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Abstract

We introduce a class of specially structured linear programming (LP) problems, which has fa-

vorable modeling capability for important application problems in different areas such as optimal

transport, discrete tomography and economics. To solve these generally large-scale LP problems

efficiently, we design an implementable inexact entropic proximal point algorithm (iEPPA) combined

with an easy-to-implement dual block coordinate descent method as a subsolver. Unlike existing

entropy-type proximal point algorithms, our iEPPA employs a more practically checkable stopping

condition for solving the associated subproblems while achieving provable convergence. Moreover,

when solving the capacity constrained multi-marginal optimal transport (CMOT) problem (a special

case of our LP problem), our iEPPA is able to bypass the underlying numerical instability issues

that often appear in the popular entropic regularization approach, since our algorithm does not re-

quire the proximal parameter to be very small in order to obtain an accurate approximate solution.

Numerous numerical experiments show that our iEPPA is efficient and robust for solving large-scale

CMOT problems. The experiments on the discrete tomography problem also highlight the potential

modeling power of our model.

Keywords: Linear programming; proximal point algorithm; entropic proximal term; block coordi-

nate descent; capacity constrained multi-marginal optimal transport.

1 Introduction

In this paper, we introduce a class of specially structured linear programming (LP) problems of the

following form:

min 〈C, X〉

s.t. X ∈ Ω :=
{
X ∈ Rn1×n2×n3 : A(i)(X) = b(i), i = 1, . . . , N, 0 ≤ X ≤ U

}
,

(1.1)

where 〈·, ·〉 denotes the standard inner product in Rn1×n2×n3 , A(i) : Rn1×n2×n3 → Rmi is a given linear

mapping defined by

A(i)(X) :=


〈A(i)

1 , X〉
...

〈A(i)
mi , X〉

 , A
(i)
j ∈ Rn1×n2×n3 , 1 ≤ j ≤ mi, 1 ≤ i ≤ N,
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b(i) = (b
(i)
1 , . . . , b

(i)
mi)
> ∈ Rmi (i = 1, . . . , N), C ∈ Rn1×n2×n3 and U ∈ Rn1×n2×n3

+ ∪ {∞}n1×n2×n3 are

given data. Moreover, the linear mappingsA(i) (i = 1, . . . , N) satisfy Assumption 1 below. As we shall see

shortly, problem (1.1) is a generalization of the classical discrete optimal transport problem which has the

form: min
{
〈C, X〉 : X ∈ Rn1×n2 ,

∑n2

s=1Xrs = ar, r = 1, . . . , n1,
∑n1

r=1Xrs = bs, s = 1, . . . , n2, X ≥ 0
}

,

where a := (a1, . . . , an1
)> and b := (b1, . . . , bn2

)> are two given marginals1 in n1 and n2-dimensional

simplices, and C ∈ Rn1×n2 is a given cost matrix.

Assumption 1. For each fixed i (1 ≤ i ≤ N), A
(i)
j only has binary entries (0 or 1) for j = 1, . . . ,mi,

and the given constraint tensors
{
A

(i)
j | j = 1, . . . ,mi

}
satisfy the property that

A
(i)
j ◦A

(i)
k = 0, if j 6= k, j, k = 1, . . . ,mi,

where “◦” denotes the Hadamard product.

The property stated in Assumption 1 is equivalent to saying that the non-zero patterns of any two

distinct constraint tensors A
(i)
j and A

(i)
k do not overlap in the i-block of the linear constraints A(i)(X) =

b(i). Such structures may look unusual at the first glance, but do appear in a few important application

problems, for example, the capacity constrained multi-marginal optimal transport (CMOT) problem with

three marginals, the discrete tomography problem [1, 7, 42], the disaggregation of industry-by-industry

input-output tables in economics [20], and reconstructions of unknown inter-bank liabilities with fixed

constraints [18]; see details on first two examples in the next two paragraphs. Moreover, as we shall see

later, such special structures allow us to design a highly efficient algorithm to solve the corresponding

LPs since they can greatly facilitate the computations of the subproblems involved in our algorithm; see

Section 3 and Appendix A for more details.

The discrete 3-marginal CMOT problem is modeled as follows:

min
X∈Rn1×n2×n3

〈C, X〉

s.t.

∑
s,tXrst = ar, r = 1, . . . , n1,

∑
r,tXrst = bs, s = 1, . . . , n2,∑

r,sXrst = ct, t = 1, . . . , n3, 0 ≤ X ≤ U,

(1.2)

where a := (a1, . . . , an1
)> ∈ Σn1

, b := (b1, . . . , bn2
)> ∈ Σn2

, c := (c1, . . . , cn3
)> ∈ Σn3

are three given

marginals with Σni
denoting the ni-dimensional unit simplex for i = 1, 2, 3. When n3 = 1, the above

problem readily reduces to the classical optimal transport problem mentioned in the first paragraph, but

with an additional upper bound constraint. It is clear that problem (1.2) falls into the form of (1.1) with

A
(1)
j = e

(1)
j ⊗ 1n2

⊗ 1n3
, j = 1, . . . , n1,

A
(2)
j = 1n1 ⊗ e

(2)
j ⊗ 1n3 , j = 1, . . . , n2,

A
(3)
j = 1n1

⊗ 1n2
⊗ e(3)

j , j = 1, . . . , n3,

(1.3)

where e
(i)
j denotes the jth unit vector in Rni (i = 1, 2, 3), 1ni denotes the ni-dimensional vector of all ones

for i = 1, 2, 3, and “⊗” denotes the tensor product (see the definition at the end of this section). Problem

(1.2) was first proposed and studied by Korman and McCann [24, 25] in the 2-marginal continuous case2

as an important variant of the classical 2-marginal optimal transport (OT) problem. This variant takes

into account limits on the transport capacities3 via imposing a proper upper bound constraint X ≤ U ,

and hence it is better able to model some real-life situations. Moreover, we note that if the constraints in

(1.2) are summed over a single index instead of two indices (for example,
∑
sXrst = art for r = 1, . . . , n1,

t = 1, . . . , n3), then the resulting problem can model a multi-commodity flow problem on a bipartite

graph, where the commodities are indexed by t = 1, . . . , n3; see, for example, [23].

1In the paper, the term ‘marginal’ refers to a vector obtained by the sum of entries of a matrix/tensor over an index set.
2In the paper, the 2-marginal case means that we consider problem (1.2) in the matrix case (namely, n3 = 1).
3This consideration can date back to [26], and possibly earlier.
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In the 2-dimensional discrete tomography problem studied in [42], one is given the marginals obtained

from an n × n matrix (for simplicity, we discuss the matrix case instead of a third-order tensor) by

summing its entries along different directions, for example, 0◦, 45◦, 90◦ and 135◦ directions. In this case,

the formulation in [1] would require a sixth-order tensor to model the problem as a 6-marginal optimal

transport problem. Unfortunately, this approach leads to an exponential increase in the computational

cost because of the curse of dimensionality brought about by the extra dimensions introduced in the

higher-order tensor. But using our model in (1.1), the variable remains as a matrix and the projections

along the four directions are formulated as four blocks of linear constraints, each represented by a linear

mapping A(i)(X) = b(i) with b(i) being the given ith marginal for i = 1, . . ., 4. Moreover, it is not hard

to verify that the constraint matrices associated with each linear mapping A(i) satisfy Assumption 1. For

the construction of a block of linear constraints that represents a projection along a specific direction, we

refer the reader to subsection 4.3 and Appendix C.

Note that problem (1.1) has n1n2n3 box-constrained variables and
∑N
i=1mi linear equality constraints,

and thus it is usually a very large-scale LP problem when the dimension of the variable or the number of

blocks of linear constraints is large. Therefore, classical LP methods such as the simplex method and the

interior point method may no longer be efficient enough or may consume too much memory when solving

this problem. Recently, an entropic regularized approach was proposed in [6] to approximately solve

problem (1.2) in the 2-marginal case with impressive numerical performance. This approach basically

modifies the original LP problem by adding an entropic regularization to the objective, and then applies

a certain efficient first-order method to solve the resulting computationally more tractable regularized

problem to obtain an approximate solution of the original LP problem. In [6], Dykstra’s algorithm4 with

Kullback-Leibler projections (DyKL) is adapted to solve the entropic regularized counterpart of problem

(1.2) in the 2-marginal case (see (B.1)). This algorithm can be highly efficient if a crude approximate

solution is adequate, in which case the regularization parameter needs not be very small. However,

when one decreases the regularization parameter to a small value for obtaining a more accurate solution,

the DyKL would encounter the difficulties of numerical instabilities (due to loss of accuracy involving

overflow/underflow operations) and slow convergence speed, just as Sinkhorn’s algorithm [37] employed

in [13] for approximately solving the classical 2-marginal OT problem. Though the former difficulty

can partially be alleviated by some stabilization techniques (e.g., applying the log-sum-exp operation

[32, Section 4.4]) at the expense of losing some computational efficiency, the latter difficulty of slow

convergence, however, is unavoidable when the regularization parameter is small, as clearly observed

from our numerical experiments in Section 4. In addition, we are not aware of fast algorithms that are

specifically designed for solving the more general problem (1.1).

In this paper, we develop an implementable inexact entropic proximal point algorithm (iEPPA) for

solving problem (1.1). Our iEPPA falls into the family of Bregman-distance-based PPA [11, 12, 15, 16]

and the family of φ-divergence-based PPA [3, 17, 21, 22, 38, 39], both of which have been widely studied

in the literature, especially in the 1990’s starting from the paper [11]. However, we should point out that

we have made an essential change to the algorithm by introducing a more practical stopping condition

(2.3) for solving the subproblems. Therefore, existing convergence results may not be applicable and the

convergence analysis has to be re-established for our iEPPA; see Theorem 1. Moreover, as a byproduct, we

actually develop a unified inexact framework for EPPA including Teboulle’s framework [39] and Eckstein’s

framework [16] as special cases. This makes our iEPPA more flexible. To solve the subproblem (2.2),

we first derive its dual problem and characterize the properties of its optimal solutions in Section 3. We

then apply a block coordinate descent (BCD) method to solve the resulting dual problem and establish

the linear convergence by revisiting some classical results for the BCD method in [28, 29, 41]. We

also show how the subproblems in the BCD method can be solved efficiently under Assumption 1. In

particular, no stabilization technique is needed for the BCD updates since our iEPPA does not require

a small proximal parameter in each iteration. This is indeed a key advantage of our iEPPA over the

popular entropic regularization approach in [6]. Recently, a similar algorithmic framework studied by

Eckstein [16] was also adapted in [43] for solving the classical OT problem with encouraging numerical

4More details on Dykstra’s algorithm and its Bregman extension can be found in [5, 14].
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performance. However, the algorithm there was developed under a rather stringent inexact condition,

which is nontrivial to verify or implement in practice.

The contributions of this paper are summarized as follows.

1. We introduce a class of specially structured LP problems (1.1), which covers some important

existing problems and has favorable modeling capability. For example, it is able to formulate

a tomography problem without using a high-order tensor. This is in contrast to [1, 7] where

a high-order (equals to two plus the number of projection directions) tensor is used to model

a 2D tomography problem, and consequently the resulting problem is extremely large-scale and

prohibitively expensive to solve in terms of both memory consumption and computational cost.

In addition, the third-order tensor model (1.1) and the subsequent algorithms can naturally be

extended to higher-order cases if needed.

2. We develop an efficient iEPPA combined with a dual BCD method, namely, iEPPA+BCD, to

solve the proposed structured LP problem (1.1). It has the important strength of being able to

faithfully solve the original problem without requiring the proximal parameter to be very small.

As a result, when solving the CMOT problem (1.2), it can bypass the inherent numerical instabil-

ities that often plague the entropic regularization approach. While our iEPPA+BCD framework

is not completely new but a novel combination of existing algorithms in the optimization litera-

ture, we have nevertheless introduced an essential modification to make the algorithm practically

implementable by proposing a computationally checkable stopping condition for finding a suffi-

ciently accurate approximate solution of the subproblem in each iEPPA iteration to ensure the

convergence of the overall algorithm.

3. We conduct rigorous numerical experiments to illustrate the efficiency of our iEPPA+BCD frame-

work for solving the CMOT problem (1.2), in comparison to the (stabilized) DyKL and the pow-

erful commercial solver Gurobi. Experiments on the discrete tomography problem also show the

favorable modeling power of our model.

The rest of this paper is organized as follows. The iEPPA for solving problem (1.1) and its convergence

results are described in Section 2. The dual BCD method for solving the subproblem and its convergence

analysis are presented in Section 3. Moreover, the details on the implementable verification of our new

inexact condition is also included in Section 3. Extensive numerical results are reported in Section 4,

with some concluding remarks given in Section 5.

