arXiv:2110.11151v3 [math.OC] 7 Feb 2023

An Accelerated Inexact Dampened Augmented Lagrangian Method
for Linearly-Constrained Nonconvex Composite Optimization
Problems*

Weiwei Kongfand Renato D.C. Monteiro*

February 6, 2023 (v1: October 23, 2021; v2: August 12, 2022)

Abstract

This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian
(AIDAL) method for solving linearly-constrained nonconvex composite optimization problems.
Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal
augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG)
subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; and (iii)
using a novel test to check whether the penalty parameter of the AL function should be increased.
Under several mild assumptions involving the dampening factor and the under-relaxation con-
stant, it is shown that the AIDAL method generates an approximate stationary point of the
constrained problem in (’)(5’5/ 2loge™1) iterations of the ACG subroutine, for a given toler-
ance € > 0. Numerical experiments are also given to show the computational efficiency of the
proposed method.

1 Introduction

This paper presents an accelerated inexact dampened augmented Lagrangian (AIDAL) method for
finding approximate stationary points of the linearly constrained nonconvex composite optimization
(NCO) problem

min {¢(u) := f(=) + h(z) : Az = b}, 1)

where A is a linear operator, h is a proper closed convex and Lipschitz continuous function with
compact domain, and f is a (possibly) nonconvex differentiable function on the domain of h with a
Lipschitz continuous gradient. More specifically, the AIDAL method is based on the #-dampened
augmented Lagrangian (AL) function

£2z:p) = 9(2) + (1= 0) (p, Az = b) + S|l Az — B} We>0, WO e (0,1), 2)

*The first author has been supported by (i) the US Department of Energy (DOE) and UT-Battelle, LLC, under
contract DE-AC05-000R22725, (ii) the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration, and (iii) the IDEaS-TRIAD
Fellowship (NSF Grant CCF-1740776). The second author was partially supported by ONR Grant N00014-18-1-2077
and AFOSR Grant FA9550-22-1-0088.

fComputer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830.
wwkong92@gmail.com

¥School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205.
monteiro@isye.gatech.edu

http://arxiv.org/abs/2110.11151v3
mailto:wwkong92@gmail.com
mailto:monteiro@isye.gatech.edu

and it performs the following updates to generate its k*" iterate: given (zk—1,Pk—1) and (A, cg),
compute

. 1
o argunin {AL2, (s o) + 3 — 2112} 3)
pe = (1 —0)pr—1 + xcr(Azp —b), (4)

where y is an under-relaxation parameter in (0, 1) and zj is a suitably chosen approximate solution
of the composite problem underlying (3). In addition, the AIDAL method introduces a novel ap-
proach for updating the penalty parameter c; between iterations and uses an accelerated composite
gradient (ACG) method applied to (3) obtain the aforementioned point zj.

Under a suitable choice of A and the following Slater-like assumption:

3z € int(dom h) such that Az = b, (5)

where int(dom h) denotes the interior of the domain of h, it is shown that, for any tolerance pair
(p.n) € R%_, the AIDAL method obtains a triple (2, p,9) satisfying

b e V[f(2)+0nz)+ A", ol <p, [A2-0] <n. (6)

in O((n=>2 +n~2p=2)1logn~') ACG iterations. Moreover, this iteration complexity is obtained
without requiring that the initial point 2z (in the domain of i) be feasible with respect to the linear
constraint, i.e., Azg = b. Another contribution from this analysis is that the sequence of Lagrange
multipliers is shown to be bounded by a constant independent of p and 7.

Related Works. To condense our discussion, we let ¢ = p = 1 denote a common tolerance
parameter and restrict our attention to works that establish iteration complexity bounds for ob-
taining approximate stationary points of (1). For an overview of papers that focus on asymptotic
convergence of a proposed method, see the excellent discussion in [19, Section 2].

One popular class of methods for obtaining stationary points of (1) is the penalty method, which
consists of solving a sequence of unconstrained subproblems containing an objective function that
penalizes a violation of the constraints through a positively weighted penalty term. Papers [10, 14]
present an O(e~3) iteration complexity of a quadratic penalty method without any regularity
assumptions on the linear constraint. In a follow-up work, paper [11] presents an O(¢ 3loge™!)
iteration complexity of a similar quadratic penalty method in which its parameters are chosen in
an adaptive and numerically efficient manner. Paper [19] is the first to present a penalty-based
method with an improved complexity of (’)(5_5/ 2loge~!) under the assumption that the domain of
h is compact and assumption (5) holds.

Another popular class of methods is the proximal AL (PAL) method, which primarily consists
of the updates in (3) and (4). The analysis of AL/PAL-based methods for the case where ¢ is
convex is already well-established (see, for example, [1,2,15,16,20,21,24,25,29]), so we make no
more mention of it here. Instead, we review papers that present an iteration complexity of an
AL/PAL-based method for the case where ¢ is nonconvex. Paper [6] presents an O(¢~*) iteration
complexity! of an unaccelerated PAL method under the strong assumption that the initial point
2o is feasible, i.e., Azg = b, as well as 6 € (0,1] and xy = 1. Paper [22] presents O(¢ 3loge™!)
and O(e75/2loge™1) iteration complexities of an accelerated inexact PAL method for the general
case and the case where (5) holds, respectively, and removes the requirement that the initial point

'This method generates prox subproblems of the form argmin, ¢ y {\a(z) + c|Az — b||*/2 + ||z — z0||?/2} and the
analysis of [6] makes the strong assumption that they can be solved exactly for any zo, ¢, and .

be feasible. Papers [12,13] present an O(e 3loge™!) iteration complexity for the special case
of (x,0) = (1,0), which corresponds to a full multiplier update under the classical AL function.
Finally, papers [27] and [17] respectively establish O(¢3loge™") and O(¢~%?loge™!) iteration
complexities for nonproximal AL-based methods that perform under-relaxed Lagrange multiplier
updates only when the penalty parameter is updated.

Aside from penalty and AL/PAL-based methods, we mention few others that are of interest.
Paper [3] presents an O(e3) iteration complexity of a primal-dual proximal point scheme for gen-
erating a point near an approximate stationary point under some strong conditions on the initial
point. Papers [30,31] present an O(e~2) iteration complexity of a primal-dual first-order algorithm
for solving (1) when A is the indicator function of a box (in [31]), or more generally, a polyhedron
(in [30]). Paper [7] presents an O(¢~9) iteration complexity of a penalty-ADMM method that solves
an equivalent reformulation of (1), under the assumption that the initial point zg is feasible, the
tolerance ¢ is sufficiently small, and A has full row rank. Paper [18] presents an inexact proximal
point method applied to the function defined as ¢(z) if z is feasible and +oco otherwise. It can be
viewed as an extension to the nonconvex setting of the proximal point method (PPM) applied to
(1) and it obtains an O(¢~%/2loge~!) complexity bound.

Contributions. We now emphasize how the proposed AIDAL method improves on other state-
of-the-art AL-based works. First, it improves upon the O(¢3loge™!) classic PAL method in [13]
by an (’)(5_1/ 2) factor through only a small perturbation of the classical multiplier update and the
classical AL function. Second, AIDAL chooses its prox stepsize A independent of the perturbation
parameter f. This is in contrast to the PAL method in [22] which has the undesirable property
that its prox stepsize A becomes arbitrarily small as 6 approaches zero. Finally, it differs from the
nonproximal AL-based method in [17] in two significant ways: (i) it performs the multiplier update
(4) after every inexact prox update as opposed to only when the penalty parameter is updated;
and (ii) it chooses a constant under-relaxation parameter y for the update (4) as opposed to [17],
which chooses an under-relaxation parameter that (linearly) tends to zero as the number of penalty
parameter updates increases.

Organization of the Paper. Subsection 1.1 provides some basic definitions and notation. Sec-
tion 2 contains two subsections. The first one describes the main problem of interest and the
assumptions made on it, while the second one presents the AIDAL method and states its iteration
complexity. Section 3 is divided into four subsections. The first one presents some preliminary
technical results, the second one presents a bound on an important stationarity residual, the third
one proves a bound on the generated Lagrange multipliers, and fourth one one gives the proof of
a key proposition in Section 2. Section 4 presents numerical experiments that demonstrate the
efficiency of the AIDAL method. Section 5 gives some concluding remarks. Finally, the end of the
paper contains several important technical appendices.

1.1 Basic Notations and Definitions

This subsection presents notation and basic definitions used in this paper.

Let Ry and R4, denote the set of nonnegative and positive real numbers, respectively, and
let R™ denote the n-dimensional Hilbert space with inner product and associated norm denoted
by (-,-) and || - ||, respectively. The smallest positive singular value of a nonzero linear operator
Q : R" — R! is denoted by 0’5 . For a given closed convex set X C R”, its boundary is denoted
by 0X and the distance of a point x € R™ to X is denoted by distx(x). For any ¢t > 0, we let
log{ (t) := max{logt,1} and denote O; = O(- + 1).

The domain of a function h : R” — (—o00,00] is the set domh := {z € R" : h(z) < +o0}.
Moreover, h is said to be proper if dom h # (). The set of all lower semi-continuous proper convex
functions defined in R™ is denoted by Conv R". The subdifferential of a proper convex function
h:R™ — (—o0,00] is defined by

Oh(z) = {u € R": h(?') > h(2) + (u, 2’ — 2), V' €R"} (7)
for every z € R™. The normal cone of a closed convex set C at z € C' is defined as
No(z) ={£eR": ({,u—2) <0, VYuel}.
If ¢ : R™ — R is differentiable at z € R", then its affine approximation at z is given by

ly(22) == (2) +(VY(2),z2 — Z) VzeR" (8)

2 Augmented Lagrangian Method

This section contains two subsections. The first one precisely describes the problem of interest
and the assumptions underlying it, while the second one presents the AIDAL method and its
corresponding iteration complexity.

2.1 Problem of Interest

This subsection presents the main problem of interest and the assumptions underlying it.
Our problem of interest is precisely (1) where f, h, A, and b are assumed to satisfy the following
assumptions:

(A1) h € Conv R" is K},-Lipschitz continuous and H := dom h is compact with diameter Dy, :=
SUPy, zeH Hu - ZH < 0.

