Section 4.1 that if we solve (1.4) to certain accuracy, the global convergence of
the inexact RPG can be guaranteed. As a result, ManPG in [CMSZ20] can be viewed as the
inexact RPG method with the proximal mapping (1.5), and it is not necessary to solve (1.4)
exactly for ManPG to enjoy global convergence.

• Under the assumption g is retraction convex, a practical condition which meets the requirement
for the local convergence rate analysis is provided in Section 4.2. The condition is derived
based on the notion of error bound.

Inexact proximal gradient methods have been investigated in the Euclidean setting, see e.g.,
[Com04, FP11, SRB11, VSBV13, BPR20]. Multiple practical termination criteria for the inexact
proximal mapping have been given such that the global convergence and local convergence rate are
preserved. However, these criteria, the corresponding theoretical results, and the algorithm design
all rely on the convexity of the function in the proximal mapping. Therefore, these methods can not
be trivially generalized to the Riemannian setting since the objective function in the Riemannian
proximal mapping (1.5) may not be convex due to the existence of a retraction. Note that for
the inexact Riemannian proximal gradient method, the global and local convergence analyses and
the condition that guarantees global convergence all do not assume convexity of the Riemannian
proximal mapping. The convexity assumption is only made for the algorithm design that guarantees
local convergence rate.

The rest of this paper is organized as follows. Notation and preliminaries about manifolds are
given in Section 2. The inexact Riemannian proximal gradient method is presented in Section 3,
followed by the convergence analysis. Section 4 gives practical conditions on the accuracy for solving
the inexact Riemannian proximal mapping when the manifold has a linear ambient space. Numerical
experiments are presented in Section 5 to test the practical conditions.

2 Notation and Preliminaries on Manifolds

The Riemannian concepts of this paper follow from the standard literature, e.g., [Boo86, AMS08]
and the related notation follows from [AMS08]. A Riemannian manifold M is a manifold endowed
with a Riemannian metric (ηx, ξx) 7→ 〈ηx, ξx〉x ∈ R, where ηx and ξx are tangent vectors in the
tangent space of M at x. The induced norm in the tangent space at x is denoted by ‖ · ‖x or ‖ · ‖
when the subscript is clear from the context. The tangent space of the manifoldM at x is denoted
by TxM, and the tangent bundle, which is the set of all tangent vectors, is denoted by TM. A
vector field is a function from the manifold to its tangent bundle, i.e., η :M→ TM : x 7→ ηx. An
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open ball on a tangent space is denoted by B(ηx, r) = {ξx ∈ TxM | ‖ξx − ηx‖x < r}. An open
ball on the manifold is denoted by B(x, r) = {y ∈ M | dist(y, x) < r}, where dist(x, y) denotes the
distance between x and y onM.

A retraction is a smooth (C∞) mapping from the tangent bundle to the manifold such that
(i) R(0x) = x for all x ∈ M, where 0x denotes the origin of TxM, and (ii) d

dtR(tηx)|t=0 = ηx for
all ηx ∈ TxM. The domain of R does not need to be the entire tangent bundle. However, it is
usually the case in practice, and in this paper we assume R is always well-defined. Moreover, Rx

denotes the restriction of R to TxM. For any x ∈ M, there always exists a neighborhood of 0x
such that the mapping Rx is a diffeomorphism in the neighborhood. An important retraction is
the exponential mapping, denoted by Exp, satisfying Expx(ηx) = γ(1), where γ(0) = x, γ′(0) = ηx,
and γ is the geodesic passing through x. In a Euclidean space, the most common retraction is the
exponential mapping given by addition Expx(ηx) = x + ηx. If the ambient space of the manifold
M is a finite dimensional linear space, i.e., M is an embedded submanifold of R

n or a quotient
manifold whose total space is an embedded submanifold of Rn, then there exist two constants κ1

and κ2 such that the inequalities

‖Rx(ηx)− x‖ ≤ κ1‖ηx‖, (2.1)

‖Rx(ηx)− x− ηx‖ ≤ κ2‖ηx‖2 (2.2)

hold for any x ∈ N and Rx(ηx) ∈ N , where N is a compact subset of M.
A vector transport T : TM⊕ TM → TM : (ηx, ξx) 7→ Tηxξx associated with a retraction

R is a smooth (C∞) mapping such that, for all (x, ηx) in the domain of R and all ξx ∈ TxM, it
holds that (i) Tηxξx ∈ TR(ηx)M (ii) T0xξx = ξx, and (iii) Tηx is a linear map. An important vector
transport is the parallel translation, denoted P. The basic idea behind the parallel translation is
to move a tangent vector along a given curve on a manifold “parallelly”. We refer to [AMS08] for
its rigorous definition. The vector transport by differential retraction TR is defined by TRηx

ξx =
d
dtRx(ηx+tξx)|t=0. The adjoint operator of a vector transport T , denoted by T ♯, is a vector transport

satisfying 〈ξy,Tηxζx〉y = 〈T ♯
ηxξy, ζx〉x for all ηx, ζx ∈ TxM and ξy ∈ TyM, where y = Rx(ηx). In

the Euclidean setting, a vector transport Tηx for any ηx ∈ TxM can be represented by a matrix
(the commonly-used vector transport is the identity matrix). Then the adjoint operators of a vector
transport are given by the transpose of the corresponding matrix.

The Riemannian gradient of a function h : M → R, denote gradh(x), is the unique tangent
vector satisfying:

Dh(x)[ηx] = 〈ηx, gradh(x)〉x,∀ηx ∈ TxM,

where Dh(x)[ηx] denotes the directional derivative along the direction ηx. The Riemannian Hessian
of h at x, denoted by Hess h(x), is a linear operator on TxM satisfying

Hessh(x)[ηx] = ∇ηx gradh(x), ∀ηx ∈ TxM,

where Hess h(x)[ηx] denotes the action of Hess h(x) on a tangent vector ηx ∈ TxM, and ∇ denotes
the Riemannian affine connection. Roughly speaking, an affine connection generalizes the concept
of a directional derivative of a vector field and we refer to [AMS08, Section 5.3] for its rigorous
definition.

A function h : M → R is called locally Lipschitz continuous with respect to a retraction R
if for any compact subset N of M, there exists a constant Lh such that for any x ∈ N and
ξx, ηx ∈ TxM satisfying Rx(ξx) ∈ N and Rx(ηx) ∈ N , it holds that |h ◦ R(ξx) − h ◦ R(ηx)| ≤
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Lh‖ξx − ηx‖. If h is Lipschitz continuous but not differentiable, then the Riemannian version of
generalized subdifferential defined in [HHY18] is used. Specifically, since ĥx = h ◦Rx is a Lipschitz
continuous function defined on a Hilbert space TxM, the Clarke generalized directional derivative

at ηx ∈ TxM, denoted by ĥ◦x(ηx; v), is defined by ĥ◦x(ηx; v) = limξx→ηx supt↓0
ĥx(ξx+tv)−ĥx(ξx)

t ,

where v ∈ TxM. The generalized subdifferential of ĥx at ηx, denoted ∂ĥx(ηx), is defined by
∂ĥx(ηx) = {ηx ∈ TxM | 〈ηx, v〉x ≤ ĥ◦x(ηx; v) for all v ∈ TxM}. The Riemannian version of the
Clarke generalized direction derivative of h at x in the direction ηx ∈ TxM, denoted h◦(x; ηx),
is defined by h◦(x; ηx) = ĥ◦x(0x; ηx). The generalized subdifferential of h at x, denoted ∂h(x), is
defined as ∂h(x) = ∂ĥx(0x). Any tangent vector ξx ∈ ∂h(x) is called a Riemannian subgradient of
h at x.

A vector field η is called Lipschitz continuous if there exist a positive injectivity radius i(M)
and a positive constant Lv such that for all x, y ∈ M with dist(x, y) < i(M), it holds that

‖P0←1
γ ηy − ηx‖x ≤ Lv dist(y, x), (2.3)

where γ is a geodesic with γ(0) = x and γ(1) = y, the injectivity radius i(M) is defined by
i(M) = infx∈M ix and ix = sup{ǫ > 0 | Expx |B(x,ǫ) is a diffeomorphism}. Note that for any
compact manifold, the injectivity radius is positive [Lee18, Lemma 6.16]. A vector field η is called
locally Lipschitz continuous if for any compact subset Ω̄ of M, there exists a positive constant Lv

such that for all x, y ∈ Ω̄ with dist(x, y) < i(Ω̄), inequality (2.3) holds. A function on M is called
(locally) Lipschitz continuous differentiable if the vector field of its gradient is (locally) Lipschitz
continuous.