Notation and Preliminaries The elements of a third-order tensor X ∈ Rn1×n2×n3 are denoted as

Xrst where 1 ≤ r ≤ n1, 1 ≤ s ≤ n2, 1 ≤ t ≤ n3. For any tensors X, Y ∈ Rn1×n2×n3 , we define

their inner product as 〈X, Y 〉 :=
∑n1

r=1

∑n2

s=1

∑n3

t=1Xrst Yrst. The Frobenius norm of X is defined by

‖X‖F :=
√
〈X, X〉. For any X, Y ∈ Rn1×n2×n3 , the Hadamard product of X and Y is defined by

(X ◦ Y )rst := Xrst Yrst for any 1 ≤ r ≤ n1, 1 ≤ s ≤ n2, 1 ≤ t ≤ n3. Similarly, we use “./” to denote

the element-wise division operator. We use “⊗” to denote the tensor product of vectors. Specifically,

let u(i) ∈ Rni (i = 1, 2, 3) be three arbitrary column vectors. Their tensor product is denoted by

u(1)⊗u(2)⊗u(3) ∈ Rn1×n2×n3 whose elements are given by (u(1)⊗u(2)⊗u(3))rst := u
(1)
r u

(2)
s u

(3)
t for any

1 ≤ r ≤ n1, 1 ≤ s ≤ n2, 1 ≤ t ≤ n3.

Let E be a finitely dimensional real Euclidean space equipped with an inner product 〈·, ·〉 and its

induced norm ‖ · ‖. For an extended-real-valued function f : E → [−∞,∞], we say that it is proper

if f(x) > −∞ for all x ∈ E and its domain dom f := {x ∈ E : f(x) < ∞} is nonempty. A proper

function f is said to be closed if it is lower semicontinuous. Assume that f : E → (−∞,∞] is a

proper closed convex function. For a given ν ≥ 0, the ν-subdifferential of f at x ∈ dom f is defined by

∂νf(x) := {d ∈ E : f(y) ≥ f(x)+ 〈d, y−x〉−ν, ∀y ∈ E} and when ν = 0, ∂νf is simply denoted by ∂f ,

which is referred to as the subdifferential of f . The conjugate function of f is f∗ : E→ (−∞,∞] defined

by f∗(y) := sup {〈y, x〉 − f(x) : x ∈ E}. For any x, y ∈ E, it follows from [34, Theorem 23.5] that

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y). (1.4)
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Moreover, we call a proper closed convex function f essentially smooth if (i) the interior of dom f , denoted

by int dom f , is not empty; (ii) f is differentiable on int dom f ; (iii) ‖∇f(xk)‖ → ∞ for every sequence

{xk} in int dom f converging to a boundary point of int dom f ; see [34, page 251].

Finally, we make a blanket assumption throughout this paper.

Assumption 2. The feasible set Ω is bounded and Ω ∩ Rn1×n2×n3
++ is nonempty.

This assumption ensures the well-definedness of problem (1.1) and our method developed in the next

section. The boundedness assumption can be satisfied if, for instance, U ∈ Rn1×n2×n3
+ or the constraints

are given as in (1.2).

2 An implementable inexact entropic proximal point algorithm

In this section, we develop an implementable inexact entropic proximal point algorithm (iEPPA) for

solving problem (1.1). To describe the iterates of the iEPPA, we first rewrite problem (1.1) as follows:

min
X

δΩ◦(X) + 〈C, X〉, s.t. X ≥ 0, (2.1)

where δΩ◦(·) is the indicator function of the set Ω◦ defined as

Ω◦ :=
{
X ∈ Rn1×n2×n3 : A(i)(X) = b(i), i = 1, . . . , N, X ≤ U

}
.

Obviously, the set Ω◦ is formed by removing the non-negative constraint on X from the set Ω and hence

Ω ⊆ Ω◦. We also introduce the Boltzmann-Shannon entropy function φ(X) =
∑
rstXrst logXrst −Xrst

(with the convention that 0 log 0 = 0) and its conjugate function φ∗(Y ) =
∑
rst exp(Yrst). Then, the

Bregman distance [9] with φ as the kernel function, is defined as

Dφ(X, Y ) := φ(X)− φ(Y )− 〈∇φ(Y ), X − Y 〉, ∀X ∈ Rn1×n2×n3
+ , Y ∈ Rn1×n2×n3

++ .

It is easy to see that Dφ(X, Y ) ≥ 0 and the equality holds if and only if X = Y . Then, the iEPPA for

solving (2.1) (hence (1.1)) is presented as Algorithm 1.

Algorithm 1 An implementable inexact entropic proximal point algorithm (iEPPA) for solving (2.1)

Input: Let {εk}∞k=0, {νk}∞k=0, {ηk}∞k=0 and {µk}∞k=0 be four sequences of nonnegative scalars. Choose

X0 = X̃0 ∈ Rn1×n2×n3
++ arbitrarily. Set k = 0.

while the termination criterion is not met, do

Step 1. Find a pair (Xk+1, X̃k+1) by approximately solving the following problem

min
X

δΩ◦(X) + 〈C, X〉+ εk Dφ(X, Xk), (2.2)

such that Xk+1 ∈ Rn1×n2×n3
++ , X̃k+1 ∈ Ω and

∆k ∈ ∂νkδΩ◦(X̃k+1) + C + εk
(
∇φ(Xk+1)−∇φ(Xk)

)
with ‖∆k‖F ≤ ηk, Dφ(X̃k+1, Xk+1) ≤ µk.

(2.3)

Step 2. Set k = k + 1 and go to Step 1.

end while

Output: (Xk, X̃k)

The reader may have observed that the iEPPA in Algorithm 1 basically solves the original problem

(2.1) (hence (1.1)) via approximately solving a sequence of subproblems (2.2) each involving a special

entropic Bregman proximal term. Since domφ = Rn1×n2×n3
+ , the constraint X ≥ 0 can be removed in
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(2.2). Moreover, the Boltzmann-Shannon entropy function φ(X) =
∑
rstXrst logXrst−Xrst is essentially

smooth and strictly convex on Rn1×n2×n3
+ . This together with Assumption 2 ensures that each subproblem

(2.2) is well-defined in the sense that its optimal solution (denoted by Xk,∗) uniquely exists and lies in

Rn1×n2×n3
++ . Indeed, since Ω◦ ∩ domφ = Ω is bounded, the objective function in subproblem (2.2) is then

level-bounded. Thus, a solution exists [35, Theorem 1.9] and must be unique since φ is strictly convex.

The essential smoothness of φ and Assumption 2 further imply thatXk,∗ can only lie in Rn1×n2×n3
++ . Notice

that our inexact condition (2.3) always holds when Xk+1 = X̃k+1 = Xk,∗ and hence it is achievable.

The inexact condition (2.3) is rather general to cover some existing inexact conditions, and more

importantly, it makes our iEPPA more practical for solving problem (2.1) (hence (1.1)). When νk ≡
ηk ≡ µk ≡ 0, Xk+1 (equals to X̃k+1) must be the exact optimal solution of subproblem (2.2). In this

case, our exact version of iEPPA is indeed a special case of the classical exact generalized PPA (such as

the φ-divergence-based PPA [3, 17, 21, 22, 38] and the Bregman-distance-based PPA [11, 12, 15]). When

ηk ≡ µk ≡ 0, condition (2.3) reduces to

0 ∈ ∂νkδΩ◦(Xk+1) + C + εk
(
∇φ(Xk+1)−∇φ(Xk)

)
, (2.4)

which is considered by Teboulle [39] in the φ-divergence-based PPA that allows the approximate compu-

tations of the subdifferential of δΩ◦ at Xk+1, provided Xk+1 ∈ Ω◦. When νk ≡ µk ≡ 0, condition (2.3)

reduces to

∆k ∈ ∂δΩ◦(Xk+1) + C + εk
(
∇φ(Xk+1)−∇φ(Xk)

)
with ‖∆k‖F ≤ ηk, (2.5)

which is considered by Eckstein [16] in the Bregman-distance-based PPA and is typically easier to check

than the ν-subdifferential-based condition (2.4). But again, it requires Xk+1 to be in Ω◦. The inexact

algorithmic framework based on condition (2.5) has also been adapted in [43] for solving the classical

2-marginal OT problem. However, we should mention that neither Teboulle’s inexact condition (2.4) nor

Eckstein’s inexact condition (2.5) is easy to implement for solving the subproblem with the complicated

constraint that X ∈ Ω◦. Because it is nontrivial to find a point Xk+1 that simultaneously satisfies Xk+1 ∈
Ω◦ (required by the nonemptyness of ∂νkδΩ◦(X

k+1) or ∂δΩ◦(X
k+1)) and Xk+1 ∈ Rn1×n2×n3

++ (required

by the essentially smoothness of φ). This inadequacy thus motivated us to further relax conditions (2.4)

and (2.5) to condition (2.3), in which ∂νkδΩ◦ and ∇φ are allowed to be computed at two slightly different

points, respectively. We shall show later in subsection 3.2 that the verification of our inexact condition

(2.3) is more practically implementable.

We next establish the convergence of our iEPPA in Algorithm 1. Our analysis is inspired by several

existing works (see, for example, [16, 39]), but is more involved due to the flexible inexact condition

(2.3). We shall start with some elementary preliminaries. It is known from [10, Section 6.1] that the

Boltzmann-Shannon entropy function φ has many elegant properties as a Bregman function (see [10,

Definition 2.1]). We point out three of them below that are useful in our subsequential analysis. More

details on the Bregman function can be found in [4, Section 4].

Property 1. The following properties hold for φ(X) =
∑
rstXrst logXrst −Xrst.

(i) For any X ∈ Rn1×n2×n3
+ , Dφ(X, ·) is level-bounded.

(ii) If {Y k} ⊆ Rn1×n2×n3
++ converges to some Y ∗ ∈ Rn1×n2×n3

+ , then Dφ(Y ∗, Y k)→ 0.

(iii) (Convergence consistency) If {Xk} ⊆ Rn1×n2×n3
+ and {Y k} ⊆ Rn1×n2×n3

++ are two sequences

such that {Xk} is bounded, Y k → Y ∗ and Dφ(Xk, Y k)→ 0, then Xk → Y ∗.

We also recall two well-known results.

Lemma 1 (Three points identity [12, Lemma 3.1]). For any X ∈ Rn1×n2×n3
+ and Y, Z ∈ Rn1×n2×n3

++ ,

the following identity holds:

〈∇φ(Y )−∇φ(Z), X − Y 〉 = Dφ(X, Z)−Dφ(X, Y )−Dφ(Y, Z).
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Lemma 2 ([33, Section 2.2]). Suppose that {ak}∞k=0 ⊆ R and {γk}∞k=0 ⊆ R are two sequences such that

{ak} is bounded from below,
∑∞
k=0 γk <∞, and ak+1 ≤ ak+γk holds for all k. Then, {ak} is convergent.

We are now ready to give the main convergence result.

Theorem 1 (Convergence of the iEPPA). Suppose that Assumption 2 holds and {εk}∞k=0, {νk}∞k=0,

{ηk}∞k=0, {µk}∞k=0 are four sequences of nonnegative scalars. Let {Xk} and {X̃k} be the sequences gen-

erated by the iEPPA in Algorithm 1. If 0 < ε ≤ εk ≤ ε̄ < ∞,
∑
νk < ∞,

∑
ηk < ∞ and

∑
µk < ∞,

then {Xk} and {X̃k} converge to a same optimal solution of problem (2.1) (hence problem (1.1)).

Proof. First, from condition (2.3), there exists a Dk+1 ∈ ∂νkδΩ◦(X̃k+1) such that

∆k = Dk+1 + C + εk
(
∇φ(Xk+1)−∇φ(Xk)

)
.