(A2) f is differentiable function on H, and there exists (m, M) € R% | satisfying m < M, such
that for every u, z € H, we have

f(w) = €p(u2) 2 =T llu — 2|, (©)
V£ () = VFE)| < M~ = (10)

(A3) there exists z € int H such that Az = b;
(Ad) A#0, F:={2€H:Az=>b} #0, and inf,epn ¢(z) > —oc.

We now make four remarks about the above assumptions. First, it is well-known that (10) implies
that |f(u) — £f(u;2)] < Mlju — z||?/2 for every u,z € H and hence that (9) holds with m = M.
However, we show that better iteration complexities can be derived when a scalar m < M satisfying
(9) is available (see Theorem 2.3 and (23)). Second, (9) implies that the function f +ml| - ||?/2 is
convex on H. Third, since H is compact by (A1), the image of any continuous R*-valued function,
e.g., u+— Vf(u), is bounded. Finally, in Appendix C, we show that if 2 is a local minimum of (1),
then there exists a multiplier p such that

0 € VF(2) + 0h(2) + A*p, Az =b. (11)

In view of the last remark, we say that a triple (£, p, 0) is a (p, n)-stationary point of (1) if it satisfies
condition (6), which is clearly a relaxation of (11) for any (p,n) € R% .

2.2 AIDAL Method

This section presents the AIDAL method and its corresponding iteration complexity.

We first state the AIDAL method in Algorithm 2.1. Its main steps are: (i) invoking an ACG
algorithm (specifically, Algorithm B.1) to implement the update in (3); (ii) computing a “refined”
pair (p,0) = (Pg,0x) and point z satisfying the inclusion and (possibly) the inequality in (6);
(iii) applying the update in (4); and (iv) performing a novel test to determine the next penalty
parameter cgy1.

Algorithm 2.1: Accelerated Inexact Dampened Augmented Lagrangian (AIDAL) Method

Input : (mv M) € R%——i— as in (A2)7 (Pﬂ?) € R?l——i-’ (Z(]ap(]) € Hx A(Rn)v c1 € R—l——l-’
o €(0,1/2], and (x,0) € (0,1)? satisfying

(1-0)(2— 0)x < 6 (12)

Output: a triple (2,p,0) € H x A(R™) x R"™ satisfying (6).

1 Function AIDAL({m7 M}v {0-7 X 9}7 {Clv Z07p0}7 {p7 77}) :

2 STEP O (initialization)

3 A<+ 1/(2m)

4 for k< 1,2,... do

5 STEP 1 (inexact prox update): > Implement (3)
6 Ly < MM + ¢ ||A]I*) + 1

7 T/JE() — A [ﬁgk(-;pk_l) — h()} + %H . —zk_1\|2 > See (2) for the definition of £9(-;)
8 (zk, vk) <—ACG({T,Z)§, AR} { L, %}, O, Zk_1) > Use Algorithm B.1
9 STEP 2 (termination check):
10 g % [Ug + 2Kk—1 — 2k]
11 Pr < (1 = O)pr—1 + cx(Azp — D)
12 if ||0x]| < p and ||Az, — b|| < n then

13 L return (Zk, D, @k) > Stop and output
14 STEP 3 (multiplier update): > Implement (4)
15 pr (1= 0)pr—1 + xcr(Azp — b)
16 STEP 4 (penalty parameter update):
17 Ck+1 < .
ci, otherwise

Some remarks about Algorithm 2.1 are in order. First, its input zg can be any element in ‘H and
does not necessarily need to be a feasible point, i.e., one satisfying Azy = b. Second, its steps 1 and
3 are respectively the updates (3) and (4), while its step 4 consists of a test to determine whether
the penalty parameter ¢, should be increased. In particular, the update for (3) is obtained by
applying the ACG algorithm in Algorithm B.1 to the (convex) proximal subproblem

1
: 0 /. 2
min {/\ﬁck('vpk—l) + 5l =zl }

with an inexactness criterion (see (45)) that is a variant of the one considered by the authors
in [9,10,12,14]. Third, it performs two kinds of iterations: (i) the ones indexed by k; and (ii)

the ones performed by the ACG algorithm every time it is called in its step 1. To be concise,
the former will be referred to as “outer” iterations and the latter as “inner” (or ACG) iterations.
Finally, it is shown in Lemma 3.2(d) that the triple (2,p,9) = (2, Pk, Or) satisfies the inclusion in
(6) for every k > 1. Hence, if the termination condition in step 3 is satisfied, then AIDAL outputs
a (p,n)-stationary point of (1) (whose definition is given at the end of Subsection 2.1).

We now present the key properties of the method. To be concise, we introduce the constants

d:= diSta'H(E)7 Gf ‘= sup va(u)Hv ¢x = inf ¢(u)7 ¢* := inf ¢(u)a

13)
] 1+ 0)D (
ﬁ)\ = (d_|_Dh) [Kh+Gf+w] ,
A
where (Dp,, Kp,,H), z, and F are as in (A1), (A3), and (A4), respectively. Moreover, we let
Co:= {k: eN:¢, = 0126_1} (14)

denote the ¢*" cycle of AIDAL and, for simplicity, if the AIDAL terminates at iteration k then the
indices of the last cycle do not extend past k.

The first result presents a bound on the sequence of Lagrange multipliers {pj }r>0 computed in
step 3 of AIDAL. Its proof, which is given in Subsection 3.3, is a generalization of [13, Proposi-
tion 3.12], which considers the case where (6, x) = (0, 1).

Proposition 2.1. Let {p;}i>1 be generated by the AIDAL method. Then,

B
[Pkl < llpoll + = =: B, Vk=>1, (15)
doy

where d and By are as in (13).

The next result, whose proof is the topic of Subsection 3.4, describes several properties of
AIDAL, including a bound on the number of inner (or ACG) iterations performed in each outer
iteration, a uniform bound on the size of all cycles, and its successful termination with the required
approximate stationary point of (1).

Proposition 2.2. Let (A, c1,x,0,p,n) be as in AIDAL, and define the nonnegative scalars
D? 2 —0+22—0][1-0]
By == ¢* — ¢, + =L B’
v ¢ (Zs +)\ + (2X2CI) p?
_ 2B,

Cpi=—=, T,:= [14—
n X7 P

9By (16)
)\—/)2—‘ '

where By, Dy, and (¢, ¢*) are as in Proposition 2.1, assumption (A1), and (13), respectively.
Then, the following statements hold about AIDAL:

(a) its k™ outer iteration performs a number of inner (or ACG) iterations bounded above by

AL
{1 +6+/Ly log} Tﬂ , (17)

where Ly, is given by step 1 of AIDAL;

(b) for every £ > 1, it holds that |C¢| < T,, and the residual ¥y, for the last index k of Cy satisfies
[0kl < p;

(c) the last cycle £ outputs a (p, n)-stationary point of (1) and satisfies ¢, < max{cr,2¢,} for
every k € Cy; as a consequence, { < max{1,log,(2¢,/c1)}.

We give some remarks about the above results. First, Proposition 2.1 states that the sequence
of Lagrange multipliers {py}r>1 generated by the AIDAL method is bounded by a constant that
is independent of the tolerances p and 7. Second, Proposition 2.2(c) states that the number of
times that the penalty constant ¢ is doubled during an invocation of the AIDAL method is finite.
Finally, Proposition 2.2(a) shows that the number of the inner (or ACG) iterations at each outer
iteration of AIDAL is independent of the tolerances p and 7.

Using Proposition 2.2, the next result establishes an (’)(77_1/ 2p=2logn~!) total inner (or ACG)
iteration complexity for the AIDAL method.

Theorem 2.3. AIDAL stops with a (p,n)-stationary point of (1) in a number of inner (or ACG)

iterations bounded above by
I epla
01 (7;) CnLl logf nO' > s (18)

where (¢y,Tp) are as (16), Ly is as in step 1 of AIDAL at k =1, and o is the inezactness parameter
given to the ACG algorithm (Algorithm B.1).

Proof. For ease of notation, let (¢,T) = (¢, 7,). In view of Proposition 2.2(a) and (c), the total
number of inner (or ACG) iterations performed by the method is on the order of

[log, c]
(; ZC \/710g1 ;) . (19)

To simplify this sum, we first note that if j € C;, then the relations A = 1/(2m) (from AIDAL) and
m < M (from assumption (A2)) imply that

L= MM+ 27 e AP+ A71) < A (2M + 2 e |A]2) < 2Ly (20)
Combining (20) with Proposition 2.2(b), it holds that

[log, €] [logy €]

S 3L STVED Y o = TVEL VR (14 VE) (21)
(=1 jeCy
<4T\/_(21°g2 21/2):(’)1 (T\/E) (21)

Moreover, denoting ¢ = [log, ¢], it follows from (20) that

_ 2 _ + 1=
1<£21[31Lg§2 . I]rgg;{logl } logi [A (M + 7|l Al) + 1} =0 (log1 [cLl]) . (22)
The complexity bound in (18) now follows from (21), (22), and (19). The fact that AIDAL stops
with a (p,n)-stationary point of (1) follows from Proposition 2.2(c). O

We now analyze how the complexity bound in (18) depends on the stepsize A and the tolerances
p and 1. Throughout our discussion, we make the reasonable assumption that the parameter x
and the initial penalty parameter ¢; are not too small in the sense that max{cl_l, 1 =0(0).
In this case, it is easy to see that the quantities (Bp, By, L1, ¢y, T,) in (15), (16), and step 1 of

Algorithm 2.1 satisfy B, = O(1 +X71), By = O([1 + A71]?), Ly = O(1 + \), ey =O(1+ A /),
and T, = O(1 + [1 + X712 /[\p?]). Consequently, the bound (18) is
)) (23)

L+AH2 14+ A+
O (| [1+ 1+A7) AT log}
Ap? 7

Since A™' = O(1), the above complexity consists of the sum of two components: S; = O(AY/2y~1/2)
and Sy = O(A\~1/2yn~1/2p=2) (ignoring logarithmic terms). In general, if the tolerances p and 7 are
small, then Sy < S7 and choosing larger values of A improves the complexity bound in (23). Under
the assumption that there exists a constant m < M satisfying (9), this observation justifies the
claim made in the paragraph following assumptions (A1l)—(A4), namely, that AIDAL can benefit
if such m is known; otherwise, the only option available would be to be set A to the much smaller
quantity 1/(2M).