Let Ω̃ be a subset of M. If there exists a positive constant ̺ such that, for all y ∈ Ω̃, Ω̃ ⊂
Ry(B(0y, ̺)) and Ry is a diffeomorphism on B(0y, ̺), then we call Ω̃ a totally retractive set with
respect to ̺. The existence of Ω̃ can be shown along the lines of [dC92, Theorem 3.7], i.e., given
any x ∈ M, there exists a neighborhood of x which is a totally retractive set.

In a Euclidean space, the Euclidean metric is denoted by 〈ηx, ξx〉F, where 〈ηx, ξx〉F is equal to
the summation of the entry-wise products of ηx and ξx, such as ηTx ξx for vectors and trace(ηTx ξx) for
matrices. The induced Euclidean norm is denoted by ‖ · ‖F. For any matrix M , the spectral norm

is denoted by ‖M‖2. For any vector v ∈ R
n, the p-norm, denoted ‖v‖p, is equal to (

∑n
i=1 |vi|p)

1
p .

In this paper, Rn does not only refer to a vector space, but also can refer to a matrix space or a
tensor space.

3 An Inexact Riemannian Proximal Gradient Method

The proposed inexact Riemannian proximal gradient method (IRPG) is stated in Algorithm 1. The
search direction η̂xk

at the k-th iteration solves the proximal mapping

min
η∈Txk

M
ℓxk

(η) = 〈grad f(xk), η〉xk
+
L̃

2
‖η‖2 + g(Rxk

(η)) (3.1)

approximately in the sense that its distance to a stationary point η∗xk
, ‖η̂xk

− η∗xk
‖, is controlled

from above by a continuous function q of (εk, ‖η̂xk
‖) and the function value of ℓxk

satisfies ℓxk
(0) ≥

ℓxk
(η̂xk

). To the best of our knowledge, this is not Riemannian generalization of any existing
Euclidean inexact proximal gradient methods. Specifically, given the exact Euclidean proximal
mapping defined by Proxλg(y) = argminxΦλ(x) := λg(x) + 1

2‖x − y‖2F, letting z = Proxλg(y),
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it follows that (y − z)/λ ∈ ∂Eg(z) and dist(0, ∂EΦλ(z)) = 0, where ∂E denotes the Euclidean
subdifferential. Based on these observations, the inexact Euclidean proximal mappings proposed
in [Roc76, SRB11, VSBV13, BPR20] only require z to satisfy any one of the following conditions:

dist(0, ∂EΦλ(z)) ≤
ε

λ
, Φλ(z) ≤ minΦλ +

ε2

2λ
, and

y − z
λ
∈ ∂E

ε2

2λ

g(z), (3.2)

where ∂Eǫ denotes the Euclidean ǫ-subdifferential. The corresponding analyses and algorithms rely
on the properties of ǫ-subdifferential of convex functions. However, since the function ℓxk

(η) is
not necessarily convex, these techniques cannot be applied. Note that if g is convex and M is a
Euclidean space, then the function Φ is strongly convex. Therefore, the solutions of the inexact
Euclidean proximal mappings in (3.2) all satisfy (3.3) with certain q by choosing an appropriate
choice of ε.

Algorithm 1 An Inexact Riemannian Proximal Gradient Method (IRPG)

Input: Initial iterate x0; a sufficiently large positive constant L̃;
1: for k = 0, 1, . . . do

2: Let ℓxk
(η) = 〈grad f(xk), η〉xk

+ L̃
2 ‖η‖2 + g(Rxk

(η));
3: Find η̂xk

∈ Txk
M such that the following two conditions hold

‖η̂xk
− η∗xk

‖ ≤ q(εk, ‖η̂xk
‖) and ℓxk

(0) ≥ ℓxk
(η̂xk

), (3.3)

where εk > 0, and q : R2 → R is a continuous function;
4: xk+1 = Rxk

(η̂xk
);

5: end for

In Algorithm 1, q controls the accuracy for solving the proximal mapping and different accuracies
lead to different convergence results. Here we give four choices of q:

1) q(εk, ‖η̂xk
‖) = εk with εk → 0;

2) q(εk, ‖η̂xk
‖) = q̃(‖η̂xk

‖) with q̃ : R→ [0,∞) a continuous function satisfying q̃(0) = 0;

3) q(εk, ‖η̂xk
‖) = ε2k, with

∑∞
k=0 εk <∞; and

4) q(εk, ‖η̂xk
‖) = min(ε2k, δq‖η̂xk

‖2) with a constant δq > 0 and
∑∞

k=0 εk <∞.

The four choices all satisfy the requirement for the global convergence in Theorem 3.1, with the first
one being the weakest. A practical scheme discussed in Section 4.1 can yield a η̂xk

that satisfies
the second choice. The third q guarantees that the accumulation point is unique as shown in
Theorem 3.2. The last q allows us to establish convergence rate analysis of Algorithm 1 based on
the Riemannian KL property, as shown in Theorem 3.3. The practical scheme for generating η̂xk

that satisfies the third and fourth choices is discussed in Section 4.2.

3.1 Global Convergence Analysis

The global convergence analysis is over similar to that in [HW21a] and relies on Assumptions 3.1
and 3.2 below. Assumption 3.1 is mild in the sense that it holds if the manifoldM is compact and
the function F is continuous.
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Assumption 3.1. The function F is bounded from below and the sublevel set Ωx0 = {x ∈ M |
F (x) ≤ F (x0)} is compact.

Definition 3.1 has been used in [BAC18, HW21a]. It generalizes the L-smoothness from the
Euclidean setting to the Riemannian setting. It says that if the composition h ◦ R satisfies the
Euclidean version of L-smoothness, then h is called a L-retraction-smooth function.

Definition 3.1. A function h :M → R is called L-retraction-smooth with respect to a retraction
R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that Rx(Sx) ⊆ N , we have that

h(Rx(η)) ≤ h(x) + 〈gradh(x), η〉x +
L

2
‖η‖2, ∀η ∈ Sx. (3.4)

In Assumption 3.2, we assume that the function f is L-smooth in the sublevel set Ωx0 . This is
also mild and practical methods to verify this assumption have been given in [BAC18, Lemma 2.7].

Assumption 3.2. The function f is L-retraction-smooth with respect to the retraction R in the
sublevel set Ωx0 .

Lemma 3.1 shows that IRPG is a descent algorithm. The short proof is the same as that for
[HW21a, Lemma 1], but included for completeness.

Lemma 3.1. Suppose Assumption 3.2 holds and L̃ > L. Then the sequence {xk} generated by
Algorithm 1 satisfies

F (xk)− F (xk+1) ≥β‖η̂xk
‖2, (3.5)

where β = (L̃− L)/2.
Proof. By the definition of η̂xk

and the L-retraction-smooth of f , we have

F (xk) = f(xk) + g(xk) ≥ f(xk) + 〈grad f(xk), η̂xk
〉xk

+
L̃

2
‖η̂xk
‖2 + g(Rxk

(η̂xk
))

≥ L̃− L
2
‖η̂xk
‖2 + f(Rxk

(η̂xk
)) + g(Rxk

(η̂xk
)) = F (xk+1) +

L̃− L
2
‖η̂xk
‖2,

which completes the first result.

Now, we are ready to give a global convergence analysis of IRPG.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold, that L̃ > L, and that limk→∞ q(εk, ‖η̂xk
‖) =

0. Then the sequence {xk} has at least one accumulation point. Let x∗ be any accumulation point
of the sequence {xk}. Then x∗ is a stationary point. Furthermore, Algorithm 1 returns xk satisfying
‖η̂xk
‖ ≤ ǫ in at most (F (x0)− F (x∗))/(βǫ2) iterations.

Proof. The proof mainly follows the proof in [HW21a, Theorem 1]. Here, we only highlight the
differences. The existence of an accumulation point follows immediately from Assumption 3.1 and
Lemma 3.1.

By Lemma 3.1, we have that F (x0)−F (x̃) ≥ β
∑∞

i=0 ‖η̂xk
‖2, where x̃ denotes a global minimizer

of F . Therefore,
lim
k→∞

‖η̂xk
‖ = 0. (3.6)

By limk→∞ q(εk, ‖η̂xk
‖) = 0, we have

lim
k→∞

‖η∗xk
‖ = 0.

