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Abstract
We consider a class of convex risk-neutral PDE-constrained optimization problems
subject to pointwise control and state constraints. Due to the many challenges asso-
ciated with almost sure constraints on pointwise evaluations of the state, we suggest
a relaxation via a smooth functional bound with similar properties to well-known
probability constraints. First, we introduce and analyze the relaxed problem, discuss
its asymptotic properties, and derive formulae for the gradient the adjoint calculus.
We then build on the theoretical results by extending a recently published online con-
vex optimization algorithm (OSA) to the infinite-dimensional setting. Similar to the
regret-based analysis of time-varying stochastic optimization problems, we enhance
the method further by allowing for periodic restarts at pre-defined epochs. Not only
does this allow for larger step sizes, it also proves to be an essential factor in obtain-
ing high-quality solutions in practice. The behavior of the algorithm is demonstrated
in a numerical example involving a linear advection–diffusion equation with random
inputs. In order to judge the quality of the solution, the results are compared to those
arising from a sample average approximation (SAA). This is done first by comparing
the resulting cumulative distributions of the objectives at the optimal solution as a
function of step numbers and epoch lengths. In addition, we conduct statistical tests
to further analyze the behavior of the online algorithm and the quality of its solutions.
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For a sufficiently large number of steps, the solutions from OSA and SAA lead to
random integrands for the objective and penalty functions that appear to be drawn
from similar distributions.

Keywords Optimization under uncertainty · PDE-constrained optimization · State
constraints · Probability constraints · Expectation constraints · First-order methods ·
Stochastic approximation

Mathematics Subject Classification 49M20 · 49M41 · 65K05 · 65K10 · 90C15 ·
90C25

1 Introduction

In this paper,we propose a comprehensive relaxation-based approach for the numerical
solution of a risk-neutral PDE-constrained optimization problem subject to control and
pointwise state constraints. For our algorithm developent, we assume that the objective
function has the general form

j(z) � EP[J (z, ξ)], (1.1)

where J (z, ξ) is convex in the control variables z almost surely (a.s.) and ξ denotes the
random inputs. In the context of PDE-constrained optimization, we will assume that
the solution operator z �→ uξ (z) of the PDE (as an implicit function of the controls z)
is included in the definition of J (z, ξ) so that

J (z, ξ) � ̂J (uξ (z), z, ξ).

One common example of this is the standard tracking-type function

̂J (uξ (z), z, ξ) � 1

2

∥

∥uξ (z) − ud
∥

∥

2
U + α

2
‖z‖2Z (1.2)

in which ud is a deterministic target state, ‖·‖U and ‖·‖Z are appropriate Hilbert space
norms, and α > 0.

In many applications, the state variable uξ (z) is restricted by certain pointwise
bounds, which may be in the form of a static obstacle, a minimum temperature, or
a maximum allowable concentration. Consequently, we consider the situation where
the PDE solution uξ (z) must satisfy the pointwise constraint

uξ (z) ≥ ψ a.e./a.s., (1.3)

where ψ is a prescribed function.
Minimizing the convex objective function (1.1) while enforcing the state constraint

(1.3) represents significant challenges. In particular, any algorithmic approach neces-
sarily relies on a tractable formulation of the uncertain constraints. One of the main
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contributions of this paper is the derivation of such a tractable formulation that follows
a convex relaxation approach. To illustrate our approach, consider the relaxation of the
a.s. constraints into probability constraints. Here, we only require the bound to hold
with high probability. In doing so, we fix a pre-specified confidence level p ∈ (0, 1)
and require that

P
(

uξ (z) ≥ ψ a.e.
) ≥ p. (1.4)

Joint chance constraints of this form are popular inmany engineering problems such as
hydro reservoir control and mechanics [2, 8]. However, optimization problems with
probability constraints are difficult already in finite-dimensions, where there exist
many structural results related to differentiability and convexity [10, 16, 26]. See [30]
or [32, Chap. 4] for additional details. In this work, we make further progress on this
relevant question. Our basic ideas can be described as follows:

1. Replace the almost sure state constraint (1.3) by a degenerate global expectation
constraint of the type

Φ(z) = 0, (1.5)

for some suitably defined expectation functional Φ(z). This relaxation approach is
inspired in part by the notion of “integrated chance constraints,” defined in [5, 6,
15].

2. Relax this constraint by introducing a small slack ε > 0, and impose the weaker
restriction

Φ(z) ≤ ε. (1.6)

This relaxation strategy allows us to cast the PDE-constrained optimization problem
as a stochastic optimization problem with expectation constraints of the form

min
z∈Zad

j(z) subject to Φ(z) ≤ ε, (1.7)

whereZad is the set of admissible controls. This reformulation allows for global viola-
tions of the state constraint similar to the chance constraint (1.4), but with the decisive
advantage of guaranteed convexity and smoothness, independent of the nature of the
contaminating noise. This offers an alternative to probability constraints that is numer-
ically tractable and exhibits similar properties (see Sect. 3). The price we pay for this
regularity is that both the objective function, as well as the constraints appear in terms
of an expectation. Hence, to solve such an optimization problem numerically, we need
to resort to sampling and simulation-based techniques. Accordingly, we develop a new
online stochastic approximation (OSA) algorithm for the relaxed formulation (1.7),
which is designed to solve an infinite-dimensional stochastic optimization problem
with expectations appearing in the objective function and the constraints.

Recently, the PDE-constrained optimization community has devoted a significant
amount of interest in developing numerical schemes for control problems with ran-
domly perturbed coefficients. Many approaches employ an empirical approximation
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for the random integrands using either Monte-Carlo [22], Quasi-Monte Carlo [14],
Multilevel Monte Carlo [35] or adaptive sparse grids [19, 20] to obtain a determin-
istic PDE-constrained problem. The deterministic solvers employed in these (and
related) papers are typically inexact Newton approaches, which allow for massive par-
allelization for the gradient and Hessian-vector products and avoid expensive matrix
computations. Recently, stochastic approximation methods in the spirit of [29] have
been adapted to stochastic PDE-constrained optimization problems in [12, 13] and
[28]. Variance reduction ideas, originating from machine learning, have witnessed
applications in this field [27] as well.

From the broader perspective of stochastic optimization, not many numerical
schemes for solving convex stochastic optimization problems subject to expectation
constraints are known. The only existing alternative to the scheme developed here
is essentially the recent work by [23]. Here, the authors adapt the proximal gradient
method to functional constrained optimization problems, where the constraint needs
to be sampled at the current position of the algorithm. Their scheme is very flexi-
ble, and extends to the Bregman setup easily. Additionally, given a desired solution
accuracy εsol > 0, they state an O(ε−2

sol ) iteration complexity result in terms of the
ergodic average. This gives an upper bound on the number of iterations needed to
arrive at a solution of accuracy εsol > 0 on the order of ε−2

sol . However, their analysis is
restricted to finite-dimensional optimization problems. In addition, it seems that their
analysis relies on an a priori decomposition of the set of iterations, which appears to
be challenging, at least, to verify in practice.

In contrast to the method in [23], we instead follow a machine learning inspired
approach and extend a recent online convex optimization algorithm with time-varying
constraints, due to [37]. We enrich their method to allow for periodic restarts at
pre-defined epochs, similar to the regret-based analysis of time-varying stochastic
optimization problems laid out in [3, 9]. The restart-based algorithm does not improve
the theoretical iteration complexity, but allows us to use larger, epoch-dependent step
sizes, which can be a crucial factor in practice.

Recently, a conditional gradient framework for stochastically constrained convex
programming problems has been introduced in [36]. We believe that this approach can
be applied to the current situation as well, once the technical details associated with
the infinite-dimensionality stemming from the PDE-constraint are resolved. However,
the iteration complexity of that scheme is O(ε−6

sol ), which is much slower than the
present O(ε−2

sol ). At least for PDE-constrained optimization, it is important to note
that each stochastic gradient (or subgradient) evaluation requires the solution of two
partial differential equations. Therefore, even a rough solution accuracy of εsol =
10−3 indicates that the conditional gradient approach would require approximately
1018 PDE solves, which is clearly not acceptable from a computational standpoint. In
contrast, the Newton-based solvers mentioned above typically require several million
PDE solves, which is comparable to the 106 PDE solves for an O(ε−2

sol ) algorithm.
The rest of this paper is organized as follows. Section2 introduces the notation used

in this paper and describes the PDE model in detail. Section3 describes the stochastic
optimization problem subject to the PDE constraint and the obstacle. In that section
the penalty reformulation is also explained in detail. Section4 presents the algorithm
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we use to solve the relaxed problem (1.7) numerically. Finally, Sect. 5 provides a
numerical example with a rigorous statistical analysis comparing the proposed OSA
algorithm and a sample average approximation (SAA) approach.

2 Notation and PDE description

Throughout, (Ω,F , P) is a complete probability space and D ⊂ R
n is an open and

bounded set. Given a Banach space U , we denote the associated norm by ‖ · ‖U . If
V is another Banach space, then we denote the space of continuous linear operators
mapping U into V by Lin(U , V ). The topological dual space of V is accordingly
V ∗ � Lin(V , R). Given a functional h : V → R, we denote the Fréchet derivative of
h at v ∈ V by h′(v) ∈ V ∗. When V is a Hilbert space, we denote its inner product
by (·, ·)V and assume that the associated norm is given by ‖ f ‖2V � ( f , f )V . When
the context is clear, we will omit the space from the norm and inner product. If V
is a Hilbert space and h : V → R is Fréchet differentiable, we denote the gradient
associated with h′(v) by ∇h(v) ∈ V . Finally, we denote strong (norm) convergence
by ‘→’ and weak convergence by ‘⇀.’

We consider PDEs with random inputs, the solutions of which are random fields.
Consequently, it is necessary to introduce various function spaces for the solution
variables. We denote the Lebesgue space of (equivalence classes of) square-integrable
functions from D to R by L2(D). We further denote the Sobolev space of L2(D)

functions with L2(D) weak derivatives by H1(D) and the closed subspace of H1(D)

functions with zero boundary trace by H1
0 (D). We denote the topological dual space

of H1
0 (D) by H−1(D). For more on Lebesgue and Sobolev spaces, see e.g., [1]. The

Sobolev H1
0 (D) is a common solution space for deterministic linear elliptic PDEs.