It is also worth mentioning that, the number of resolvent (or proximal) evaluations of h in
AIDAL is on the same order of magnitude as in (18) due to the fact that the ACG algorithm in
Appendix B performs exactly one resolvent evaluation per ACG iteration.

L+A+ 271

3 Convergence Analysis of the AIDAL Method

This section establishes the key properties of the AIDAL method and contains four subsections.
The first one establishes some properties of the ACG call of AIDAL, the second one gives a useful
technical bound on the stationarity residuals {0;}, the third one gives the proof of Proposition 2.1,
and the fourth one gives the proof of Proposition 2.2.

To avoid repetition, we let

{(2i, i vis Diy iy WL, ciy Li) Yis1,

denote the sequence of iterates generated by the AIDAL method. Moreover, for every ¢ > 1 and
any (x,0) € Ri 1, we make use of the following useful constants

(1 —2xbg) — (1 - 6)°
2x ’ (24)
fi=Az —b, Api=pi—pi-1, Az =2z —z1.

(10:0(1—9), by := (2—9)(1—6’), Qy g =

3.1 Preliminary Results

This subsection establishes two preliminary technical results about the residuals v;, 0;, and f;. It
also establishes the iteration-complexity of each ACG call in step 1 of AIDAL using the general
results derived for this method in Appendix B.

Lemma 3.1. For everyi > 1:
(a) fi=[pi = (1 —=0)pia]/(xci);
(b) if i > 2, then x(¢ifi — ci—1fi—1) = Ap; — (1 — 0)Ap;—1;
(c) IIfill < (psll + (L = O)[lpi-1l])/ (xci)-

Proof. (a) This follows from the definition of f; in (24), and step 3 of the AIDAL method.
(b) This follows from part (a) and the definition of Ap; in (24).
(c) Using part (a), the fact that 1 — 6 € [0,1], and the triangle inequality, we have

— (1= 0)pi—1]| < lIpsl| + (1 — 9)sz~_1H' 0
XCi XCi

(|ps
1fill = ==

Note that the inequality of Lemma 3.1(c) implies the feasibility residual || f;|| can be made small
by making the penalty parameter sufficiently large and ensuring that the multipliers {p;};>; are
bounded.

Lemma 3.2. For everyi > 1:

(a) Vi) —| - \%1/2 is convex and V() is L;-Lipschitz continuous, where L; is as in step 1 of
Algorithm 2.1 and

I
Qi =5+ e A, |- IG, = (- Qi()); (25)

(b) the it" call to Algorithm B.1 in step 1 of Algorithm 2.1 stops in a number of ACG iterations
bounded above by (17);

(c) it holds that
: 1
i € 0+ () = 0 (A& apin) + 5l =zt P) G2l < ol

(d) 0; € Vf(z)+ 0h(zi) + A*p; and ||;]] < (14 o)||Az]|/A.

Proof. (a) First note that inequality (9) in Assumption (A2) and the choice of A = 1/(2m) in
Algorithm 2.1 implies that A\f(-) +|| - —zi_1/|%/2 is 1/2-strongly convex on H. Hence, the convexity
assertion follows from this observation, the definition of ¥, and the definitions of Q; and || - || ¢, in
(25). On the other hand, the assertion about Lipschitz continuity follows from the definition of v
and (10).

(b) Using the fact that L; > 1 and o € (0, 1), we first observe that for y = 1/2 we have

ALi(Li +p) _ 8Li(Li + L;)? _ {4Lir’

e - o2 o

Then, note that part (a) implies (s,) = (3%, A\h) satisfies assumptions (B1)-(B2) in Appendix B
with (L, pu) = (L;, 1/2). The conclusion now follows from step 1 of Algorithm 2.1, assumption (A2),
Proposition B.1(b) with (L,) = (L;,1/2), and the above observations.

(c) Recall that step 1 of AIDAL calls ACG with (¢, %,,) = (¢4, Ah) and x¢ = 2;. It then follows
from Proposition B.1(b) that (45) holds with (z,v,20) = (2;,v;,2i-1) and (s,) = (YL, Ah)
and zg = z;_1. The inclusion and first inequality now follow from the previous observation, the
definition of ¢!, and the fact that % + Ah is convex (see the choice of A and assumption (A2)) and,
hence, that Vpi(-) + AOh(-) = A(L + Ah)(+).

(d) Using part (c) and the definitions of 9;, p;, and ¢, it holds that

L vitzia—z VYi(z) N S

U = 3 € 3 + Oh(z) + 3
=V f(z)+0h(z)+ (1 —0)A"pi_1 + cA"(Az; — b)
= Vf(z) + Oh(z) + Aps,

which is the desired inclusion. For the desired inequality, we use part (c), the triangle inequality,

and the definition of ¥, to obtain

140
A

N 1 1 1
93] = X”Ui + 21 — 2] < X”Ui” + XHA%H < | Az O

We now make three comments about the above result. First, statements (a) and (b) of
Lemma 3.2 justify the choice of A = 1/(2m). Second, A could actually have been set to any
value (0,1/m) at the expense of more complicated bounds in the resulting analysis. Third, in
view of the inclusion of Lemma 3.2(d) and the definition f; in (24), it follows that (z;,p;, 9;) is a
(p,m)-stationary point of (1) if and only if ||0;|| < p and || fi|| < 7.

In the next subsection, we establish an important bound on the residuals {9;} that will be used
to show that they tend to zero.

3.2 Bounds on the Stationarity Residuals

This subsection focuses on establishing the following bound on the residuals {9;};>¢ within cycle
C, for any £ > 1. Note that the value of ¢; is constant within Cy, i.e., there exists ¢, > 0 such that

ci=¢C Viely. (26)
Proposition 3.3. For every £ > 1 and j, k € Cp such that k > j + 1, we have
k
A o < 9wl — wi, (27)
i=j+1

where the potential \I»'f s given by

0= L8 (zi5p) —

a‘e . 2 OéXve A . 2 28
g Il + T2 Al (28)

We start with a technical bound on ||9;]|.

Lemma 3.4. For every i > 1, it holds that
A

N ag
§||Uz'||2 < Egi(zi—ﬁpi—l) - Egi(zi;Pz‘) + 5 (||10z‘||2 - ||Pz'—1||2)]

2xc¢;
bg C;
— | Ap;||? = =||AAzZ|?
+ g lApl - S lAdz?,

where ag and by are as in (24).

Proof. Let ¢ > 1 be fixed. We first derive a relationship for ﬁgi(zi,pi) - Egi(zi,pi_l). Using the
definition of £¢ in (2), the definitions of Ap; and f; in (24), and Lemma 3.1(a), we have that

1—-6 1—-6)0
L8 (zi,pi) — L2 (zi,pi=1) = (1= 0) (Ap;, fi) = (") | Aps||* + (Xic) (Api, pi—1)

(]

— (1 — 0) | Aps]|* + (1;760)9 ((Pz’,pi—ﬁ - sz’—1”2>

()

XCi i
1-6 1-0)0/ 1 1 1
_ A |12 Loz iz = L. 2>
(A20) i + S22 (Ll + Ll = it)
bG 2 ag 2 2
e 180l + 5= (il = llpica) (30)

10

We next derive a bound for £8 (z;, pi—1) — £8 (zi—1,pi—1). In view of Lemma 3.2(a) and (c), we first
observe that (i))\Egi(-,pi_l) + - —2i—1l12/2 = ¥i(-) + Ah(-) is 1-strongly convex with respect to the
| - lo; norm given in (25), and (i) z; is an optimal solution of the function 1%(-) + Ah(-) — (v;,).
Combining facts (i)-(ii) above, the definition of || - ||g, in (25), the bound on ||v;|| in Lemma 3.2(c),
the fact that o € (0,1/2], and the Cauchy-Schwarz inequality, we conclude that

1 1 1
O (s m: 1) — L9 (2)< — Azll2 — Azl? + = (v Az
ﬁci(zupZ—l) Eci(ZZ—laPZ—l) = 2)\” ZZHQi 2)\H zil|® + b\ (vi, Az;)
Ci 3 1
< —ZJAA i 2 A i 24 - ill || Az;
< = 1AAZ]" = Az + S vl [Azl
3—4o C 1 5 G
— AZ’2——ZAAZ'2<——A,‘Z——ZAAZ'2 1
< (3572) 18al? - S1ana]P < - ax|P - F)Anx) (31)

The conclusion now follows by summing (30) and (31), isolating the ||Az;||> term to one side, and
using the inequality on ||9;|| in Lemma 3.2(d) with the fact that (1 + o) < 9/4. O

Note that within a cycle, where the penalty parameters remain constant, the term within the
square bracket of the right-hand side of (29) is telescopic. Interestingly, the next result shows that
the other term on the right-hand side of (29) can be telescopically bounded within a fixed cycle.
It is worth mentioning that the relationship between x and 6 in (12) plays an important role in
proving this fact.

Lemma 3.5. For every i > 2 such that ¢; = ¢;_1, it holds that

by 2 G 2 Qy 6
——|Ap;l|© = =||AAz; < X7 Ap;_ 2_ Aiz 2
pe 1Apil” = SAAz]* < 2 (Japia® — 1Apil) (32)

where by and o, ¢ are as in (24).

Proof. Let i > 2 be an index where ¢; = ¢;_1 and observe that (12) implies 2yby < 6%. Moreover,
define R
Ap; := Ap; — (1 = 0)Ap; 1

and observe that Lemma A.1 with (7,a,b) = (xbg, Ap;, Ap;—1) implies that
L~ 9 2 2 2
Bl 2 2| Apil + o (I1p11° ~ 1 Api]). (33)

Using Lemma 3.1(b), the fact that ¢; = ¢;_1, and (33), we then have

; ANz |2 fi—cic1ficD)|? 1 [1,+
&HAA’ZZH2 _ HXCz . ZZ” _ ”X(szz 021 Lfi 1)” _ [—HAPsz]
2 2x4c; 2x4c; 2xc; Lx

1
>
— 2x¢

[bollAapil + o (I 4pilI2 = 1 Api-a]?)]

from which (32) immediately follows. O

Combining (29) and (32), it is easy to see that the sum of the residuals {||9;|?};>1 residuals is
bounded above by a telescopic sum when the indices are in a cycle. Let us now use this fact to
prove Proposition 3.3.