The remaining of the proof follows [HW21a, Theorem 1].
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3.2 Local Convergence Rate Analysis Using Riemannian Kurdyka-Łojasiewicz

Property

The KL property has been widely used for the convergence analysis of various convex and nonconvex
algorithms in the Euclidean case, see e.g., [ABRS10, ABS13, BST14, LL15]. In this section we
will study the convergence of RPG base on the Riemannian Kurdyka-Łojasiewicz (KL) property,
introduced in [KMA00] for the analytic setting and in [BdCNO11] for the nonsmooth setting. Note
that a convergence analysis based on KL property for a Euclidean inexact proximal gradient has
been given in [BPR20]. As we pointed out before, the convergence analysis and algorithm design
therein rely on the convexity of the objective in the proximal mapping.

Definition 3.2. A continuous function f :M→ R is said to have the Riemannian KL property at
x ∈ M if and only if there exists ε ∈ (0,∞], a neighborhood U ⊂M of x, and a continuous concave
function ς : [0, ε]→ [0,∞) such that

• ς(0) = 0,

• ς is C1 on (0, ε),

• ς ′ > 0 on (0, ε),

• For every y ∈ U with f(x) < f(y) < f(x) + ε, we have

ς ′(f(y)− f(x)) dist(0, ∂f(y)) ≥ 1,

where dist(0, ∂f(y)) = inf{‖v‖y : v ∈ ∂f(y)} and ∂ denotes the Riemannian generalized
subdifferential. The function ς is called the desingularising function.

Note that the definition of the Riemannian KL property is overall similar to the KL property
in the Euclidean setting, except that related notions including U , ∂f(y) and dist(0, ∂f(y)) are all
defined on a manifold. In [BdCNO11, HW21a], sufficient conditions to verify if a function satisfies
the Riemannian KL condition are given.

Assumptions 3.3 and 3.4 are used for the convergence analysis in this section. Assumption 3.3
is a standard assumption and has been made in e.g., [LL15], when the manifoldM is the Euclidean
space.

Assumption 3.3. The function f :M→ R is locally Lipschitz continuously differentiable.

Assumption 3.4. The function F is locally Lipschitz continuous with respect to the retraction R.

In order to guarantee the uniqueness of accumulation points, the Riemannian proximal mapping
needs to be solved more accurately than (3.3), as shown in Theorem 3.2.

Theorem 3.2. Let {xk} denote the sequence generated by Algorithm 1 and S denote the set of all
accumulation points. Suppose Assumptions 3.1, 3.2, 3.3 and 3.4 hold. We further assume that
F = f + g satisfies the Riemannian KL property at every point in S. If the Riemannian proximal
mapping (1.5) is solved such that for all k,

‖η̂xk
− η∗xk

‖ ≤ ε2k, (3.7)
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that is, q(εk, ‖η̂xk
‖) = ε2k. Then,

∞
∑

k=0

dist(xk, xk+1) <∞. (3.8)

It follows that S only contains a single point.

Proof. First note that the global convergence result in Theorem 3.1 implies that every point in S
is a stationary point. Since limk→∞ ‖η̂xk

‖ = 0, there exists a δT > 0 such that ‖η̂xk
‖ ≤ δT for all k.

Thus, the application of [HW21a, Lemma 6] implies that

dist(xk, xk+1) = dist(xk, Rxk
(η̂xk

)) ≤ κ‖η̂xk
‖ → 0. (3.9)

Then by [BST14, Remark 5], we know that S is a compact set. Moreover, since F (xk) is nonin-
creasing and F is continuous, F has the same value at all the points in S. Therefore, by [HW21a,
Lemma 5], there exists a single desingularising function, denoted ς, for the Riemannian KL property
of F to hold at all the points in S.

Let x∗ be a point in S. Assume there exists k̄ such that xk̄ = x∗. Since F (xk) is non-increasing,
it must hold F (xk̄) = F (xk̄+1). By Lemma 3.1, we have η∗xk̄

= 0, xk̄ = xk̄+1, (3.8) holds evidently.
In the case when F (xk) > F (x∗) for all k, Since η∗xk

→ 0, we have F (Rxk
(η∗xk

)) → F (x∗),
dist(Rxk

(η∗xk
),S)→ 0. By the Riemannian KL property of F on S, there exists an l > 0 such that

ς ′(F (Rxk
(η∗xk

))− F (x∗)) dist(0, ∂F (Rxk
(η∗xk

))) ≥ 1 for all k > l.

It follows that

ς ′(F (Rxk
(η∗xk

))− F (x∗)) ≥ dist(0, ∂F (Rxk
(η∗xk

)))−1 for all k > l. (3.10)

Since limk→∞ ‖η∗xk
‖ = 0, there exists a constant k0 > 0 such that ‖η∗xk

‖ < µ for all k > k0, where µ
is defined in [HW21a, Lemma 7]. By Assumption 3.3 and [HW21a, Lemma 7], we have

‖ grad f(Rxk
(η∗xk

))− T −♯Rη∗xk

(grad f(xk) + L̃η∗xk
)‖ ≤ Lc‖η∗xk

‖ (3.11)

for all k ≥ k0, where Lc is a constant. By the definition of η∗xk
, there exists ζxk

∈ ∂g(Rxk
(η∗xk

)) such
that

grad f(xk) + L̃η∗xk
+ T ♯

Rη∗xk

ζxk
= 0. (3.12)

It follows that

grad f(Rxk
(η∗xk

))−T −♯Rη∗xk

(grad f(xk) + L̃η∗xk
)

= grad f(Rxk
(η∗xk

)) + ζxk
∈ ∂F (Rxk

(η∗xk
)). (3.13)

Therefore, (3.11) and (3.13) yield

dist(0, ∂F (Rxk
(η∗xk

))) ≤ Lc‖η∗xk
‖, (3.14)

for all k > k0. Inserting this into (3.10) gives

ς ′(F (Rxk
(η∗xk

))− F (x∗)) ≥ L−1c ‖η∗xk
‖−1 for all k > l̂ := max(k0, l). (3.15)

Define ∆p,q = ς(F (xp)− F (x∗))− ς(F (xq)− F (x∗)). We next show that for sufficiently large k,

‖η̂xk
‖2 ≤ b0∆k,k+1(‖η̂xk−1

‖+ ε2k−1) + b1ε
2
k−1, (3.16)

where b0 =
Lc

β , b1 =
LF

β , and LF is the Lipschitz constant of F . To the end, we consider two cases:
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• Case 1: F (xk) = F (Rxk−1
(η̂xk−1

)) ≤ F (Rxk−1
(η∗xk−1

)).
We have

ς(F (xk)− F (x∗))−ς(F (xk+1)− F (x∗))
≥ ς ′(F (xk)− F (x∗))(F (xk)− F (xk+1))

≥ ς ′(F (Rxk−1
(η∗xk−1

))− F (x∗))(F (xk)− F (xk+1))

≥ L−1c β
‖η̂xk
‖2

‖η∗xk−1
‖

≥ β

Lc

‖η̂xk
‖2

(‖η̂xk−1
‖+ ε2k−1)

for all k > l̂ := max(k0, l),

where the first and the second inequalities are from the concavity of ς, the third inequality is
from (3.15) and (3.5), and the last inequality is from (3.7). It follows that

‖η̂xk
‖2 ≤ Lc

β
∆k,k+1(‖η̂xk−1

‖+ ε2k−1),

which implies that (3.16) holds.

• Case 2: F (xk) = F (Rxk−1
(η̂xk−1

)) > F (Rxk−1
(η∗xk−1

)).
We have

ς(F (xk)− F (x∗))− ς(F (xk+1)− F (x∗))
≥ ς(F (Rxk−1

(η∗xk−1
))− F (x∗))− ς(F (xk+1)− F (x∗))

≥ ς ′(F (Rxk−1
(η∗xk−1

))− F (x∗))(F (Rxk−1
(η∗xk−1

))− F (xk+1))

= ς ′(F (Rxk−1
(η∗xk−1

))− F (x∗))
(

F (Rxk−1
(η∗xk−1

))

− F (Rxk−1
(η̂xk−1

)) + F (xk)− F (xk+1)
)

≥
β‖η̂xk

‖2 − LF ‖η∗xk−1
− η̂xk−1

‖
Lc‖η∗xk−1

‖ for all k > l̂ := max(k0, l)

≥ β‖η̂xk
‖2 − LF ε

2
k−1

Lc(‖η̂xk−1
‖+ ε2k−1)

, (3.17)

where the third inequality is from Assumption 3.4 with Lipschitz constant denoted by LF

and the last inequality is from (3.7). Together with (3.7), inequality (3.17) yields that for all
k > ℓ̂,

β‖η̂xk
‖2 ≤ Lc∆k,k+1(‖η̂xk−1

‖+ ε2k−1) + LF ε
2
k−1, (3.18)

which gives

‖η̂xk
‖2 ≤ Lc

β
∆k,k+1(‖η̂xk−1

‖+ ε2k−1) +
LF

β
ε2k−1. (3.19)

which implies that (3.16) holds.
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Once (3.16) has been established, by
√
a2 + b2 ≤ a+ b and 2

√
ab ≤ a+ b, we have

2‖η̂xk
‖ ≤ b0∆k,k+1 + ‖η̂xk−1

‖+ ε2k−1 + 2
√

b1εk−1. (3.20)

For any p > l̂, taking summation of (3.20) from p to s yields

s
∑

k=p

2‖η̂xk
‖ ≤

s
∑

k=p

b0∆k,k+1 +
s
∑

k=p

‖η̂xk−1
‖+ 2

√

b1

s
∑

k=p

εk−1 +
s
∑

k=p

ε2k−1,

which implies
s
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+ b0∆p,s+1 + 2

√

b1

s
∑

k=p

εk−1 +
s
∑

k=p

ε2k−1.