Then, for any P ∈ Ω ⊆ Ω◦, we see that

0 ≥ 〈Dk+1, P − X̃k+1〉 − νk = 〈∆k − C − εk
(
∇φ(Xk+1)−∇φ(Xk)

)
, P − X̃k+1〉 − νk,

which implies that

〈C, X̃k+1〉 ≤ 〈C, P 〉+ εk〈∇φ(Xk+1)−∇φ(Xk), P − X̃k+1 〉+ 〈∆k, X̃k+1 − P 〉+ νk. (2.6)

Note that

〈∇φ(Xk+1)−∇φ(Xk), P − X̃k+1 〉

= 〈∇φ(Xk+1)−∇φ(Xk), P −Xk+1 〉 − 〈∇φ(Xk+1)−∇φ(Xk), X̃k+1 −Xk+1 〉

= Dφ(P, Xk)−Dφ(P, Xk+1)−Dφ(Xk+1, Xk)−
(
Dφ(X̃k+1, Xk)−Dφ(X̃k+1, Xk+1)−Dφ(Xk+1, Xk)

)
= Dφ(P, Xk)−Dφ(P, Xk+1)−Dφ(X̃k+1, Xk) +Dφ(X̃k+1, Xk+1)

≤ Dφ(P, Xk)−Dφ(P, Xk+1)−Dφ(X̃k+1, Xk) + µk,
(2.7)

where the second equality follows from the three points identity in Lemma 1. Moreover, since X̃k+1 ∈ Ω

and P ∈ Ω, then 〈∆k, X̃k+1 − P 〉 ≤ ‖X̃k+1 − P‖F ‖∆k‖F ≤ 2ρηk, where the last inequality follows from

the boundedness of Ω (by Assumption 2) and hence there exists a ρ > 0 such that ‖X‖F ≤ ρ for all

X ∈ Ω. Combining this with (2.6) and (2.7), we have

〈C, X̃k+1〉 ≤ 〈C, P 〉+εk
(
Dφ(P, Xk)−Dφ(P, Xk+1)−Dφ(X̃k+1, Xk)

)
+εkµk+2ρηk+νk, ∀P ∈ Ω. (2.8)

Now, set P = X̃k in (2.8), we see that

〈C, X̃k+1〉 ≤ 〈C, X̃k〉+ εk
(
Dφ(X̃k, Xk)−Dφ(X̃k, Xk+1)−Dφ(X̃k+1, Xk)

)
+ εkµk + 2ρηk + νk

≤ 〈C, X̃k〉 − εk
(
Dφ(X̃k, Xk+1) +Dφ(X̃k+1, Xk)

)
+ εk(µk−1 + µk) + 2ρηk + νk

≤ 〈C, X̃k〉+ εk(µk−1 + µk) + 2ρηk + νk.

(2.9)

Note that {〈C, X̃k〉} is bounded below since X̃k is in the compact set Ω for all k. Then, since εk is

nonnegative and bounded from above,
∑
νk < ∞,

∑
ηk < ∞ and

∑
µk < ∞, it follows from (2.9) and

Lemma 2 that {〈C, X̃k〉} is convergent. Also, we see from (2.9) that

εk
(
Dφ(X̃k, Xk+1) +Dφ(X̃k+1, Xk)

)
≤ 〈C, X̃k〉 − 〈C, X̃k+1〉+ εk(µk−1 + µk) + 2ρηk + νk.

From this, together with εk ≥ ε > 0, νk → 0, ηk → 0, µk → 0 and the fact that {〈C, X̃k〉} is convergent,

we get that

Dφ(X̃k, Xk+1)→ 0 and Dφ(X̃k+1, Xk)→ 0.
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Next, let X∗ be an arbitrary optimal solution of (2.1) (hence (1.1)). Obviously, 〈C, X∗〉 ≤ 〈C, X̃k+1〉
for all k since X̃k+1 ∈ Ω. By setting P = X∗ in (2.8), dividing the resulting inequality by εk and

rearranging terms, we see that

0 ≤ Dφ(X∗, Xk+1)

≤ Dφ(X∗, Xk) + ε−1
k

(
〈C, X∗〉 − 〈C, X̃k+1〉

)
−Dφ(X̃k+1, Xk) + µk + ε−1

k (2ρηk + νk)

≤ Dφ(X∗, Xk) + µk + ε−1
k (2ρηk + νk).

(2.10)

Thus, we can conclude from the above inequality and Lemma 2 that {Dφ(X∗, Xk)} is convergent. On

the other hand, since {X̃k} is bounded (due to X̃k ∈ Ω), it has at least one cluster point. Suppose that

X̃∞ is a cluster point and {X̃ki} is a convergent subsequence such that limi→∞ X̃ki = X̃∞. Then, by

using (2.8) with P = X∗ again, we have for all ki,

〈C, X̃ki〉 ≤ 〈C, X∗〉+ εki−1

(
Dφ(X∗, Xki−1)−Dφ(X∗, Xki)−Dφ(X̃ki , Xki−1)

)
+ εki−1µki−1 + 2ρηki−1 + νki−1

≤ 〈C, X∗〉+ εki−1

(
Dφ(X∗, Xki−1)−Dφ(X∗, Xki)

)
+ εki−1µki−1 + 2ρηki−1 + νki−1.

Then, passing to the limit and recalling that {Dφ(X∗, Xk)} is convergent, 0 < ε ≤ εk ≤ ε̄ <∞, νk → 0,

ηk → 0, µk → 0, we obtain that

〈C, X̃∞〉 ≤ 〈C, X∗〉.

Note that X̃∞ ∈ Ω since Ω is closed. Thus, X̃∞ is an optimal solution of (2.1) (hence (1.1)).

In addition, from Property 1(i) and the fact that {Dφ(X∗, Xk)} is convergent, we can conclude that

{Xk}must be bounded and hence it has at least one cluster point. Suppose that X∞ is a cluster point and

{Xkj} is a convergent subsequence such that limj→∞Xkj = X∞. Then, from Dφ(X̃kj , Xkj ) ≤ µkj−1 →
0, the boundedness of {X̃kj} and Property 1(iii), we have that limj→∞ X̃kj = X∞. Therefore, from what

we have proved in the last paragraph, X∞ is an optimal solution of (2.1) (hence (1.1)), and moreover, by

using (2.10) with X∗ replaced by X∞, we can conclude that {Dφ(X∞, Xk)} is convergent. On the other

hand, it follows from limj→∞Xkj = X∞ and Property 1(ii) that Dφ(X∞, Xkj ) → 0. Consequently,

{Dφ(X∞, Xk)} must converge to zero. Now, let X̂∞ be any cluster point of {Xk} with a subsequence

{Xk′j} such that Xk′j → X̂∞. Since Dφ(X∞, Xk) → 0, we have Dφ(X∞, Xk′j ) → 0. Using Property

1(iii) again, we see that X∞ = X̂∞. Since X̂∞ is arbitrary, we can conclude that limk→∞Xk = X∞.

This, together with the boundedness of {X̃k}, Dφ(X̃k, Xk) → 0 and Property 1(iii), implies that {X̃k}
also converges to X∞. We then complete the proof. 2

From Theorem 1, we see that the convergence of our iEPPA can be easily guaranteed with proper

choices of {εk}, {νk}, {ηk} and {µk}. To make our iEPPA truly implementable, we will illustrate in the

next section how to efficiently solve the subproblem (2.2) to find a pair (Xk, X̃k) satisfying condition

(2.3) at each iteration (see Step 1 in Algorithm 1).

3 A dual block coordinate descent method for solving (2.2)

In this section, we present an efficient method for solving the subproblem (2.2). Specifically, we first

derive the dual problem of (2.2), which is conceivably more tractable, and then apply a block coordinate

descent (BCD) method for solving it. Note that the subproblem (2.2) has the same form as the entropic

regularized counterpart of problem (1.1). Thus, one can also follow [6] to apply the DyKL for solving it.

However, our numerical comparisons have shown that the dual BCD method is more efficient than the

DyKL for solving (2.2) with a fixed εk and hence it can be of independent interest for solving an entropic

regularized problem in form of (2.2).5

5In this paper, we omit numerical comparisons between the dual BCD and DyKL to save space, and refer the interested
reader to our early arXiv version (arXiv:2011.14312v2).
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For notational simplicity, we drop the index k and consider the following generic problem with given

S ∈ Rn1×n2×n3
++ and ε > 0:

min
X∈Rn1×n2×n3

〈C, X〉+ εDφ(X, S)

s.t. A(i)(X)− b(i) = 0, i = 1, . . . , N,

X ≤ U,

(3.1)

where φ(X) =
∑
rstXrst logXrst − Xrst. By introducing an auxiliary variable Z ∈ Rn1×n2×n3 and

substituting φ into (3.1), we can equivalently reformulate problem (3.1) as

min
X,Z∈Rn1×n2×n3

〈M, X〉+ ε
∑
r,s,tXrst (logXrst − 1) + δ+(Z)

s.t. A(i)(X)− b(i) = 0, i = 1, . . . , N,

X + Z = U,

(3.2)

where M := C − ε logS and δ+(·) is the indicator function over the set
{
Z ∈ Rn1×n2×n3 : Z ≥ 0

}
. The

Lagrangian function associated with (3.2) is

L
(
X,Z,y(1), . . . ,y(N),W

)
=
〈
M −

∑N
i=1A

(i,∗)y(i) −W, X
〉

+ ε
∑
r,s,tXrst (logXrst − 1)

+ δ+(Z)− 〈W, Z〉+
∑N
i=1〈y

(i), b(i)〉+ 〈W, U〉,

where y(i) ∈ Rmi (i = 1, . . . , N), W ∈ Rn1×n2×n3 are Lagrangian multipliers for (3.2) and A(i,∗) : Rmi →
Rn1×n2×n3 is the adjoint mapping of A(i) that is defined by A(i,∗)y(i) :=

∑mi

j=1 y
(i)
j A

(i)
j . Then, the dual

problem of (3.2) is given by

max
y(1),...,y(N),W

{
min
X,Z

L
(
X,Z,y(1), . . . ,y(N),W

)}
. (3.3)

Observe that

min
X

{〈
M −

N∑
i=1

A(i,∗)y(i)−W, X
〉

+ε
∑
r,s,t

Xrst (logXrst − 1)
}

= −ε
〈
M̃, exp

(
ε−1
(
W +

N∑
i=1

A(i,∗)y(i)
))〉

,

where M̃ := exp(−M/ε) = S ◦ exp(−C/ε) and

min
Z

{
δ+(Z)− 〈W, Z〉

}
=

{
0, if W ≤ 0,

−∞, otherwise.

Here the notation exp(X) means that the exponential operation is applied to all entries of X. With these

facts and some manipulations, problem (3.3) is then equivalent to

min
y(1),...,y(N),W

{
R
(
y(1), . . . ,y(N),W

)
:= ε

〈
M̃, exp

(
ε−1
(
W +

∑N
i=1A(i,∗)y(i)

))〉
−
∑N
i=1〈y(i), b(i)〉 − 〈W, U〉+ δ−(W )

}
, (3.4)

where δ−(·) is the indicator function over the set
{
W ∈ Rn1×n2×n3 : W ≤ 0

}
. Now, we see that problem

(3.4) is a convex problem with N+1 blocks of variables and is conceivably more tractable than the original

problem (3.1). Indeed, for this kind of problems containing several blocks of variables, it is desirable to

apply the BCD method, which basically minimizes the objective R with respect to y(1), . . . ,y(N),W

cyclically at each iteration; see Algorithm 2 for a detailed description.

We will show in the next subsection that the dual BCD in Algorithm 2 is R-linearly convergent and

also provides the optimal solution of problem (3.1). Moreover, by using the nice structures imposed on

A(i) (i = 1, . . . , N) in Assumption 1 together with some careful manipulations as presented in subsection
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Algorithm 2 A dual block coordinate descent method for solving (3.1)

Input: Choose (y(1),0, . . . ,y(N),0,W 0) ∈ domR arbitrarily. Set ` = 0.

while a termination criterion is not met, do

Step 1. compute

y(i),`+1 = arg min
y(i)

R
(
y(1),`+1, . . ., y(i−1),`+1, y(i), y(i+1),`, . . ., y(N),`, W `

)
, 1 ≤ i ≤ N,

W `+1 = arg min
W

R
(
y(1),`+1, . . . , y(N),`+1, W

)
.

Step 2. Set ` = `+ 1 and go to Step 1.

end while

Output: (y(1),`, . . . ,y(N),`,W `)

3.3, one can show that all subproblems in our dual BCD admit closed-form solutions, leading to the

following explicit iterative scheme:

y(i),`+1 = ε log b(i) − ε log
(
A(i)

(
M̃ ◦ exp

(
ε−1∑i−1

q=1A
(q,∗)y(q),`+1

+ ε−1∑N
q=i+1A

(q,∗)y(q),`
)
◦ exp

(
ε−1W `

)))
, 1 ≤ i ≤ N,

W `+1 = min
{
ε log

(
U./
(
M̃ ◦ exp

(
ε−1∑N

q=1A
(q,∗)y(q),`+1

)))
, 0
}
.

(3.5)

Alternatively, for any ` ≥ 0, let ξ(i),` := exp
(
ε−1y(i),`

)
for i = 1, . . . , N and Γ` := exp

(
ε−1W `

)
, then

the iterative scheme (3.5) can be equivalently written as

ξ(i),`+1 = b(i)./A(i)
(
M̃ ◦ (A(1,•)ξ(1),`+1) ◦ · · · ◦ (A(i−1,•)ξ(i−1),`+1)

◦ (A(i+1,•)ξ(i+1),`) ◦ · · · ◦ (A(N,•)ξ(N),`) ◦ Γ`
)
, 1 ≤ i ≤ N,

Γ`+1 = min
{
U./
(
M̃ ◦ (A(1,•)ξ(1),`+1) ◦ · · · ◦ (A(N,•)ξ(N),`+1)

)
, 1
}
.