11

Proof of Proposition 3.3. Let £ > 1 and j,k € C; be given and assume that i € {j + 1,...,k}.
Then, it follows from (26) that ¢;_1 = ¢; = &. This observation together Lemmas 3.4 and 3.5 then
imply that

3”@‘”2 < L8 (zicispica) — L2 (zipi) + 2— (||]9z||2 - ||pz'—1||2) + % (||A10i—1||2 - ||Apz'||2)
= 5%(%-1;1%—1) - ﬁg[(zi;Pz) 2—0 (||19i||2 - ||Pz‘—1||2) 4 ~ (||Apz 1||2 — || Ap|)
= q’?—l - \Iff,
where the second identity is due to the definition of ¥? in (28). The conclusion now follows by
summing the above inequality from ¢ = j 4+ 1 to k. O

One of the goals of the following two subsections is to show that the potential \I/f in (28) can
be bounded by a constant that does not depend on ¢;. A key step in this direction is given by
Proposition 2.1 which states that the Lagrange multiplier p; can also be bounded by a constant
that does not depend on ¢;. The goal of the next subsection is to prove this proposition.

3.3 Proof of Proposition 2.1

We start by presenting two well-known technical results. The proof of the first one can be found,
for example, in [4, Lemma 1.2].

R™" gnd u € Im S, we have o& ||lul| < ||Sul|.

Lemma 3.6. For every S €
The proof of the next result can be found in [13, Lemma 3.10].

Lemma 3.7. Suppose ¢ € Conv R" is Ky -Lipschitz continuous with finite diameter Dy,. Then,
for every y,y € domh and § € OY(y), we have

1€l distaaom v) (¥) < [dista(domzp)(l?) +lly - Z?ll} Ky+(&y—1).
The next two results closely follow the ones in [13, Section 3].
Lemma 3.8. Define the scalars
& =0 —Vf(zp) — AP Vk>1. (34)
Then, the following statements hold for every k > 1:
(a) & € Oh(z);
(b) it holds that

N 1 1+O' Dh
el < [lel + 65+ EEDPA],
A

where Gy and Dy, are as in (13) and assumption (A1), respectively.
Proof. (a) This follows immediately from Lemma 3.2(d) and the definition of &;.

(b) Using the definitions of & and Gy, the triangle inequality, part (a), and Lemma 3.6 with
S = A* and u = py, yields

APl _ 1ok = Vf(2k) = Gll _ [I€kll + [IVF (i)l + [0k
ot = = =
A A A

1 1 A
< o |l + VGl + w}

1Pkl <

(1 +O’)Dh ‘

&l + Gy 4+

1
o
P\

12

Lemma 3.9. Let (8, d) be as in (13). Then, the following statements hold for every (x,) € (0,1)?
and k > 1:

(a) llpell < xllprell + (1 = x) (1 =) lpr—1];
(0) i Nkl + dof |1l < et (1= 0) (i, pr—1) + Ba.
Proof. (a) Using the definitions of py and py with the triangle inequality yields
ol = e + (1 =)1 = Ope—ill < Xl + (1 = x)(1 =) [pi -

(b) Let &, (Gy,d), and Dy be as in (34), (13), and assumption (A1), respectively. Using
Lemma 3.8(a), the definition of d, and Lemma 3.7 with (v, Ky, Dy) = (h, Kp, Dy) and (y,y,€) =
(2k, 2,0k), we have that

dlléxl < (d+ Dp)Kp + (€rr 26 — 2) - (35)
Moreover, the definitions of Py and &, the fact that 2,z € H and Az = b, and the Cauchy-Schwarz
inequality imply that
(ks 2t — 2) = (0 — Vf(z) — AP, 21 — 2)
< (ol + IV £ (z) D 26 — 21| = (Pr, Az — b)

1+o0)D 1—-0\ . 1
: % * Gf} D+ <—> (i pr—1) — —l1pe]1*. (36)
Ck CL
Using Lemma 3.8(b), (35), (36), and the definition of) in (13), we thus conclude that
Lip lo TP LT T 1+0)Dp] -
Ll + dolonl < S1sel? + el + o + L2 g
Ci Cr)\
Lis 1 - 14+0)Dy] -
< (’_kakHQ + (d+ Dp)Kp + (€, 21 — 2) + |:Gf n %} F
1-0Y . 14+0)D _
= (cr) (D> Pr—1) + [Kh+Gf + %} (d+ D)
1-0\
- ()) <pk':pk'71> +5)\. 0
Ck

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. We proceed by induction on k. Since B, > ||pol|, the desired bound
trivially holds for £ = 0. Assume now that ||px|| < B, holds for some k > 0. If ||py1]| = 0, then
clearly

1Pr 2]l < XllPrrall + (1 =) (1 = O)lpell = (1 = x)(1 = 0) By < By,
so suppose that ||pg+1|| > 0. Using Lemma 3.9(b), the Cauchy-Schwarz inequality, and the induction
hypothesis we have that

- 1 . . 1 1—0\ .
d+ 7+Hpk+1H1 [Pr1ll < — () (Prt15Pr) +/3,\}
Ck+10 4 oy Ck+1
1-6 - ||p 1|l B - 1
< By O Olpel bl S WoealBy [+Hmmr] B,
oy Ck+10 4 05 Ck4+10 4 Ck+10 4

and, hence, that ||pry1]| < Bp. Combining this bound with the induction hypothesis, we finally
conclude that

P&l < XlIPrall + (1 =X) (1 = 0)l[pe]| < By O

13

3.4 Proof of Proposition 2.2

Recall that Proposition 3.3 in Subsection 3.2 gives a bound on Y% it |9:]|? in (27). The first part
of this subsection further refines (27) to show that its right-hand side is bounded by a constant
that does not depend on the constant ¢ in (26). The following result provides a key step in this
direction.

Lemma 3.10. For every i > 1, it holds that

br <2xc1)B s s+ +<2><2c1 >BP’ (37)

where (¢, d*), by, and Dy, are as in (13), (24), and assumption (A1), respectively.

Proof. Let i > 1. Using Proposition 2.1, the definitions of £2(-,), \Ifg, ¢+, and B, and the fact
that x € (0,1), we have

a
W) > L0 (zispi) — 5 ’

N2 — b s _ A Ay 2 %0 g2
7 = ¢(zi) + (1 —0) (pi, Az b>+2HAzz bl 2xcin’H

2
Lif1-6 (1-6?2 o ag o
>0t 5 i i(Azi — — Pl — 5P
> e+ 3 <\/C_i>p + V/ci(Az —b) 2 i 2Xcillpll
1—-0)2+ag| o <1—9> 9
>¢,— |— 2 I B2>¢, — B2,
=0 [2xci =9 2xe1) P

which is the desired lower bound in (37). For the upper bound, let an arbitrary v € F be given.
Using the fact that Au = b and u € H, the definitions of £9(-,-) and Dy, , Lemma 3.2(c), and the
Cauchy-Schwarz inequality, we conclude that

ALY (zm. Lemma<3'2(c))\£9 . LN 2_1A.2_ = 2
ci(zupz—l) > Ci(u,pz_1)+2Hu zi-1]| 2” zi| (vi,u — 2;)

v 1 9 Lemma 3.2(c) 1 9
Ao+ 5D+ [ulDy S o) + (5 +0) D

Taking the infimum of the above bound over v € F and using the fact that o € (0,1/2], we thus
have £¢ (zispic1) < 97+ D3 /A. This inequality, (30), the fact that x € (0,1), Proposition 2.1, and
the relatlon (a +b)? < 2a? + 2b? for every a,b € R, then imply that

2bg + iy p
W= £ i) = ol + PLNARIP < £ i pic) + (T) AP
D? 2bg + « 9> D? 1+ 2by
< 44 h X5 2 Ly, ()Bz
<" S () (o s) < 0+ 2+ (o) B
which is the desired upper bound in (37). O

The result below follows as a consequence of Proposition 3.3 and Lemma 3.10.
Lemma 3.11. For every ¢ > 1 and j,k € Cy such that j < k, there existsi € {j+1,...,k} satisfying

. 9By
Aloil? < 222 (59)

where By is as in (16).

14

Proof. Using the first bound of (37) with ¢ = k and the second bound of (37) with i = j, we first
have that
[0 * Di2L
R

where By is as in (16). Using the above bound and Proposition 3.3, it follows that

2 — 0+ 2by

B?2=1B
2x2%¢) P v

k
o : ~ 12 ~ 12 0 _ gt
A=) i Wl <2 3l <9 (9] - wf) < 9By,

which implies the existence of some i € {j + 1, ..., k} satisfying the bound on ||9;| in (38). O

We are now ready to give the proof of Proposition 2.2.

Proof of Proposition 2.2. (a) This follows immediately from Lemma 3.2(b).

(b) The fact that the last index k of a cycle Cy satisfies ||0g|| < p follows immediately from steps
2-3 of AIDAL. Now, let £ > 1 be fixed and define j :=inf{i:i € C} and k:=j+7T,—1. If k £ C,
then |C/| < k — j+ 1 =7T,. On the other hand, if k¥ € C; then Lemma 3.11 and the definition of 7,
in (16) imply that there exists i € {j + 1, ..., k} such that

]2 < ——— <
Joil? < 5ty <

Since every cycle stops when ||0;]] < p, we conclude that ¢ = k = sup{i : ¢ € Cy} and, hence,
ICol=k—j+1=T,.