Taking s to ∞ yields

∞
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+ b0ς(F (xp)− F (x∗)) + 2

√

b1

∞
∑

k=p

εk−1 +
∞
∑

k=p

ε2k−1. (3.21)

It follows that
∑∞

k=0 ‖η̂xk
‖ <∞, which yields (3.8) due to (3.9).

Theorem 3.3 gives the local convergence rate based on the Riemannian KL property. Note that
the local convergence rate requires an even more accurate solution than that in Theorem 3.2.

Theorem 3.3. Let {xk} denote the sequence generated by Algorithm 1 and S denote the set of all
accumulation points. Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. We further assume that
F = f+g satisfies the Riemannian KL property at every point in S with the desingularising function
having the form of ς(t) = C

θ t
θ for some C > 0, θ ∈ (0, 1]. The accumulation point, denoted x∗, is

unique by Theorem 3.2. If the Riemannian proximal mapping (1.5) is solved such that for all k,

‖η̂xk
− η∗xk

‖ ≤ min

(

ε2k,
β

2LF
‖η̂xk
‖2
)

, (3.22)

that is, q(εk, ‖η̂xk
‖) = min

(

ε2k,
β

2LF
‖η̂xk
‖2
)

. Then

• If θ = 1, then there exists k1 such that xk = x∗ for all k > k1.

• if θ ∈ [12 , 1), then there exist constants Cr > 0 and d ∈ (0, 1) such that for all k

dist(xk, x∗) < Crd
k;

• if θ ∈ (0, 12 ), then there exists a positive constant C̃r such that for all k

dist(xk, x∗) < C̃rk
−1

1−2θ .

Proof. In the case of θ = 1, suppose F (xk) > F (x∗). It follows from (3.10) and (3.14) that

dist(0, ∂F (Rxk
(η∗xk

))) ≥ C for all k > l,

dist(0, ∂F (Rxk
(η∗xk

))) ≤ Lc‖η∗xk
‖ for all k > k0.

11



Therefore, we have ‖η∗xk
‖ ≥ C/Lc for all k > max(k0, l). By (3.3), there exists k2 > 0 and Ĉ > 0

such that ‖η̂xk
‖ ≥ Ĉ‖η∗xk

‖ for all k ≥ k2. It follows that

‖η̂xk
‖ ≥ ĈC/Lc, for all k > max(k0, k2, l).

Due to the descent property in (3.5), there must exist k1 such that xk = x∗ for all k > k1.
Next, we consider θ ∈ (0, 1). By the same derivation as the proof in Theorem 3.2 and noting

the difference between (3.22) and (3.7), we obtain from (3.16) that

‖η̂xk
‖2 ≤ b0∆k,k+1(‖η̂xk−1

‖+ β

2LF
‖η̂xk
‖2) + b1

β

2LF
‖η̂xk
‖2,

by replacing εk−1 with β
2LF
‖η̂xk
‖. Since ‖η̂xk

‖ → 0, for any δ > 0, there exists k2 > 0 such that for
all k > k2, it holds that 1 + β/(2LF )‖η̂xk

‖ < δ. Therefore, we have

‖η̂xk
‖2 ≤ b0∆k,k+1(1 + δ)‖η̂xk−1

‖+ 1

2
‖η̂xk
‖2.

By 2
√
ab ≤ a+ b, we have

2‖η̂xk
‖ ≤ b̃0∆k,k+1 + ‖η̂xk−1

‖

where b̃0 = 2b0(1 + δ). It follows that

∞
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+ b̃0ς(F (xp)− F (x∗)). (3.23)

Substituting ς(t) = C
θ t

θ into (3.23) yields

∞
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+

b̃0C

θ
(F (xp)− F (x∗))θ. (3.24)

By Assumption 3.4 and (3.22), we have

|F (xp)− F (Rxp−1(η
∗
xp−1

))| =|F (Rxp−1(η̂xp−1))− F (Rxp−1(η
∗
xp−1

))|

≤LF‖η̂xp−1 − η∗xp−1
‖ ≤ β

2
‖η̂xp−1‖2. (3.25)

Combining (3.24) and (3.25) yields

∞
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+

b̃0C

θ

(

F (Rxp−1(η
∗
xp−1

))− F (x∗) +
β

2
‖η̂xp−1‖2

)θ

. (3.26)

By (3.10), we have 1
C (F (Rxp−1(η

∗
xp−1

))−F (x∗))1−θ ≤ dist(0, ∂F (Rxp−1(η
∗
xp−1

)). Combining this
inequality with (3.14) yields

1

C
(F (Rxp−1(η

∗
xp−1

))− F (x∗))1−θ ≤ Lc‖η∗xp−1
‖. (3.27)
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It follows from (3.26) and (3.27) that

∞
∑

k=p

‖η̂xk
‖ ≤‖η̂xp−1‖+

b̃C

θ

(

(CLc‖η∗xp−1
‖) 1

1−θ +
β

2
‖η̂xp−1‖2

)θ

≤‖η̂xp−1‖+
b̃0C

θ

(

(

CLc(1 + δ)‖η̂xp−1‖
) 1

1−θ +
β

2
‖η̂xp−1‖2

)θ

. (3.28)

Since limk→∞ ‖η̂xk
‖ = 0, there exists p̂ > 0 such that ‖η̂xk

‖ < 1 for all k > p̂. Therefore, for all
p > p̂, it holds that

‖η̂xp−1‖
1

1−θ ≤ ‖η̂xp−1‖min(2, 1
1−θ ) and ‖η̂xp−1‖2 ≤ ‖η̂xp−1‖min(2, 1

1−θ )

which combining with (3.28) yields

∞
∑

k=p

‖η̂xk
‖ ≤ ‖η̂xp−1‖+

b̃0C

θ

(

(CLc(1 + δ))
1

1−θ + β/2
)θ
‖η̂xp−1‖min(2θ, θ

1−θ ).

Note that if θ ≥ 0.5, then 1 ≤ 2θ ≤ θ/(1 − θ). Thus min
(

2θ, θ
1−θ

)

≥ 1. If θ ∈ (0, 0.5), then

min
(

2θ, θ
1−θ

)

= θ/(1− θ) < 1. The remaining part of the proof follow the same derivation as those

in [HW19, Appendix B] and [AB09, Theorem 2].

4 Practical Conditions for Solving Riemannian Proximal Mapping

In the general framework of the inexact RPG method (i.e., Algorithm 1), the required accuracy
for solving the Riemannian proximal mapping involves the unknown exact solution η∗xk

. In this
section, we study two practical conditions that can generate search directions satisfying (3.3) for
different forms of g when the manifold M has a linear ambient space, or equivalently, M is an
embedded submanifold of Rn or a quotient manifold whose total space is an embedded submanifold
of Rn. Throughout this section, the Riemannian metric is fixed to be the Euclidean metric 〈, 〉F.
We describe the algorithms for embedded submanifolds and point out here that in the case of a
quotient manifold, the derivations still hold by replacing the tangent space TxM with the notion
of horizontal space Hx.

4.1 Practical Condition that Ensures Global Convergence

We first show that an approximate solution to the Riemannian proximal mapping in [CMSZ20]
satisfies the condition that is needed to establish the global convergence of IRPG. Recall that the
Riemannian proximal mapping therein is

η̃x = argmin
η∈TxM

ℓ̃x(η) = 〈grad f(x), η〉F +
L̃

2
〈η, η〉F + g(x + η). (4.1)

Since M has a linear ambient space R
n, its tangent space can be characterized by

TxM = {η ∈ R
n : BT

x η = 0}, (4.2)
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where BT
x : R

n → R
n−d : v 7→ (〈b1, v〉F, 〈b2, v〉F, . . . , 〈bn−d, v〉F)T is a linear operator, d is the

dimension of the manifold M, and {b1, b2, . . . , bn−d} forms an orthonormal basis of the normal
space of TxM. Concrete expressions of BT

x for various manifolds will be given later in Section 4.3.
Based on BT

x , Problem (4.1) can be written as

η̃x = argmin
BT

x η=0

ℓ̃x(η) = 〈grad f(x), η〉F +
L̃

2
〈η, η〉F + g(x + η). (4.3)

Semi-smooth Newton method can be used to solve (4.3). Specifically, the KKT condition of (4.3)
is given by

∂ηL(η,Λ) = 0, (4.4)

BT
x η = 0, (4.5)

where L(η,Λ) is the Lagrangian function defined by

L(η,Λ) = 〈grad f(x), η〉F +
L̃

2
〈η, η〉F + g(X + η)− 〈Λ, BT

x η〉F.