However, since we consider PDEs with random inputs, the solution is a random field,
which belongs to the Bochner space

U � L2(Ω,F , P; H1
0 (D))

of F-strongly measurable square P-integrable mappings v : Ω → H1
0 (D), endowed

with the natural norm

‖v‖2U � EP

[

‖v‖2
H1
0 (D)

]

.

Other Bochner spaces, e.g., L∞(Ω,F , P; H1(D)), are defined analogously [17]. For
v ∈ U , we recall that v(ω) ∈ H1

0 (D) a.s. When needed, we denote the evaluation of
v(ω) at x ∈ D by v(ω, x).

We refer to the optimization variables z ∈ Z � L2(D) as the “controls” and
the PDE solutions u ∈ U as the “states.” Let (Ξ,Σ) be a measurable space. The
measurable mapping ξ : Ω → Ξ is a random element that parametrizes the PDE
coefficients. Without loss of generality, we assume that ξ(Ω) = Ξ . We distinguish
between the random element ξ and its possible values ξ ∈ Ξ using bold text. Given a
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control z ∈ Z , the state solves the random PDE: Find u ∈ U that satisfies

EP

[∫

D
κ(x, ξ)∇xu(·, x) · ∇xv(·, x) dx

]

= EP

[∫

D
((B(ξ)z)(x) + f (x, ξ))v(·, x) dx

]

∀ v ∈ U .

(2.1)

For the development of numerical methods, it is often convenient to consider the
equivalent “parametric” weak form of (2.1): For fixed z ∈ Z and ξ ∈ Ξ , find uξ ∈
H1
0 (D) that satisfies

∫

D
κ(x, ξ)∇uξ (x) · ∇φ(x) dx

=
∫

D
((B(ξ)z)(x) + f (x, ξ))φ(x) dx ∀φ ∈ H1

0 (D).

(2.2)

The equivalence to (2.1) in one direction can be seen by choosing test functions of the
type v(ω, x) = χA(ω)ϕ(x) such that A ∈ F and ϕ ∈ H1

0 (D) and then substituting
these into (2.1). Since (2.1) holds for all A ∈ F , we obtain (2.2). The reverse direction
from (2.2) to (2.1) is a special case of the nonlinear elliptic setting considered in [22],
where it is shown that measurability follows from a measurable selection theorem and
integrability from standard a priori estimates for linear elliptic PDE.

We now postulate several basic assumptions on the data for (2.1).

Assumption 1 We assume that

1. f (·, ξ) ∈ L∞(Ω,F , P;Z);
2. There exist positive constants 0 < κ0 ≤ κ1 < +∞ such that

κ0 ≤ κ(·, ξ) ≤ κ1 a.e. ∀ ξ ∈ Ξ ;

3. The control operator ω �→ B(ξ(ω)) : Ω → Lin(Z, H−1(D)) is uniformly mea-
surable, essentially bounded and completely continuous:

zn⇀z in Z ⇒ B(ξ)zn → B(ξ)z in H−1(D) a.s.

Under Assumption 1, the Lax–Milgram Lemma applies to show that a solution
to (2.1) exists and is unique. Owing to the linearity of the PDE, the solution can be
written as S(z) + u f , where S(z) is the unique solution of (2.1) obtained by setting
f ≡ 0 and u f is the unique solution of (2.1) obtained by setting z ≡ 0. Note that S
is a bounded linear operator from Z into U . Using the equivalence between (2.1) and
(2.2), we may also use the ξ -dependent solution operator Sξ : Z → H1

0 (D) such that
the solution to (2.2) is Sξ (z) + u f (·,ξ) for ξ ∈ Ξ .

Remark 1 As shown in [22], a much larger class of semilinear elliptic PDEs can be
analyzed in an optimization context. However, significant difficulty arises from the
state constraint. For this reason, we have chosen to develop the theory and algorithm
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in this paper for the linear elliptic case. One of the main difficulties in the semilinear
case is a full convergence proof of the algorithm, since the nonlinearity renders the
optimization problems nonconvex.

3 The optimization problem

3.1 The objective function, constraints, and further data assumptions

We consider optimal control problems with the convex objective function (1.1) and
the control constraints

Zad � {v ∈ Z | a ≤ v ≤ b a.e.}. (3.1)

In addition, we impose a unilateral state constraint on the solution operator z �→ S(z)
of the form:

Sξ (z)[x] ≥ ψ(x, ξ) − u f (·,ξ)(x) for a.a. x ∈ D a.s. (3.2)

In order to prove existence of solutions and analyze the algorithm below, we require
the following mild regularity assumptions.

Assumption 2 We assume that

1. D ⊂ R
n is an open and bounded set with Lipschitz boundary Γ ⊂ R

n−1;
2. a, b ∈ L2(D) with a < b a.e.;
3. ψ : D × Ξ → R is continuous, satisfies ψ(x, ξ) ≤ 0 for all (x, ξ) ∈ Γ × Ξ , and

ψ(·, ξ) ∈ H1(D) for all ξ ∈ Ξ ;
4. j(·) is proper, weakly lower-semicontinuous, and convex.

For readability, we define the state-constrained feasible set by

C �
{

z ∈ Z |P (Sξ (z)[x] ≥ ψ(x, ξ) − u f (·,ξ)(x) for a.a. x ∈ D
) = 1

}

. (3.3)

The next assumption ensures that the “original” optimization problem admits a solu-
tion.Moreover, it is necessary for the asymptotic statements of the relaxation approach.

Assumption 3 The feasible set is nonempty, i.e., C ∩ Zad �= ∅.

Wewill later discuss aweaker assumption in the context of the relaxed problems below
for cases in which it is unclear whether Assumption 3 holds.

As an operator fromZ intoU , S is bounded and linear. From this, one readily shows
that (under Assumption 3) C ∩ Zad is a nonempty, closed, bounded, and convex set
in Z and therefore weakly compact. Consequently, the convex infinite-dimensional
stochastic optimization problem

inf
z∈Z

{ j(z) | z ∈ C ∩ Zad} (P)
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admits a solution z�, which is unique if j is strictly convex as in (1.2). Under further
regularity conditions on D, e.g., if D is of type C1,1 or a convex polyhedron, it is
possible to show that u(z) = S(z)+ u f ∈ L∞(Ω,F , P; H2(D)∩ H1

0 (D)). This fact
was discussed in detail in the recent paper [11]. It provides sufficient regularity to
argue for the existence of a Slater point for the state constraint and derive optimality
conditions for (P) using standard Lagrangian duality as in [4, Chap. 3]. However, for
general domains D, it is unclear whether multiplier-based optimality conditions exist.

3.2 A relaxation approach

Our relaxation strategy employs a fairly broad class of penalty functions, defined by
the following properties.

Definition 1 (Regular Penalty) A function ϕ : R → R+ is a regular penalty if the
following conditions hold:

C.1 ϕ is a continuously differentiable convex function;
C.2 ϕ(r) = 0 for all r ≤ 0;
C.3 ϕ(r) > 0 for all r > 0;
C.4 ϕ has a Lipschitz continuous gradient with modulus Lϕ :

(∀t, s ∈ R) : ∣∣ϕ′(t) − ϕ′(s)
∣

∣ ≤ Lϕ |t − s| . (3.4)

Assumption C.4 implies that for all t, s ∈ R

∣

∣ϕ(t) − ϕ(s) − ϕ′(s)(t − s)
∣

∣ ≤ Lϕ

2
|t − s|2 . (3.5)

In addition, since ϕ ≥ 0, ϕ(0) = 0, and ϕ′ is Lipschitz, we have |ϕ′(t)| ≤ Lϕ |t |. A
concrete example for a regular penalty function ϕ : R → R+ is as follows.

Example 1 Consider the function r : R → R given by

r(t) �

⎧

⎨

⎩

t − 1
2 if t ≥ 1,

t3 − t4
2 if t ∈ (0, 1),

0 else.

It can be easily checked that r(·) satisfies conditionsC.1–C.4. In particular, r is globally
Lipschitz smooth with

∣

∣r ′(t)
∣

∣ ≤ 1 for all t ∈ R. Let δ > 0 and define

ϕ(t) � r(δ−1t). (3.6)

Then,
∣

∣ϕ′(t)
∣

∣ ≤ 1
δ

≡ Lϕ for all t ∈ R. See Fig. 1 for an illustration. We see that
as δ → 0+ the map t �→ r(t/δ) approximates the indicator function equal to 0 on
(−∞, 0] and +∞ in (0,∞).
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Fig. 1 The regular penalty function (3.6) for various values of δ

We employ regular penalty functions to convert the pointwise constraints (3.2) to
expectation constraints. Let θ(z, ξ) ∈ H1(D) for z ∈ Z be defined pointwise by

θ(z, ξ) � ψ(·, ξ) − (u f (·,ξ) + Sξ (z)). (3.7)

The evaluation of θ(z, ξ) at x ∈ D is denoted by θ(z, ξ)[x]. Observe that θ(z, ξ) ≤ 0
a.s. whenever z ∈ C ∩ Zad. Next, consider the function Φ : Z → R+, defined by

Φ(z) � EP[F(θ(z, ξ))] ∀z ∈ Z, (3.8)

where for measurable functions v : D → R, F is defined by

F(v) �
∫

D
ϕ(v(x)) dx . (3.9)

Using Φ, we arrive at the family of relaxed optimization problems

min
z∈Zad

{ j(z) |Φ(z) ≤ ε} , (Pε)

where ε > 0 is a given tolerance for constraint violation. The next lemma shows that
our relaxation approach has similar implications in terms of constraint violation like
standard chance constraints: Making Φ small guarantees constraint satisfaction with
high probability.

Lemma 1 Let ϕ : R → R+ be a regular penalty function. For a fixed z ∈ Z , we have

θ(z, ξ) ≤ 0 a.e./a.s. ⇔ Φ(z) = 0.
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Proof Fix z ∈ Z . Clearly, if θ(z, ξ) ≤ 0 a.e./a.s., then ϕ(θ(z, ξ)) = 0 a.e./a.s. Con-
sequently, Φ(z) = 0. Conversely, suppose Φ(z) = 0, and let M ⊂ D × Ω be a set
of positive measure on which θ(z, ξ) > 0. Without loss of generality, assume that
θ(z, ξ) ≤ 0 holds on (D × Ω) \ M . Then, by the properties of ϕ, we would have
ϕ(θ(z, ξ)) > 0 a.e. on M . It follows that

0 <

∫

M
ϕ(θ(z, ξ(ω))[x]) dx dP(ω) ≤ EP

[∫

D
ϕ(θ(z, ξ)[x]) dx

]

= Φ(z) = 0,

which is a contradiction. ��
Remark 2 The use of Φ is linked to probability constraints and the original local
setting. As Lemma 1 shows, Φ(z) ≤ 0 is equivalent to the original constraint (3.2).
By Markov’s inequality, we have for any c > 0 that

P(F(θ(z, ξ)) ≥ c) ≤ 1

c
Φ(z).