(3.6)

Here, for any z ∈ Rmi , the tensor A(i,•)z ∈ Rn1×n2×n3 is defined as follows:

(A(i,•)z)rst =

{
(A(i,∗)z)rst, if (r, s, t) ∈ J (i),

1, otherwise,

where J (i) is the aggregated non-zero pattern of A(i,∗) defined by

J (i) =
{

(r, s, t) | (A(i)
j )rst 6= 0 for some j ∈ {1, . . . ,mi}

}
. (3.7)

Remark 1. For the efficient implementation of (3.6), it is more convenient to introduce the following

tensors for 1 ≤ i ≤ N :

M̂ (i),`+1 = M̃ ◦ (A(1,•)ξ(1),`+1) ◦ · · · ◦ (A(i−1,•)ξ(i−1),`+1) ◦ (A(i+1,•)ξ(i+1),`) ◦ · · · ◦ (A(N,•)ξ(N),`) ◦ Γ`,

M̂ (N+1),`+1 = M̃ ◦ (A(1,•)ξ(1),`+1) ◦ · · · ◦ (A(N,•)ξ(N),`+1).

Then, the `-th cycle of the BCD scheme in (3.6) can be carried out as follows.

M̂ (1),`+1 =
(
M̂ (N+1),`./(A(1,•)ξ(1),`)

)
◦ Γ`, ξ(1),`+1 = b(1)./A(1)

(
M̂ (1),`+1

)
,

M̂ (i),`+1 =
(
M̂ (i−1),`+1./(A(i,•)ξ(i),`)

)
◦ (A(i−1,•)ξ(i−1),`+1), ξ(i),`+1 = b(i)./A(i)

(
M̂ (i),`+1

)
, 2 ≤ i ≤ N,

M̂ (N+1),`+1 =
(
M̂ (N),`+1./Γ(`)

)
◦ (A(N,•)ξ(N),`+1), Γ`+1 = min

{
U./M̂ (N+1),`+1, 1

}
.

Note that in the actual implementation of (3.6), only a single tensor is used to store M̂ (i),`+1 for i =

1, . . . , N + 1, and it is repeatedly overwritten and updated.
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Note that both iterative schemes (3.5) and (3.6) are simple and easy-to-implement. The main com-

putational complexity for (3.6) is O(n1n2n3). In particular, since the iterative scheme (3.6) only needs

elementwise multiplicatons and the simple min(·) operation, it can be much more efficient than (3.5) in

practice. However, like Sinkhorn’s algorithm, (3.6) may also suffer from numerical instabilities when ε

takes a small value. Hence, in the unlikely event where ε is a small value in our iEPPA, one can use

(3.5) instead to carry on all computations in the log domain and perform the log-sum-exp (see, e.g., [32,

Section 4.4]) technique for avoiding underflow/overflow. In general, the proximal parameter εk in our

iEPPA does not need to be very small to obtain an accurate solution of the original problem (2.1) (hence

(1.1)) in a fairly fast speed. This is also evident from our experiments which indicate that ε = 0.05 is

sufficient for obtaining a good performance. Therefore, we can safely use the efficient iterative scheme

(3.6) as a subroutine in our iEPPA.

In addition, we notice that there is a close connection between Dykstra’s algorithm with Bregman

projection (including DyKL as a special case) and (block) coordinate descent methods, although to

the best of our knowledge, such a connection has not been stated explicitly until the recent work by

Tibshirani [40]. Indeed, one can deduce from [40, Section 5] that the DyKL used in [6] for solving the

entropic regularized problem in form of (3.1) (see Appendix B for the DyKL applied to the 2-marginal

capacity constrained OT problem) is equivalent to the BCD method applied to the following dual problem

min
Λi∈Rn1×n2×n3 , i=1,...,N+1

Φ∗
(
∇Φ(K)−

∑N+1
i=1 Λi

)
+
∑N+1
i=1 δ∗Si(Λi), (3.8)

where Φ(X) :=
∑
rstXrst logXrst, K := S ◦ exp(−C/ε), Si := {X ∈ Rn1×n2×n3 : A(i)(X) = b(i)} for

i = 1, . . . , N , SN+1 := {X ∈ Rn1×n2×n3 : X ≤ U}, and δ∗Si is the conjugate of the indicator function

δSi . It is clear that the dual problem (3.8) is different from ours in (3.4). Therefore, the DyKL and our

dual BCD are not equivalent to each other. Moreover, our dual BCD (either (3.5) or (3.6)) consumes

much less memory. Because our dual variables (y(1), . . . ,y(N),W ) only need
∑N
i=1mi + n1n2n3 units of

memory, while the dual variables (Λ1, . . . ,ΛN+1) in (3.8) need (N + 1)n1n2n3 units of memory.

3.1 Convergence results for dual BCD

We next show the convergence results for our dual BCD in Algorithm 2. It is worth noting that the

(block) coordinate descent method enjoys a long history for solving the problem (containing (3.4) as a

special case) of minimizing a class of convex differentiable functions over a certain closed convex set; see,

for example, [28, 29, 41]. Hence, our main convergence results are simply derived by revisiting these

classic works. To this end, we first show the existence of optimal solutions of problems (3.1) and (3.4),

and their relations in the following proposition whose proof can be found in Appendix A.1.

Proposition 1. Suppose that Assumption 2 holds. Then, the optimal solutions of problems (3.1) and

(3.4) exist. Moreover, for any optimal solution
(
ȳ(1), . . . , ȳ(N),W

)
of problem (3.4),

X := exp
(
ε−1
(∑N

i=1A
(i,∗)ȳ(i) +W −M

))
(3.9)

is the optimal solution of problem (3.1).

Next we present the main convergence results for our dual BCD based on the theory developed in

[28]. To make the paper self-contained, we provide its proof in Appendix A.2.

Theorem 2 (Convergence of dual BCD). Let
{(
y(1),`, . . . ,y(N),`,W `

)}
be the sequence generated

by the dual BCD method in Algorithm 2, and let X` := exp
(
ε−1
(∑N

i=1A(i,∗)y(i),` +W ` −M
))

. Then,

the following statements hold.

(i)
{(
y(1),`, . . . ,y(N),`,W `

)}
converges R-linearly to an optimal solution of problem (3.4).

(ii) {X`} converges R-linearly to an optimal solution of problem (3.1).
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3.2 Implementable verification of condition (2.3)

From the previous subsection, we know that the dual BCD can be efficiently applied for solving the

subproblem (2.2) in our iEPPA. In this subsection, we shall discuss how to verify condition (2.3) at a

point returned by the dual BCD.

We first assume that there is a mapping G : Rn1×n2×n3 → Rn1×n2×n3 such that for any 0 ≤ X ≤ U ,

G(X) ∈ Ω and ‖G(X) − X‖F ≤ c
∑N
i=1 ‖r(i)‖, where c > 0 is a constant depending only on G and

r(i) := b(i) −A(i)(X) (i = 1, . . . , N) are residuals. Since Ω is a polyhedron, such a mapping is typically

definable in practice. We give three examples as follows.

Example 1. If the projection of a point X onto Ω (denoted by PΩ(X)) is easy to compute, one can

directly use G = PΩ. In this case, from the Hoffman error bound theorem [19], there exists a constant

c > 0 such that ‖G(X)−X‖F ≤ c
∑N
i=1 ‖r(i)‖.

Example 2. Suppose that a relative interior point Xri of Ω is available on hand, i.e., A(i)(Xri) = b(i),

i = 1, . . . , N , and 0 < Xri < U . Note that such a point can be obtained for many choices of A(i) and

U . For example, in the 2-marginal COT problem, Ω is formed by {X ∈ Rm×n : X1n = a, X>1m =

b, 0 ≤ X ≤ U}. If U > ab>, then ab> is obviously a relative interior point. Otherwise, one can apply the

alternating projection method or its variants to find a point in the intersection of {X ∈ Rm×n : X1n = a},
{X ∈ Rm×n : X>1m = b} and {X ∈ Rm×n : ε ≤ X ≤ U − ε} with some small ε > 0. Having an available

relative interior point Xri on hand, we can then perform the following procedure. We first compute the

projection of X onto Ω := {X ∈ Rm×n : A(i)(X) = b(i), i = 1, . . . , N}, which is in general easier

than PΩ. Let Z := P
Ω

(X) and V ′ := Z − X. It follows from the Hoffman error bound theorem that

‖V ′‖F ≤ c′
∑N
i=1 ‖r(i)‖ with some c′ > 0. Then, if 0 ≤ Z ≤ U , we are done. Otherwise, we employ

a pullback strategy to obtain a point X̃ = Z + λ (Xri − Z) with some λ ∈ [0, 1]. It is easy to see that

A(i)(X̃) = b(i) for i = 1, . . . , N . By choosing

λ = max

{
max

(r,s,t)∈J1

{
Zrst − Urst
Zrst −Xri

rst

}
, max

(r,s,t)∈J2

{
−Zrst

Xri
rst − Zrst

}}
,

where J1 := {(r, s, t) : Zrst > Urst} and J2 := {(r, s, t) : Zrst < 0}, we can also ensure that 0 ≤ X̃ ≤ U

and hence X̃ ∈ Ω. Moreover, note from Z = X + V ′ and 0 ≤ X ≤ U that

λ = max

{
max

(r,s,t)∈J1

{
Xrst + V ′rst − Urst

Zrst −Xri
rst

}
, max

(r,s,t)∈J2

{
−Xrst − V ′rst
Xri
rst − Zrst

}}
≤ max

{
max

(r,s,t)∈J1

{
V ′rst

Urst −Xri
rst

}
, max

(r,s,t)∈J2

{
−V ′rst
Xri
rst

}}
≤ c′′‖V ′‖F ,

where c′′ > 0 is a constant depending only on U and Xri. Then, we have

‖X̃ −X‖F = ‖Z + λ (Xri − Z)−X‖F ≤ λ ‖Xri − Z‖F + ‖Z −X‖F
≤ λ(‖Xri −X‖F + ‖Z −X‖F ) + ‖Z −X‖F ≤ λ‖U‖F + (1 + λ)‖V ′‖F
≤ c′′‖U‖F ‖V ′‖F + 2‖V ′‖F ≤ (c′′‖U‖F + 2) c′

∑N
i=1‖r

(i)‖.

Therefore, the above procedure can be used as G, i.e., G(X) = X̃.

Example 3. For the 3-marginal CMOT problem (1.2), we consider two cases.

• When no upper bound U is imposed or U is a trivial upper bound (e.g., U is a matrix of all ones), a

highly efficient rounding procedure [27, Algorithm 2] (an extension of [2, Algorithm 2] to the multi-

marginal case) can be readily used as G, whose main computational complexity is O(n1n2n3).

• When the upper bound U is nontrivial, one can perform as follows. Similar to Example 2, let Xri

be a relative interior point of Ω. We first apply the rounding procedure [27, Algorithm 2] on X to
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obtain a point Z in the set
{
X ∈ Rn1×n2×n3 :

∑
s,tXrst = ar, r = 1, . . . , n1,

∑
r,tXrst = bs, s =

1, . . . , n2,
∑
r,sXrst = ct, t = 1, . . . , n3, X ≥ 0

}
. If Z ≤ U , we are done; otherwise, we employ a

pullback strategy as Example 2 to obtain a point X̃ = Z + λ (Xri − Z) with some λ ∈ [0, 1]. Thus,

such a procedure can be used as G.

Now, suppose that we have a dual point
(
y(1),`+1, . . . ,y(N),`+1,W `+1

)
given by our dual BCD at the

`-th iteration, and computed a primal point by

X`+1 := exp
(
ε−1
(∑N

i=1A
(i,∗)y(i),`+1 +W `+1 −M

))
∈ Rn1×n2×n3

++ .

From the optimality condition of W -subproblem in Algorithm 2 and ∇φ(X) = logX, one can verify that
0 = C + ε(logX`+1 − logS)−W `+1 −

∑N
i=1A

(i,∗)y(i),`+1, (3.10a)

W `+1 ≤ 0, U −X`+1 ≥ 0, 〈W `+1, U −X`+1〉 = 0, (3.10b)

r(i),`+1 = b(i) −A(i)(X`+1), 1 ≤ i ≤ N, (3.10c)

where r(1),`+1, . . . , r(N),`+1 are the residuals at the `-th iteration. Clearly, when r(i),`+1 = 0 for i =

1, . . . , N , X`+1 is an exact optimal solution. However, r(1),`+1, . . . , r(N),`+1 are generally nonzero vectors.