Equation (4.4) yields

η = v(Λ) := Proxg/L̃

(

x− 1

L̃
(grad f(x)−BxΛ)

)

− x, (4.6)

where

Proxg/L̃(z) = argmin
v∈Rn

1

2
‖v − z‖2 + 1

L̃
g(v) (4.7)

denotes the Euclidean proximal mapping. Substituting (4.6) into (4.5) yields that

Ψ(Λ) := BT
x

(

Proxg/L̃

(

x− 1

L̃
(grad f(x)−BxΛ)

)

− x
)

= 0, (4.8)

which is a system of nonlinear equations with respect to Λ. Therefore, to solve (2.2), one can first
find the root of (4.8) and substitute it back to (4.6) to obtain η̃x. Moreover, the semi-smooth
Newton method can be used to solve (4.8), which updates the iterate Λk by Λk+1 = Λk + dk, where
dk is a solution of

JΨ(Λk)[dk] = −Ψ(Λk),

and JΨ(Λk) is a generalized Jacobian of Ψ.
To solve the proximal mapping (4.1) approximately, we consider an algorithm that can solve

(4.8) globally, e.g., the regularized semi-smooth Newton algorithm from [QS06, ZST10, XLWZ18].
Given an approximate solution Λ̂ to (4.8), define2

η̂x = PTxM(v(Λ̂)), (4.9)

where v(·) is defined in (4.6). We will show later, in order for η̂x to satisfy (3.3), it suffices to require
Λ̂ to satisfy

‖Ψ(Λ̂)‖ ≤ min(φ(‖η̂x‖), 0.5), (4.10)

2Note that if Ψ(Λ) 6= 0, then η defined by (4.6) may be not in Tx M. Therefore, we add an orthogonal projection.
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ℓx(0) ≥ ℓx(η̂x), (4.11)

where ℓx(·) the Riemannian proximal mapping function used in Algorithm 1, φ : R → R satisfies
φ(0) = 0 and nondecreasing. Moreover, a globally convergent algorithm will terminate properly
under these two stopping conditions. The analyses rely on Assumption 4.1.

Assumption 4.1. The function g is convex and Lipschitz continuous with constant Lg, where the
convexity and Lipschitz continuity are in the Euclidean sense.

Note that if g is given by the one-norm regularization, then Assumption 4.1 holds.
It is evident that, in order to show that η̂x satisfies (3.3), we only need to show that there is a

function q̃(t) such that ‖η̂x − η∗x‖ ≤ q̃(‖η̂x‖) holds if η̂x satisfies (4.10) and (4.11). Therefore, the
function q(s, t) in (3.3) can be defined by q(s, t) = q̃(t).

Theorem 4.1. Suppose there exists a constant ρ > 0 such that for any x ∈ Ωx0 it holds that
Ωx0 ⊆ Rx(B(0x, ρ)). If L̃ is sufficiently large and the search direction η̂x define in (4.9) satisfies
(4.10), then we have

‖η̂x − η∗x‖ ≤ q̃(‖η̂x‖), (4.12)

where

q̃(t) =
2Lgκ2

L̃− 2Lgκ2

t+

√

4Lgκ2 − 4L2
gκ

2
2

(L̃− 2Lgκ)2
t2 +

4ϑ

L̃− 2Lgκ2

min(φ(t), 0.5)

and φ(t) is defined in (4.10).

Proof. For ease of notation, let ǫ = Ψ(Λ̂) = BT
x v(Λ̂). Consider the optimization problem

min
BT

x η=ǫ
ℓ̃x(η). (4.13)

Its KKT condition is given by
∂ηL(η,Λ) = 0, BT

x η = ǫ,

which is satisfied by (Λ̂, v(Λ̂)) Therefore, v(Λ̂) is the minimizer of ℓ̃x(η) over the set S = {v : BT
x v =

ǫ}, i.e.,

v(Λ̂) = argmin
v∈S

ℓ̃x(η) = 〈grad f(x), η〉F +
L̃

2
〈η, η〉F + g(x + η). (4.14)

Define ℓ̂x(ηx) = ℓ̃x(η+Bxǫ). Further by the definition of η̂x, i.e., η̂x = PTxMv(Λ̂), it is not hard to
see that

η̂x = argmin
η∈TxM

ℓ̂x(η).

By the L̃-strongly convexity of ℓ̂x and the definition of η̂x, it holds that

ℓ̂x(ηx) ≥ ℓ̂x(η̂x) +
L̃

2
‖ηx − η̂x‖2, ∀ηx ∈ TxM. (4.15)

By definition of η̂x, we have

0 ∈ grad f(x) + L̃η̂x + PTxM∂
Eg(x+ η̂x +Bxǫ). (4.16)
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Since Ωx0 is compact, there exists a constant Uf such that ‖ grad f(x)‖ < Uf for all x ∈ Ωx0 .
By [Cla90], if a function is Lipschitz continuous, then the norm of any subgradient is smaller than
its Lipschitz constant. Therefore, by Assumption 4.1, it holds that ‖ζ‖ ≤ Lg for any ζ ∈ ∂Eg(x+η).
It follows from (4.16) and (4.10) that

‖η̂x‖ ≤
Uf + Lg

L̃
. (4.17)

Define U = {Rx(ηx) : x ∈ Ωx0 , ‖ηx‖ ≤ ρ}. Therefore, U is compact. Moreover, since Ωx0 ⊆
Rx(B(0x, ρ)) for any x ∈ Ωx0 , we have Ωx0 ⊂ U . It follows from (2.2) that there exists κ2 such that

‖Rx(ηx)− x− ηx‖ ≤ κ2‖ηx‖2 (4.18)

holds for any x ∈ Ωx0 and ‖ηx‖ ≤ ρ. By Assumption 4.1 and (4.18), we have

|ℓx(ηx)− ℓ̃x(ηx)| ≤ Lgκ2‖ηx‖2, ∀x ∈ Ωx0 , ηx ∈ TxM, ‖ηx‖ ≤ ρ. (4.19)

Moreover, by the definition of ℓ̂x(ηx), we have for any x ∈ Ωx0 and ‖ηx‖ ≤ ρ,

|ℓ̂x(ηx)− ℓ̃x(ηx)|

≤ ‖ grad f(x)‖‖Bxǫ‖+ L̃‖ηx‖‖Bxǫ‖+
L̃

2
‖Bxǫ‖2 + |g(x+ ηx +Bxǫ)− g(x+ ηx)|

= (‖ grad f(x)‖+ L̃‖ηx‖+
L̃

2
‖Bxǫ‖+ Lg)‖Bxǫ‖

≤ (Uf + (ρ+ 1)L̃+ Lg)‖Bxǫ‖
=: ϑ2‖Bxǫ‖,

where the third line has used the fact ‖Bxǫ‖ ≤ ‖ǫ‖ ≤ 1/2 (see (4.10)). Together with (4.19),
and (4.15), it holds that for any x ∈ Ωx0 , ηx ∈ TxM, and ‖ηx‖ ≤ ρ,

ℓ̂x(η̂x) +
L̃

2
‖ηx − η̂x‖2 − Lgκ2‖ηx‖2 − ϑ2‖Bxǫ‖

≤ℓ̂x(ηx)− Lgκ2‖ηx‖2 − ϑ2‖Bxǫ‖
≤ℓ̃x(ηx)− Lgκ2‖ηx‖2 (4.20)

≤ℓx(ηx) (4.21)

≤ℓ̃x(ηx) + Lgκ2‖ηx‖2

≤ℓ̂x(ηx) + Lgκ2‖ηx‖2 + ϑ2‖Bxǫ‖. (4.22)

Define

Ω̂ = {ηx ∈ TxM :
L̃

2
‖ηx − η̂x‖2 − Lgκ2‖ηx‖2 − ϑ2‖Bxǫ‖ ≤ Lgκ2‖η̂x‖2 + ϑ2‖Bxǫ‖}.