(c) Let ¢ = ¢,. We first establish the bound on ¢;. If AIDAL stops in the first cycle, then the
bound on ¢ follows immediately. Assume now that there is more than one cycle and suppose, for
the sake of contradiction, that there exists a cycle £ > 2 such that c¢; > 2¢ for every k € Cy, and
let " denote the last index in Cy_;. In view steps 3 of AIDAL, we then have ¢;; > ¢. Using the
previous bound, the definition of ¢ = ¢, in (16), Lemma 3.1(c), and Proposition 2.1, we also have

[|| + (L= Ollpw 1l _ 2B, _ 2B
XCh/ T oXe T XC

[Azp — bl = | fwll <

However, since [|0/|| < p from part (b), this is impossible because termination would have occurred
at the end of cycle £ — 1. Hence, ¢, < max{cy,2¢}. Since ¢, = 27 1¢; for every k € Cy, the
bound on / is immediate. Moreover, it follows from parts (a)—(b) and the fact that £ is finite that
ATIDAL always stops in step 2. Hence, using the termination condition in step 2 and the inclusion

in Lemma 3.2(d), we conclude that the output of AIDAL is a (p,n)-stationary point of (1). O

4 Numerical Experiments

This section examines the performance of the AIDAL method for solving problems of the form given
in (1). It contains four subsections. The first three contain the following problem classes: (i) a class
of linearly-constrained quadratic programming problems considered in [10]; (ii) the sparse principal
component analysis (PCA) problem in [5]; and (iii) a class of linearly-constrained quadratic matrix
problems considered in [11,12]. The last subsection gives a few comments about the results.

Before proceeding with the results, we describe the implementation details of our algorithms
and the setup of our experiments. These include specific parameter choices, special modifications,
and added heuristics.

15

We first discuss the three implementation of the AIDAL method, labeled rADLO, rADL1, and
tADL1 considered in this section. Broadly speaking, tADLI1 is an implementation of the the-
oretical version of AIDAL in Algorithm 2.1, while rADLO and rADL1 are implementations of an
adaptive/relaxed version of AIDAL in Algorithm D.1. In particular, the adaptive version of AIDAL
introduces a novel line search scheme for adaptively choosing the prox parameter A\ in AIDAL (for
further details, see the discussion in Appendix D). In terms of parameters, each AIDAL implemen-
tation uses pp = 0, ¢; = max{1, M/||A||?}, and o = 0.3 for every outer iteration of the method.
However, rADLO chooses (x, 8, Ao) = (1,0,10) with a heuristic choice of a9 = 0 and ag = 1 in the
definition of ¥¢, while rADL1 and tADL1 choose (x,6) = (1/6,1/2) and Ay = 10 for rADL. Note
that rADLO uses parameters that do not satisfy (12), but work well in practice.

Besides the above AIDAL implementations, we also use four other methods as benchmarks.
The first one, named iALM, is an implementation of the inexact proximal augmented Lagrangian
method of [17] in which: (i) its key parameters are

(log 2) || Az"]|

max{m, M} -
(k+1) [log(k + 2))*’

1A%

o =25, Bozmax{l, }, wy =1, yO:O,

for every k > 1; and (ii) the starting point given to the k™ APG call is set to be *~!, which is
the prox center for the k™ prox subproblem. The second one, named IPL, is an implementation
of the inexact proximal augmented Lagrangian method of [12, Section 5| where: (i) ¢ is doubled
in its step 4 rather than quintupled; and (ii) o = 0.3. The third one, named QP, is a practical
modification of the quadratic penalty method of [10] in which: (i) each ACG subproblem in step 1
of the AIPP method is stopped when the condition

ujl| + 2n; < ollzo — @5 + uj|

holds; and (ii) it uses the parameters o = 0.3 and ¢ = max{1, M/||A|?*}. The fourth and last one,
named RQP, is an instance of the relaxed quadratic penalty method of [11] in which: (i) it uses
the AIPPv1 variant described in [11, Section 6] with the parameters (6,7) = (4, 10[A\g M + 1]) and
Ao = 10; and (ii) it uses the initial penalty parameter ¢; = max{1, M/||A||*}. It is also worth
mentioning that every method except the iALM replaces its ACG prox subproblem solver by a
more practical FISTA variant whose key iterates are as described in [23] and whose main stepsize
parameter is adaptively estimated by a line search subroutine described in [8, Algorithm 5.2.1].

We now give some comments about the benchmark algorithms. First, iALM differs from the
other tested methods in that it uses an ACG variant with a termination criterion that is different
from the one in (45) and/or its relaxation. Second, the main difference between the AIDAL variants
and TATPAL methods is in how they decide when to double ¢, i.e., step 4 of Algorithm 2.1. In
particular, the condition used in the IAIPAL method depends on both o and k whereas the condition
in the AIDAL variants do not. Finally, QP-AIPP is the only method that can be run without
requiring any regularity conditions on the linear constraint and without assuming that Dp < oc.
In Table 4.1, we summarize the adaptivity of the above methods in terms of the adaptivity of the
curvature constants M and m in assumption (A2). In particular, we consider the adaptivity of m
to be equivalent to the adaptivity of the prox stepsize A.

For a linear operator A, a proper lower semicontinuous convex function h, a function f satisfying
assumptions (A2)—(A4), a tolerance pair (p,n) € Rﬁ_ 4, and an initial point zy € dom h, each of the
methods of this section seeks a pair ([2, p], 0) satisfying

2] [AZ — b

) 2 2 *5 L —— _ <.
DEVIE +ORE + AP (T TFIS? TAzm—o+1 ="

(39)

16

Properties | rADLO rADLI tADLI iALM IPL QP RQP
Estimates M v v v b 4 v v v
Estimates m v v X X X X v

Table 4.1: The first (resp. second) row indicates whether a line search is used to estimate the curvature constant M (resp.
m) in assumption (A2) for a prox subproblem. Note that estimation of m is equivalent to estimation of the prox stepsize .

In particular, the quadratic programming and matrix problem experiments consider (p,n) =
(1073,1073), while the sparse PCA experiments consider (p,n) = (107%,10~*). Moreover, defining
co to be the initial penalty parameter and n; to be the number of outer iterations with ¢ = ¢2,
we also report the following metrics:

ZZZO ni . C()QZ

CW&V =)
& Zizo g

All experiments are implemented in MATLAB 2020b and are run on Linux 64-bit machines, each
containing Xeon E5520 processors and at least 8 GB of memory. Furthermore, the bold numbers
in each of the tables of this section indicate the method that performed the most efficiently for a
given benchmark, e.g., runtime or (innermost) iteration count. Finally, it is worth mentioning that
the code for replicating these experiments is freely available online?.

Cmax := final penalty parameter c.

4.1 Linearly-Constrained Quadratic Programming

Given a pair of dimensions (I,n) € N2, scalar pair (a1, az) € Rﬁ_Jr, matrices A, B,C € RI*" positive
diagonal matrix D € R™*", and vector pair (b, d) € R! x R, this subsection considers the following
linearly-constrained quadratic programming (LCQP) problem:

. Qa1 2 g 2
min —||Cz — d||" — =~ DBz|
st. Az=b, z€A,,

where A, = {z € R} : 33I'; 2; = 1} denotes the n-dimensional simplex.

We now describe the experiment parameters for the instances considered. First, the dimensions
are set to (I,n) = (10,50) and all of the entries in A, B, and C are nonzero. Second, the entries of
A, B,C,b, and d (resp., D) are generated by sampling from the uniform distribution ¢[0, 1] (resp.,
U[1,1000]). Third, the initial starting point 2 is generated by sampling a random vector Z from
U?[0,1] and setting zo = Zy/||Z0||. Fourth, using the well-known fact that ||z|| < 1 for every z € A,
the auxiliary parameters for the iALM are B; = ||a;||, L; = 0, and p; = 0, for every i, where a; is
the i*® row of A. Finally, the composite form of the problem is

« «
1(2) = S lICz = d|* = ZDBz|?, h(z) =64, (2),

and each problem instance uses a scalar pair (a1, ag) € Ri 4 so that M = Amax(V2f) is a particular
value given in the table below and m = —M/3.
We now present the numerical results for this set of problem instances in Table 4.2 and Table 4.3.
It is worth mentioning that we also attempted to add the sProxALM method of [30, 31] to
our list of benchmark methods with its penalty parameter set to I' = 10 and all other parameters
set as in [30, Algorithm 2]. However, for every problem instance, sProxALM failed to obtain a

2See https://github.com/wwkong/nc_opt/tree/master/tests/papers/aidal.

17

https://github.com/wwkong/nc_opt/tree/master/tests/papers/aidal

M Iteration Count Runtime (seconds)

rADLO rADL1 tADL1 iALM IPL QP RQP rADLOrADL1 tADL1iALM IPL QP RQP

102 958 1196 6910 11498 26256 20473 2455 2.0 2.5 14.0 13.8 53.4 379 4.6

103 2538 2807 7307 12669 25846 20354 2261 5.2 5.7 15.8 17.1 53.9 38.2 4.2

104 856 2624 7307 12729 25846 20497 2710 1.7 5.4 15.2 15.8 53.0 38.4 5.0
10° 908 2649 7322 12743 25846 20311 4571 1.8 5.3 14.7 15.0 52.6 38.5 8.8
106 1045 2514 7322 12744 25846 20313 7889 2.1 5.2 15.2 15.8 60.0 39.9 14.8

Table 4.2: Innermost iteration counts and runtimes for LCQP problems.

M Cmax Cwavg / Cmax

rADLO rADL1 tADL1 iALM IPL QP RQP rADLOrADL1 tADL1iALM IPL QP RQP

102 6E+1 2E+3 2E+3 3E+3 3E+5 4E+4+3 4E+3| 0.10 0.15 0.02 0.02 0.75 0.20 0.08
103 2E+3 4E+4 4E+4+4 3E+4 3E+4+6 4E+44 4E44| 0.12 0.14 0.01 0.02 0.75 0.19 0.10
10 2E44 4E+45 4E+5 3E+5 3E47 4E+5 4E+5| 0.18 0.13 0.01 0.02 0.75 0.20 0.13
10° 2E+5 4E+6 4E+4+6 3E+6 3E+8 4E46 4E46| 0.18 0.13 0.01 0.02 0.75 0.19 0.14

108 2E+46 4E+7 4E+4+7 3E47 3E49 4E47 4E+47(0.18 0.13 0.01 0.02 0.75 0.19 0.15

Table 4.3: Penalty parameter statistics for LCQP problems.

solution as in (39) under a generous time limit of 3600 seconds, so we have excluded its addition
to the results above. Note that we did not test sProxALM on the other numerical experiments
because their settings did not fall into settings considered by [30,31] (i.e., where the composite
function h needs to be the indicator function for a polyhedral set). Also, contrary to our AIDAL
implementations, [30,31] does not provide a concrete way of choosing the parameters (adaptively
or otherwise) of sProxALM to ensure its convergence.