Choosing ε = c2 in (1.6), any point z ∈ Zad that satisfies (1.6) would then fulfill

P(F(θ(z, ξ)) < c) ≥ 1− c.

Thus, although the relaxation allows for violations of the local state constraint, the
probability of such events can be tamed by choosing moderate values for c; e.g.,
c = 10−2 and ε = 10−4.

3.3 Analysis of8

We now derive the regularity properties of the function Φ that are needed for the
development of optimization algorithms. We start by providing technical lemmata on
integral functionals that make the verifying the properties of Φ more readable.

Lemma 2 Let ϕ : R → R+ be a regular penalty function. Define the functional
F : H1

0 (D) → R+ by (3.9). Then, F is convex, globally Lipschitz continuous with
modulus LF , and Fréchet differentiable.

Proof Convexity is straightforward. For global Lipschitz continuity, we have for any
u, v ∈ H1

0 (D) the inequality

|F(v) − F(u)| ≤
∫

D
|ϕ(v(x)) − ϕ(u(x))| dx ≤ Lϕ ‖v − u‖L1(D) .

Since D is bounded, we also have Lipschitz continuity in L2(D) with modulus L̂ F �
LϕVol(D)1/2. Furthermore, letting cemb be the constant from Poincaré’s inequality,
we can set LF � cemb L̂ F and obtain

|F(v) − F(u)| ≤ LF‖v − u‖H1
0 (D).
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Next, we prove differentiability. Fix arbitrary u, v ∈ H1
0 (D) and t > 0. From (3.5),

we have for almost all x ∈ D:

− t2Lϕ

2
|u(x)|2 ≤ ϕ(v(x) + tu(x)) − ϕ(v(x)) − tϕ′(v(x))u(x) ≤ t2Lϕ

2
|u(x)|2 .

By dividing both sides by t > 0, integrating over x , and letting t → 0+, the Lebesgue
dominated convergence theorem implies that

F ′(v; u) = lim
t→0+

F(v + tu) − F(v)

t
=
∫

D
ϕ′(v)u dx .

Since |ϕ′(v)| ≤ Lϕ |v| a.e. and |v| ∈ H1
0 (D), (ϕ′(u), ·)L2(D) defines a bounded linear

functional on H1
0 (D). Hence, F ′(v; ·) is linear and continuous on H1

0 (D) and there-
fore, F is Gâteaux differentiable at v. Since F is Lipschitz, Gâteaux and Hadamard
differentiability coincide, see e.g., [4, Prop. 2.49].

To prove that F is in fact Fréchet differentiable, let u, v ∈ H1
0 (D). For almost every

x ∈ D, we have

∣

∣ϕ(v(x) + u(x)) − ϕ(v(x)) − ϕ′(v(x))u(x)
∣

∣ ≤ Lϕ

2
|u(x)|2 .

Integrating over x ∈ D and using Poincaré’s inequality, we have

∣

∣F(v + u) − F(v) − F ′(v)u
∣

∣

‖u‖H1
0 (D)

≤ Lϕcemb

2
‖u‖H1

0 (D) .

Passing to the limit as ‖u‖H1
0 (D) → 0 we obtain the assertion. ��

Proposition 1 The functionΦ : Z → R+ defined in (3.8) is convex, globally Lipschitz
continuous, and continuously differentiable with derivative

Φ ′(z)h = EP

[

(

ϕ′(θ(z, ξ)),−S(h)
)

L2(D)

]

∀ h ∈ Z (3.10)

and Lipschitz continuous gradient,

∇Φ(z) = −EP[ηξ ] (3.11)

where η = ηξ (z) ∈ H1
0 (D), for fixed ξ ∈ Ξ , fulfills

∫

D
κ(x, ξ)∇η(x) · ∇v(x) dx =

∫

D
ϕ′(θ(z, ξ))v(x) dx ∀ v ∈ H1

0 (D). (3.12)

Proof The convexity ofΦ is a result of the linearity of S and the convexity of the regular
penalty function ϕ. To see that Φ is globally Lipschitz, we appeal to the properties of
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F . The Lipschitz continuity of F established in Lemma 2 immediately gives for all
u1, u2 : Ω → H1

0 (D),

|F(u1) − F(u2)| ≤ LF ‖u1 − u2‖H1
0 (D) a.s.

Squaring both sides followed by taking the expectation yields

EP

[

|F(u1) − F(u2)|2
]

≤ LFEP

[

‖u1 − u2‖2H1
0 (D)

]

.

Applying Jensen’s inequality to the left-hand side and taking the square root of both
sides yields

|EP[F(u1)] − EP[F(u2)]| ≤
√

LFEP[‖u1 − u2‖2H1
0 (D)

].

It follows that

U � u �→ ̂Φ(u) � EP[F(u)]

is globally Lipschitz. Clearly, ̂Φ(θ(z, ξ)) = Φ(z). Using to the linearity of S, we
deduce that

|Φ(z1) − Φ(z2)| = |EP[F(θ(z1, ξ))] − EP[F(θ(z2, ξ))]|
≤
√

LFEP[‖S(z1) − S(z2)‖2H1
0 (D)

]
≤ M ‖z1 − z2‖L2(D)

for some M > 0. Notice that the constant terms u f and ψ disappear in the Lipschitz
bound on F before estimating from above by the H1

0 (D)-norm.
Next, we show that Φ is continuously Fréchet differentiable with Lipschitz deriva-

tive. Since S(z) + u f is a continuous affine mapping from Z into U , we need only
consider ̂Φ(·). Using the chain rule [34, Th. 20.9], we would then obtain the formula
in (3.10). For any u, h ∈ U , we will demonstrate that

̂Φ ′(u)h = EP

[∫

D
ϕ′(u)h dx

]

. (3.13)

Using the same arguments as in Lemma 2, the functional on the righthand side in
(3.13) is clearly bounded and linear on U .

By the assumptions on the regular penalty function ϕ, we have for all u, h ∈ U ,

− Lϕ

2
|h(ω, x)|2 ≤ [ϕ(u(ω, x) + h(ω, x)) − ϕ(u(ω, x))]− ϕ′(u(ω, x))h(ω, x)

≤ Lϕ

2
|h(ω, x)|2 .
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for almost all (x, ω) ∈ D × Ω . Integrating over D × Ω yields

− Lϕ

2
EP

[∫

D
|h(·, x)|2 dx

]

≤ EP

[∫

D
(ϕ(u + h) − ϕ(u)) dx

]

− EP

[∫

D
ϕ′(u)h dx

]

= (

̂Φ(u + h) − ̂Φ(u)
)− EP

[∫

D
ϕ′(u)h dx

]

≤ Lϕ

2
EP

[∫

D
|h(·, x)|2 dx

]

.

Since U is continuously embedded into L2(Ω,F , P;Z), there exists a constant c > 0
such that

∣

∣

∣

∣

(

̂Φ(u + h) − ̂Φ(u)
)− EP

[∫

D
ϕ′(u)h dx

]∣

∣

∣

∣

≤ c‖h‖2U

and it follows that ̂Φ is Fréchet differentiable.
In addition, there exists a constant c′ > 0 for any u, v ∈ U and h ∈ U such that for

almost all ω ∈ Ω we have

(F ′(u(ω)) − F ′(v(ω)))h(ω) ≤ Lϕ

∫

D
|u(ω) − v(ω)||h(ω)| dx

≤ c′ ‖u(ω) − v(ω)‖H1
0 (D) ‖h(ω)‖H1

0 (D) .

(3.14)

Taking the expectation on both sides and applying Hölder’s inequality yields

̂Φ ′(u)h − ̂Φ ′(v)h ≤ c′‖u − v‖U‖h‖U .

Replacing h by −h yields the same inequality with

|̂Φ ′(u)h − ̂Φ ′(v)h| ≤ c′‖u − v‖U‖h‖U .

Then taking the supremum over all h ∈ U with ‖h‖U = 1 proves that ̂Φ ′ : U → U∗
is Lipschitz.

It remains to verify (3.11). For any h ∈ Z , it holds that

(ϕ′(θ(z, ξ)),−S(h))Z = (−S∗ϕ′(θ(z, ξ)), h)Z a.s.,

where the canonical embedding ιH1
0 ↪→L2 in front of S(h) and its adjoint ιL2↪→H−1 in

front of the ϕ′-term have been suppressed in the notation above. Taking the expectation
of both sides and applying Fubini’s theorem, we then have

Φ ′(z)h = (EP[−S∗ϕ′(θ(z, ξ))], h)Z

for any pair z, h ∈ Z . Finally, by recognizing that ηξ (z) = −S∗ξ ϕ′(θ(z, ξ)) solves the
adjoint equation (3.12), we deduce the final assertion. ��
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3.4 Pointwise and uniform bounds on the objective and reduced gradients

The numerical method considered in the next section requires a number of bounds on
the objective functional, the constraint functional, and the gradients of the integrands
in j and Φ. Based on the structural assumptions, these can be easily verified using
standard a priori bounds in the analysis of linear elliptic PDEs.We require the following
additional properties on j .

Assumption 4 We assume that j : Z → R has the form

j(z) = EP[J0(uξ (z))] + J1(z),

where J0, J1 : Z → R are convex and continuously differentiable and, given z, h ∈ Z ,
we have

j ′(z)h = EP[J ′
0(uξ (z))u

′
ξ (z)h] + J ′

1(z)h

Moreover, we assume that J ′
0 and J ′

1 map bounded sets into bounded sets.

These assumptions are directly inspired by the model problem (1.2).We gather several
usual bounds that arise from the assumptions, which are necessary for the convergence
analysis in the following sections.

Proposition 2 Let Assumptions 1, 2, and 4 hold.

1. There exist constants Mobj and Mbd such that

| j(z)| ≤ Mobj and |Φ(z)| ≤ Mbd ∀z ∈ Zad. (3.15)

2. The gradient mapping ∇z J (z, ξ) has the form

∇z J (z, ξ) = B∗(ξ)λξ +∇ J1(z),

where for fixed ξ ∈ Ξ , λξ solves

∫

D
κ(x, ξ)∇λ(x) · ∇v(x) dx = −

∫

D
J ′
0(uξ (z))v(x) dx ∀ v ∈ H1

0 (D).