Next, we perform the procedure G on X`+1 to obtain that X̃`+1 = G(X`+1) ∈ Ω ⊆ Ω◦ and ‖V `+1‖F ≤
c
∑N
i=1 ‖r(i),`+1‖ with V `+1 := X̃`+1 −X`+1. Moreover, for any Y ∈ Ω◦, we have

〈−W `+1 −
∑N
i=1A

(i,∗)y(i),`+1, Y − X̃`+1〉 = −〈W `+1, Y − X̃`+1〉

= −〈W `+1, Y − U〉 − 〈W `+1, U − X̃`+1〉 ≤ −〈W `+1, U −X`+1 − V `+1〉

= 〈W `+1, V `+1〉 ≤ ‖W `+1‖F ‖V `+1‖F ≤ c ‖W `+1‖F
∑N
i=1‖r

(i),`+1‖ ≤ cc̃
∑N
i=1‖r

(i),`+1‖,

(3.11)

where the first equality follows because Y, X̃`+1 ∈ Ω◦ and hence 〈
∑N
i=1A(i,∗)y(i),`+1, Y − X̃`+1〉 = 0, the

first inequality follows from W `+1 ≤ 0 and Y − U ≤ 0, the third equality follows from (3.10b) and the

last inequality follows because {W `} is convergent (by Theorem 2(i)) and hence must be bounded from

the above by some constant c̃ > 0. Thus, letting ν` := cc̃
∑N
i=1‖r(i),`+1‖, we can obtain from (3.11) that

−W `+1 −
∑N
i=1A(i,∗)y(i),`+1 ∈ ∂ν`δΩ◦(X̃`+1). This together with (3.10a) implies that

0 ∈ ∂ν`δΩ◦(X̃`+1) + C + ε (∇φ(X`+1)−∇φ(S)).

From this relation, we see that condition (2.3) is verifiable at the candidate (X`+1, X̃`+1) and no error

occurs on the left-hand-side in this case, i.e., ∆` = 0. Then, our inexact condition (2.3) can be satisfied

when both the primal feasibility accuracy
∑N
i=1‖r(i),`+1‖ and the Bregman distance Dφ(X̃`+1, X`+1) are

smaller than the specified tolerance parameters. In practical implementations, since the construction of

X̃`+1 and the computation of the Bregman distance will incur additional overhead, one will not compute

X̃`+1 at the early stage of the dual BCD iteration since it is not needed in the algorithm. Specifically, one

may start to compute X̃`+1 for checking the Bregman distance Dφ(X̃`+1, X`+1) only when the primal

feasibility accuracy has decreased to a sufficiently small level. In this way, the overhead incurred will be

reduced.

In contrast, for either Teboulle’s inexact condition (2.4) or Eckstein’s inexact condition (2.5), even

though a feasible point X̃`+1 ∈ Ω can be constructed successfully, one still cannot verify condition (2.4)

or (2.5) at X̃`+1 because X̃`+1 may not lie in Rn1×n2×n3
++ and hence ∇φ may not be well defined at X̃`+1.

Thus, such existing inexact conditions may not be easy to verify, even if one is willing to do the expensive

computation. In this regard, our inexact condition (2.3) is more advantageous.

3.3 Computation of solutions of subproblems in dual BCD

In this subsection, we provide more details on how to solve the subproblems efficiently in our dual BCD

method via the special structures imposed on A(i) (i = 1, . . . , N) in Assumption 1. Recall the iterative
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scheme in Algorithm 2, for any 1 ≤ i ≤ N , y(i),`+1 is computed by solving an unconstrained minimization

problem:

min
y(i)

ε
〈
M̃, exp

(
ε−1
(
A(i,∗)y(i) +

∑i−1
q=1A

(q,∗)y(q),`+1 +
∑N
q=i+1A

(q,∗)y(q),` +W `
))〉

− 〈y(i), b(i)〉

 . (3.12)

To solve this problem, we give the following auxiliary proposition.

Proposition 2. Suppose that Assumption 1 holds. Then, for any tensor M ∈ Rn1×n2×n3 and any vector

y(i) ∈ Rmi , we have〈
M, exp

(
ε−1A(i,∗)y(i)

)〉
=
〈
A(i)(M), exp

(
ε−1y(i)

)〉
+
∑

(r,s,t)6∈J (i)Mrst,

where J (i) is defined in (3.7).

Proof. Note from Assumption 1 that A
(i)
j only has binary entries (0 or 1) for all j = 1, . . . ,mi, and the

non-zero patterns of
{
A

(i)
j | j = 1, . . . ,mi

}
do not overlap with each other. Thus, one can see that(

exp
(
ε−1A(i,∗)y(i)

))
rst

=
(

exp
(
ε−1∑mi

j=1A
(i)
j y

(i)
j

))
rst

=

{ ∑mi

j=1 exp
(
ε−1y

(i)
j

)(
A

(i)
j

)
rst
, if (r, s, t) ∈ J (i),

exp(0) = 1, otherwise.

Let κ =
∑

(r,s,t)6∈J (i) Mrst. We then have that

〈
M, exp

(
ε−1A(i,∗)y(i)

)〉
= κ +

∑
(r,s,t)∈J (i)

mi∑
j=1

exp
(
ε−1y

(i)
j

)(
A

(i)
j

)
rst
Mrst

= κ +

mi∑
j=1

exp
(
ε−1y

(i)
j

) ∑
(r,s,t)∈J (i)

(
A

(i)
j

)
rst
Mrst

 = κ +

mi∑
j=1

exp
(
ε−1y

(i)
j

)
〈A(i)

j , M〉

= κ +

mi∑
j=1

exp
(
ε−1y

(i)
j

)(
A(i)(M)

)
j
.

This completes the proof. 2

Using Proposition 2, we can reformulate the first term in the objective function of (3.12) as below:〈
M̃, exp

(
ε−1
(
A(i,∗)y(i) +

∑i−1
q=1A

(q,∗)y(q),`+1 +
∑N
q=i+1A

(q,∗)y(q),` +W `
))〉

=
〈
M̃ ◦ exp

(
ε−1
(∑i−1

q=1A
(q,∗)y(q),`+1 +

∑N
q=i+1A

(q,∗)y(q),` +W `
))
, exp

(
ε−1A(i,∗)y(i)

)〉
=
〈
M̃ (i),` ◦ exp

(
ε−1W `

)
, exp

(
ε−1A(i,∗)y(i)

)〉
=
〈
A(i)

(
M̃ (i),` ◦ exp

(
ε−1W `

))
, exp

(
ε−1y(i)

)〉
+ Υ,

where M̃ (i),` := M̃ ◦ exp
(
ε−1

∑i−1
q=1A(q,∗)y(q),`+1 + ε−1

∑N
q=i+1A(q,∗)y(q),`

)
and Υ is a constant inde-

pendent of y(i). Thus, y(i),`+1 can be simply computed by

y(i),`+1 = arg min
y(i)

{
ε
〈
A(i)

(
M̃ (i),` ◦ exp

(
ε−1W `

))
, exp

(
ε−1y(i)

)〉
− 〈y(i), b(i)〉

}
= ε log b(i) − ε log

(
A(i)

(
M̃ (i),` ◦ exp

(
ε−1W `

)))
.

After obtaining y(i),`+1, i = 1, . . . , N , we then update W `+1 by solving the following problem:

W `+1 = arg min
W

{
ε
〈
M̃, exp

(
ε−1∑N

q=1A
(q,∗)y(q),`+1 + ε−1W

)〉
− 〈W, U〉+ δ−(W )

}
,

= min
{
ε log

(
U./(M̃ ◦ Y `+1)

)
, 0
}
,
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where Y `+1 = exp
(∑N

q=1A(q,∗)y(q),`+1
)
.

From the above discussions, one can see that the binary coefficient entries and the non-overlapping

pattern imposed on A(i) (i = 1, . . . , N) are vital for the efficient computation of solutions of the subprob-

lems, and as we have mentioned after Assumption 1, such special structures do appear in application

problems such as the CMOT problem and the discrete tomography problem.

4 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of our iEPPA in Algorithm

1, which employs the dual BCD in Algorithm 2 as a subroutine, for solving the 2-marginal and 3-marginal

CMOT problems (1.2). More details on applying the dual BCD for solving (3.1) with the constraints

in (1.2) can be found in Appendix A.3. For the 2-marginal case, we compare our iEPPA with DyKL

adapted in [6] (see also in Appendix B) and the commercial solver Gurobi. For the 3-marginal case,

we only compare our iEPPA with Gurobi. Moreover, we conduct experiments by applying our model

(1.1) for solving the discrete tomography problem [42]. All experiments are run in Matlab R2021a on

a workstation with Intel Xeon processor E5-2680v3@2.50GHz (with 12 cores and 24 threads) and 128GB

of RAM, equipped with Linux OS.

It is easy to show that the dual problem of (1.1) is

max
y(1),...,y(N),W

{∑N
i=1〈b

(i), y(i)〉+ 〈U, W 〉 :
∑N
i=1A

(i,∗)y(i) +W ≤ C, W ≤ 0
}
, (4.1)

and the Karush-Kuhn-Tucker (KKT) system for (1.1) and (4.1) is

A(i)(X)− b(i) = 0, i = 1, . . . , N,
∑N
i=1A

(i,∗)y(i) +W ≤ C, 0 ≤ X ≤ U,

〈X,
∑N
i=1A

(i,∗)y(i) +W − C〉 = 0, 〈W, U −X〉 = 0, W ≤ 0.
(4.2)

where y(1), . . . ,y(N) and W are the Lagrangian multipliers (or dual variables). It is well known (for

example, from [8, Section 4.3]) that when both the primal problem (1.1) and the dual problem (4.1) are

feasible, (X̂, ŷ(1), . . . , ŷ(N), Ŵ ) satisfies the KKT system (4.2) if and only if X̂ solves the primal problem

(1.1) and (ŷ(1), . . . , ŷ(N), Ŵ ) solves the dual problem (4.1), respectively. Then, based on the KKT system

(4.2), we define the relative KKT residual for any
(
X,y(1), . . . ,y(N),W

)
as follows:

∆kkt

(
:= ∆kkt

(
X,y(1), . . . ,y(N),W

))
:= max

{
∆i : 1 ≤ i ≤ 7

}
,

where

∆1(X) :=

(∑N
i=1‖A(i)(X)− b(i)‖2

)1/2
1 +

(∑N
i=1 ‖b(i)‖2

)1/2 , ∆2

(
y(1), . . . ,y(N),W

)
:=

∥∥max
{∑N

i=1A(i,∗)y(i) +W − C, 0
}∥∥

F

1 + ‖C‖F
,

∆3(X) :=
‖min{X, 0}‖F

1 + ‖X‖F
, ∆4(X) :=

‖min{U −X, 0}‖F
1 + ‖U‖F

, ∆5(W ) :=
‖max{W, 0}‖F

1 + ‖W‖F
,

∆6(X,W ) :=
|〈W, U −X〉|

1 + ‖U‖F
, ∆7

(
X,y(1), . . . ,y(N),W

)
:=
|〈X,

∑N
i=1A(i,∗)y(i) +W − C〉|

1 + ‖C‖F
.

Obviously,
(
X,y(1), . . . ,y(N),W

)
is a solution of the KKT system (4.2) if and only if ∆kkt = 0. We then

use ∆kkt to set up the stopping criterion for the iEPPA. Specifically, we terminate the iEPPA when

∆kkt

(
Xk+1,y(1),k+1, . . . ,y(N),k+1,W k+1

)
< 10−5,

where Xk+1 and
(
y(1),k+1, . . . ,y(N),k+1,W k+1

)
are the approximate optimal solutions of the subproblem

(2.2) and its corresponding dual problem, respectively, at the k-th iteration. The maximum number of

iterations for the iEPPA is set to be 500.
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The performance of our iEPPA naturally depends on the efficiency of the dual BCD for solving the

subproblem (2.2). Therefore, the choice of the proximal parameter ε and the stopping criterion for the

subproblem at each iteration are vital for implementing the iEPPA. Note that a smaller regularization

parameter ε would lead to a more difficult subproblem, and moreover, a very small ε may also cause

numerical instabilities due to the loss of accuracy involving overflow/underflow operations. In all our

numerical experiments, we simply fix ε = 0.05. With this choice, we would not encounter any numerical

instability and can safely use the iterative scheme (A.7) to solve the subproblem efficiently.

As discussed in subsection 3.2, our inexact condition (2.3) is verifiable and can be satisfied as long as

both the primal feasibility accuracy
∑N
i=1‖r(i),k,`+1‖ (r(i),k,`+1 := b(i) −A(i)(Xk,`+1), i = 1, . . . , N) and

the Bregman distance Dφ(X̃k,`+1, Xk,`+1) are sufficiently small, where Xk,`+1 is obtained by substituting

(y(1),k,`+1, . . . ,y(N),k,`+1,W k,`+1) into (3.9) at the `-th dual BCD iteration within the k-th outer itera-

tion, and X̃k,`+1 can be constructed by X̃k,`+1 := G(Xk,`+1) with a proper procedure G (see Example 3

in subsection 3.2). Note that, by such a construction, we have ‖X̃k,`+1 −Xk,`+1‖F ≤ c
∑N
i=1 ‖r(i),k,`+1‖

for some constant c > 0. Thus, when the primal feasibility accuracy
∑N
i=1 ‖r(i),k,`+1‖ is small, the

Bregman distance Dφ(X̃k,`+1, Xk,`+1) is also likely to be small, as always observed from our experi-

ments. Since constructing X̃k,`+1 and calculating the Bregman distance Dφ(X̃k,`+1, Xk,`+1) explicitly

is more costly than calculating the primal feasibility accuracy, such a phenomenon then allows us to

employ an economical way to check the condition Dφ(X̃k,`+1, Xk,`+1) ≤ µk. Specifically, in our imple-

mentation, we first compute the relative primal feasibility accuracy ∆1(Xk,`+1), and only start to check

Dφ(X̃k,`+1, Xk,`+1) ≤ µk when ∆1(Xk,`+1) ≤ µ̃k with {µ̃k} being a given summable positive sequence.