It is easy to verify that

Ω̂ =







ηx ∈ TxM :

∥

∥

∥

∥

∥

ηx −
L̃

L̃− 2Lgκ2

η̂x

∥

∥

∥

∥

∥

√

4L̃Lgκ2 − 4L2
gκ

2
2

(L̃− 2Lgκ)2
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≤
√

4L̃Lgκ2 − 4L2
gκ

2
2

(L̃− 2Lgκ2)2
‖η̂x‖2 +

4ϑ2

L̃− 2Lgκ2

‖Bxǫ‖







,

which yields

Ω̂ ⊆ U :=







ηx ∈ TxM : ‖ηx − η̂x‖ ≤
√

4L̃Lgκ2 − 4L2
gκ

2
2

(L̃− 2Lgκ)2

2Lgκ2

L̃− 2Lgκ2

‖η̂x‖+
√

4L̃Lgκ2 − 4L2
gκ

2
2

(L̃− 2Lgκ2)2
‖η̂x‖2 +

4ϑ2

L̃− 2Lgκ2

‖Bxǫ‖







.

Noting the expression of ϑ2, when L̃ → ∞, the righthand side in the above inequality goes to
√

4(ρ+ 1). Thus, for sufficiently large L̃ and ρ, we have

Ω̂ ⊂ U := {ηx ∈ TxM : ‖ηx‖ ≤ ρ/2}
⊂ W := {ηx ∈ TxM : ‖ηx‖ ≤ ρ}.

For any ηx ∈ W but not in Ω̂, it follows from (4.22) that

ℓx(ηx) ≥ℓ̂x(η̂x) +
L̃

2
‖ηx − η̂x‖2 − Lgκ2‖ηx‖2 − ϑ‖Bxǫ‖

>ℓ̂x(η̂x) + Lgκ2‖η̂x‖2 + ϑ‖Bxǫ‖ ≥ ℓx(η̂x). (4.23)

Therefore, there exists a global minimizer of ℓx in the set Ω̂, we denote it by η∗x. It follows from
η∗x ∈ Ω̂, and thus ‖η̂x − η∗x‖ ≤ q̃(‖η̂x‖) for q̃(t) given in the theorem.

Theorem 4.1 ensures that the search direction given by (4.9) is desirable for IRPG to have
global convergence. There are several implications of this theorem. First, the global convergence
of ManPG in [CMSZ20] follows and the step size one is always acceptable. This can be seen by
noting that if φ(t) ≡ 0, then the direction η̂ with Λ satisfying (4.10) is the search direction used
in [CMSZ20]. Secondly, one can relax the accuracy of the solution in ManPG and still guarantees
its global convergence. However, it should be pointed out that Theorem 4.1 does not implies that
η̂x satisfies (3.7) or (3.22). Therefore, the uniqueness of accumulation points and the convergence
rate based on the Riemannian KL property are not guaranteed.

Lemma 4.1 shows that a globally convergent algorithm for solving (4.8) can terminate properly
in the sense that it satisfies (4.10) and (4.11) under the assumption that L̃ is sufficiently large.

Lemma 4.1. Suppose there exists a constant ρ > 0 such that for any x ∈ Ωx0 it holds that Ωx0 ⊆
Rx(B(0x, ρ)). If L̃ is sufficiently large and an algorithm that converges globally is used for (4.8),
then there exists an iterate from the algorithm such that η̂x satisfies (4.10) and (4.11).

Proof. If ǫ = 0, then η̂x = η̃x and the above derivations for η̂x also hold for η̃x. Therefore, ℓx(0x) >
ℓx(η̃x) follows from (4.23) by noting 0x ∈ W and 0x /∈ Ω̂ when L̃ is sufficiently large.. Finally, by
strong convexity of ℓ̃x and the convergence of the algorithm, we have that η̂x → η̃x and ‖Ψ(Λ)‖ → 0.
Therefore, the iterate η̂x satisfies (4.10) and (4.11) in certain iteration.
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4.2 Practical Condition that Ensures Local Convergence Rate

In this section, we directly consider the solution of the Riemanniann proximal mapping (3.1) and
provide a practical condition that meets the requirement for the local convergence rate analysis.
First note that the Riemnnaian proximal mapping (3.1) is equivalent to

min
c∈Rd

Jx(c) := 〈c,QT
x grad f(x)〉F +

L̃

2
‖c‖2 + g(Rx(Qxc)), (4.24)

which is an optimization problem on a Euclidean space, where the subscript k is omitted for sim-
plicity, d is the dimension of M and Qx forms an orthonormal space of TxM.

The analysis in this section relies on the notion of error bound (see its definition in e.g., [TY09,
(35)], [ZS17]), whose discussion relies on the convexity of the objective function. Therefore, we
will make Assumption 4.2 which uses Definition 4.1. It follows that Jx(c) is convex. Note that
Definition 4.1 has also been used in [HGA15, HW21a]

Definition 4.1. A function h :M→ R is called retraction-convex with respect to a retraction R in
N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that Rx(Sx) ⊆ N , there exists a tangent vector
ζ ∈ TxM such that px = h ◦Rx satisfies

px(η) ≥ px(ξ) + 〈ζ, η − ξ〉x ∀η, ξ ∈ Sx. (4.25)

Note that ζ = grad px(ξ) if h is differentiable; otherwise, ζ is any Riemannian subgradient of px at
ξ.

Assumption 4.2. The function g is retraction-convex on M.

In the typical error bound analysis, the residual map plays a key role which controls the distance
of a point to the optimal solution set. For our purpose, the residual map for (4.24) is defined as
follows:

rx(c) = argmin
v∈Rn

wx,c(v) := 〈v,QT
x grad f(x) + L̃c〉F +

L̃

2
‖v‖2 + g(Rx(Qx(c+ v))), (4.26)

It is not hard to see that

rx(c
∗) = 0⇔ c∗ is the optimal solution to (4.24).

Note the residual map defined here is slightly different from the one defined in [TY09], where the
coefficient in front ‖v‖2 is 1/2 instead of L̃/2. However, the error bound can be established in
exactly the same way. To keep the presentation self-contained, details of the proof are provided
below. It is worth pointing out that the family of Problems (4.24) parameterized by x possesses
an error bound property with the coefficient independent of x.

Lemma 4.2. Suppose that Assumption 4.2 holds. Then it holds that

‖c− c∗x‖ ≤ 2‖rx(c)‖, for all x ∈ M, (4.27)

where c∗x is the minimizer of Jx(c).
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Proof. Let f̃x(c) denote grad f(x)TQxc +
L̃
2 ‖c‖2 and g̃x(c) denote g(Rx(Qx(c))). It follows that

Jx(c) = f̃x(c) + g̃x(c) and

rx(c) = argmin
v∈Rd

〈v,∇f̃x(c)〉F +
L̃

2
‖v‖2 + g̃x(c+ v).

Therefore, we have 0 ∈ ∇f̃x(c) + L̃rx(c) + ∂E g̃x(c+ rx(c)), which implies

rx(c) = argmin
v∈Rd

〈∇f̃x(c) + L̃rx(c), v〉F + g̃x(c+ v).

It follows that

〈∇f̃x(c) + L̃rx(c), rx(c)〉F + g̃x(c+ rx(c)) ≤ 〈∇f̃x(c) + L̃rx(c), c
∗
x − c〉F + g̃x(c

∗
x). (4.28)

Since 0 ∈ ∇f̃x(c∗x) + ∂E g̃x(c
∗
x), we have c∗x = argminv∈Rn ∇f̃x(c∗x)T v + g̃x(v). Therefore,

〈f̃x(c∗x), c∗x〉F + g̃x(c
∗
x) ≤ 〈∇f̃x(c∗x), c+ rx(c)〉F + g̃x(c+ rx(c)). (4.29)

Adding (4.28) to (4.29) yields

〈f̃x(c)− f̃x(c∗x), c− c∗x〉F + L̃‖rx(c)‖2 ≤ 〈f̃x(c∗x)− f̃x(c), rx(c)〉F + L̃〈rx(c), c∗x − c〉F. (4.30)

By definition of f̃x, we have that f̃x is L̃-strongly convex and Lipschitz continuously differentiable
with constant L̃. Therefore, (4.30) yields

L̃‖c− c∗x‖2 ≤ 2L̃‖c− c∗x‖‖rx(c)‖,

which implies ‖c− c∗x‖ ≤ 2‖rx(c)‖.