(3.16)

3. There exists a constant Madj such that

‖∇z J (z, ξ)‖Z ≤ Madj ∀z ∈ Zad, a.s. (3.17)

4. There exists a constant Mctr > 0 such that

‖∇z(F ◦ θ)(z, ξ)‖Z ≤ Mctr ∀z ∈ Zad, a.s. (3.18)
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Proof Byboundedness ofZad and the continuity of j andΦ there exist uniformbounds
Mobj and Mbd such that (3.15) in 1. holds.

Next, we derive a general bound on the solution operator uξ . Recalling that uξ (z) =
Sξ (z) + u f (·,ξ) solves (2.2), we can use φ = uξ in (2.2) as a test function. If follows
from Assumption 1 that

κ0‖uξ (z)‖H1
0 (D) ≤ cemb(‖B(ξ)‖op‖z‖Z + ‖ f (ξ)‖Z ) (3.19)

holds for all ξ ∈ Ξ . By assumption, ‖B(ξ)‖op, ‖ f (ξ)‖Z ∈ L∞(Ω,F , P) and Zad is
bounded. Therefore, (3.19) implies the existence of a constant Mst such that

‖uξ (z)‖H1
0 (D) ≤ Mst ∀z ∈ Zad a.s. (3.20)

Similarly, using the standard rules of adjoint calculus, see e.g., [25, Chap. 2], [33],
or [18], we derive a bound for the adjoint equation (3.16) associated with ∇z J (z, ξ).
Denoting the adjoint state by λξ we have

κ0‖λξ‖H1
0 (D) ≤ cemb‖J ′

0(uξ (z))‖Z∗ a.s.

By the properties of J ′
0 and (3.20), there exists a constant M ′

adj > 0 such that

‖λξ‖H1
0 (D) ≤ M ′

adj ∀z ∈ Zad a.s.

Consequently, the following bound holds independently of z a.s.:

‖∇z J (z, ξ)‖Z ≤ Madj a.s.

where Madj = M ′
adj‖B(ξ)‖op + supz∈Zad

‖∇ J1(z)‖Z .
We can proceed analogously for the constraintmapping by exploiting the statements

in Proposition 1 and using the associated adjoint equation (3.12). To this end, fix
an arbitrary z ∈ Zad. Then the stochastic gradients associated with the integrand
F(θ(z, ξ)) of Φ satisfy (3.12) (excluding the embedding into Z). Using ηξ = v as a
test function and continuing as above for J we have

κ0‖ηξ‖H1
0 (D) ≤ cemb‖ϕ′(θ(z, ξ))‖Z a.s.

Condition C.4 of Definition 1 implies that ηξ ∈ L∞(Ω,F , P; H1
0 (D)). Indeed, this

condition readily gives

|ϕ′(θ(z, ξ))| = |ϕ′(θ(z, ξ)) − ϕ′(0)| ≤ Lϕ |θ(z, ξ)| a.s.

Combining this with (3.19), there exists a constant Mctr > 0 (in ω and z ∈ Zad) such
that ‖ηξ‖H1

0 (D) ≤ Mctr a.s. We then have for all z ∈ Zad

‖∇z(F ◦ θ)(z, ξ)‖Z ≤ Mctr a.s. (3.21)

��
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3.5 Asymptotic considerations

Using the favorable properties of the penalty functional Φ established above, we now
investigate the asymptotic properties of the problem (Pε) as ε ↓ 0. For convenience,
we recall (P) and (Pε) here:

jopt � inf
z

{ j(z) | z ∈ C ∩ Zad} , jopt(ε) � min
z∈Zad

{ j(z) |Φ(z) ≤ ε}

Let z� and z�ε denote controls satisfying j(z�) = jopt and j(z�ε) = jopt(ε), respectively.

Proposition 3 Suppose Assumptions 1, 2, 3, and 4 are fulfilled. Furthermore, assume
that j is strongly convex. Then, for all sequences εk ↓ 0, the sequence {z�k}k∈N with
z�k = z�εk converges weakly in Z to z�.

Proof As discussed above, the assumptions and strong convexity ensure that both
problems have unique optimal solutions z� and z�ε. Next, we note that by Assumption 2
the path of solutions

{

z�ε
}

ε>0 is uniformly bounded in Z . Therefore, for any sequence
εk ↓ 0, the sequence of unique solutions {z�k} admits a weakly convergent subsequence
{z�kl }with limit point z̄. ByProposition 1,Φ isweakly lower-semicontinuous. It follows
from Lemma 1 and

Φ(z̄) ≤ lim inf
l→+∞ Φ(z�εkl

) ≤ lim inf
l→+∞ εkl = 0,

that z̄ is feasible for (P).
Next, by Assumption 3, z ∈ C∩Zad is feasible for (Pε) for all ε > 0. Therefore, we

have that j(z�ε) ≤ j(z) ∀z ∈ C∩Zad. Since j is convex and continuous, it is weakly
lower-semicontinuous. Hence, for any z ∈ C ∩ Zad, we have

j(z̄) ≤ lim inf
l→+∞ j(z�kl ) ≤ j(z),

including z = z�. Since z� is unique and z̄ is feasible for (P), z̄ = z�. Note that
this same argument would hold for every weakly convergent subsequence of {z�k}. It
follows by the Urysohn property that the entire sequence {z�k} converges weakly to z�.��
Remark 3 Most of the arguments in the proof of Proposition 3 can be relaxed to the
convex (not strongly convex) case. The statement would then read: for all sequences
εk ↓ 0, there exist a subsequence of solutions {z�kl } with z�kl = z�εkl

that converges
weakly to a solution of (P).

Remark 4 The arguments in the proof of Proposition 3 could also be used for the case
in which Assumption 3 is relaxed to require that

{z ∈ Zad |Φ(z) ≤ εmin } �= ∅
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for some minimal, but positive εmin. Therefore, if Assumption 3 cannot be verified for
a given ε > 0, a path-following argument for the relaxed problems is still available.
Either way, we have shown that the mapping

[0,+∞) � ε �→ z�ε ∈ Z

is weakly continuous and for the case when Assumption 3 does hold:

Φ(z�ε) = O(ε) and Φ(z�ε) = o(εq)

for any q ∈ (0, 1). Furthermore, when the integrand has the form (1.2), it is clear
that jopt ≥ jopt(ε) ≥ 0 for all ε, even if Assumption 3 does not hold, in which case
jopt = +∞. However, under the assumptions of Proposition 3, this special case of a
strongly convex objective can be used to show that [0,+∞) � ε �→ z�ε ∈ Z is in fact
strongly continuous, due to the presence of the squared-Z -norm in the objective. From
this the results of Proposition 3 demonstrate that jopt : [0,∞) → R is continuous
everywhere on (0,∞), right continuous at 0, and decreasing as ε increases. In fact,
jopt(ε) would decrease monotonically as ε increases.

4 The algorithm

4.1 Stochastic approximation

To approximate the value function jopt(ε), we introduce an online stochastic approx-
imation (SA) approach in which data is drawn anew each iteration to evaluate the
objective and constraint functions as well as their derivatives. Our algorithm is appli-
cable to any convex stochastic optimization problem with expectation constraints, and
hence is not specific to the PDE-constrained optimization application, although it does
apply to it. As such, we assume to have access to a first-order stochastic oracle (SO)
with the following properties. In the subsequent definition, we use the letter J to refer
to quantities related to the objective function and G for the expectation constraint.
Throughout this section, (·, ·) denotes the inner product on Z and ‖ · ‖ = √

(·, ·).
Definition 2 (Stochastic Oracle) Let (Ω,F , (Fk)k, P) be a filtered probability space.
Given a control z ∈ Zad and an iteration k, a stochastic oracle (SO) is a black-box
device whose output is a set of random elements Jk(z), J ′

k(z), Gk(z), and G ′
k(z), with

the following properties:

1. Jk(z), J ′
k(z), Gk(z), and G ′

k(z) are unbiased estimators of j(z), ∇ j(z), Φ(z) − ε,
and ∇Φ(z), respectively, in the sense that

E[Jk(z)|Fk] = j(z), E[Gk(z)|Fk] = Φ(z) − ε,

E[J ′
k(z)|Fk] = ∇ j(z), E[G ′

k(z)|Fk] = ∇Φ(z)
(4.1)

holds a.s.
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2. There exists D1 and D2 > 0 independent of z ∈ Zad and k ≥ 1:

∥

∥J ′
k(z)

∥

∥ ≤ D1 and
∥

∥G ′
k(z)

∥

∥ ≤ D2. (4.2)

3. There exists M > 0 independent of z ∈ Zad such that |Gk(z)| ≤ M .

We recall that Proposition 2 provides the required bounds on the objective function gra-
dient for our target PDE-constrained application. To derive the bound onGk , Lemma 2
and (3.20) ensure that

|F(θ(z, ξ)) − F(θ(z′, ξ))| ≤ ‖uξ (z) − uξ (z
′)‖H1

0 (D) ≤ 2Mst a.s. ∀ z, z′ ∈ Zad.

Taking z′ ∈ Zad such that θ(z′, ξ) ≤ 0, Lemma 1 indicates that F(θ(z′, ξ)) = 0 a.s.,
which yields

|F(θ(z, ξ))| ≤ 2Mst ∀z ∈ Zad a.s.

Hence, the single samples Jk(z) = J (z, ξk) and Gk(z) = F(θ(z, ξk)), where ξk is an
independent and identically distributed (i.i.d.) copy of ξ , produce a SOwhen endowed
with the filtration F0 = {∅,Ω} and Fk = σ({ξ1, . . . , ξk}). In the following example,
we see that these observations can be easily extended to (mini) batches of samples.