4.2 Sparse PCA

Given integer k, positive scalar pair (v,b) € Ri +, and matrix ¥ € S%, this subsection considers the
following sparse principal component analysis (SPCA) problem:

n n
min (S e+ > q(@y) +v Y @]
’ =1 =1

st. I—®=0, (IL®) e F*xR™™,

where F* = {z € S7:0 < z < I,tr M = k} denotes the k—Fantope and ¢, (-) + |- | is the minimax
concave penalty (MCP) function given by

—t?/(2b), i ft] < by,

vt € R.
bv?/2 —vlt|, if [t| > by,

qu(t) ==

Note that the effective domain of this problem is unbounded, and hence, only the QP method is
guaranteed to converge to an approximate stationary point in general.

We now describe the experiment parameters for the instances considered. First, the scalar
parameters are chosen to be (v,b) = (100, 0.005). Second, the matrix ¥ is generated according to
an eigenvalue decomposition ¥ = PAPT, based on a parameter pair (s, k), where k is as in the
problem description and s is a positive integer. In particular, we choose A = (100, 1, ...,1), the first
column of P to be a sparse vector whose first s entries are 1/4/s, and the other entries of P to

18

be sampled randomly from the standard Gaussian distribution. Third, the initial starting point is
(I1y, ®9) = (Dy,0) where Dy, is a diagonal matrix whose first k entries are 1 and whose remaining
entries are 0. Fourth, the curvature parameters for each problem instance are m = M = 1/b and k
is fixed at k = 1. Fifth, for the iALM, we make the following parameter choices based on a relaxed
(but unverified) assumption that its generated iterates lie in Fy, X Fp: B; =1, L; =0, and p; =0
for all ¢. Sixth, the composite form of the problem is

FAL®) = (S, p+ Y q(Pij), h(ILP) =0z (D) +v > [Py,
i,j=1 i,j=1

A(IL®) =TI—®, b=0,

and each problem instance considers a different value of s.
We now present the numerical results for this set of problem instances in Tables 4.4 and 4.5.

s Iteration Count Runtime (seconds)

rADLO iALM IPL QP RQP | rADLO iALM IPL QP RQP

5 394 44952 2779 22559 2990 3.0 139.2 17.0 118.1 16.6
10 403 47373 2646 19984 2983 2.7 143.1 14.8 103.8 15.8
15 398 45552 2628 20126 2996 2.4 138.2 15.1 103.8 16.6

Table 4.4: Innermost iteration counts and runtimes for SPCA problems.

S Cmax Cwavg /Cmax

rADLO iALM IPL QP RQP | rADLO iALM IPL QP RQP

5 6E+3 4E+6 3E+5 4E+6 2E+6| 0.57 0.03 0.33 0.04 0.09
10 6E+3 4E+6 3E+5 4E4+6 2E+6| 0.57 0.03 0.28 0.03 0.09
15 6E+3 4E+6 3E+5 4E+4+6 2E+6| 0.57 0.03 0.35 0.03 0.09

Table 4.5: Penalty parameter statistics for SPCA problems.

4.3 Linearly-Constrained Quadratic Matrix Problem

Given a pair of dimensions (I,n) € N2, scalar pair (a1, a9) € R%_ ., linear operators A : ST Rl
B:SY— R" and C: ST — R! defined by

[A(Z)]Z = (4i,2), [B(Z)]_y = <Bj7z>) [C(Z)]z = (Ci, 2)

for matrices {A;}_;, {Bj}?zl,{Ci}ﬁzl C R™™" positive diagonal matrix D € R™ " and vector
pair (b,d) € R! x R, this subsection considers the following linearly-constrained quadratic matrix
(LCQM) problem:
o o2 92 2

min SHC(2) — dI* ~ 2| DB()]|

st. A(z) =0b, z€ Py,
where P, = {z € S% : trz = 1} denotes the n-dimensional spectraplex.

We now describe the experiment parameters for the instances considered. First, the dimensions

are set to ([,n) = (20,100) and only 1.0% of the entries of the submatrices A;, Bj, and C; are
nonzero. Second, the entries of A;, Bj,C;,b, and d (resp., D) are generated by sampling from

19

the uniform distribution 0, 1] (resp., #[1,1000]). Third, the initial starting point 2o is a random
point in S¥. More specifically, three unit vectors vy, v2, 3 € R™ and three scalars ey, ez, e € Ry are
first generated by sampling vectors 7; ~ U™[0,1] and scalars d; ~ U0, 1] and setting v; = ; /|| 7|
and e; = ¢;/ (Z?:l é;) for i = 1,2,3. The initial iterate for the first subproblem is then set to
20 = Y2, e;uv!. Fourth, using the well-known fact that [|z||p < 1 for every z € P,, the auxiliary
parameters for the iALM are

B; = ||Aillp, Li=0, p;i=0 Vi>1.
Finally, the composite form of the problem is

F(z) = Fle) —dIP = ZIDBE)P, h(z) =dp,(), A(z) = A2),

and each problem instance uses a scalar pair (a1, ag) € Rﬁ_ 4 so that M = Amax(V2f) is a particular
value given in the table below and m = —M /4.
We now present the numerical results for this set of problem instances in Tables 4.6 and 4.7.

M Iteration Count Runtime (seconds)
rADLO iALM IPL QP RQP | rADLO iALM IPL QP RQP
100 388 66000 6863 37470 8293 4.4 323.3 68.7 344.6 85.6
200 486 70551 6902 37696 1475 5.6 3349 669 3354 134
400 674 72760 6902 37972 1562 7.6 347.5 67.9 339.0 14.2
1600 | 1090 74200 6921 38203 1309 12.6 361.4 689 346.3 12.1
3200 1400 74568 6921 38243 1327 16.0 369.8 74.1 352.3 12.1

Table 4.6: Innermost iteration counts and runtimes for LCQM problems.

M Cmax Cwavg /Cmax

rADLO iALM IPL QP RQP rADLO iALM IPL QP RQP
100 4E4+1 2E+3 6E+2 1E43 1E4+3 | 0.27 0.08 0.96 0.30 0.01
200 8E+4+1 3E+3 1E+3 3E+3 3E+3 0.29 0.08 0.97 0.30 0.08
400 2E+42 6E+3 3E+3 5E+3 5E43 | 0.33 0.08 0.97 0.31 0.11
1600 6E+42 2E+4 1E+4 2B+44 2E44 | 0.39 0.08 0.97 0.31 0.12
3200 1E+3 5E4+4 2E4+4 4E+4 4E+44 | 0.39 0.08 0.97 0.31 0.13

Table 4.7: Penalty parameter statistics for LCQM problems.

4.4 Comments about Numerical Experiments

Algorithm rADLO is generally the most efficient in terms of total inner (or ACG) iterations, runtime,
and final penalty parameter used. Moreover, the experiments in Subsection 4.1 demonstrate that
the adaptivity of m (or equivalently \) substantially improves AIDAL in terms of both inner (or
ACG) iteration count and runtime. Finally, while the penalty ratio cwave/Cmax is generally the
lowest for iALM, the performance for iALM in terms of the number of innermost iterations and
runtime is generally the worst among the tested methods.

5 Concluding Remarks

Similar to the analyses in [17,19], the analysis of the AIDAL method strongly makes use of assump-
tion (A3) and the assumption that D, < oo to obtain its competitive O(¢75/2loge™!) iteration

20

complexity when € = p = 1. However, we conjecture that these two assumptions may be removed
using the more complicated analysis in [22] to obtain a slightly worse O(e~2loge™!) iteration
complexity (like in [22]).

Like the adaptive prox-stepsize AIDAL in Appendix D, another possible extension of AIDAL is
one in which A, x, and 6 are simultaneously chosen in an adaptive manner. Moreover, it would be
interesting to develop such an adaptive AIDAL and show that it has the same iteration complexity
bound as the nonadaptive AIDAL in Algorithm 2.1.

A Key Technical Bounds

The appendix presents a key technical bound that is used in the analysis of AIDAL.

Lemma A.1. For every (1,0) € [0,1]? satisfying 7 < 6% and every a,b € R™, we have that

V(1 g2
Ja— (1 - 6)bl — ol > [“)40] (el ~ 1817) . (0)

Proof. Let a,b € R™ be fixed and define

lal I-m+01-0?2 -21-90)
Z:l] M:l ~2(1-0) (1—7')+(1—9)2]' (41)

Moreover, using our assumption of 7 < 62 < 1, observe that
det M = [(1=7)+(1-0)*=2(1-0)] [1—7)+ (1 -0 +2(1-0)]
=[?-r||a-n+a-02+20-0)] >0,

and hence, by Sylvester’s criterion, it follows that M > 0. Combining this fact with the Cauchy-
Schwarz inequality and (41), we thus have that

la = (1= 0)p|* = llal* > (1 = 7)[lal® = 2(1 = 0)la] - [|b]| + (1 — 6)*||b||?
—7)— (1 = 9)2 —) —(1—6)2

1
= EzTMz +

B Statement and Analysis of the ACG Algorithm

Recall from Section 1 that our interest is in solving (1) by inexactly solving NCO subproblems of
the form in (3). This subsection presents an ACG algorithm for inexactly solving latter type of
problem and it considers the more general class of NCO problems

min {(u) := ths(u) + ¢n(u)}, (42)

ueRn
where the functions s and v, are assumed to satisfy the following assumptions:
(B1) ¢y, : R" — (—00, 00| is a proper closed convex function.
(B2) s is p-strongly convex and continuously differentiable on R™ and satisfies
IVes(2) = Vo ()| < Lilz — | (43)

for every 2/, z € R™ and some L > 0 and p € (0, L].