This together with proper choices of {µ̃k} would help us to avoid the explicit construction of X̃k,`+1 and

the computation of the Bregman distance as much as possible to save cost until the later stage of the dual

BCD method, while enforcing our inexact condition (2.3) to guarantee the convergence of the iEPPA.

In the following experiments, we set µk = max
{

(k + 1)−1.1, 10−6
}

and µ̃k = max
{

10−4 ×
(

2
3

)k
, 10−6

}
for k ≥ 0. As we shall see later, such a simple checking strategy is enough to obtain a good practical

performance.

It is well known that Gurobi is one of the most powerful and reliable solvers for solving LPs. Therefore,

we use the solution obtained by Gurobi as a benchmark to evaluate the quality of solutions obtained by

other methods. In our experiments, we use Gurobi (version 9.5.1 with an academic license) by only

choosing the barrier method and disabling the presolving phase as well as the cross-over strategy so

that Gurobi has the best performance. The reasons for choosing the aforementioned settings are three-

fold. First, as observed from our experiments, other methods (such as the primal/dual simplex method)

embedded in Gurobi are in general not as efficient as the barrier method. Second, we observe that when

the presolving phase is enabled, Gurobi appears to be rather unstable and may fail to give a reasonably

accurate solution for large-scale CMOT problems. Third, the cross-over strategy is usually too costly in

our tests.

4.1 Experiments on synthetic data for 2-marginal CMOT

In this subsection, we consider the CMOT problem (1.2) in the 2-marginal case and generate simulated

examples to test each algorithm. For each example, we first generate two discrete probability distributions

denoted by

D1 :=
{

(ar, pr) ∈ R+ × R3 : r = 1, . . . , n1

}
and D2 :=

{
(bs, qs) ∈ R+ × R3 : s = 1, . . . , n2

}
.

Here, a := (a1, . . ., an1
)> and b := (b1, . . ., bn2

)> are probabilities/weights generated from the standard

uniform distribution on the open interval (0, 1), and further normalized such that
∑n1

r ar =
∑n2

s bs = 1.

Moreover, {pr} and {qs} are the support points whose entries are drawn from a Gaussian mixture

distribution. With these support points, the cost matrix C is generated by Crs = ‖pr−qs‖2 for 1 ≤ r ≤ n1

and 1 ≤ s ≤ n2 and normalized by dividing (element-wise) by its maximal entry.

We next describe how to generate an upper bound matrix U ∈ Rn1×n2
++ . Note that if most of the

entries of U are too large (e.g., U is a matrix of all ones), then such an upper bound matrix can be
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redundant. Conversely, if most of the entries of U are too small, then the feasible set of (1.2) can be

empty and Assumption 2 fails to hold. Hence, a randomly generated upper bound matrix U is usually

unsatisfactory for our testing purpose. Thanks to the special structure of the constraints in (1.2), one

can easily see that P := ab> must lie in the set {X ∈ Rn1×n2 : X1n2 = a, X>1n1 = b, X ≥ 0}. We

then set U := 2P = 2ab> as the upper bound matrix. With this setting, Assumption 2 can be satisfied

and our numerical results also indicate that such an upper bound matrix is generally not redundant.

4.1.1 Comparisons between Gurobi, iEPPA and DyKL

In this part of experiments, we evaluate the performances of Gurobi, iEPPA and DyKL. For the DyKL, the

entropic regularization parameter ε is chosen from
{

10−1, 10−2, 10−3, 10−4
}

in our numerical tests. For

ε ∈
{

10−1, 10−2
}

, we follow [6, Section 5.2] to implement the DyKL directly, while for ε ∈
{

10−3, 10−4
}

,

we adapt the log-sum-exp trick (see, for example, [32, Section 4.4]) to stabilize the DyKL (see Appendix

B for the implementations of the DyKL). We terminate the DyKL when ∆1(Xk+1) < 10−5, where Xk+1

is generated by the DyKL at the k-th iteration. Moreover, the maximum number of iterations for the

DyKL is set to be 20000.

Table 1 presents the computational results for different choices of (n1, n2). In this table, “normalized

obj” denotes the normalized objective function value defined as |Fk − Fg|/(1 + |Fg|), where Fg denotes

the objective value returned by Gurobi and Fk is the approximate objective function value obtained by

each algorithm; “feasibility” denotes the primal feasibility accuracy, namely, max{∆1, ∆3, ∆4}; “time”

denotes the total computational time (in seconds) and “iter” denotes the number of iterations. For our

iEPPA, we also record the total number of dual BCD iterations. For instance, the item “14(418)” means

that iEPPA took 14 outer iterations with a total of 418 dual BCD iterations.

Table 1: Numerical results on synthetic data for 2-marginal CMOT. In the table, “g” stands for

Gurobi; “e” stands for iEPPA; “d1”, “d2”, “d3”, “d4” stand for DyKL with ε = 10−1, 10−2, 10−3,

10−4, respectively.

n1 n2 g e d1 d2 d3 d4 g e d1 d2 d3 d4

normalized obj feasibility

4000 2000 0 5.7e-05 1.5e-02 3.7e-04 2.5e-04 2.5e-04 2.1e-13 9.9e-07 8.0e-06 9.8e-06 1.0e-05 1.0e-05

4000 4000 0 6.2e-05 1.6e-02 3.8e-04 1.9e-03 1.9e-03 8.6e-16 9.9e-07 8.8e-06 9.9e-06 9.9e-06 1.0e-05

4000 8000 0 7.2e-05 1.5e-02 5.3e-04 2.9e-04 3.0e-04 2.3e-14 1.0e-06 9.9e-06 9.8e-06 1.0e-05 1.0e-05

5000 2500 0 5.4e-05 1.5e-02 2.6e-04 5.1e-04 5.1e-04 8.6e-14 9.8e-07 7.4e-06 9.8e-06 1.0e-05 1.0e-05

5000 5000 0 6.3e-05 1.6e-02 3.9e-04 1.6e-04 1.7e-04 1.5e-13 9.9e-07 7.1e-06 9.6e-06 1.0e-05 1.0e-05

5000 10000 0 5.4e-05 1.6e-02 3.5e-04 5.7e-04 5.8e-04 1.7e-15 9.8e-07 7.9e-06 9.9e-06 1.0e-05 1.0e-05

6000 3000 0 5.2e-05 1.6e-02 3.2e-04 7.7e-04 7.7e-04 2.0e-14 9.9e-07 8.8e-06 9.8e-06 1.0e-05 1.0e-05

6000 6000 0 5.5e-05 1.5e-02 3.6e-04 1.0e-03 1.0e-03 4.2e-14 9.9e-07 9.7e-06 1.0e-05 1.0e-05 1.0e-05

6000 12000 0 5.1e-05 1.6e-02 3.2e-04 5.2e-04 5.4e-04 3.5e-14 9.8e-07 8.2e-06 9.9e-06 1.0e-05 1.0e-05

7000 3500 0 6.2e-05 1.5e-02 4.4e-04 3.1e-04 3.2e-04 4.6e-14 9.8e-07 6.8e-06 9.7e-06 1.0e-05 1.0e-05

7000 7000 0 6.7e-05 1.7e-02 4.3e-04 8.8e-04 9.1e-04 5.2e-15 9.8e-07 9.7e-06 9.9e-06 1.0e-05 1.0e-05

7000 14000 0 4.1e-05 1.5e-02 2.2e-04 4.5e-04 4.6e-04 9.1e-14 9.9e-07 7.1e-06 1.0e-05 1.0e-05 1.0e-05

iter time (in seconds)

4000 2000 - 14(418) 13 187 1120 11228 125.3 28.8 1.4 20.1 282.8 2714.2

4000 4000 - 14(346) 11 155 588 5911 169.4 61.4 3.4 48.9 361.1 3632.6

4000 8000 - 15(281) 10 135 857 8617 708.8 108.6 6.2 82.9 1038.1 10507.3

5000 2500 - 12(300) 13 162 951 9546 172.5 37.7 3.2 40.6 464.8 4614.3

5000 5000 - 14(292) 11 134 957 9549 527.3 74.2 5.3 65.1 912.3 9104.1

5000 10000 - 14(258) 10 128 737 7425 1198.4 137.1 9.0 112.7 1370.8 13865.0

6000 3000 - 13(370) 11 176 783 7873 249.9 60.7 3.8 58.8 538.8 5425.3

6000 6000 - 14(412) 13 233 891 9133 731.4 131.0 8.7 150.7 1213.0 12291.6

6000 12000 - 14(243) 10 129 780 7828 1686.5 190.5 12.9 157.8 2043.1 20847.3

7000 3500 - 15(315) 9 133 823 8316 352.5 77.1 4.3 61.5 771.7 7735.1

7000 7000 - 14(229) 8 107 543 5424 986.8 127.6 7.4 93.3 990.1 9971.4

7000 14000 - 13(277) 13 177 1109 11146 3239.9 266.2 22.6 292.3 3892.9 39098.4

From Table 1, one can observe that our iEPPA performs better than the DyKL in the sense that the
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iEPPA always returns a better approximate objective function value (using Gurobi as the benchmark)

with a comparable feasibility accuracy in much less CPU time. The accuracy for the normalized objective

function value returned by the iEPPA is always at the level of 10−5, while the accuracy of the DyKL is

usually at the level of 10−4. In particular, decreasing the value of ε from 10−2 to 10−4 in the DyKL does

not improve the accuracy for the objective function value significantly, but is more time-consuming (this

phenomenon is detailed more in Remark 2). Therefore, the DyKL and its stabilized variants may not

be efficient for computing a relatively high precision solution of the original LP problem. Moreover, for

large-scale problems, Gurobi is rather time-consuming and memory-consuming. As an example, for the

case where (n1, n2) = (7000, 14000) in Table 1, a large-scale LP containing 9.8 × 107 box-constrained

variables and 21000 equality constraints was solved. In this case, we observe that Gurobi is at least 10

times slower than our iEPPA, and it also needs about 55GB of RAM whereas our iEPPA only requires

15GB of RAM.

Remark 2. For the DyKL, the accuracy of the solution in terms of the normalized objective function

value is supposed to become better when the regularization parameter ε becomes smaller. However, we

only observe such a phenomenon when ε is decreased from 10−1 to 10−2. When ε ∈
{

10−2, 10−3, 10−4
}

,

the accuracy remains almost the same. The reason is that the DyKL actually suffers from very slow

convergence speed when ε is small and hence the stopping tolerance Told = 10−5 is not sufficient for the

DyKL to obtain a good approximate solution. Indeed, when we set Told = 10−7 and test the DyKL with

ε = 10−3 on the case with (n1, n2) = (4000, 2000) (same as the first instance in Table 1), the returned

normalized objective function value is 2.7× 10−6, which is much smaller than the accuracy (2.5× 10−4)

reported in Table 1. However, the computational time also increases dramatically.

4.1.2 Comparisons between Gurobi and iEPPA

To further evaluate the performance of our iEPPA, we conduct more experiments on synthetic data with

support points generated by the same Gaussian mixture distribution as in the previous set of experiments.

In the following experiments, we set n1 = n2 = n and vary n from 1000 to 9000. The computational

results are presented in Figure 1. From the results, we see that the “nobj” of iEPPA is always at the

level of 10−5, which means that the objective function value returned by iEPPA is always close to that

of Gurobi. Moreover, the computational time of iEPPA increases almost linearly with respect to n, while

the computational time taken by Gurobi grows much more rapidly than iEPPA. This is because when

the problem size becomes large, the barrier method used in Gurobi may not be efficient enough and may

also consume too much memory which may not be affordable on an ordinary PC. In contrast, our iEPPA

scales well in the sense that its computational time and memory consumption only grow at a low rate.

Thus, it can be more favorable for solving the large-scale CMOT problem up to a moderate accuracy.