Example 2 A common example for an SO is to construct Monte-Carlo estimators of
the random data involved in the stochastic optimization problem. To obtain such an
SO, letm ≥ 1 be a given integer (the sample budget) and assume it is easy to simulate
m i.i.d. copies of the random element ξ . Let ξk = (ξ

(1)
k , . . . , ξ

(m)
k ) denote the sample

at iteration k and set

Jk(z) � 1

m

m
∑

t=1

J (z, ξ (t)
k ), J ′

k(z) � 1

m

m
∑

t=1

∇z J (z, ξ (t)
k ),

Gk(z) � 1

m

m
∑

t=1

F(θ(z, ξ (t)
k )), G ′

k(z) � 1

m

m
∑

t=1

∇z(F ◦ θ)(z, ξ (t)
k )

for all z ∈ Zad. It follows directly from the above discussion that this mechanism gives
rise to an admissible SO. Note that the generation of these estimators requires solving
a sequence of PDEs, one for each random variable ξ

(t)
k . Hence, the computational

complexity of this SO at each iteration k is m ×C , where C is an upper bound on the
cost of evaluating the objective function, the constraint, and their derivatives.

4.2 A penalty-based first-order algorithm

Our algorithmic strategy begins with the construction of a suitable penalty function
with adaptive weights. Given z ∈ Zad, consider the function

Lγ,k(z, w) � Jk(z) + w

γ
Gk(z) (4.3)
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Algorithm 1: Master Algorithm X
(z,w)
T

(α, γ )

1: Input: T ⊆ N iteration counter set, Initial condition (z, w) ∈ Zad × [0,∞) ;
Parameters α, γ ∈ (0,∞).

2: Output: Sequence {(zt ,wt ),minT ≤ t ≤ supT + 1}.
3: Set zminT = z and wminT = w;
4: for t = minT, . . . , supT do
5: Compute zt+1 = PZad (zt − γ

α L′
γ,t (z

t ,wt ));

6: Compute wt+1 = max{0,wt + Gt (zt ) +
(

G′
t (z

t ), zt+1 − zt
)

};
7: end for

wherew ≥ 0 is a penalty parameter (chosenby the algorithm),γ > 0 is a user-specified
parameter, and k ≥ 1 is an iteration counter. The ratio w/γ measures the importance
of the constraint violation over reducing the objective function value while executing
the optimization algorithm, and thus we can interpret (4.3) as a penalty formulation
of the original stochastic optimization problem. Querying the SO at the pair (z, w)

allows us to evaluate the function Lγ,k(z, w), as well as

L′
γ,k(z, w) = J ′

k(z) +
w

γ
G ′

k(z). (4.4)

Our numerical treatment of the stochastic optimization problem builds on succes-
sive restarts of a master algorithm, to be denoted X

(z,w)
T

(α, γ ), which is formally
described in Algorithm 1. This procedure takes as inputs an initial guess (z, w) ∈
Zad × [0,∞), an index set of iteration counters T ⊆ N ∪ {0,+∞}, as well as
the user-specified parameters α and γ , whose role will be explained below. To sim-
plify the presentation, we assume that the batch T is a set of adjacent integers, with
smallest element minT ∈ N ∪ {0} and largest element supT ∈ N ∪ {0,+∞}, i.e
T = {minT,minT + 1, . . . , supT}. If supT = ∞, we define supT + 1 � ∞. The
master process generates a sequence {(zt ,wt );minT ≤ t ≤ supT+1} via the updates

zt+1 = PZad (z
t − γ

α
L′

γ,t (z
t ,wt )),

wt+1 = max{0,wt + Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)

},

where PZad (z) � argminz′∈Zad
1
2

∥

∥z′ − z
∥

∥

2 is the orthogonal projection ontoZad. The
first updating equation is just a projected gradient descent step, using the sampled data
embodied in the random variableL′

γ,t (z
t ,wt ) as first-order feedback. The second step

updates the penalty parameter via a first-order approximation of the sampled constraint
function. If the local linearized model has a positive value, then the iterates are moving
away from the feasible set Zad. The algorithm reacts to this by increasing the weight
wt+1.

The master algorithm is the basic pillar in our restart-based optimization strat-
egy, culminating in Algorithm 2. This scheme takes as inputs a sequence of time
iteration counters T1, . . . , Ts (the “batches”), and a corresponding sequence of opti-
mization parameters (α j , γ j ), 1 ≤ j ≤ s, as well as suitably chosen initial conditions
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Algorithm 2: Epoch-dependent online SA (OSA)
1: Input: 1 ≤ ΔN ≤ N . Initial condition z0 ∈ Zad and w0 = 0;

Epoch-specific parameters {α j }sj=1 and {γ j }sj=1;

2: Set z10 = z0 and w1
0 = w0;

3: Set s ≡ � N
ΔN

�;
4: Construct batches T0, T1, . . . , Ts with T0 = {0}, and

T j = {1, . . . , ΔN } for 1 ≤ j < s,

Ts = {1, . . . , N − (s − 1)ΔN }.

5: for j = 1, . . . , s do

6: Set z1j = z
supT j−1+1
j−1 and w1

j = w
supT j−1+1
j−1 ;

7: Compute {(ztj ,wt
j ); 1 ≤ t ≤ supT j + 1} by calling master algorithm X

(z1j ,w
1
j )

T j
(α j , γ j );

8: end for
9: For k ∈ {1, . . . , N }, set zk = ztj and wk = wt

j for k − t = ( j − 1)ΔN , t ∈ T j ;

10: Report z̄N = 1
N
∑N

k=1 zk .

(z1j ,w
1
j ), 1 ≤ j ≤ s. In practical implementations, we choose the batches of nearly

equal size. Specifically, given the predefined total number of iterations N , we let the
user define another input parameter ΔN ∈ {1, . . . , N }, which defines the length of
batches. To be precise, s � � N

ΔN
� is the number of restarts (meaning the number

of calls of the master algorithm). We then set
∣

∣T j
∣

∣ = ΔN for 1 ≤ j < s, and
|Ts | = N − (s − 1)ΔN . In other words, all batches except the last one have the same
size ΔN .

Once the batches have been defined in this way, we construct a sequence

{(ztj ,wt
j ); 1 ≤ t ≤ supT j + 1}, by calling the master algorithm X

(z1j ,w
1
j )

T j
(α j , γ j ).

We warm-start each call to the master algorithm by setting

(

z1j ,w
1
j

)

=
(

z
supT j−1+1
j−1 ,w

supT j−1+1
j−1

)

for j = 1, . . . , s. By default, we set T0 = {0}, and provide inputs z1 = z10, w1 = w1
0

to the algorithm. In a final post-processing step, we concatenate these trajectories
to obtain a sequence {(zk, wk)}Nk=1, and its ergodic average z̄N � 1

N

∑N
k=1 zk . The

specific concatenation procedure is given by

zk = ztj and wk = wt
j for k = ( j − 1)ΔN + t, 1 ≤ j ≤ s, t ∈ T j . (4.5)

We describe this procedure in Algorithm 2.

Remark 5 Note that Algorithm 2 is still not an executable scheme since we have
not specified a strategy to choose the epoch-dependent parameters α j and γ j . In the
convergence analysis (Sect. 4.4), we will pin down a simple rule determining these
parameters.
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4.3 Preparatory estimates for themaster algorithm

Algorithm 2 is defined by s consecutive restarts of themaster, where s is a user-defined
parameter. Each restart differs only in the initial guess and the parameters (α j , γ j ). We
begin the analysis of the complexity of Algorithm 2 by analysing the master algorithm
X

(z,w)
T

(α, γ ) for given inputs (T, (z, w), α, γ ). Since the restarts differ only in these
input parameters, all estimates derived in this section are valid when applied to the
analysis of Algorithm 2.

Let A0 � {∅,Ω} and At � σ(zτ ; τ ≤ t) be the natural filtration associated with
the process defining X

(z,w)
T

(α, γ ). We proceed with our analysis in several steps.
By definition,

1

2
(wt+1)2 ≤ 1

2

[

wt + Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]2

= 1

2
(wt )2 + wt

[

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]

+ 1

2

[

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]2

.

Using the triangle inequality, it follows that

∣

∣

∣Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)∣

∣

∣ ≤ ∣

∣Gt (zt )
∣

∣+
∣

∣

∣

(

G ′
t (z

t ), zt+1 − zt
)∣

∣

∣

≤ M + |sk | ≤ M + D2R,

where R denotes the diameter of the feasible set Zad. This in turn yields

1

2
(wt+1)2 ≤ 1

2
(wt )2 + wt

[

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]

+ 1

2
(M + D2R)2.

(4.6)

Lemma 3 Consider the master algorithm X
(z,w)
T

(α, γ ) with pseudo-code given in
Algorithm 1. Then, for all minT ≤ t1 ≤ t2 ≤ supT, we have

t2
∑

t=t1

Gt (zt ) ≤ wt2+1 − wt1 + D2

t2
∑

t=t1

∥

∥

∥zt+1 − zt
∥

∥

∥ .

Proof For all t , it holds true that

wt+1 = max
{

0,wt + Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)}

≥ wt + Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)

≥ wt + Gt (zt ) −
∥

∥G ′
t (z

t )
∥

∥

∥

∥

∥zt+1 − zt
∥

∥

∥
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≥ wt + Gt (zt ) − D2

∥

∥

∥zt+1 − zt
∥

∥

∥ .

Rearranging, this yields

Gt (zt ) ≤ wt+1 − wt + D2

∥

∥

∥zt+1 − zt
∥

∥

∥ .

Summing over t = t1, . . . , t2 verifies the claim. ��
In the following we need the Pythagorean identity

2〈w − v, u − v〉 = ‖w − v‖2 − ‖w − u‖2 + ‖u − v‖2 . (4.7)

Recall that our primal update zt is a forward step involving the gradient estimator
(4.4). The optimality condition for the update zt+1 therefore reads as

(

zt+1 − zt + γ

α
L′

γ,t (z
t ,wt ), z − zt+1

)

≥ 0 ∀ z ∈ Zad.

This implies

(

γ J ′
t (z

t ), z − zt+1
)

+ wt
(

G ′
t (z

t ), z − zt+1
)

≥ α
(

zt − zt+1, z − zt+1
)

∀ z ∈ Zad.
(4.8)

Convexity and (4.7) gives then the a.s. inequality

Lγ,t (z,wt ) ≥Lγ,t (zt ,wt ) +
(

L′
γ,t (z

t ,wt ), zt+1 − zt
)

+ α

γ

(

1

2

∥

∥

∥zt+1 − z
∥

∥

∥

2 − 1

2

∥

∥zt − z
∥

∥

2 + 1

2

∥

∥

∥zt+1 − zt
∥

∥

∥

2
)

for all z ∈ Zad. Splitting up terms, this reads explicitly as

γ Jt (z) + wtGt (z) + α

2

(

∥

∥zt − z
∥

∥

2 −
∥

∥

∥zt+1 − z
∥

∥

∥

2
)

≥ γ Jt (zt ) +
(

γ J ′
t (z

t ), zt+1 − zt
)

+ α

2

∥

∥

∥zt+1 − zt
∥

∥

∥

2

+ wt
(

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
))

(4.9)

for all z ∈ Zad.