21

Clearly, problem (3) is a special case of (42), and hence, any result that is stated in the context of
(42) also applies to (3). It is also well-known that assumption (B2) implies

L
Sl =2 < o) — 4, (52) < S =2, (44)
for every z,2' € R™.
The pseudocode for the ACG algorithm is stated in Algorithm B.1 which, for a given a pair
(0,20) € Ry x dom 1, inexactly solves (42) by obtaining a pair (z,v) satisfying

v € Vips(2) + 0 (2), o] < allz — ol (45)

Note that if ACG algorithm obtains the aforementioned triple with ¢ = 0 then the first component
of the triple is, in fact, a global solution of (42). Indeed, if o = 0 then the above inequality implies
that v = 0, and the above inclusion reduces to 0 € 9(¢s + ¥,)(z), which in view of (7) clearly
implies that z is a global solution of (42).

Algorithm B.1: Accelerated Composite Gradient (ACG) Algorithm
Input : (0,z9) € Ry x dom,.
Output: a pair (z,v) € dom), x R" satisfying (45).

1 Function ACG({ts, ¥}, {L, u},0,20):

2 STEP O (initialization):

3 Set Yo < Xo, AO 0.

4 for j < 0,1,... do

5 STEP 1 (main iterates):

6 find the positive scalar a; satisfying a? = w
7 Aj_|_1 — Aj + aj;

8 T lmy + Ay,

9 Tj1 argmingegn { o, (453;) + () + S22y — 7]}
10 Vil < Y5 + i (@i — 35) + (i — yj)
11 STEP 2 (termination check):
12 wjt1 = Vs(@1) — Vs (F5) + (L + p) (5 — zj41)
13 if [[ujq1]] < ol|zj41 — 20| then

14 (2,0) ¢ (Tj41,u541)

15 return (z,v)

We now devote the remainder of the section to proving the following properties about the ACG
algorithm. Variations of the arguments that follow can also be found in [9,28].

Proposition B.1. The following properties hold about the ACG algorithm:
(a) for every j >0, it holds that

uj+1 € Vhs(zj11) + OUn(zj41) = O(s + ¥n)(x)41);

(b) it stops in a number of iterations bounded above by

L AL(L 2
{1+2 —1og1+{(7tu)}—‘ ; (46)
\ w po

and its output (z,v) satisfies (45).
We first present some technical properties about the generated iterates of Algorithm B.1.

Lemma B.2. Define the quantities

7j =1+ pA;, (47)
_ _ m _
Gj+1() =Ly, (535) + ¥ul) + 5” =757 (48)
. 8 L
qj+1(-) = qj(wjp1) + L{Tj — 241, — Tj41) + 5” =zl (49)

for every j > 0. Then, for every j > 1, the following statements hold:
2
() Ay > [1+ yi/VL)]” /L;
(b) wj41 = argming {g;+1(z) + Lz — 7;(1%/2};
(¢) yj+1 = argming {ajq;11(y) + 75lly — y;[1%/2}

(d) qj+1(-) < ().

Proof. (a) See, for example, [23, Lemma 4].

(b) Since Vgjt1(zj41) = L(Zj — xj41), it follows that ;. satisfies the optimality condition of
the given minimization problem. Hence, the desired identity follows.

(c) It follows from the definition of ¢;41(-) and the update rule of y;,1 that a;Vgji1(yj+1) =
Tj+1(Yj+1 — y;). The conclusion now follows from the optimality condition for the desired identity.

(d) In view of (44) and the definition of §;41, we first have that ¢j1i(-) < ¢(-). On the other
hand, it follows from the optimality condition of #;41 in Algorithm B.1, the convexity of 1/,,, and the
definition of ¢;(-) that L(Z; — xj4+1) € 0¢j+1(xj41). Furthermore, since g;41 is p-strongly convex,
we also have L(Z; — zj41) € 0(§j4+1 — pll - —2j+1]/*/2)(2j5+1). Combining all these facts with the
definition of the subdifferential, we thus conclude that

. . . 1
V() = Gj+1() = Giv1(xj) + L{Tj — zj11,- — j41) + 5” c—zj? = g (). O

The next result establishes an important technical bound.

Lemma B.3. For every j > 0 and y € R"™, it holds that

Tit1
2

m _
> Ajpr | (xe) + §H~”Cj+1 - %,

-
Ajgia(y) + ajqi(y) + é”yj —y|? - Y1 —yll

(50)

where T; and q;(-) are as in (47) and (49), respectively.

Proof. Using the update rule for A;, we first note that 7,1 = 7; + pa;. Combining this fact, the
optimality condition in Lemma B.2(c) and the fact that a;qj+1(-) + 75| - —y;]|?/2 is 7;4+1-strongly
convex, we then have that

”2 _Ti+1
2

T T
a;qi+1(y) + EJH?J —Yj ly = yj1ll® = ajgit1(yje1) + EJH?J]'—H —y;|? (51)

23

for every y € R™. On the other hand, using the convexity of gj;1(-), the second bound in (44),
Lemma B.2(b), and the quadratic subproblem associated with a;, we have

.
Ajgi1(z;) + ajqiv1(yj+1) + %Hyﬁl — y;l?

Aji +ayie) A7
Aj+1 2@?

2
ijj + Y541 - Aj.%'j + a;Y;
Ajn Aji1

> Aji1gi+ (

TjA_?-‘rl ~ 12 L ~ 12
> Ap min $ay1(0) + o5 o — 351 | = Ap min o)+ 5 o - 3507}

2a?
— A) . £ P > AL . Fllp. o — 7012 59
= Aji1 |g+1(@j41) + 2”xj+1 Zill°| = Ajer (@) + 2”%—%1 ;"] - (52)
The conclusion follows from combining (51) and (52). O

We now derive a general telescopic bound on the quantity [z;11 — Z;2.
Lemma B.4. For every j > 0 and x € R", it holds that

pAj 41
2

lzj1 = &51% < () = nja(2), (53)
where the potential n;(-) is given by

M) = Ale) — (O] + 2l - —wll® Vi > 0. (54)
Proof. Subtracting A; 111 (y) from (50) and using Lemma B.2(d), we have that

AJ+1

i1 — &511% + Ajpr [(m541) — ¥(y)]

+1
] i1 — y|?

T T
< Ajp(zj) + ajp(y) — A (y) + gjllyj —y|]* - JH ||y9+1 yl?.

T.
< quj+1($j) +a;q511(y) = A (y) + 3 llys - yl* —

The conclusion follows by re-arranging the above bound and using the update rule for A;,; and
the definition of 7;(-). O

Specializing the above result, we establish a bound for the residuals {u;;1};>0 in terms of the
prox residual ||z;41 — 2ol

Lemma B.5. For every j > 0, it holds that

A(L + p)?

A @541 — o] (55)
J

] <

Proof. Using assumption (B2), the definition of u;11, the bound (a + b)? < 24 4 2b* for a,b € R,

24

(53) at = x;, and the fact that (Ag,79) = (0,1), we have that
pAjllugenl® _ g3 Avalluia?
2 - ' 2
13000 A1 [Vs (i) — Vb (@) + (L +) (& — zisa) |
2

J
z i (Vi) = VO @I + (L +)2 — 2o |
=0

(53) ')
< 2u(L + p)? Z A1 || — w1 |* <AL+ p)? [no(zj41) — e (2541))]
=0

(AmTo) (0,1) (L—i—,u)2

Tj+1
2
2 2
2(L + p)”llwo — jall” 0

2o — zj41]?

1
§H$0 —zjn|? -

We are now ready to prove Proposition B.1.

Proof of Proposition B.1. (a) Using the optimality of =, the definition of u;; in Algorithm B.1,
we have that

0 € Vbs () + 0P (xjs1) + (L +) (w41 — T5) = —ujr1 + Vs (wj11) + 0P (w)41)
= —ujy1 + 8(103 + wn)(xj‘ﬂ)

where the last identity follows from the fact that 5 and v, are convex (see (B1)—(B2)).

(b) Let J denote the quantity in (46). Using Lemma B.2(a) and the bound log(1 +t) > ¢/2
for t € [0,1], it is straightforward to verify that 4(L + p)?/(uAy11) < o?. It then follows from the
previous bound and (55) that

4(L + p)?
s 2 < (MA—HRHW ol < oz ss1 — wol%

Consequently, it follows from the above bound, part (a), and the termination condition of Algo-
rithm B.1 that the ACG algorithm stops in a number of iterations bounded above by J. O

C Necessary Optimality Conditions

This appendix shows that if 2 local minimum of (1) then condition (11) holds. Throughout this
appendix, we denote
Yz +td) — Y(z)
t
as the directional derivative of a function ¢ at x in the direction d.

The first useful result presents a relationship between directional derivatives of composite func-
tions and the usual first-order necessary conditions.

7 T
W (w; d) = lim

Lemma C.1. Let g : R" — (—o00,00] be a proper convex function, and let f be a differentiable
function on dom g. Then, for every x € dom g, the following statements hold:

(a) infjajcr (F + 9)'(@:d) = — infucrn {Jull - w € VF(2) + Ig(e)};

25

(b) if x is a local minimum of f + h then 0 € V f(x) + Oh(z).

Proof. (a) See [14, Lemma 15] with (X, h) = (R", g).
(b) This follows immediately from (a) and the fact that (f +h)'(x;d) > 0 for every d € R". O

We now establish the aforementioned necessary condition.

Proposition C.2. Let (f,h, A,b) be as in (A1)-(A4). If % is a local minimum of (1), then there
exists a multiplier p such that (11) holds.

Proof. We first establish an important technical identity. Let S = {z € R" : Az = b}, let dg
denote the indicator function of S, i.e., the function that takes value 0 if its input is in S and 400
otherwise, and let ri X denote the relative interior of a set X. Since assumptions (A3)—(A4) imply
that riHNriS = int HNS # (), it follows from [26, Theorem 23.8] that for every x € H NS we have

8(6s + h)(x) = BSg(x) + Oh(z) = Ng(z) + Oh(z) = {€ + A™p : € € h(x)). (56)

The conclusion follows from the above identity and Lemma C.1(b) with g = h + dg. O

D Adaptive AIDAL

This appendix presents an adaptive version of AIDAL where we choose the prox stepsize adaptively.