4.2 Experiments on synthetic data for 3-marginal CMOT

In this subsection, we consider the standard CMOT problem (1.2) in the 3-marginal case. Here, in

view of the inferior performance of the DyKL presented in the last section, we only generate synthetic

instances to evaluate the performance of our iEPPA against Gurobi to save space. Specially, we ran-

domly generate three discrete probability distributions: D1 =
{

(ar, pr) ∈ R+ × R3 : r = 1, . . . , n1

}
,

D2 =
{

(bs, qs) ∈ R+ × R3 : s = 1, . . . , n2

}
and D3 =

{
(ct, rt) ∈ R+ × R3 : t = 1, . . . , n3

}
. Similar

to the 2-marginal case in subsection 4.1, the marginals a := (a1, . . . , an1
)>, b := (b1, . . . , bn2

)> and

c := (c1, . . . , cn3
)> are all generated independently from a uniformly distribution on the interval (0, 1),

respectively. Again, the marginals are normalized so that
∑n1

r=1 ar =
∑n2

s=1 bs =
∑n3

t=1 ct = 1. More-

over, the support points are generated independently from a Gaussian mixture distribution. Given these

support points, we then compute the cost tensor C as follows:

Crst := ‖pr − qs‖2 + ‖qs − rt‖2 + ‖rt − pr‖2, ∀ 1 ≤ r ≤ n1, 1 ≤ s ≤ n2, 1 ≤ t ≤ n3.

We also normalize C by dividing it by its maximal entry. To generate a reasonable upper bound U , we

adapt the same strategy as in the 2-marginal case to set U := 2 (a⊗b⊗c). Figure 2 presents comparisons
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problem nobj feas

id n g e g e
1 1000 0 6.2e-05 5.3e-14 1.0e-06
2 2000 0 5.3e-05 2.1e-14 9.8e-07
3 3000 0 5.6e-05 4.3e-14 9.8e-07
4 4000 0 6.2e-05 8.6e-16 9.9e-07
5 5000 0 6.3e-05 1.5e-13 9.9e-07
6 6000 0 5.5e-05 4.2e-14 9.9e-07
7 7000 0 6.7e-05 5.2e-15 9.8e-07
8 8000 0 4.7e-05 1.7e-14 9.8e-07
9 9000 0 5.7e-05 4.2e-14 1.0e-06
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Figure 1: Comparisons between Gurobi and iEPPA for 2-marginal CMOT. In the table, “nobj”

denotes the normalized objective function value, “feas” denotes the primal feasibility accuracy, “g”

stands for Gurobi and “e” stands for iEPPA.

between iEPPA and Gurobi, where we set n1 = n2 = n3 = n and vary n from 50 to 500. Similar to the

2-marginal case in subsection 4.1.2, our iEPPA has better scalability with respect to the problem size for

solving problems to a moderate accuracy.

problem nobj feas

id n g e g e

1 50 0 4.6e-05 1.1e-12 1.0e-06

2 100 0 5.0e-05 7.0e-13 1.0e-06

3 150 0 5.0e-05 1.1e-12 9.8e-07

4 200 0 5.0e-05 1.3e-12 9.9e-07

5 250 0 4.9e-05 4.5e-13 9.9e-07

6 300 0 5.2e-05 3.2e-13 9.9e-07

7 350 0 4.9e-05 1.2e-12 9.9e-07

8 400 0 5.1e-05 1.1e-12 1.0e-06

9 450 0 5.3e-05 1.4e-12 9.9e-07

10 500 0 5.7e-05 5.3e-13 9.7e-07 1 2 3 4 5 6 7 8 9 10
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Figure 2: Comparisons between Gurobi and iEPPA for 3-marginal CMOT with n1 = n2 = n3 = n

and n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

4.3 Experiments on an application to discrete tomography

In this subsection, we conduct experiments on discrete tomography to illustrate the modeling capability

of our model (1.1). We should mention that the purpose here is to present a preliminary investigation

on the potential of using our model together with the iEPPA+BCD framework for solving the discrete

tomography problem. A thorough numerical investigation is beyond the scope of this paper and will be

left as a future research topic.

Let X be a 2D image of size n × n and ~v be a given direction that takes the form (1, p), (1,−p),
(p, 1) or (p,−1) with p being a nonnegative integer. In our experiments, a tomographic projection on the

image X along ~v is constructed as follows: we view the image X as a 2D grid of size n× n, first pick all

lines which are parallel to the direction ~v on this grid, then sum the entries on each line to form a vector.

Such a projection then corresponds to a block of linear equality constraints of the form b(i) = A(i)(X)

in our model. Figure 3 shows the constructions of the tomographic projection along directions (1, 0) and
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(2, 1), respectively. More details on the construction can be found in Appendix C.

Figure 3: Examples of the operator A(i) for direction ~v = (1, 0) (left) and direction ~v = (2, 1) (right).

In the following experiments, we will use five ground-truth images of size 256×256 (namely, n = 256),

as shown in the first row of Figure 5. For each of them, we compute N tomographic projections (which

correspond to the linear mappings A(i), i = 1, . . . , N in our model) on this image along different directions

to obtain b(i), i = 1, . . . , N . Then, our goal is to recover the original image from the collection of

projections {b(i)}Ni=1 via applying our iEPPA+BCD framework for solving problem (1.1). Moreover, in

our experiments, we set the entries of the cost matrix C ∈ Rn×n to be Crs = |r − s|2 for 1 ≤ r, s ≤ n

and normalize C by dividing (element-wise) it by its maximal entry.6 We do not use any upper bound

matrix U in the experiments. Moreover, to quantify the reconstruction quality between the recovered

solution Xk and the ground-truth image X, we evaluate the peak signal-to-noise ratio that is defined as

PSNR = 10 · log10

(
n2 ·max {Xrs : 1 ≤ r, s ≤ n}2/‖Xk −X‖2F

)
.

Figure 4 presents the PSNR values of the reconstructed images for N ∈ {10, 20, . . . , 90}. For a better

visualization, we also show the reconstructed images corresponding to N ∈ {20, 50, 80} in Figure 5.

From the results, we observe that our model (1.1) can faithfully recover the ground-truth image and the

quality of the reconstructed image gradually improves when more projections are used. Thus, to improve

the quality of the reconstructed image, a straightforward way is to increase the number of projections.

Fortunately, for our approach of using model (1.1) and the iEPPA+BCD, imposing more projections

would not increase the computational cost dramatically since the main computational unit (which is one

BCD iteration) only depends on N linearly. Specifically, for one more projection, we only need to add

one more block of constraints in our model (1.1) and then correspondingly add one more block of dual

variables in the dual BCD method.

10 20 30 40 50 60 70 80 90

15

20

25

30

35

40

45

Figure 4: PSNR values of the reconstructed images for N ∈ {10, 20, . . . , 90}.

6The setting of the cost matrix C may depend on the prior knowledge on the distribution of features in an image. Here,
we simply set the entry of C to be Crs = |r − s|2, ∀ 1 ≤ r, s ≤ n, and normalize it for the preliminary testing purpose.
More study on the choice of C will be left in the future.
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Figure 5: The first row: ground-truth images of size 256 × 256. Here, flower, tree and animals are

artificial images, while brain and chest are taken from https://radiopaedia.org/images/9219097

and https://radiopaedia.org/cases/loculated-pneumothorax, respectively. The second, third

and fourth rows: reconstructed images using 80, 50 and 20 projections.

Remark 3. To recover an n×n image by our model (1.1) (which is an LP) with N available projections,

the corresponding (sparse) coefficient matrix of the equality constraint has at least the size of Nn × n2.

When n and N are large, such a large-scale problem can cause some LP solvers (e.g., Gurobi) to suffer

from insufficient memory issues as well as high computational cost on an ordinary PC. We note that

another model (based on knowing a prior distribution) that aims to recover objects from a few tomographic

projections is suggested in [1, 7]. In their framework, suppose that a 2D object with N projections is

available. Then, the decision variable for the corresponding multi-marginal optimal transport problem

will be a tensor of the order 2 + N in the formulation given in [1]. Hence, it is difficult to implement

the model efficiently. In addition, when the order of the tensor is large, the aforementioned model will

invariably encounter memory issues. Moreover, our approach do not require any prior knowledge on

the image to be recovered, which is another key feature that makes our modeling framework even more

attractive.

5 Concluding remarks

In this paper, we propose a class of linear programming (LP) problems that can be employed to efficiently

model several application problems such as discrete tomography and disaggregation of input-output tables

in economics. We then develop an implementable inexact entropic proximal point algorithm (iEPPA)

for solving these specially structured LPs. To solve the subproblems that contain a special entropic

proximal term, we adapt an easy-to-implement dual block coordinate descent (BCD) method to solve the

associated more tractable dual subproblem. The convergence of our iEPPA and the R-linear convergence

of the dual BCD method are also established. In particular, we develop a new practically verifiable inexact

stopping condition for solving the iEPPA subproblem that has some computational advantages over those

in the existing methods. Extensive numerical experiments have been conducted to demonstrate the high

efficiency and robustness of our iEPPA+BCD framework for solving the capacity constrained multi-

marginal optimal transport problem. We also illustrate the potential modeling power of the proposed
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model by applying it to discrete tomography problems. Finally, we are aware of the classical works [30, 31]

that applied the EPPA with specialized subsolvers for solving the two-stage and multi-stage stochastic

network problems. It may be possible to extend our iEPPA+BCD framework for solving such special

classes of LP problems. We will leave it as a future research topic.
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Appendix A More details on the dual BCD

A.1 Proof of Proposition 1

First, problem (3.1) is equivalent to minX {δΩ◦(X) + 〈C, X〉+ εDφ(X, S)}. Since domφ = Rn1×n2×n3
+

and thus Ω◦ ∩ domφ = Ω is nonempty (by Assumption 2) and bounded, then the objective function

in the above problem is level bounded. Thus, a solution exists [35, Theorem 1.9] and must be unique

since φ is strictly convex. The essential smoothness of φ further implies that the optimal solution

can only lie in Rn1×n2×n3
++ . Hence, the optimal solution of problem (3.2) also exists. Let

(
X, Z

)
∈

Rn1×n2×n3
++ × Rn1×n2×n3

++ be an optimal solution of problem (3.2). Since all constraint functions in (3.2)

are affine and the set
{(
X, Z

)
∈ Rn1×n2×n3×Rn1×n2×n3 : Z ≥ 0

}
is a convex polyhedron, then it follows

from [36, Theorem 3.25] that there exist ȳ(i) ∈ Rmi , 1 ≤ i ≤ N and W ∈ Rn1×n2×n3 such that
0 = M −W −

∑N
i=1A

(i,∗)ȳ(i) + ε logX, (A.1a)

0 ∈ −W + ∂δ+(Z), (A.1b)

0 = b(i) −A(i)(X), 1 ≤ i ≤ N, (A.1c)

0 = U −X − Z. (A.1d)

Note from (A.1a) that X = exp
(
ε−1

(∑N
i=1A(i,∗)ȳ(i) + W −M

))
. Then, substituting this and (A.1d)

into (A.1b) and (A.1c), recalling (1.4) and the fact that ∂δ∗+ = ∂δ−, one can see that
0 = b(i) −A(i)

(
exp

(
ε−1
(∑N

i=1A
(i,∗)ȳ(i) +W −M

)))
, i = 1, . . . , N,

0 ∈ exp
(
ε−1
(∑N

i=1A
(i,∗)ȳ(i) +W −M

))
− U + ∂δ−(W ).

(A.2)

This together with [36, Theorem 3.5] implies that
(
ȳ(1), . . . , ȳ(N),W

)
is an optimal solution of the dual

problem (3.4) and hence the optimal solution of problem (3.4) exists.

Moreover, for any optimal solution
(
ŷ(1), . . . , ŷ(N), Ŵ

)
of problem (3.4), it follows from [36, Theorem

3.5] that it satisfies the system (A.2) in place of
(
ȳ(1), . . . , ȳ(N),W

)
. Let X̂ := exp

(
ε−1
(∑N

i=1A(i,∗)ŷ(i)+

Ŵ−M
))

and Ẑ := U−X̂. By (1.4) and the fact that ∂δ∗− = ∂δ+, it holds that
(
X̂, Ẑ, ŷ(1), . . . , ŷ(N), Ŵ

)
satisfies the system (A.1a)–(A.1d). Thus it follows from [36, Theorem 3.27] that

(
X̂, Ẑ

)
is an optimal

solution of problem (3.2) and hence X̂ is an optimal solution of problem (3.1). This completes the proof.

A.2 Proof of Theorem 2

For the ease of applying the convergence results developed in [28], we first express problem (3.4) in the

following compact form:

min
χ

Ψ(Eχ) + 〈q, χ〉 s.t. χ ∈ Ξ, (A.3)
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where Ψ : Rn1n2n3 → R is defined by Ψ(y) := ε
∑n1n2n3

i exp((yi − zi)/ε), z := vec(M) ∈ Rn1n2n3 ,

q := −
[
b(1); . . . ; b(N); vec(U)

]
∈ R

∑N
i=1mi+n1n2n3 , χ :=

[
y(1); . . . ;y(N); vec(W )

]
∈ R

∑N
i=1mi+n1n2n3 ,

Ξ :=
{
χ :=

[
y(1); . . . ;y(N); vec(W )

]
: W ≤ 0

}
and

E :=
[
vec(A

(1)
1 ), . . . , vec(A(1)

m1
), . . . , vec(A

(N)
1 ), . . . , vec(A(N)

mN
), In1n2n3

]
∈ Rn1n2n3×(

∑N
i=1mi+n1n2n3).