Lemma 4 Consider the master algorithm X
(z,w)
T

(α, γ ) with pseudo-code given in
Algorithm 1. For all t ∈ T, we have

∥

∥

∥zt+1 − zt
∥

∥

∥ ≤ γ

α
D1 + wt

α
D2. (4.10)
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Proof By choosing z = zt ∈ Zad in (4.8), we readily obtain

α

∥

∥

∥zt+1 − zt
∥

∥

∥

2 ≤ γ
(

J ′
t (z

t ), zt − zt+1
)

+ wt
(

G ′
t (z

t ), zt − zt+1
)

(4.2)≤ (

γ D1 + wt D2
)

∥

∥

∥zt+1 − zt
∥

∥

∥

and rearranging yields (4.10). ��
For the following lemma, we recall that At = σ({zτ ; τ ≤ t}) encapsulates the infor-
mation generated by the stochastic process up to iteration t .

Lemma 5 Let ẑ ∈ Zad be such that Φ(ẑ) = 0. Then, for all t ∈ T,

E[wtGt (ẑ)|At ] = −εE(wt |At ). (4.11)

Proof Via the Tower property of conditional expectations and (4.1), we immediately
deduce that

E[wtGt (ẑ)|At ] = E[E(wtGt (ẑ)|At−1)|At ]
= E[wt

E(Gt (ẑ)|At−1)|At ]
= E[wt (Φ(ẑ) − ε)|At ]
= −εE[wt |At ].

��
Lemma 6 For all t ∈ T, we have

wt − D2R ≤ wt+1 ≤ wt + M (4.12)

Proof We start with establishing the upper bound. From convexity, we get

Gt (zt ) +
(

G ′
t (z

t ), z − zt
) ≤ Gt (z). (4.13)

Hence, by definition of the updating we have

(wt+1)2 ≤
(

wt + Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
))2 ≤

(

wt + Gt (zt+1)
)2

.

Hence, by the triangle inequality, and part 3 of Definition 2, we conclude

∣

∣

∣wt+1
∣

∣

∣ ≤
∣

∣

∣wt + Gt (zt+1)

∣

∣

∣ ≤ ∣

∣wt
∣

∣+
∣

∣

∣Gt (zt+1)

∣

∣

∣

≤ wt + M .

For the lower bound, we use part 2 of Definition 2 to observe that

∣

∣

∣wt+1 − wt
∣

∣

∣ ≤
∣

∣

∣Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)∣

∣

∣
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≤ ∣

∣Gt (zt )
∣

∣+ ∥∥G ′
t (z

t )
∥

∥ ·
∥

∥

∥zt+1 − zt
∥

∥

∥

(4.2)≤ M + D2R.

��

We remark that Lemma 6 implies that for all t1, t2 ∈ T,

wt1+t2 ≥ wt1 − t2(M + D2R), (4.14)

Set Lt � 1
2 [(wt+1)2 − (wt )2].

Lemma 7 For all t ∈ T,

Lt ≤ wt
[

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]

+ 1

2
(M + D2R)2. (4.15)

Proof This is (4.6). ��

The next result is fundamental to our approach. It gives a drift lemma for the penalty
process {wt }t∈T, in the spirit of [37]. This result will be instrumental to prove an
L1(Ω,A, P) bound on the penalty process. The next Lemma shows that the penalty
process {wt }t satisfies the conditions in [37, L. 5].
Lemma 8 LetT = N and consider the master algorithmX

(z,w)
T

(α, γ ). Let ε < 2(M+
D2R) and n an arbitrary integer. Then, for each t ∈ N, we have

∣

∣

∣wt+1 − wt
∣

∣

∣ ≤ M + D2R and (4.16)

E[wt+n − wt |At−1] ≤
{ − ε

2n if wt ≥ δ(ε, n)

n(M + D2R) if wt < δ(ε, n),
(4.17)

where

δ(ε, n) � εn

2
+ α

nε
R2 + 2

ε

[

γ D1R + 1

2
(M + D2R)2

]

+ n(M + D2R).

(4.18)

Proof Condition (4.16) is just a restatement of Lemma 6. To verify (4.17), recall that
Lt = 1

2 (w
t+1)2 − 1

2 (w
t )2. Condition (4.8) is equivalent to

γ
(

J ′
t (z

t ), zt+1 − zt
)

+ wt
(

G ′
t (z

t ), zt+1 − zt
)

+ α

2

∥

∥

∥zt+1 − zt
∥

∥

∥

2

≤ γ
(

J ′
t (z

t ), z − zt
)+ wt (G ′

t (z
t ), z − zt

)+ α

2

∥

∥zt − z
∥

∥

2 − α

2

∥

∥

∥zt+1 − z
∥

∥

∥

2
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for all z ∈ Zad. Adding wtGt (zt ) to both sides and using (4.13), it follows that

wt
[

Gt (zt ) +
(

G ′
t (z

t ), zt+1 − zt
)]

≤ γ
(

J ′
t (z

t ), z − zt+1
)

+ wtGt (z)

+ α

2

(

∥

∥z − zt
∥

∥

2 −
∥

∥

∥z − zt+1
∥

∥

∥

2 −
∥

∥

∥zt+1 − zt
∥

∥

∥

2
)

≤ γ
∥

∥J ′
t (z

t )
∥

∥ ·
∥

∥

∥z − zt+1
∥

∥

∥+ wtGt (z) + α

2

(

∥

∥z − zt
∥

∥

2 −
∥

∥

∥z − zt+1
∥

∥

∥

2
)

(4.2)≤ γ D1R + wtGt (z) + α

2

(

∥

∥z − zt
∥

∥

2 −
∥

∥

∥z − zt+1
∥

∥

∥

2
)

.

(4.19)

By (4.15) and (4.19), we readily obtain

Lt ≤ γ D1R + wtGt (ẑ) + α

2

(

∥

∥ẑ − zt
∥

∥

2 −
∥

∥

∥ẑ − zt+1
∥

∥

∥

2
)

+ 1

2
(M + D2R)2.

for all t ≥ 0 and ẑ ∈ Zad. Therefore, for all t ≥ 1 and n ≥ 1 we get

1

2
(wt+n)2 − 1

2
(wt )2 =

t+n−1
∑

τ=t

Lτ

≤ n

[

γ D1R + 1

2
(M + D2R)2

]

+ α

2
R2 +

t+n−1
∑

τ=t

wτGτ (ẑ).

Whence,

(wt+n)2 ≤ (wt )2 + 2n

[

γ D1R + 1

2
(M + D2R)2

]

+ αR2 + 2
t+n−1
∑

τ=t

wτGτ (ẑ).

Let us pick a point ẑ ∈ Zad for which E[Gt (ẑ)|At ] = −ε, i.e. a feasible control
satisfying Φ(ẑ) = 0. Lemma 5 and the law of iterated expectations shows that for
τ ≥ t , we have

E
(

wτGτ (ẑ)|At−1
) = E

[

E(wtGτ (ẑ)|Aτ )|At−1
] = −εE

[

E(wτ |Aτ )|At−1
]

= −εE[wτ |At−1].

Then, taking At−1-conditional expectations on both sides gives

E[(wt+n)2|At−1]

≤ (wt )2 + 2n
[

γ D1R + 1
2 (M + D2R)2

]

+ αR2 − 2ε
t+n−1
∑

τ=t

E[wτ |At−1]
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≤ (wt )2 + 2n
[

γ D1R + 1
2 (M + D2R)2

]

+ αR2 − 2ε
n−1
∑

j=1

E[wt+ j |At−1]

(4.14)≤ (wt )2 + 2n
[

γ D1R + 1
2 (M + D2R)2

]

+ αR2 − 2ε
n−1
∑

j=0

(

wt − j(M + D2R)
)

≤ (wt )2 + 2n
[

γ D1R + 1
2 (M + D2R)2

]

+ αR2 − 2εnwt + εn2(M + D2R)

= (wt )2 − εnwt + n
[

2
(

γ D1R + 1
2 (M + D2R)2)

)

+ εn(M + D2R) − εwt + α
n R

2
]

,

where we have used
∑n−1

j=1 j = n(n−1)
2 ≤ n2

2 in the fourth inequality. From this we
deduce that if wt ≥ δ(ε, n), then

E[(wt+n)2|At−1] ≤ (wt )2 − εnwt − ε2n2

2
≤ (wt − ε

2
n)2.

This, finally, leads to the bound

E[wt+n|At−1] ≤
√

E[(wt+n)2|At−1] ≤ wt − ε

2
n

provided that wt ≥ δ(ε, n). Conversely, if wt < δ(ε, n), then we can use (4.16) to
obtain wt+n − wt ≤ n(M + D2R). ��
Corollary 1 Under the same assumptions as in Lemma 8, we have for all t ≥ 0,

E[wt ] ≤ δ(ε, n) + 8n(M + D2R)2

ε
log

(

1+ 32(M + D2R)2

ε2
e

ε
8(M+D2R)

)

.

Proof This follows from Lemma 8 and Part 1) of [37, L. 5]. ��
We remark that the constant

C � 8(M + D2R)2

ε
log

(

1+ 32(M + D2R)2

ε2
e

ε
8(M+D2R)

)

(4.20)

is in fact an absolute constant, independent of algorithmparameters.We further remark,
that if we choose n = �√Δ�, α = �Δ� and γ = √

Δ for some Δ > 0, then

E[wt ] ≤ δ(ε, �√Δ�) + �√Δ�C = O(
√

Δ). (4.21)

Corollary 2 Suppose supT < ∞. Then, for any minT ≤ t1 < t2 ≤ supT, we have

t2
∑

t=t1

Gt (zt ) ≤ wt2+1 + D1D2(t2 − t1 + 1)
γ

α
+ D2

2

α

t2
∑

t=t1

wt . (4.22)
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In particular, ifminT = t0+1, supT = t0+Δ for someΔ ∈ N, andα = Δ, γ = √
Δ,

then

E

[

∑

t∈T
Gt (zt )

]

≤ O(
√

Δ) (4.23)

Proof Combining Lemma 3 with (4.10) yields immediately (4.22). Now, using Corol-
lary 1, together with (4.21), it follows that

E

⎡

⎣

t0+Δ
∑

t=t0+1

Gt (zt )

⎤

⎦ ≤ O(
√

Δ) + D1D2
√

Δ + D2
2

Δ
O(Δ

√
Δ) = O(

√
Δ).