Computing the residual map (4.26) is usually impractical due to the existence of the retraction
R in g. Therefore, we use the same technique in [HW21a, Section 3.5] to linearize Rx(Qx(c+ v)) by
Rx(Qxc) + TRQxc

Qxv, and define a new residual map r̃x(c) that can be used to upper bound rx(c),

r̃x(c) = argmin
v∈Rd

w̃x,c(v) := 〈v, grad f(x) + L̃Qxc〉F +
L̃

2
‖TRQxc

Qxv‖2 + g(y + TRQxc
Qxv), (4.31)

where y = Rx(Qxc). A simple calcualtion can still show that

r̃x(c
∗) = 0⇔ c∗ is the optimal solution to (4.24).

Moreover, minimizing w̃ is the same as Problem (4.1) and therefore can be solved by the techniques
in Section 4.1.

Lemma 4.3. Let G ⊂ M be a compact set. Suppose that Assumptions 4.1 and 4.2 hold, and that
there exists a parallelizable set U such that G ⊂ U , where a set is callel parallelizable if Qx as a
function of x is smooth in U3. If L̃ is sufficient large, then there exist two constants b > 0 and δ > 0
such that

‖rx(c)‖ ≤ b‖r̃x(c)‖ (4.32)

for all x ∈ G and ‖c‖ < δ.
3The notion of a parallelizable set is defined in [HAG15] and the function Q is also called a local frame. The

existence of a smooth Q around any point x ∈ M can be found in [AMS08, Bou20].
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Proof. Since Qx is smooth in U and TR is smooth, we have that the function z : U × R
d → R

d×d :
(x, c) 7→ QT

y TRQxc
Qx is a smooth function, where y = Rx(Qxc). Furthermore, since TR0x

is an
identity for any x ∈ M, we have z(x, 0) = Id for any x ∈M. It follows that

‖QT
y TRQxc

Qx − Id‖ ≤ LJ‖c‖, for any x ∈ G, ‖c‖ ≤ δ, (4.33)

where LJ = maxx∈G,‖c‖≤δ ‖Jz(x,Qxc)‖. Since the set of {(x, c) : x ∈ G, ‖c‖ ≤ δ} is compact and the
Jacobi Jz is continuous by smoothness of z, we have LJ <∞.

Using (4.33) and noting ‖TRQxc
‖ = ‖QT

y TRQxc
Qx‖ yields

‖TRQxc
‖ ≤ ‖Id‖+ ‖QT

y TRQxc
Qx − Id‖ ≤ 1 + LJ‖c‖

and

‖T −1RQxc
‖ − ‖Id‖ ≤ ‖Id − (QT

y TRQxc
Qx)

−1‖
≤ ‖T −1RQxc

‖‖QT
y TRQxc

Qx − Id‖ ≤ LJ‖c‖‖T −1RQxc
‖,

which gives
(1− LJ‖c‖)‖T −1RQxc

‖ ≤ 1.

Therefore, by choosing δ < min(
√

3/2− 1, 1 − 1/
√
2)/LJ , we have

‖TRQxc
‖ ≤

√

3/2, and ‖T −1RQxc
‖ ≤
√
2. (4.34)

It follows that

‖TRQxc
Qxv‖2 − ‖v‖2 ≤ (‖TRQxc

‖2 − 1)‖v‖2 ≤ 1

2
‖v‖2 and

‖TRQxc
Qxv‖2 − ‖v‖2 ≥

(

1

‖T −1RQxc
‖2
− 1

)

‖v‖2 ≥ −1

2
‖v‖2,

which yields

|‖TRQxc
Qxv‖2 − ‖v‖2| ≤

1

2
‖v‖2.

By the compactness of G, there exists a constant χ̃2 such that

‖Rx(Qx(c+ v))−Rx(Qxc)− TRQxc
Qxv‖ ≤ χ̃2‖TRQxc

Qxv‖2, (4.35)

for all x,Rx(Qxc), Rx(Qx(c+ v)) ∈ G.
Therefore, we have

|wx,c(v)− w̃x,c(v)|

≤
∣

∣

∣

∣

∣

L̃

2
‖v‖2 + g(Rx(Qx(c+ v))) − L̃

2
‖TRQxc

Qxv‖2 + g(y + TRQxc
Qxv)

∣

∣

∣

∣

∣

≤ L̃
2
|‖TRQxc

Qxv‖2 − ‖v‖2|+ Lgχ̃2‖TRQxc
‖2‖v‖2

≤CR‖v‖2,
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where CR = L̃/4 + 2Lgχ̃2, the second inequality follows from (4.35) and Assumption 4.1, and the
last inequality follows from (4.34).

Since wx,c and w̃x,c are both strongly convex, their minimizers rx(c) ∈ R
d and r̃x(c) ∈ TyM are

unique. By the same derivation in Theorem 4.1, we have that

L̃

2
‖rx(c)− r̃x(c)‖2 − CR‖rx(c)‖2 ≤ CR‖r̃x(c)‖2,

which implies





√

L̃

2
−
√

CR



 ‖rx(c)‖ ≤





√

L̃

2
+
√

CR



 ‖r̃x(c)‖, for all k > k0.

By assuming L̃ > 8Lgχ̃2, we have that (4.32) holds with b =

√
L̃+
√
2CR√

L̃−
√
2CR

.

The main result is stated in Theorem 4.2, which follows from Lemmas 4.2 and 4.3. It shows
that if the Riemannian proximal mapping is solved sufficiently accurate such that the computable
r̃xk

(c̄k) satisfies (4.36), then the difference ‖η̄xk
− η∗xk

‖ is controlled from above by the prescribed
function ψ. An algorithm that achieves (4.36) can be found in [HW21a, Algorithm 2] by adjusting
its stopping criterion to (4.36).

Theorem 4.2. Let S denote the set of all accumulation points of {xk}. Suppose that there exists
a neighborhood of S, denoted by U , such that U is a parallelizable set, that Assumptions 3.1, 3.2,
4.1 and 4.2 hold, that L̃ is sufficiently large, and that an algorithm is used to solve

min
c∈Rd

Jxk
(c) := 〈c,QT

x grad f(xk)〉F +
L̃

2
‖c‖2 + g(Rxk

(Qxk
c)),

such that the output c̄k ∈ R
d of the algorithm satisfies

‖r̃xk
(c̄k)‖ ≤ ψ(εk, ̺, ‖c̄k‖), (4.36)

where xk is the k-th iterate of Algorithm 1 and ψ is a function from R
3 to R. Then there exists a

constant ã > 0 and an integer K̃ > 0 such that for all k > K̃, it holds that

‖η̄xk
− η∗xk

‖ ≤ ãψ(εk, ̺, ‖η̄xk
‖), (4.37)

where η̄xk
= Qxk

c̄k. Moreover, if ψ(εk, ̺, t) = ε2k, then inequality (3.7) holds; if ψ(εk, ̺, t) =

min(ε2k, ̺t
2) with ̺ < β

2LF a , then inequality (3.22) holds.

Proof. By (3.9) and [BST14, Remark 5], we have that S is a compact set. Therefore, there exists a
compact set G and an integer K̃ > 0 such that S ⊂ G ⊂ U and it holds that xk ⊂ G for all k > K̃.
By Lemma 4.3, there exists two constants b > 0 and δ > 0 such that ‖rx(c)‖ ≤ b‖r̃x(c)‖ for all
x ∈ G and ‖c‖ < δ. In addition, it follows from (3.6) that there exists a constant K̃+ > 0 such that
for all k > K̃+ it holds that ‖η̂xk

‖ < δ. Therefore, for all k > max(K̃, K̃+), we have

‖rxk
(c̄k)‖ ≤ b‖r̃xk

(c̄k)‖. (4.38)

The result (4.37) follows from (4.36) and (4.38).

21



For simplicity, we define r̃xk
(c) as the minimizer of w̃xk,c(v). Indeed, we can show that it is not

necessary to optimize w̃xk,c(v) exactly. Suppose that the minimizer c∗xk
of Jxk

(c) is nonzero, that
a converging algorithm is used to optimize Jxk

(c) and let {ci} denote the generated sequence, and
that w̃xk,c(v) is only solved approximately such that the approximated solution, denoted by ˜̃rxk

(ci),
satisfies ‖˜̃rxk

(ci)− r̃xk
(ci)‖ ≤ δr‖˜̃rxk

(ci)‖, where δr ∈ (0, 1) is a constant4. Then we have

(1− δr)‖˜̃rxk
(ci)‖ ≤ ‖r̃xk

(ci)‖ ≤ (1 + δr)‖˜̃rxk
(ci)‖. (4.39)

It follows that if

‖˜̃rxk
(ci)‖ ≤

1

1 + δr
ψ(εk, ̺, ‖ci‖), (4.40)

then (4.36) holds. Since a converging algorithm is used, we have ci goes to c∗xk
and r̃xk

(ci) goes to

zero. It follows that ψ(εk, ̺, ‖ci‖) is greater than a positive constant for all i and ˜̃rxk
(ci) goes to

zero by (4.39). Therefore, an iterate ci, denoted by c̄k, satisfying inequality (4.40) can be found.