One can easily verify that dom Ψ = Rn1n2n3 is open and Ψ is strictly convex and twice continuously

differentiable on dom Ψ.

Moreover, the optimal solution set of problem (A.3) is nonempty (by Proposition 1) and our dual

BCD in Algorithm 2 indeed falls into the algorithmic framework in [28] for solving the problem in form

of (A.3). Also, note from [28, Lemma 3.3] that the set
{
Eχ : Ψ(Eχ) + 〈q,χ〉 ≤ α, χ ∈ Ξ

}
is compact

for any α ∈ R. Then, one can easily verify that ∇2Ψ(Eχ∗) is positive definite for any optimal solution

χ∗ of problem (A.3). Based on these facts, we can readily apply [28, Theorem 2.1] to obtain statement

(i), i.e., χt := (y(1),t, . . . ,y(N),t,W t)→ χ∗ R-linearly.

We next prove statement (ii). Let
{(
ŷ(1), . . . , ŷ(N), Ŵ

)}
be the limit of

{(
y(1),`, . . . ,y(N),`,W `

)}
.

Then, one can see from statement (i) that
{(
ŷ(1), . . . , ŷ(N), Ŵ

)}
is an optimal solution of problem

(3.4) and further see from Proposition 1 that X̂ := exp
((∑N

i=1A(i,∗)ŷ(i) + Ŵ −M
)
/ε
)

is an optimal

solution of problem (3.1). Define the mapping H : R
∑N

i=1mi+n1n2n3 → Rn1n2n3 by H(χ) := exp((Eχ −
m)/ε), whose Jacobian matrix is given by JH(χ) = ε−1Diag

[
exp((Eχ −m)/ε)

]
E. Then, we see that

x` := vec(X`) = H(χ`) and x̂ := vec(X̂) = H(χ̂), where χ` :=
[
y(1),`; . . . ;y(N),`; vec(W `)

]
and χ̂ :=[

ŷ(1); . . . ; ŷ(N); vec(Ŵ )
]
. Moreover, we have∥∥x` − x̂∥∥ =

∥∥H(χ`)−H(χ̂)
∥∥ =

∥∥( ∫ 1

0
JH
(
χ̂+ τ(χ` − χ̂)

)
dτ
)
· (χ` − χ̂)

∥∥
≤
∥∥ ∫ 1

0
JH
(
χ̂+ τ(χ` − χ̂)

)
dτ
∥∥ · ∥∥χ` − χ̂∥∥ ≤ ∫ 1

0

∥∥JH
(
χ̂+ τ(χ` − χ̂)

)∥∥dτ ·
∥∥χ` − χ̂∥∥, (A.4)

where the second equality follows from the mean-value theorem. Note that

Ψ(Eχ̂) + 〈q, χ̂〉 ≤ Ψ(Eχ`) + 〈q,χ`〉 ≤ Ψ(Eχ0) + 〈q,χ0〉, ∀ ` ≥ 0.

It then follows from [28, Lemma 3.3] that {Eχ`} is bounded. With this fact, one can easily verify that∥∥JH
(
χ̂+ τ(χ` − χ̂)

)∥∥ is uniformly bounded from above by some constant L, i.e.,
∥∥JH

(
χ̂+τ(χ`−χ̂)

)∥∥ ≤
L for all ` ≥ 0 and τ ∈ [0, 1]. This together with (A.4) and statement (i) prove statement (ii).

A.3 The dual BCD for the CMOT problem

As a special case of problem (1.1), the 3-marginal capacity constrained optimal transport problem (1.2)

(taking the linear mappings defined in (1.3)) has attracted particular attention. In this section, we write

down the concrete iterative scheme of the dual BCD in Algorithm 2 for solving (3.1) with the constraints

in (1.2). We use f , g, h, W to denote Lagrangian multipliers with respect to the following four constraints∑
s,tXrst = ar, r = 1, . . . , n1,

∑
r,tXrst = bs, s = 1, . . . , n2,∑

r,sXrst = ct, t = 1, . . . , n3, X ≤ U,

respectively. By using similar arguments as in Section 3, one obtains the dual subproblem:

min
f , g,h,W

R
(
f , g, h, W

)
:= ε

∑
r,s,t exp

((
fr + gs + ht +Wrst −Mrst

)
/ε
)
− 〈f , a〉

− 〈g, b〉 − 〈h, c〉 − 〈W, U〉+ δ−(W ),
(A.5)

where M := C − ε logS. We then apply the BCD method for solving (A.5). Specifically, start from any

(f0, g0,h0,W 0) ∈ domR, at the `-th iteration, compute

f `+1 = arg min
f

R
(
f , g`, h`, W `

)
, g`+1 = arg min

g
R
(
f `+1, g, h`, W `

)
,

h`+1 = arg min
h

R
(
f `+1, g`+1, h, W `

)
, W `+1 = arg min

W
R
(
f `+1, g`+1, h`+1, W

)
.
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After some manipulations, one can obtain the following explicit iterative scheme:

f `+1 = ε log(a)− ε log
([∑

s,t exp
((
g`s + h`t +W `

rst −Mrst

)
/ε
)]n1

r=1

)
,

g`+1 = ε log(b)− ε log
([∑

r,t exp
((
f `+1
r + h`t +W `

rst −Mrst

)
/ε
)]n2

s=1

)
,

h`+1 = ε log(c)− ε log
([∑

r,s exp
((
f `+1
r + g`+1

s +W `
rst −Mrst

)
/ε
)]n3

t=1

)
,

W `+1 = min
{
ε logU +M − f `+1 ⊗ 1n2 ⊗ 1n3 − 1n1 ⊗ g`+1 ⊗ 1n3 − 1n1 ⊗ 1n2 ⊗ h`+1, 0

}
,

(A.6)

where 1ni denotes the ni-dimensional vector of all ones for i = 1, 2, 3. Moreover, let M̃ := exp(−M/ε),

f̃ ` := exp(f `/ε), g̃` := exp(g`/ε), h̃` := exp(h`/ε) and W̃ ` := exp(W `/ε). Then, we can equivalently

rewrite the iterative scheme (A.6) as

f̃ `+1 = a .
/([∑

s,t

(W̃ ` ◦ M̃
)
rst
g̃`s h̃

`
t

]n1

r=1

)
, g̃`+1 = b .

/([∑
r,t

(W̃ ` ◦ M̃
)
rst
f̃ `+1
r h̃`t

]n2

s=1

)
,

h̃`+1 = c .
/([∑

r,s

(W̃ ` ◦ M̃
)
rst
f̃ `+1
r g̃`+1

s

]n3

t=1

)
, W̃ `+1 = min

{(
U./M̃

)
.
/(
f̃ `+1 ⊗ g̃`+1 ⊗ h̃`+1

)
, 1
}
.

(A.7)

In our numerical experiments conducted in Section 4, we always adopt the iterative scheme (A.7) since

the proximal parameter ε in our iEPPA does not need to take a small value.

Appendix B Dykstra’s algorithm with KL projections

Dykstra’s algorithm with Kullback-Leibler projections (DyKL) [5] is adapted in [6] to solve the following

entropic regularized capacity constrained optimal transport problem:

min
X∈Rm×n

〈C, X〉+ ε
∑m
s=1

∑n
r=1Xrs(logXrs − 1)

s.t. X1n = a, X>1m = b, 0 ≤ X ≤ U,
(B.1)

where C ∈ Rm×n+ , U ∈ Rm×n++ , a := (a1, . . . , am)> ∈ Σm, b := (b1, . . . , bn)> ∈ Σn. Recall the definition

of the Kullback-Leibler (KL) divergence between X ∈ Rm×n+ and Y ∈ Rm×n++ is given as follows:

KL(X, Y ) =
∑
r,s (xrs log (xrs/yrs)− xrs + yrs) .

Moreover, given a convex set S ⊆ Rm×n and Y ∈ Rm×n++ , the projection associated with the KL divergence

(called KL projection) is defined as ProjKL
S (Y ) := arg min

X∈S
KL(X, Y ). Thus, problem (B.1) can be

equivalently reformulated as

min
X∈Rm×n

KL(X, K) s.t. X ∈ S1 ∩ S2 ∩ S3,

where K := e−C/ε is the kernel matrix, S1 := {X ∈ Rm×n : X1n = a}, S2 := {X ∈ Rm×n : X>1m = b}
and S3 := {X ∈ Rm×n : X ≤ U}. Then, the DyKL is presented as follows: let X0 = K, Q0

1 = Q0
2 =

Q0
3 = 1m1>n , then for k ≥ 0, compute

Πk+1
0 = Xk,

Πk+1
1 = ProjKL

S1 (Πk+1
0 ◦Qk1), Qk+1

1 = Qk1 ◦
(
Πk+1

0 ./Πk+1
1

)
,

Πk+1
2 = ProjKL

S2 (Πk+1
1 ◦Qk2), Qk+1

2 = Qk2 ◦
(
Πk+1

1 ./Πk+1
2

)
,

Πk+1
3 = ProjKL

S3 (Πk+1
2 ◦Qk3), Qk+1

3 = Qk3 ◦
(
Πk+1

2 ./Πk+1
3

)
,

Xk+1 = Πk+1
3 ,

(B.2)
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where ◦ denotes the Hadamard product. Note that the above iterative scheme is a slightly different but

an equivalent form of the DyKL used in [6]. We adapt it here because it is more explicit and convenient

for comparison. Moreover, by simple calculations, one can verify that

Πk+1
1 = ProjKL

S1 (Πk+1
0 ◦Qk1) = Diag

(
a.
/((

Πk+1
0 ◦Qk1

)
1n
)) (

Πk+1
0 ◦Qk1

)
,

Πk+1
2 = ProjKL

S2 (Πk+1
1 ◦Qk2) =

(
Πk+1

1 ◦Qk2
)

Diag
(
b.
/((

Πk+1
1 ◦Qk2

)>
1m
))
,

Πk+1
3 = ProjKL

S3 (Πk+1
2 ◦Qk3) = min

{
Πk+1

2 ◦Qk3 , U
}
.

It is worth noting that the DyKL in (B.2) may suffer from severe numerical issues when ε takes a

small value. Thus, one may need to carry out the computations of Πk
i and Qki (i = 1, 2, 3) in the log

domain to alleviate the numerical instability. Specifically, by taking logarithm on both sides of above

equations and letting X̃k := ε logXk, Π̃k
i := ε log Πk

i , Q̃ki := ε logQki , ã := ε loga, Ũ := ε logU , we

obtain after some manipulations that

Π̃k+1
0 = X̃k,

Π̃k+1
1 =

[
ã− ε log

([
exp

((
Π̃k+1

0 + Q̃k1
)
/ε
)]

1n

)]
1>n + Π̃k+1

0 + Q̃k1 , Q̃k+1
1 = Q̃k1 + Π̃k+1

0 − Π̃k+1
1 ,

Π̃k+1
2 = 1m

[
b̃− ε log

([
exp

((
Π̃k+1

1 + Q̃k2
)
/ε
)]>

1m

)]>
+ Π̃k+1

1 + Q̃k2 , Q̃k+1
2 = Q̃k2 + Π̃k+1

1 − Π̃k+1
2 ,

Π̃k+1
3 = min

{
Π̃k+1

2 + Q̃k3 , Ũ
}
, Q̃k+1

3 = Q̃k3 + Π̃k+1
2 − Π̃k+1

3 ,

X̃k+1 = Π̃k+1
3 .

(B.3)

In this stabilization framework, the initialization is set to X̃0 = −C and Q̃0
1 = Q̃0

2 = Q̃0
3 = 0. When

checking the primal feasibility accuracy, we recover Xk+1 by setting Xk+1 = exp(X̃k+1/ε).

Appendix C Construction of a tomographic projection

Let p be a nonnegative integer. We consider the following four directions

~v = (1, p), (1, −p), (p, 1) and (p, −1).

Note that when p ∈ {0, 1}, we only have two directions. The process to find the projection A(i)(X) along

a given direction ~v is described as follows (see Figure 6 for a concrete example):

1. Plot the entries of X as points on the integer grid {1, . . . , n} × {1, . . . , n}.

2. For each point, draw a line vj parallelling to ~v, identify all other points for which vj passes through.

3. Take the sum of the entries of X for all points on vj to define (A(i)(X))j .

4. Repeat this process until all {vj} covers the whole grid, i.e., covers all entries of X.

~v = (2, 1)

X

A(i)(X)

Figure 6: Construction of the projection operator along ~v = (2, 1) for a 5× 5 matrix X.
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[32] G. Peyré and M. Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11(5-

6):355–607, 2019.

[33] B. T. Polyak. Introduction to optimization. Optimization Software Inc., New York, 1987.

[34] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[35] R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer, 1998.
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