Before presenting the algorithm, we first motivate its construction under the assumption that
the reader is familiar with the notation and results of Section 3. To begin, the careful reader
may notice that the special choice of A = 1/(2m) in AIDAL (Algorithm 2.1) is only needed to
ensure that the function AL2(-;p) + | - ||? is strongly convex with respect to the norm ||zq =
(x,[(1 — Am)I + cA\A*A]x) for every ¢ > 0 and p € A(R™). Moreover, this global property is only
needed to show that:

(i) the k" ACG call of ATDAL stops with a pair (2, vy) satisfying ||vx| < ollzx — 2zr—1;
(i) Aol < wf_; — 0}

The other technical details of Section 3, such as the boundedness of \If?, are straightforward to
show as long as the prox stepsize is bounded. As a consequence, a natural relaxation of AIDAL is
to employ a line search at its k'™ outer iteration for the largest A within a bounded range satisfying
conditions (i) and (ii) above.

In Algorithm D.1, we present one possible relaxation. Specifically, the k™ prox stepsize \; is
chosen from a set of candidates in the range (0, \p_1].

We now make a few remarks about Algorithm D.1. First, the candidate search space for the
Eth prox stepsize forms a geometrically decreasing sequence and A\, < M,_;. Second, the first
condition of (57) corresponds to condition (i), while the second condition corresponds to condition
(ii). Moreover, the second condition of (57) always holds when A = 1/(2m) due to Lemma 3.4,
Lemma 3.5, and the definition of 9; which imply (cf. the proof of Proposition 3.3) that

Jog + zi—1 — 2kl|? = N2[|o5]|* < IN(Th_, — TY).

Third, in view of the previous remark, since conditions (i) and (ii) are always satisfied whenever

A <1/(2m), we also have that A\; € [1/(2ym), \o] and, hence, the sequence {\;}r>1 is bounded.
Notice that it is not immediately clear how one obtains fj at the k"' outer iteration. One

possible approach is to apply an adaptive ACG variant to the stepsize sequence {\;_1377 }i>o0 in

26

Algorithm D.1: Adaptive AIDAL Method

Input : Same as in Algorithm 2.1 but with additional parameters v > 1 and Ag > 0.
Output: Same as in Algorithm 2.1.

Function AdapAIDAL(M {0, x, 0, o}, {c1,20,p0}, {psn}, 7):

)\0 — A

for £+ 1,2,... do

find the smallest nonnegative integer (i such that the ACG call in step 1 of
Algorithm 2.1 with A = 4~k \,_; stops with a pair (zj,v;,) satisfying

W N =

o]l < ollzk — zgp—1]| if k>1, and
vk + 2k—1 — 25> < INYY_, — W) if k> 2,

where U¢ is given in (28)
set A\, ’y‘ﬁk)\k_l
execute steps 1-4 of Algorithm 2.1 with A = A\

which the variant has a mechanism to determine if at least one of the conditions in (57) is reachable.
This is so that if none of the conditions in (57) are reachable for some candidate A, then the variant
can be called again with a smaller stepsize. One example is the adaptive ACG variant in [9], which
contains a mechanism for determining the reachability of the first condition in (57) and can even
adaptively choose its other curvature parameters, such as L in Algorithm B.1. Note that if the
ACG has already been called with the [, satisfying (57) during the () line search, then it does not
need to be called again when executing the steps of Algorithm 2.1.

Before closing this section, we briefly discuss the convergence and iteration complexity of the
method. Convergence of the method is straightforward to establish using the same techniques of
Section 3 and the fact that Ay is bounded (see the remarks above). On the other hand, it can
be shown that the iteration complexity of the method is on the same order of complexity as in
Theorem 2.3. Without going through the cumbersome technical details, we assert that this follows
from the boundedness of the stepsizes A\, the fact that the search for the next stepsize is done
geometrically, and arguments similar to other adaptive augmented Lagrangian/penalty methods
such as the one in [11].

Data Availability Statement

The data and code generated, used, and/or analyzed during the current study are publicly available
in the NC-0PT GitHub repository® under the directory ./tests/papers/aidal/.

Ethics Statement

The authors declare that they have no conflict of interest.

References

[1] N. S. Aybat and G. Iyengar. A first-order smoothed penalty method for compressed sensing. STAM J.
Optim., 21(1):287-313, 2011.

3See https://github.com/wwkong/nc_ opt.

27

https://github.com/wwkong/nc_opt

2]
3]

[4]

[11]

[12]

[13]

N. S. Aybat and G. Iyengar. A first-order augmented Lagrangian method for compressed sensing. STAM
J. Optim., 22(2):429-459, 2012.

D. Boob, Q. Deng, and G. Lan. Stochastic first-order methods for convex and nonconvex functional
constrained optimization. Math. Program., pages 1-65, 2022.

M. L. N. Goncalves, J. G. Melo, and R. D. C. Monteiro. Convergence rate bounds for a proximal
ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems.
Pac. J. Optim., 15(3):379-398, 2019.

Q. Gu, Z. Wang, and H. Liu. Sparse PCA with oracle property. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Adv. Neural Inf. Process. Syst. 27, pages
1529-1537. Curran Associates, Inc., 2014.

D. Hajinezhad and M. Hong. Perturbed proximal primal-dual algorithm for nonconvex nonsmooth
optimization. Math. Program., 176:207-245, 2019.

B. Jiang, T. Lin, S. Ma, and S. Zhang. Structured nonconvex and nonsmooth optimization algorithms
and iteration complexity analysis. Comput. Optim. Appl., 72(3):115-157, 2019.

W. Kong. Accelerated Inexact First-Order Methods for Solving Nonconvex Composite Optimization
Problems. Awailable on arXiv:2104.09685, April 2021.

W. Kong. Complexity-optimal and curvature-free first-order methods for finding stationary points of
composite optimization problems. arXiv preprint arXiv:2205.13055, 2022.

W. Kong, J. G. Melo, and R. D. C. Monteiro. Complexity of a quadratic penalty accelerated inexact
proximal point method for solving linearly constrained nonconvex composite programs. SIAM J. Optim.,
29(4):2566-2593, 2019.

W. Kong, J. G. Melo, and R. D. C. Monteiro. An efficient adaptive accelerated inexact proximal
point method for solving linearly constrained nonconvex composite problems. Comput. Optim. Appl.,
76(2):305-346, 2020.

W. Kong, J. G. Melo, and R. D. C. Monteiro. Iteration-complexity of a proximal augmented Lagrangian
method for solving nonconvex composite optimization problems with nonlinear convex constraints.

Available on arXiv:2008.07080, 2020.

W. Kong, J. G. Melo, and R. D. C. Monteiro. Iteration complexity of an inner accelerated inexact
proximal augmented Lagrangian method based on the classical Lagrangian function. SIAM Journal on
Optimization, 33(1):181-210, 2023.

W. Kong and R. D. C. Monteiro. An accelerated inexact proximal point method for solving nonconvex-
concave min-max problems. SIAM J. Optim., 31(4):2558-2585, 2021.

G. Lan and R. D. C. Monteiro. Iteration-complexity of first-order penalty methods for convex program-
ming. Math. Program., 138(1):115-139, Apr 2013.

G. Lan and R. D. C. Monteiro. Iteration-complexity of first-order augmented Lagrangian methods for
convex programming. Math. Program., 155(1):511-547, Jan 2016.

Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. Rate-improved inexact augmented Lagrangian method for
constrained nonconvex optimization. Int. Conf. Artif. Intell. Stat., pages 2170-2178, 2021.

Z. Li and Y. Xu. Augmented Lagrangian—based first-order methods for convex-constrained programs
with weakly convex objective. INFORMS Journal on Optimization, 3(4):373-397, 2021.

Q. Lin, R. Ma, and Y. Xu. Inexact proximal-point penalty methods for constrained non-convex opti-
mization. Awvailable on arXiv:1908.11518, 2019.

Y .-F. Liu, X. Liu, and S. Ma. On the nonergodic convergence rate of an inexact augmented Lagrangian
framework for composite convex programming. Mathematics of Operations Research, 44(2):632-650,
2019.

28

[21]

22]

[26]
[27]

28]

[29]
[30]

[31]

Z. Lu and Z. Zhou. Iteration-complexity of first-order augmented Lagrangian methods for convex conic
programming. Awailable on arXiv:1803.09941, 2018.

J. G. Melo, R. D. C. Monteiro, and H. Wang. Iteration-complexity of an inexact proximal accelerated
augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimiza-
tion problems. Awailable on arXiv:2006.08048, 2020.

R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter. An adaptive accelerated first-order method for convex
optimization. Comput. Optim. Appl., 64:31-73, 2016.

I. Necoara, A. Patrascu, and F. Glineur. Complexity of first-order inexact Lagrangian and penalty
methods for conic convex programming. Optim. Methods Softw., pages 1-31, 2017.

A. Patrascu, I. Necoara, and Q. Tran-Dinh. Adaptive inexact fast augmented Lagrangian methods for
constrained convex optimization. Optim. Lett., 11(3):609-626, 2017.

R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

M. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian
framework for nonconvex optimization with nonlinear constraints. Adv. Neural Inf. Process. Syst., 32,
2019.

A. Sujanani and R. D. C. Monteiro. An adaptive superfast inexact proximal augmented Lagrangian
method for smooth nonconvex composite optimization problems. arXiv e-prints, page arXiv:2207.11905,
July 2022.

Y. Xu. Iteration complexity of inexact augmented Lagrangian methods for constrained convex pro-
gramming. Math. Program., 2019.

J. Zhang and Z.-Q. Luo. A global dual error bound and its application to the analysis of linearly
constrained nonconvex optimization. Awailable on arXiv:2006.16440, 2020.

J. Zhang and Z.-Q. Luo. A proximal alternating direction method of multiplier for linearly constrained
nonconvex minimization. STAM J. Optim., 30(3):2272-2302, 2020.

29

	Introduction
	Basic Notations and Definitions

	Augmented Lagrangian Method
	Problem of Interest
	AIDAL Method

	Convergence Analysis of the AIDAL Method
	Preliminary Results
	Bounds on the Stationarity Residuals
	Proof of Proposition 2.1
	Proof of Proposition 2.2

	Numerical Experiments
	Linearly-Constrained Quadratic Programming
	Sparse PCA
	Linearly-Constrained Quadratic Matrix Problem
	Comments about Numerical Experiments

	Concluding Remarks
	Key Technical Bounds
	Statement and Analysis of the ACG Algorithm
	Necessary Optimality Conditions
	Adaptive AIDAL