4.3 Implementations of B
T
x and Bx

In this section, the implementations of the functions BT
x : R

n → R
n−d and Bx : R

n−d → R
n

are given for Grassmann manifold, manifold of fixed-rank matrices, manifold of symmetric positive
definite matrices, and products of manifolds. Note that the Riemannian metric is chosen to be the
Euclidean metric in this section.

Grassmann manifold: We consider the representation of Grassmann manifold by

Gr(p, n) = {[X] : X ∈ St(p, n)},

where [X] = {XO : OTO = Ip}. The ambient space of Gr(p, n) is R
n×p and the orthogonal

complement space of the horizontal space HX at X ∈ St(p, n) is given by

H⊥X = {XM :M ∈ R
p×p}.

Therefore, we have

BT
X : Rn×p → R

p×p : Z → XTZ, and

BX : Rp×p → R
n×p :M → XM.

Manifold of fixed-rank matrices: The manifold is given by

R
m×n
r = {X ∈ R

m×n : rank(X) = r}.

The ambient space is therefore R
m×n. Given X ∈ R

m×n
r , let X = USV be a thin singular value

decomposition. The normal space at X is given by

NX R
m×n
r = {U⊥MV T

⊥ :M ∈ R
(m−r)×(n−r)},

4Note that w̃xk,c(v) has the same format as (4.1). We can use condition (4.10) and (4.11) to find the approximate
solution ˜̃rxk

(ci).
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where U⊥ ∈ R
m×(m−r) forms an orthonormal basis of the perpendicular space of span(U) and

V⊥ ∈ R
n×(n−r) forms an orthonormal basis of the perpendicular space of span(V ). It follows that

BT
X : Rm×n → R

(m−r)×(n−r) : Z 7→ UT
⊥ZV⊥, and

BX : R(m−r)×(n−r) → R
m×n :M 7→ U⊥MV T

⊥ .

Note that it is not necessary to form the matrices U⊥ and V⊥. One can use [HAG16, Algorithms 4
and 5] to implement the actions of U⊥, UT

⊥ , V⊥, and V T
⊥ .

Manifold of symmetric positive semi-definite matrices: The manifold is

S
n×n
r = {X ∈ R

n×n : X = XT ,X � 0, rank(X) = r}.

The ambient space is R
n×n. Given X ∈ S

n×n
r , let X = HHT , where H ∈ R

n×r is full rank. The
normal space at X is

NX S
n×n
r = {H⊥MHT

⊥ :M ∈ R
(n−r)×(n−r),M =MT },

where H⊥ ∈ R
n×(n−r) forms an orthonormal basis of the perpendicular space of span(H). Therefore,

we have

BT
X : Rn×n → R

(n−r)(n−r+1)
2 : Z 7→ vec

(

1

2
HT
⊥(Z + ZT )H⊥

)

, and

BX : R
(n−r)(n−r+1)

2 → R
n×n : v 7→ H⊥vec

−1(v)HT
⊥ ,

where vec(M) = (M11,M22, . . . ,Mss,
√
2M12,

√
2M13,

√
2M1s, . . . ,

√
2M(s−1)s)

T forM ∈ R
s×s being

a symmetric matrix, and vec−1 is the inverse function of vec.

Product of manifolds: Let the product manifoldM be denoted byM1×M2×. . .×Mt. Let the
ambient space of Mi be R

ni and the dimension of Mi be di. For any X = (X1,X2, . . . ,Xt) ∈ M,
the mappings BT

X and BX are given by

BT
X : Rn1 × R

n2 × . . .× R
nt → R

(n1−d1+n2−d2+...+nt−dt)

: (Z1, Z2, . . . , Zt) 7→
(

(BT
X1
Z1)

T , (BT
X2
Z2)

T , . . . , (BT
Xt
Zt)

T
)T
, and

BX : R(n1−d1+n2−d2+...+nt−dt) → R
n1 × R

n2 × . . .× R
nt

: (vT1 , v
T
2 , . . . , v

T
t )

T 7→ (BX1v1, BX2v2, . . . , BXtvt),

where BT
Xi

and BXi
denote the mappings for manifold Mi at Xi, and vi ∈ R

ni−di , i = 1, . . . , t.

5 Numerical Experiments

In this section, we use the sparse principle component analysis (SPCA) problem to test the proposed
practical conditions on the accuracy for solving the Riemannian proximal mapping (3.1).
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5.1 Experimental Settings

Since practically a sufficiently large L̃ is unknown, we dynamically increase its value by L̃← 1.5L̃
if the search direction is not descent in the sense that back tracking algorithm α(i+1) = 0.5α(i) with
α(0) = 1 for finding a step size fails for 5 iterations. In addition, the initial value of L̃ at k + 1-th
iteration, denoted by L̃k+1, is given by the Barzilar-Borwein step size with safeguard:

L̃k+1 = min(max(

∣

∣

∣

∣

〈yk, yk〉
〈yk, sk〉

∣

∣

∣

∣

, L̃min), L̃max),

where L̃min > 0, L̃max > 0, yk = PTxk
M grad f(xk+1) − grad f(xk) and sk = αηxk

. The value of

L̃0 is problem dependent and will be specified later. The parameters are given by L̃min = 10−3,
L̃max = L̃0, φ : R→ R : t 7→

√
t, εk = 500

(1+k)1.01
, and ̺ = 100.

Let IRPG-G, IRPG-U, and IRPG-L respectively denote Algorithm 1 with the subproblem solved
accurately enough in the sense that (4.10) and (4.11) hold, (4.36) holds with ψ(εk, ρ, ‖η‖) = ε2k,
and (4.36) holds with ψ(εk, ρ, ‖η‖) = min(ε2k, ̺‖η‖2). Unless otherwise indicated, IRPG-G stops
if the value of (‖ηxk

‖L̃k) reduces at least by a factor of 10−3. IRPG-U and IRPG-L stop if their
objective function values are smaller than the function value of the last iterate given by IRPG-G.

All the tested algorithms are implemented in the ROPTLIB package [HAGH18] using C++,
with a MATLAB interface. The experiments are performed in Matlab R2018b on a 64 bit Ubuntu
platform with 3.5GHz CPU (Intel Core i7-7800X).

5.2 SPCA Test

An optimization model for the sparse principle component analysis is given by

min
X∈St(p,n)

− trace(XTATAX) + λ‖X‖1, (5.1)

where A ∈ R
m×n is the data matrix. This model is a penalized version of the ScoTLASS model

introduced in [JTU03] and it has been used in [CMSZ20, HW21b].

Basic settings A matrix Ã ∈ R
m×n is first generated such that its entries are drawn from the

standard normal distribution. Then the matrix A is created by shifting and normalized columns of Ã
such that the columns have mean zero and standard deviation one. The parameter L̃0 is 2λmax(A)

2,
where λmax(A) denotes the largest singular value of A. The initial iterate is the leading r right
singular vectors of the matrix A. The Riemannian optimization tools including the Riemannian
gradient, the retraction by polar decomposition, the inverse vector transport by differentiated the
retraction, and the adjoint operator of the inverse vector transport by differentiated the retraction
can be found in [HW21a].

Empirical Observations Figure 1 shows the performance of IRPG-G, IRPG-U, and IRPG-L
with multiple values of n, p, and λ. Since IRPG-G, IRPG-U, and IRPG-L solve the Riemannian
proximal mapping up to different accuracy, we find that IRPG-G takes notably more iterations
than IRPG-U, and IRPG-U takes slightly more iterations than IRPG-L, which coincides with our
theoretical results. Though IRPG-U and IRPG-L take fewer iterations, their computational times
are still larger than that of IRPG-G due to the excessive cost on improving the accuracy of the
Riemannian proximal mapping.
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Figure 1: Average results of 10 random runs for SPCA. The same random seed is used when
comparing the three algorithms. We choose the runs where the three algorithms find the same
minimizer in the sense that the norm of the difference between the solutions is smaller than 10−2.
“time” denotes the computational time in seconds. “iter” denotes the number of iterations. Top:
multiple values n = {256, 512, 1024, 2048} with p = 4, m = 20, and λ = 2; Middle: multiple values
p = {1, 2, 4, 8} with n = 1024, m = 20, and λ = 2; Bottom: Multiple values λ = {0.5, 1, 2, 4} with
n = 1024, p = 4, and m = 20.
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