��

4.4 Main convergence argument

In this section, we give detailed proofs on the convergence properties of Algorithm 2.
Recall, that we construct the sequences {(zk, wk)}Nk=1 by concatenating the trajectories
produced by the master algorithm on the batches T1, . . . , Ts , as described in (4.5).
We let F0 � {∅,Ω} and Fk � σ(z1, . . . , zk), denote the natural filtration induced by
the so-constructed process. To emphasize that the batches are computed using i.i.d.
information, we let G j,t (z) and J j,t (z) represent the random estimators reported by
the SO in epoch j ∈ {1, . . . , s} and inner iteration t ∈ T j at position z ∈ Zad,
and let {(ztj ,wt

j ), 1 ≤ t ≤ supT j + 1} denote the subsequence computed by the

master algorithm X
(z1j ,w

1
j )

T j
(α j , γ j ) in the j-th restart. The filtration used to measure

the concatenated process {(zk, wk)}Nk=1 is intrinsically related to the filtration induced

by the master process {A j,t }supT j
t=0 . Specifically, if k = ( j−1)ΔN + t for some t ∈ T j ,

we have Fk = σ
(

⋃ j−1
i=1 {Ai,t }supTi

t=0 ∪A j,1 ∪ · · · ∪A j,t

)

.

Our first result is a bound on the expected constraint violation in terms of the ergodic
average.

Proposition 4 Consider Algorithm 2 with epochs j ∈ {1, . . . , s} and epoch-specific
step sizes γ j = √

ΔN and α j = ΔN , where ΔN �  Na! for some a ∈ (0, 1]. Then,

E[Φ(z̄N )] ≤ O(N−a/2)(1+O(Na−1)) + ε, (4.24)

where ε > 0 is the a-priori fixed relaxation parameter.

Proof Corollary 2 gives for each j = 1, 2, . . . , s − 1,

jΔN
∑

k=( j−1)ΔN+1

Gk(zk) =
ΔN
∑

t=1

G j,t (ztj )
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≤ wΔN+1
j − w1

j +
γ j

α j
ΔN D1D2 + D2

2

α j

ΔN
∑

t=1

wt
j

= w1
j+1 − w1

j +
γ j

α j
ΔN D1D2 + D2

2

α j

ΔN
∑

t=1

wt
j ,

where the last equality uses the definition w1
j+1 = wΔN+1

j . Furthermore, for j = s,
Corollary 2 yields

N
∑

k=(s−1)ΔN+1

Gk(zk) =
N−(s−1)ΔN
∑

t=1

Gs,t (zts)

≤ wN−(s−1)ΔN+1
s − w1

s + γs

αs
ΔN D1D2 + D2

2

α j

N−(s−1)ΔN
∑

t=1

wt
j ,

Therefore,

N
∑

k=1

Gk(zk) =
s−1
∑

j=1

jΔN
∑

k=( j−1)ΔN+1

Gk(zk) +
N
∑

k=(s−1)ΔN+1

Gk(zk)

=
s−1
∑

j=1

ΔN
∑

t=1

G j,t (z
t
j ) +

N−(s−1)ΔN
∑

t=1

Gs,t (zts)

≤ ΔN D1D2

s
∑

j=1

γ j

α j
+

s
∑

j=1

D2
2

α j

∑

t∈T j

wt
j

+ (w1
2 − w1

1) + (w1
3 − w1

2) + . . . + (w1
s − w1

s−1) + (wN−(s−1)ΔN+1
s − w1

s )

≤ wN−(s−1)ΔN+1
s + ΔN D1D2

s
∑

j=1

γ j

α j
+

s
∑

j=1

D2
2

α j

∑

t∈T j

wt
j .

Corollary 1 implies

E

[

wN+1−(s−1)ΔN
s

]

≤ δ(ε, n) + 8n(M + D2R)2

ε
log

(

1+ 32(M + D2R)2

ε2
e

ε
8(M+D2R)

)

and

E

[

wt
j

]

≤ δ(ε, n) + 8n(M + D2R)2

ε
log

(

1+ 32(M + D2R)2

ε2
e

ε
8(M+D2R)

)

,

where n and ε are to be chosen. In particular, setting n = �√ΔN �, it follows from
(4.21) that E[wN+1−(s−1)ΔN

s ] ≤ O(
√

ΔN ), and E[wt
j ] ≤ O(

√
ΔN ). Thus, taking
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expectations on both sides of the penultimate display, and using the specification
γ j = √

ΔN , α j = ΔN for all j ∈ {1, 2, . . . , s}, as well as s = �N/ΔN �, we arrive at
following full sequence counterpart to (4.23):

E

[

N
∑

k=1

Gk(zk)

]

≤ O(
√

ΔN ) + D1D2s
√

ΔN + D2
2O(s

√

ΔN )

= O(s
√

ΔN ) (1+O(ΔN/N )) .

By choosing ΔN =  Na! for a ∈ (0, 1], it followsO(s
√

ΔN ) = O(N 1−a/2). Hence,

E

[

N
∑

k=1

Gk(zk)

]

≤ O(N 1−a/2)(1+O(Na−1))

The law of iterated expectations and Jensen’s inequality implies

1

N
E

[

N
∑

k=1

Gk(zk)

]

= 1

N
E

[

N
∑

k=1

(Φ(zk) − ε)

]

≥ E[Φ(z̄N )] − ε,

where we have used the convexity of the penalty function Φ, established in Proposi-
tion 1. Whence, we arrive at the expected constrained violation bound

E[Φ(z̄N )] ≤ O(N−a/2)(1+O(Na−1)) + ε. (4.25)

��
Remark 6 If we choose a = 1, then no restart effectively takes place and we recover
the standardO(N−1/2) constraint violation bound from [37]. Restart leads to slightly
worse constraint violation bounds, but comes with the decisive advantage that it
allows us to choose larger, epoch-dependent, step sizes. This has potentially signifi-
cant impacts on the practical performance of the algorithm, as we will demonstrate in
Sect. 5.

We conclude the analysis of Algorithm 2 by proving a convergence rate in terms of
objective function values. Following the notation of Proposition 3, we fix ε > 0 and
denote any corresponding solution to (Pε) by z�ε.

Theorem 1 Consider Algorithm 2 with epochs j ∈ {1, . . . , s} and epoch-specific step
sizes γ j = √

ΔN and α j = ΔN . If ΔN =  Na! for a ∈ (0, 1], then

E[ j(z̄N ) − j(z�ε)] ≤ O(N−a/2). (4.26)

Proof Let j ∈ {1, . . . , s} and t ∈ T j be arbitrary. Choosing z = z�ε in (4.9), it follows
that

γ j

[

J j,t (ztj ) − J j,t (z
�
ε)
]

≤ wt
j G j,t (z

�
ε) − γ j

(

J ′
j,t (z

t
j ), z

t+1
j − ztj

)
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+ α j

2

(

∥

∥

∥ztj − z�ε

∥

∥

∥

2 −
∥

∥

∥zt+1
j − z�ε

∥

∥

∥

2 −
∥

∥

∥zt+1
j − ztj

∥

∥

∥

2
)

− wt
j

[

G j,t (ztj ) +
(

G ′
j,t (z

t
j ), z

t+1
j − ztj

)]

Using (4.15) with L j,t � 1
2 (w

t+1
j )2 − 1

2 (w
t
j )
2, we arrive at

γ j

[

J j,t (ztj ) − J j,t (z
�
ε)
]

≤ wt
j G j,t (z

�
ε) − γ j

(

J ′
j,t (z

t
j ), z

t+1
j − ztj

)

− L j,t

+ α j

2

(

∥

∥

∥ztj − z�ε

∥

∥

∥

2 −
∥

∥

∥zt+1
j − z�ε

∥

∥

∥

2 −
∥

∥

∥zt+1
j − ztj

∥

∥

∥

2
)

+ 1

2
(M + D2R)2.

Next, by Cauchy–Schwarz and the definition of the SO, we observe

−
(

J ′j,t (ztj ), z
t+1
j − ztj

)

− α j

2γ j

∥

∥

∥zt+1
j − ztj

∥

∥

∥

2 ≤ D1

∥

∥

∥zt+1
j − ztj

∥

∥

∥− α j

2γ j

∥

∥

∥zt+1
j − ztj

∥

∥

∥

2

= γ j D
2
1

2α j
− α j

2γ j

(

∥

∥

∥zt+1
j − ztj

∥

∥

∥− D1γ j

α j

)2

≤ γ j D
2
1

2α j
.

When combined with the previous display, this yields

γ j

[

J j,t (ztj ) − J j,t (z
�
ε)
]

≤ wt
j G j,t (z

�
ε) − L j,t +

γ 2
j D

2
1

2α j

+ α j

2

(

∥

∥

∥ztj − z�ε

∥

∥

∥

2 −
∥

∥

∥zt+1
j − z�ε

∥

∥

∥

2
)

+ 1

2
(M + D2R)2.

Aggregating these estimates for t ∈ T j gives

∑

t∈T j

γ j

[

J j,t (ztj ) − J j,t (z
�
ε)
]

≤
∑

t∈T j

wt
j G j,t (z

�
ε) +

1

2
(w1

j )
2 − 1

2
(w

supT j+1
j )2

+ ΔN
γ 2
j D

2
1

2α j
+ α j

2

(

∥

∥

∥z1j − z�ε

∥

∥

∥

2 −
∥

∥

∥z
supT j+1
j − z�ε

∥

∥

∥

2
)

+ ΔN

2
(M + D2R)2.
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Next, we sum over all epochs j ∈ {1, . . . , s} and set γ j = √
ΔN , α j = ΔN . Using

the warm start condition w
supT j+1
j = w1

j+1 for j ∈ {1, . . . , s − 1}, we obtain
N
∑

k=1

[

Jk(zk) − Jk(z
�
ε)
] =

s
∑

j=1

∑

t∈T j

[

J j,t (z
t
j ) − J j,t (z

�
ε)
]

≤ 1√
ΔN

N
∑

k=1

wkGk(z
�
ε) +

1

2
√

ΔN
(w1

1)
2 − 1

2
√

ΔN
(wsupTs+1

s )2

+ s
√

ΔN

2
(M + D2R)2 + D2

1s
√

ΔN

2
+ R2√ΔN

2
.

By definition, Φ(z�ε) ≤ ε, so that E[Gk(z∗ε )] ≤ 0. Via the law of iterated expectations,
this implies

E[wkGk(z
∗
ε )] = E

[

E[wkGk(z
�
ε)|Fk]

] = E
[

wkE[Gk(z
�
ε)|Fk]

]

= E
[

wk(Φ(z�ε) − ε)
] ≤ 0.

Using this, and the fact that w1
1 = w1 = 0, we can take expectations on both sides of

the penultimate display, and finally arrive at

E

[

N
∑

k=1

(

Jk(zk) − Jk(z
�
ε)
)

]

≤ s
√

ΔN

2
(M + D2R)2 + D2

1s
√

ΔN

2
+ R2√ΔN

2
.

(4.27)

This readily implies

E[ j(z̄N ) − j(z�ε)] ≤
s
√

ΔN

2N
(M + D2R)2 + D2

1s
√

ΔN

2N
+ R2√ΔN

2N
.

Since s = � N
ΔN

�, it follows s
√

ΔN
N = O(1/

√
ΔN ). Hence, for ΔN =  Na! for

a ∈ (0, 1], we get the bound

E[ j(z̄N ) − j(z�ε)] ≤
s
√

ΔN

2N

[

(M + D2R)2 + D2
1 + R2

s

]

≤ O(N−a/2).

��
Remark 7 Stochastic approximation algorithms often allow mean convergence state-
ments for the (ergodic) trajectory in the presence of strong convexity. However, due to
the fact that our problem formulation includes a stochastic approximation of the func-
tional bound constraint, it is rather difficult, if not impossible, to extend the standard
arguments. If it could be guaranteed that Φ(z�ε) < ε, then a convergence rate for the
trajectory can be readily derived using the fact that j is smooth and strongly convex.
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5 Implementation and numerical experiments

In this section we test the OSA Algorithm 2 on a strongly convex problem arising
from the optimal control of a linear elliptic PDE with uncertain coefficients. Our test
problem is motivated by the example in [21] and has the form

min
z∈L2(D)

α

2
E

[∫

D
([uξ (z)](x) − w(x))2 dx

]

+ 1

2

∫

D
z(x)2 dx (5.1a)

subject to − 10 ≤ z ≤ 10 a.e., uξ (z) ≥ ψ a.e./a.s., (5.1b)

where u = uξ (z) ∈ H1(D) is a weak solution to

−∇ · (κ(x, ξ)∇u(x)) + v(x, ξ) · ∇u(x) = f (x, ξ) + z(x) for x ∈ D (5.1c)

κ(x, ξ)∇u(x) · n = 0 for x ∈ Γn (5.1d)

u(x) = 0 for x ∈ Γd (5.1e)

Here, D � (0, 1)2, α = 104, w(x) � (x − 0.5)"(x − 0.5),

ψ(x) �
{ 1

4 if ‖x − ( 12 ,
1
2 )

"‖2 ≤ 1
4

0 otherwise
,

Γd � {0} × (0, 1), Γn � ∂D\Γd ,

κ(x, ξ) � 0.5+ c exp(β(x, ξ)), v(x, ξ) =
(

b(ξ) − a(ξ)x1
a(ξ)x2

)

,

and f is the sum of five Gaussian sources whose locations, widths and magnitudes
are random. The explicit form for β is described in [21, Sect. 4] (where it is denoted
by δ). The random inputs ξ are uniformly distributed on [−1, 1]37. For our results, we
replace the state constraint in (5.1a) with the smooth penalty constraint as in (Pε) with
ϕ as in Example 1. We chose the state constraint penalty parameters to be ε = 10−2

and δ = 10−2.
Since an exact solution is unknown, we solved the problem using sample-average

approximation (SAA) for the expectations. We employ the augmented Lagrangian
(AL) algorithm described in [7] to solve the resulting deterministic problem. At each
AL iteration, we solve the bound-constrained subproblem using the projected trust-
region Newton method described in [24]. Our implementation of this algorithm is
available in the Rapid Optimization Library [31]. Since the AL algorithm uses second-
order information for the subproblem solves, it is reasonable to assume that it makes
more progress each iteration than the OSA algorithm, with more computational effort.
We treat the resulting solution as the “true” solution and empirically study the perfor-
mance of the OSA algorithm. In contrast to the OSA algorithm, for which we have
a full convergence proof in Hilbert space, the SAA approach would require, amongst
other things, a (statistical) consistency result to be fully justified. For this we would
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Fig. 2 Objective function empirical distribution using 104 samples for the SAA optimal control (black)
and the OSA controls computed with 103 (red), 104 (blue), and 105 (green) iterations for epoch lenghts
ΔN = N (left) and ΔN = 500 (right) (Color figure online)

need to investigate the asymptotic behavior of the random set-valued mappings

Υε(PN ) := {

z ∈ Zad
∣

∣EPN [F(θ(z, ξ))] ≤ ε
}

,

which goes beyond the scope of this paper.
Wediscretized (5.1c) using continuous piecewise linear finite elements on a uniform

64 × 64 quadrilateral mesh. To obtain our reference solution, we applied the afore-
mentioned SAA approach with 103 samples. We stopped AL when the optimality and
feasibility criteria were smaller than 10−8, which required 7 iterations (12 subproblem
iterations). The final values for the optimality and feasibility criteria were 5.33×10−9

and 2.84 × 10−11, respectively. For reference, AL required 20 function and gradient
evaluations as well as 145 applications of the Hessian to a vector, resulting in a total
of 495,000 deterministic PDE solves. Since Algorithm 2 requires 3 deterministic PDE
solves per iteration, the cost of AL is comparable to running Algorithm 2 with N =
165,000. We also solved (5.1a) using Algorithm 2 with N ∈ {103, 104, 105} iterations
and epoch lengths ΔN = N and ΔN = 500. We ran each of these cases five times.
This provided us with five controls per configuration of N and ΔN for comparison in
the statistical tests detailed below.

Figure 2 depicts the empirical distribution of the objective function for each of
these runs using 104 samples, which were chosen to be different than the samples used
for SAA and Algorithm 2. The five runs with 103 (red), 104 (blue) and 105 (green)
iterations produced similar distributions for their respective settings. Therefore, for a
given value N , there is significant overlap of the distributions; Fig. 2. Although the
SAA solution (black) generally produced smaller objective function values, the OSA
distributions appear to be converging to that of the SAA solution. This is especially
apparent for N = 105 and ΔN = 500.

Section 4.4 provides themean convergence statements for feasibility (Proposition 4)
and the optimal values (Theorem 1). However, since we generate our solutions via
simulations, i.e., sample paths of a rather complicated stochastic process, we believe
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it is also of interest to conduct a further statistical test to judge the reliability of a single
reported solution. This kind of post-optimality test is rarely included in the literature.
Our goal is to compare the quality of solutions via hypothesis testing of the empirical
distribution functions for the objective J and penalty function F out of sample.

We performed a two-sample Kolmogorov-Smirnov (KS) test using the empirical
distributions (cdfs) generated by m = 104 samples of the objective and penalty func-
tions for two computed controls z1 and z2 either from SAA or from OSA with fixed
N . The KS statistics are defined by

DJ (z1, z2) := sup
t∈R

|̂FJ (z1,ξ)(t) − ̂FJ (z2,ξ)(t)|

DF (z1, z2) := sup
t∈R

|̂FF(θ(z2,ξ))(t) − ̂FF(θ(z1,ξ))(t)|,

where ̂FJ (z,ξ)(·) is the empirical cdf for the objective and ̂FF(θ(z,ξ))(·) is the empirical
cdf for the penalty. We recall that the KS test is nonparametric and makes no assump-
tions about the form of the true distributions. It merely reports themaximumdifference
between the two cdfs. The null hypothesis for the KS test is that the random variables
J (z1, ξ) and J (z2, ξ) are sampled from populations with identical distributions. Typ-
ically the null hypothesis will be rejected if the KS statistic is larger than a certain
critical threshold, which depends on the number of the samples used to generate the
empirical cdfs.

For our problem set up, the null hypothesis is rejected at level α if

DJ (z1, z2) >

√−0.5 ln( α
2 )√

N

and similarly for DF (z1, z2). Typical values for α range from 0.2 to 0.001, but there
are technically no restrictions.

We list the computed KS statistics in Table 1. The upper triangle of each table
corresponds to the objective function and the lower triangle corresponds to the penalty.
The first column compares the penalty distribution for the SAA control and the OSA
controls computed using 103, 104, and 105 iterations. Similarly, the first row compares
the objective distribution for the SAA control and the OSA controls. The (i, j)-entry
for j > i lists theKS statistic for the objective functions computed using the i th and j th
controls. The (i, j)-entry for j < i lists the KS statistic for the corresponding penalty
functions. As Fig. 2 already suggests, the OSA and SAA solutions generate random
variables that generally appear to be from different distributions. This observation is
confirmed by the KS test. A simple computation shows that the null hypothesis is
rejected for the objective function in all cases with the largest α being α ≈ 10−20

(i.e., N = 105 and ΔN = 500). However, the OSA objective function distributions
do appear to converge to the SAA distribution as N increases (cf., Fig. 2). In contrast,
the null hypothesis is accepted for the objective function distributions for the different
OSA controls z�N ,i for i = 1, . . . , 5 for any α below a minimum level of α = 0.17,
which provides confidence that the OSA controls, computed using the same N and
ΔN , generate objective function values that are drawn from the same distribution.
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6 Conclusion and outlook

PDE-constrained optimization is an important class of infinite-dimensional optimiza-
tion problems. Motivated by applications in engineering and physics, we considered
a class of convex stochastic optimization problems in which the solution of the PDE
needs to satisfy a pointwise constraint in an a.s. sense. We proposed a penalty-
based relaxation approach that transforms this challenging problem into a numerically
tractable form. We then developed a tailor-made online stochastic approximation
scheme to effectively solve the resulting convex optimization problem.

We provide a full convergence analysis in infinite-dimensional Hilbert space.
Assuming that we employ a conforming spatial discretization, there is sufficient sta-
bility near the fully continuous solution, and the numerical bias can be controlled as
a function of N , then the convergence statements should carry over to discretization
refinements of the fully discrete problem. A deeper analysis of this, as in [13, 27], will
be the subject of future research.
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